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DYNAMICS OF CAYLEY FORMS

KIRILL KRASNOV

Abstract. The most natural first-order PDE’s to be imposed on a Cayley 4-form in eight
dimensions is the condition that it is closed. As is well-known, this implies integrability of
the Spin(7) structure defined by the Cayley form, as well as Ricci-flatness of the associated
metric. We address the question as to what the most natural second-order in derivatives set of
conditions is. We start at the linearised level, and construct the most general diffeomorphism
invariant second order in derivatives Lagrangian that is quadratic in the perturbations of the
Cayley form. We find that there is a one-parameter family of such Lagrangians, and that Euler-
Lagrange equations following from any generic one are elliptic modulo gauge. We then describe
a non-linear completion of the linear story. To this end, we parametrise the intrinsic torsion
of a Spin(7) structure by a 3-form, and show that this 3-form is completely determined by the
exterior derivative of the Cayley form. We then construct an action functional, which depends
on the Cayley 4-form and and auxiliary 3-form as independent variables. There is a unique
functional whose Euler-Lagrange equation for the auxiliary 3-form states that it is equal to the
torsion 3-form. There is, however, a more general one-parameter family of functionals that can
be constructed, and we show how the linearisation of these functionals reproduces the linear
story. For any member of our family of theories, the Euler-Lagrange equations are written
only using the operator of exterior differentiation of forms, and do not require the knowledge
of the metric-compatible Levi-Civita connection. Geometrically, there is a preferred member
in the family of Lagrangians, and we propose that its Euler-Lagrange equations are the most
natural second-order equations to be satisfied by Cayley forms. Our construction also leads to
a natural geometric flow in the space of Cayley forms, defined as the gradient flow of our action
functional.
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1. Introduction

A Spin(7) structure on an 8-dimensional manifold is defined to be a 4-form of a special
algebraic type. Such a 4-form is known as a Cayley form, and its GL(8,R) stabiliser is Spin(7).
An 8-manifold admits a Spin(7) structure if it is spin. However, since most of the considerations
in this paper are local, we do not need to concern ourselves with assumptions about M .

As is well-known since [1], a Spin(7) structure is integrable if and only if the associated Cayley
4-form Φ is closed dΦ = 0. This in turn implies that the metric determined by Φ is Ricci-flat.
It is clear that dΦ = 0 gives the most geometrically motivated set of first-order PDE’s on the
Cayley form. In this paper we address the question of what the most natural second-order
PDE’s are. We describe a certain construction, inspired by the Plebanski formalism [2], see
also [3] Chapter 5, for four-dimensional General Relativity. The result of the construction is
a unique action functional for Φ, whose Euler-Lagrange equations are a set of second-order
PDE’s on it. As it will become clear from the construction and the equations it results in, these
equations poses some desirable properties. They are elliptic modulo (diffeomorphism) gauge.
They are also constructed solely from the operator of the exterior differentiation of forms, so
one never needs to know the metric determined by Φ and its associated covariant derivative to
write them down.

The main outcome of our construction is the action

S[Φ, C] =

∫

M

Φ ∧ (dC − 6C ∧Φ C) +
λ

6
vΦ + constraint terms. (1.1)
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Here Φ ∈ Λ4(M) is a Cayley form, and we have included in the action a set of constraint terms
whose purpose is to guarantee that Φ is of the correct algebraic type. An easy comparison
between the dimension of the space of 4-forms dim(Λ4) = 70 and the dimension of the orbit
dim(GL(8,R)/Spin(7)) = 43 shows that there are 27 independent constraints to be satisfied.
We will never need to specify these constraints explicitly, as only the variation of these terms
with respect to Φ matters for the Euler-Lagrange equations, and this can be determined by
a different argument, see below. The object C ∈ Λ3(M) is what we refer to as the auxiliary
3-form. The Euler-Lagrange equations for C are algebraic, and determine C in terms of the
exterior derivative of Φ, see below. After this solution is substituted back into the action, one
gets a second order in derivatives action for Φ only. The term λvΦ is a ”cosmological constant”
term, with λ ∈ R being a parameter and vΦ being the volume form for Φ, which can be taken
to be vΦ = (1/14)Φ ∧ Φ. Finally, C ∧φ C is a 4-form constructed from two copies of C, as well
as the (inverse) metric determined by Φ. In the index notations that we will be using in this
article, it is given by

(C ∧Φ C)abcd := CabpCcdqg
pq. (1.2)

Even though (1.1) is the most natural action for Cayley forms for reasons to become clear
below, there are two independent and quadratic in C ∈ Λ3 scalars that can be constructed, as
follows from the fact that there are precisely two irreducible representations in the decomposition
of Λ3 into irreducibles of Spin(7), see (2.15) and (2.16). A particular combination of these two
independent invariants of C appears in (1.1). We can, however, consider a more general family
of Lagrangians given by

Sκ[Φ, C] =

∫

M

Φ ∧ (dC − 6C ∧Φ C) +
κ

6
(C)2vΦ +

λ

6
vΦ + constraint terms. (1.3)

Our analysis of the linearised theory below will show that there is a one-parameter family of
diffeomorphism invariant Lagrangians that are second order in derivatives and quadratic in
the perturbations of the Cayley form. We will verify that the linearisation of (1.3) reproduces
the one-parameter family of linearised Lagrangians, thus showing that (1.3) gives the non-
linear completion of the most general diffeomorphism invariant linear Lagrangian. However, for
reasons to be explained now, the κ = 0 action functional (1.1) is the geometrically preferred
one. The argument that fixes this action proceeds through a series of propositions.

The fact that the dimension of the space where the intrinsic torsion of a Spin(7) structure
lies equals to the dimension of the space of 3-form is known. However, the paper [4], which
was an important precursor to our construction, uses a different parametrisation. The analog
of Lemma 2.10 of [4] in our parametrisation is the following statement:

Proposition 1.1. The intrinsic torsion of a Spin(7) structure, measured by ∇iΦabcd, where
∇ is the metric-compatible covariant derivative, lies in Λ1 ⊗ Λ4

7. For the notations explaining
Λ4
7 and the decomposition of the space of forms into irreducible components see below. The

intrinsic torsion can be parametrised by an object T ∈ Λ3 so that

∇iΦabcd = 4Ti[a
pΦ|p|bcd]. (1.4)

Here the index p of Taip is raised with the metric determined by Φ.

It turns out that the torsion 3-form is completely determined by the exterior derivative dΦ.
This is the content of the following proposition:

Proposition 1.2. The Hodge dual of the projection of (1.4) on the space of 5-forms can be
written as

⋆dΦ =
2

5
J3(T ), (1.5)

where J3 is a certain operator J3 : Λ3 → Λ3 defined by Φ, see (2.13). The operator J3 is
invertible, and so T is completely determined by dΦ.

We now have the proposition linking the action (1.1) and the relation (1.5) between the
torsion 3-form and the exterior derivative of the Cayley form:
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Proposition 1.3. The Euler-Lagrange equation arising from (1.1) by extemising it with respect
to C is C = T .

One can rephrase this by saying that (1.1) is precisely the first-order action dependant of
both Φ, C that leads to C = T as the C field equation. Importantly, there is no ambiguity in
the construction of the action once we demand that C = T is to follow. The Euler-Lagrange
equation for C that follows from (1.3) gives instead (6.8). So, the 3-form C that is the critical
point of the action (1.3) is not the intrinsic torsion T of the Spin(7) structure, but is only related
to it. At present, it appears that the action (1.1) is the unique geometrically preferred action
in the more general family (1.3).

The next proposition describes the Euler-Lagrange equations resulting by varying (1.1) with
respect to Φ:

Proposition 1.4. The Euler-Lagrange equations resulting from extremisation of (1.1) with
respect to Φ can be written as:

∂[aTbcd] −
3

2
T[ab

pTcd]p −
1

8
(TT )[a|e|Φ

e
bcd] +

λ

84
Φabcd = Ψ[ab

pqΦ|pq|cd], (1.6)

where Ψabcd is an arbitrary symmetric tracefree matrix in Λ2
7 ⊗S Λ2

7 and

(TT )ab := ΦijklTijaTklb −
1

7
gabΦ

ijklTij
pTklp (1.7)

is a symmetric matrix quadratic in the torsion. We can also write the Euler-Lagrange equations
in form notations as

dΦ− 6T ∧Φ T −
1

16
K(TT ) +

λ

42
Φ = Ψ(Φ). (1.8)

Here K is the map from the space of symmetric tensors to Λ4 described in (2.36), and Ψ(Φ) is
a general 4-form in Λ4

27.

Proposition 1.5. An alternative way of writing the field equations is to project both sides on
the Λ4

1+7+35 component in Λ4. This gives the following set of equations

1

4
Φb

pqr∇aTpqr −
3

4
Φb

pqr∇rTapq −
3

2
Φb

pqrTap
sTqrs −

3

4
ΦpqrsTapqTbrs (1.9)

+
1

2
gab

(

λ+
3

8
ΦpqrsTpq

pTrsp

)

= 0.

The equations here are written in terms of ∇, but they have the same form with ∇ replaced
by the partial derivative operator ∂. We note that the left-hand side is not automatically ab
symmetric, and the anti-symmetric part of these equations are non-trivial. The anti-symmetric
part can be shown to lie in Λ2

7, and so the total number of independent second-order differential
equations is 36 + 7 = 43, the dimension of the space of Cayley forms.

We can also characterise what the field equations imply for the Riemann curvature of the
metric defined by Φ. This is done in the main text. We will see that the metrics defined by Φ
that are the critical points of our action functional are not in general Einstein.

There is another Lagrangian in the family (1.3), namely one corresponding to κ = −2, which
is special. As a computation shows, the linearised Lagrangian in this case is just that for
a metric perturbation. The other field that parametrises the perturbation of Φ, namely one
living in Λ2

7, does not receive any kinetic terms at this value of κ. One can rephrase this by
saying that the linearisation of the κ = −2 Lagrangian is the same as the linearisation of the
Einstein-Hilbert Lagrangian for the metric. One could then be led to believe that the non-linear
theory for κ = −2 is just that describing Einstein metrics. This is, however, not the case, as is
confirmed by calculations. There are very interesting differences only visible at the non-linear
level, still to be better understood.

The set of second-order PDE’s (1.6) is the main result of our construction. We propose these
equations as the most natural set of second-order PDE’s for a Cayley form to satisfy. There
is also a natural geometric flow in the space of Cayley forms that our construction defines.
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The gradient of the action functional (1.1) with respect to Φ, with C = T , is given by the
Hodge dual of the 4-form on the left-hand-side of (1.8), projected to the space Λ4

1+7+35. Our
linearised analysis shows that this geometric flow is elliptic modulo gauge, and thus by standard
arguments has good short time existence properties.

More work is needed to get better intuition about the properties of both the geometrically
preferred κ = 0 as well as κ = −2 equations. We hope that this work will follow. It is worth
remarking already now, however, that construction of a similar type to that described in this
paper is possible also for other G-structures, in various dimensions. It would be particularly
interesting to perform a similar analysis and construct actions for 3-forms in 7-dimensions,
building on the work [5].

Many of the tensor computations in the paper are performed using symbolic manipulation
with xAct Mathematica package [6]. The stated representation theoretic facts are obtained
using the Mathematical package LieART [7].

2. Decomposition of the spaces of forms

2.1. Basic algebra. Similar to [8] and [4], we use the index notation, which is very useful for
encoding various relations satisfied by the Cayley form. The basic algebraic relation satisfied
by the 4-form Φabcd is

ΦijkpΦabcp = giagjbgkc + gibgjcgka + gicgjagkb − giagjcgkb − gicgjbgka − gibgjagkc (2.1)

−giaΦjkbc − gjaΦkibc − gkaΦijbc

−gibΦjkca − gjbΦkica − gkbΦijca

−gicΦjkab − gjcΦkiab − gkcΦijab.

One more contraction of this gives

ΦijpqΦabpq = 6giagjb − 6gibgja − 4Φijab. (2.2)

Yet one more contraction gives

ΦipqrΦapqr = 42gia. (2.3)

The 4-form Φ is self-dual

1

4!
ǫijkl

abcdΦabcd = Φijkl. (2.4)

Useful consequences of self-duality are

ǫaijklpqrΦbpqr = 30δ
[a
b Φijkl], (2.5)

and

ǫijklmnpqΦabpq = 60δ[ia δ
j
bΦ

klmn], (2.6)

and

ǫijklmnprΦabcr = 210δ[ia δ
j
bδ

k
cΦ

lmnp], (2.7)

2.2. Identity. The following non-trivial identity

−2Φ[ijk
[aΦl]

bcd] − 3Φ[ij
[abΦkl]

cd] + 42Φ[ij
[abδckδ

d]
l] +ΦijklΦ

abcd = 0 (2.8)

can be checked by multiplying with δia and using the algebra (2.1) to check that the result is
zero.
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2.3. Decomposition of Λ2. We introduce the following operator on 2-forms

J2(β)ij =
1

2
Φij

abβab. (2.9)

Using (2.2) we see that

(J2)
2 = 3I− 2J2. (2.10)

This means that the eigenvalues of J2 are −3, 1. The eigenspace of eigenvalue −3 is Λ2
7, and

eigenspace of eigenvalue 1 is Λ2
21. The two projectors are

π7 =
1

4
(I− J2), π21 =

1

4
(3I+ J2). (2.11)

For later purposes we note that

J−1
2 =

1

3
(2I + J2). (2.12)

2.4. Decomposition of Λ3. We introduce the following operator on 3-forms

J3(γ)ijk =
1

2
(Φij

pqγkpq +Φjk
pqγipq +Φki

pqγjpq) =
3

2
Φ[ij

pqγk]pq (2.13)

A calculation using (2.1) gives

(J3)
2 = 6I− 5J3. (2.14)

This means that the eigenvalues of J3 are −6, 1. The eigenspace of eigenvalue −6 is Λ3
8, and

eigenspace of eigenvalue 1 is Λ3
48. The elements of the space Λ3

8 are of the form

Λ3
8 = {XpΦpijk,X ∈ TM}, (2.15)

and

Λ3
48 = {γ ∈ Λ3 : γ ∧Φ = 0}. (2.16)

We note that

π48 =
6

7

(

I+
1

6
J3

)

, π8 =
1

7
(I− J3) . (2.17)

We also note that

J−1
3 =

1

6
(J3 + 5I). (2.18)

2.5. Decomposition of Λ4. We introduce the following operator on 4-forms

J4(σ)ijkl = 3Φ[ij
pqσkl]pq = (2.19)

1

2
(Φij

pqσpqkl +Φki
pqσpqjl +Φil

pqσpqjk +Φkl
pqσpqij +Φjl

pqσpqki +Φjk
pqσpqil).

We have the following relation, also to be found in [4]

(J4)
2(σ)ijkl =

1

2
(Φij

abΦkl
cd +Φki

abΦjl
cd +Φil

abΦjk
cd)σabcd + 6σijkl − 8J4(σ)ijkl = (2.20)

3

2
Φ[ij

abΦkl]
cdσabcd − 24Φ[ij

abσkl]ab + 6σijkl.

We also have the following result for the cube of this operator

(J4)
3(σ)ijkl = −6Φa

[ijkΦ
bcd
l] σabcd − 15Φ[ij

abΦkl]
cdσabcd + 258Φ[ij

abσkl]ab − 24σijkl. (2.21)

Using the identity (2.8) we can rewrite this as

(J4)
3(σ)ijkl = −6Φ[ij

abΦkl]
cdσabcd + 132Φ[ij

abσkl]ab − 3ΦijklΦ
abcdσabcd − 24σijkl. (2.22)
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Finally, for the fourth power of this operator we have

(J4)
4(σ)ijkl = 87Φa

[ijkΦ
bcd
l] σabcd +

345

2
Φ[ij

abΦkl]
cdσabcd − 2643Φ[ij

abσkl]ab (2.23)

+
9

2
ΦijklΦ

abcdσabcd + 168σijkl.

Using (2.8) we can rewrite this as

(J4)
4(σ)ijkl = 42Φ[ij

abΦkl]
cdσabcd − 816Φ[ij

abσkl]ab + 48ΦijklΦ
abcdσabcd + 168σijkl. (2.24)

This shows that

(J4)
4 + 16(J4)

3 + 36(J4)
2 − 144J4 = 0, (2.25)

or in other words

(J4 + 12I)(J4 + 6I)(J4 − 2I)J4 = 0. (2.26)

This shows that the operator J4 has eigenvalues −12,−6, 2, 0, see also [4]. The eigenspaces are
the irreducible parts of the space of 4-forms

Λ4
1 = {σ ∈ Λ4 : J4(σ) = −12σ}, Λ4

27 = {σ ∈ Λ4 : J4(σ) = 2σ}, (2.27)

Λ4
7 = {σ ∈ Λ4 : J4(σ) = −6σ}, Λ4

35 = {σ ∈ Λ4 : J4(σ) = 0}.

This characterisation will follow after we characterise each of the irreducible parts below.

2.6. Projector on Λ4
27. In what follows it will be useful to have the projector on Λ4

27 explicitly.
It is clear that it is a multiple of J4(J4 + 12I)(J4 + 6I). Taking into account the eigenvalues of
J4 on different subspaces, it is not difficult to check that the required multiple is 1/224. Thus,
we have

π27 =
1

224
J4(J4 + 12I)(J4 + 6I) =

1

224
((J4)

3 + 18(J4)
2 + 72J4). (2.28)

Using (2.22) and (2.20) we get

π27(σ)ijkl =
3

32

(

Φ[ij
abΦkl]

cdσabcd − 4Φ[ij
abσkl]ab −

1

7
ΦijklΦ

abcdσabcd + 4σijkl

)

. (2.29)

We have explicitly checked that this projector kills 4-forms of the form

H[i
pΦjkl]p, H ∈ Λ1 ⊗ Λ1, (2.30)

which lie in Λ4
1+35+7. This characterisation of Λ4

1+35+7 is subject of the next two subsections.

For later purposes, we note that I− π27 projects out the Λ4
27 component of any 4-form, and

is given by

I− π27 =
1

32

(

20σijkl − 3Φ[ij
abΦkl]

cdσabcd + 12Φ[ij
abσkl]ab +

3

7
ΦijklΦ

abcdσabcd

)

. (2.31)

We also note that π27 can be understood in a simple way. Indeed, taking a 4-form σijkl ∈ Λ4,
we can interpret this as an object in Λ2⊗S Λ

2, and apply the projector π7 on the indices ij and
on the indices kl. After this the result can be projected back to Λ4 by antisymmetrising the
indices. The result of this operation is

(

(π7σπ7)
∣

∣

∣

Λ4

)

ijkl
=

1

64

(

Φ[ij
abΦkl]

cdσabcd − 4Φ[ij
abσkl]ab + 4σijkl

)

. (2.32)

This contains almost all the terms in π27(σ). The only term present in (2.29) and absent in

(π7σπ7)
∣

∣

∣

Λ4

is the third term in (2.29), whose purpose is to make the result tracefree. So, we

can write

π27(σ) = 6(π7σπ7)
∣

∣

∣

Λ4

− trace, (2.33)

where the last term just removes the trace of the first. This gives a simple and useful interpre-
tation of the projector π27.
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2.7. An operator from Λ2 to Λ4
7 and its inverse. Let us introduce the following operator

Λ2 ∋ βij → K(β)ijkl = 4β[i|p|Φ
p
jkl] ∈ Λ4. (2.34)

It can now be checked that

K ◦ π21 = 0, K ◦ π7 = K. (2.35)

This shows that the image of K is Λ4
7. This makes sense, because the image K(β) ∈ Λ4 is

precisely the orbit of the basic 4-form Φ under the action of the Lie algebra spin(8). The
statement that K ◦ π21 = 0 is just the statement that Φ is Spin(7) invariant.

The operator K to Λ4 can be generalised and applied to a general tensor from Λ1 ⊗ Λ1. In
particular, it can be applied to a symmetric tensor hij ∈ S2Λ1

S2Λ1 ∋ hij → K(h)ijkl = 4h[i|p|Φ
p
jkl] ∈ Λ4. (2.36)

The operator K is injective on its image, and the image of S2Λ1 in Λ4 is Λ4
1 ⊕ Λ4

35.
To find the inverse of K on Λ4

7 let us consider

Λ4 ∋ σijkl → K ′(σ)ij =
1

2
Φi

pqrσjpqr −
1

2
Φj

pqrσipqr ∈ Λ2. (2.37)

We then have

π21 ◦K
′ = 0, K ′ ◦K = 96π7. (2.38)

This means that K ′ is (a multiple of) the inverse of K on Λ4
7.

2.8. Characterisation of Λ4
1+35+7. We can apply the map K to a general element Hij ∈

Λ1 ⊗ Λ1

K(H)ijkl := 4Hp

[iΦjkl]p. (2.39)

We already know that π27(K(H)) = 0, and so the result of this map lies in Λ4
1+35+7. We

also know that the map K applied to the symmetric part of H lies in Λ4
1+35, and to the anti-

symmetric part in Λ4
7. A computation gives the following result

J4(K(H))ijkl = −3(H[i
p −Hp

[i)Φijk]p − 6ΦijklHp
p. (2.40)

This shows that when H is symmetric tracefree Hij = H(ij),Hp
p = 0 we have J4(K(H)) = 0.

This shows that Λ4
35 is the eigenspace of J4 of eigenvalue 0. When Hij is anti-symmetric, we

have J4(K(H)) = −6K(H), and so Λ4
7 is eigenspace of eigenvalue −6. When Hij = gij , we

have J4(K(H)) = −12K(H), and thus Λ4
1 is eigenspace of eigenvalue −12. This gives the

characterisation described above in (2.27).

2.9. Characterisation of Λ4
27. It will be useful to have an explicit parametrisation of a general

element of Λ4
27, similar to have we already have a parametrisation of a general element of the

other irreducible subspaces Λ4
1+35+7. For this purpose, let us take a symmetric tracefree matrix

in Λ2
7 ⊗S Λ2

7

Ψabcd ∈ Λ2
7 ⊗S Λ2

7. (2.41)

This matrix must satisfy a number of requirements:

Ψabcd = Ψ[ab][cd] = Ψ[cd][ab], Ψab
ab = 0, π7Ψ = Ψ = Ψπ7. (2.42)

We can then construct a 4-form that we denote as ΨΦ as

(ΨΦ)abcd := Ψ[ab
pqΦcd]pq. (2.43)

Let us determine the projection of this to Λ4
1+35+7. A calculation gives

(ΨΦ)ipqrΦ
apqr = δai

(

Ψqr
qp −

1

2
ΨpqrsΦ

pqrs

)

+ 4Ψip
ap +ΦipqrΨ

apqr −ΨipqrΦ
apqr. (2.44)
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The first term here is zero because Ψ is tracefree Ψqr
qp = 0, and also π7Ψ = Ψ means π21Ψ = 0,

which implies

3Ψijkl +
1

2
Φij

pqΨpqkl = 0. (2.45)

So, if Ψqr
qp = 0 then also ΨpqrsΦ

pqrs = 0. On the other hand, if we contract jl in this expression
we get

Ψk
pqrΦipqr = −6Ψipk

p. (2.46)

The right-hand side is ik symmetric, and thus the left-hand side must also be ik symmetric.
This shows that the last two terms in (2.44) cancel. It remains to characterise Ψip

ap. To do
this, we compute 0 = π21Ψπ21

0 = 3Ψijkl +
3

2
Φij

pqΨpqkl +
3

2
Ψij

pqΦpqkl +
1

4
Φij

pqΦkl
rsΨpqrs. (2.47)

Taking the jl contraction of this we get

0 = 8Ψipk
p + 2Ψk

pqrΦipqr + 2Ψi
pqrΦkpqr +

1

2
gik

(

Ψpq
pq −

1

2
ΨpqrsΦ

pqrs

)

. (2.48)

Using Ψqr
qp = 0,ΨpqrsΦ

pqrs = 0 as well as (2.46) here we see that Ψipk
p = 0. All in all, all the

terms in (2.44) are zero and the object (2.43) is in Λ4
27. This gives the desired parametrisation

of a general element of Λ4
27.

3. Linearised theory

In this section we address the question as to what is the most general diffeomorphism in-
variant action that can be constructed for the fields living in the representations Λ4

1+7+35 of
the group Spin(7). Our analysis in this section is at the linearised level, where we can use
representation theory to write down all possible action terms with arbitrary coefficients, and
then use diffeomorphism invariance to relate the coefficients. We will see that the action is not
unique, unlike in the case of just metrics. There are two independent possible linearised actions
that can be constructed. Non-linear completion of the theories described here is the subject of
the following sections.

3.1. The usual metric only case. This story is standard, and works in exactly the same
way in any dimension. We review it for completeness, and for establishing the main idea of
the calculation to follow in the Spin(7) case. For concreteness, we do calculations in dimension
eight, but the story repeats itself with no changes in any dimension.

In the usual gravity case we have linearised fields transforming with respect to the Lorentz
group SO(8). The metric perturbation contains two irreducible representations 1,35v. The
subscript v stands for ”vector”, to distinguish them from also possible spinor representations.
This is a standard notation at least in some literature. As is also standard, we refer to the
irreducible representations by their dimensions written in bold face. Let us denote the fields in
representations 1,35v by h, h̃ab respectively. We are interested in an action that contains two
derivatives. It will be useful to think in terms of Fourier transform, and denote the derivative by
its Fourier transform pa at intermediate stages of the computation. The two most obvious action
terms one can construct are of the type p2h2, p2(h̃ab)

2. To analyse the other possible terms we
need to decompose the product of two derivatives into irreducibles, taking into account that
they commute. We have

8v ⊗S 8v = 1+ 35v. (3.1)

The trivial representation here corresponds to p2, and the other representation is papb with the
trace removed. The p2 terms were already taken into account, so we only need to consider the
possible couplings between papb and the two other factors of either h or h̃. There is no term
with papb and two factors of h. There is clearly a mixed term hpapbh̃ab. To determine possible
terms with two factors of h̃ we need

35v ⊗S 35v = 1+ 35v + 294v + 300. (3.2)
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There is only a single occurrence of 35v here, which means that there is only a single term that
does not reduce to p2(h̃ab)

2, and this is (pah̃ab)
2.

All in all, there are just 4 possible terms in the action that one can write. We now go back to
the notation that uses the derivative operators, and write the linear combination of the above
four terms with arbitrary coefficients

L =
1

2
h̃bc∂a∂ah̃bc +

α

2
h∂a∂ah+ βh∂a∂bh̃ab + γ(∂ah̃ab)

2. (3.3)

We have chosen the coefficient in front of the first term to be 1/2, which we can always do

by changing an overall coefficient in front of the Lagrangian h̃ab. At this stage it will be more
convenient to introduce the fields

hab := h̃ab +
1

D
ηabh, (3.4)

so that h̃ab is the tracefree part of hab and h = ηabhab, with D being the dimension we work in.
It is clear that the Lagrangian retains the same general form, except that the coefficients change.
We will give the new coefficients the same name, hoping it will not lead to any confusion. The
Lagrangian in terms of hab is

L =
1

2
(∂ahbc)

2 +
α

2
(∂ah)

2 − βh∂a∂bhab − γ(∂ahab)
2. (3.5)

We now demand diffeomorphism invariance of the action, with the field transformation proper-
ties being

hab = ∂(aξb), δh = ∂cξc. (3.6)

We now the variation, and set coefficients in front of independent terms to zero, allowing
integration by parts. This results in the following set of coefficients

γ = β = 1, α = −1. (3.7)

Thus, the unique (modulo field rescaling) Lagrangian that is diffeomorphism invariant reads

LGR =
1

2
(∂ahbc)

2 −
1

2
(∂ah)

2 − h∂a∂bhab − (∂ahab)
2, (3.8)

which is the standard result.

3.2. Gauge-fixing. Let us also derive the standard gauge-fixed form of the Lagrangian. Com-
pleting the square in the (∂ahab)

2 part, we can rewrite the Lagrangian as

LGR =
1

2
(∂ahbc)

2 −
1

4
(∂ah)

2 − (∂a(hab −
1

2
ηabh))

2. (3.9)

If we gauge-fix the diffeomorphisms by setting

∂a(hab −
1

2
ηabh) = 0, (3.10)

we get a simple linear combination of the terms containing ∂a∂a only. This means that Euler-
Lagrange equations following from this Lagrangian are elliptic modulo gauge, a desirable prop-
erty.

3.3. The case of Spin(7) structures. Let us now consider 3 fields in irreducible representa-
tions of Spin(7) given by 1,7,35. These are precisely the representations appearing in a tangent

vector to the orbit of Cayley forms. We will refer to these fields as h, ξ, h̃ respectively. The
decomposition into irreducibles is now dictated by the Spin(7) representation theory. There are

again terms involving p2, which are p2h2, p2ξ2, p2h̃2. To determine other possible terms we need
to consider the (symmetric) product of two derivatives. We have

8⊗S 8 = 1+ 35, (3.11)
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which is unchanged from the Spin(8) case. The trivial representation here corresponds to p2,
and so we only need to consider the 35 representation. This must couple to the product of two
fields from the list h, ξ, h̃. The non-trivial such decompositions are

7⊗S 7 = 1+ 27, (3.12)

7⊗ 35 = 21+ 35+ 189,

35⊗S 35 = 1+ 27+ 35+ 105+ 168+ 294.

This means that, in addition to the usual terms hpapbh̃ab, (p
ah̃ab)

2, there is a new term of the

type papbξh̃. It is easy to write down this term by noting that the representation 7 appears in
the anti-symmetric part of the tensor product

35⊗A 35 = 7+ 21+ 35+ 189+ 378. (3.13)

We already know that the best way to describe a field in representation 7 is by using a field in
Λ2
7. Thus, let us introduce an object

ξab ∈ Λ2
7. (3.14)

We can then construct the term coupling ξab, h̃ab as pap
chcbξ

ab.
It is now clear that there are just two additional terms that can be constructed from ξab,

which can be written as ξab∂c∂cξab and ∂bh̃
ba∂cξca. Note that we can also write the second term

as ∂bh
ba∂cξca, because the trace part of hab does not couple to ξab. As before, we now write a

general linear combination of all the possible terms, with arbitrary coefficients:

L =
ρ

2
(∂ahbc)

2 +
α

2
(∂ah)

2 − βh∂a∂bhab − γ(∂ahab)
2 (3.15)

+
λ

2
(∂aξbc)

2 − µ∂bh
ba∂cξca.

For reasons that will become clear later it will be convenient to put an arbitrary coefficient ρ
also in front of the first term.

3.4. Some identities. Let us now explain why the term (∂aξab)
2 is not added to the Lagrangian

(3.15). The representation theory tells us that there is no representation 35 in the decomposition
7⊗S 7, and so this term must be a multiple of ξbc∂a∂aξbc. Let us confirm that. Using the fact
that ξ ∈ Λ2

7 we have

ξab = −
1

6
Φab

pqξpq, (3.16)

and so

ξb
aξca =

1

36

(

−28ξb
aξca + 8gbc(ξab)

2
)

. (3.17)

From this we get

ξb
aξca =

1

8
gbc(ξab)

2. (3.18)

This explains why the term (∂aξab)
2 is already contained in the ξbc∂a∂aξbc term in the La-

grangian (3.15) and does not need to be added as a separate term.

3.5. Elliptic modulo gauge. We note that the general action is elliptic modulo gauge for any
choice of the parameters. Indeed, for γ 6= 0 we can rewrite it as

L =
ρ

2
(∂ahbc)

2 +

(

α

2
+

β2

4γ

)

(∂ah)
2 +

(

λ

2
+

µ2

32γ

)

(∂aξbc)
2 (3.19)

−γ(∂a(hab −
β

2γ
ηabh+

µ

2γ
ξab))

2.

This means that there is a gauge in which the action is given by terms only involving the
Laplacian.
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3.6. The transformation properties under diffeomoprhisms. To determine the diffeo-
moprhism transformation rules for all the fields we recall that hab and ξab appear from a certain
projection of the perturbation of the 4-form. If we call this perturbation φ ∈ Λ4, the fact that
this 4-form is a tangent vector to the orbit of Cayley 4-forms means that φ ∈ Λ4

1+7+35. Let us
define the fields hab, ξab as

h̃ab =
1

24
(φ(a

pqrΦb)pqr −
1

8
ηabφ

pqrsΦpqrs), ξab =
1

24
φ[a

pqrΦb]pqr, h =
1

168
φpqrsΦpqrs. (3.20)

A calculation shows that the inverse of this map is the following parametrisation of φabcd

φabcd = −4(h[a
p +

1

4
ξ[a

p)Φbcd]p, (3.21)

and this formula explains the choice of prefactors in (3.20). We note that

1

96
φabcdφabcd = habhab +

3

4
h2 +

1

4
ξabξab, (3.22)

where it is used that ξab ∈ Λ2
7.

Under diffeomoprhisms

δφ = iξdΦ+ diξΦ. (3.23)

We assume that the background 4-form is closed (in fact constant), so that there is only the
second term. Then

δφabcd = −4∂[aξ
pΦbcd]p, (3.24)

and so (1/4)δξab = π7(∂[aξb]) giving

δhab = ∂(aξb), δξab = ∂[aξb] −
1

2
Φab

pq∂pξq. (3.25)

3.7. Determining the diffeomorphism invariant Lagrangian. The variation of the La-
grangian (3.15), modulo surface terms, is given by

δL = (ρ− γ −
µ

2
)∂ahab∂

2ξb + (−β + γ −
µ

2
)∂a∂bhab(∂ξ) (3.26)

−(α+ β)∂2h(∂ξ) + (4λ−
µ

2
)∂aξab∂

2ξb.

Here ∂2 = ∂a∂a and (∂ξ) = ∂aξa. We have used the fact that ξab is in Λ2
7, and so (1/2)Φab

pqξpq =
−3ξab. Setting to zero the coefficients in front of the independent parts we get a system of
equations. The solution depends on two of the parameters, for which we can take ρ, µ. Then

α = −ρ+ µ, β = ρ− µ, γ = ρ−
µ

2
, λ =

µ

8
. (3.27)

It is clear that the resulting diffeomorphism invariant Lagrangian is the sum of two separately
invariant terms

L = ρLGR + µL′, (3.28)

where

L′ =
1

2
(∂ah)

2 + h∂a∂bhab +
1

2
(∂ahab)

2 +
1

16
(∂cξab)

2 − ∂bh
ba∂cξca. (3.29)

We thus observe that the linearised action in the case of Spin(7) structures is not unique.
There are two linearly independent such actions, and the general action is given by their linear
combination. One of the parameters can always be absorbed into the perturbation of the 4-form
field, but the other parameter remains.

4. Intrinsic torsion

We now proceed to our construction of the non-linear theories completing the linear story
described above. The purpose of this section is to recall the definition of the intrinsic torsion
of a Spin(7) structure and establish some necessary for the following facts.
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4.1. Characterisation of the intrinsic torsion. We start with the following proposition,
whose proof can also be found in [4].

Proposition 4.1. The intrinsic torsion of a Spin(7) structure, measured by ∇aΦijkl, where ∇a

is the metric-compatible covariant derivative, takes values in Λ1 ⊗ Λ4
7. Using the isomorphism

Λ2
7 ∼ Λ4

7 provided by the operator K, see (2.34), the intrinsic torsion can be parametrised by
an object in Λ1 ⊗ Λ2

7. Explicitly,

∇aΦijkl = Ta;ipΦpjkl − Ta;jpΦpkli + Ta;kpΦplij − Ta;lpΦpijk, Ta;ij ∈ Λ1 ⊗ Λ2
7. (4.1)

Proof. The proof of this proposition consists in showing that the projections of∇aΦijkl ∈ Λ1⊗Λ4

to all other irreducible components of Λ4 apart from Λ4
7 vanish. It is given in [4], and similar

computations in the case of G2 structures are spelled out in [5]. We spell out an alternative,
completely explicit proof, which is made possible by our knowledge of the projections to Λ4

35+1

and the expression (2.29) for the projector to Λ4
27. The projection to Λ4

35+1 is obtained by
computing

2Φ(i
pqr∇|a|Φj)pqr = ∇aΦi

pqrΦjpqr = 42∇agij = 0. (4.2)

For the projection on Λ4
27 the computation is a bit more involved. First, we need some identities.

We have, on one hand

∇p(Φ[ij
abΦkl]

cdΦabcd) =

Φ[kl
cdΦ|abcd∇p|(Φij]

ab) + Φ[ij
abΦ|abcd∇p|(Φkl]

cd) + Φ[ij
abΦkl]

cd∇pΦabcd =

12δa[kδ
b
l∇|p|Φij]ab − 4Φ[kl

ab∇|p|Φij]ab + 12δa[iδ
b
j∇|p|Φkl]ab − 4Φ[ij

ab∇|p|Φkl]ab

+Φ[ij
abΦkl]

cd∇pΦabcd = 24∇pΦijkl − 8Φ[ij
ab∇|p|Φkl]ab +Φ[ij

abΦkl]
cd∇pΦabcd.

On the other hand

∇p(Φ[ij
abΦkl]

cdΦabcd) = 28∇pΦijkl. (4.3)

Thus, we have

Φ[ij
abΦkl]

cd∇pΦabcd = 4∇pΦijkl + 8Φ[ij
ab∇|p|Φkl]ab. (4.4)

We also have

∇p(Φ[ij
abΦkl]ab) = 2Φ[ij

ab(∇|p|Φkl]ab). (4.5)

On the other hand,

∇p(Φ[ij
abΦkl]ab) = −4∇pΦijkl, (4.6)

and so

Φ[ij
ab(∇|p|Φkl]ab) = −2∇pΦijkl, Φ[ij

abΦkl]
cd∇pΦabcd = −12∇pΦijkl. (4.7)

Using (2.29), these identities, as well as Φabcd∇pΦabcd = 0, it is easy to see that

π27(∇pΦijkl) = 0. (4.8)

Finally, to establish (4.1) we just need to recall that a general element of Λ4
7 can be parametrised

as K(β), β ∈ Λ2
7, where K : Λ2

7 → Λ4
7 is the map introduced in (2.34). We thus have

∇aΦijkl = −4Ta;[i|p|Φjkl]
p, (4.9)

where Ta;ij ∈ Λ1 ⊗ Λ2
7. This is precisely the formula (4.1). �
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4.2. Parametrisation by the torsion 3-form. As is known, see e.g. [9] Example 3.4., the
spaces Λ1⊗Λ2

7 and Λ3 are isomorphic. We can make this isomorphism explicit, in one direction,
by parametrising the intrinsic torsion Ta;ij as follows

Ta;ij = π7(Taij) =
1

4
Taij −

1

8
Φij

klTakl, Taij ∈ Λ3. (4.10)

An explicit relation in the other direction is

Taij =
4

3
Ta;ij + 4T[a;ij] + T[a;kl]Φij

kl +
2

9
Tk;lmΦ

klm
[igj]a. (4.11)

Using this parametrisation, we can rewrite (4.1) in terms of the torsion 3-form.

Proposition 4.2. In the parametrisation of the intrinsic torsion by a torsion 3-form, we have

∇aΦijkl = TaipΦpjkl − TajpΦpkli + TakpΦplij − TalpΦpijk, Taij ∈ Λ3. (4.12)

Note that this is the same formula for the covariant derivative of the basic 4-form, but now
with the torsion 3-form instead of the object Ta;ij ∈ Λ1 ⊗ Λ2

7.

4.3. Connection with skew-symmetric torsion. As is known, see e.g. [9], any Spin(7)
structure on an 8-dimensional manifold admits a unique connection with totally skew-symmetric
torsion. Such a connection is given by

∇̃aXi = ∇aXi − TaipXp. (4.13)

It is then clear that the relation (4.12) can be interpreted as the statement that the 4-form is

parallel with respect to ∇̃

∇̃aΦijkl = 0. (4.14)

4.4. Torsion 3-form from the exterior derivative of the Cayley form.

Proposition 4.3. The torsion 3-form is completely determined by the exterior derivative dΦ.
Explicitly, we have

T =
5

2
J−1
3 (⋆(dΦ)), (4.15)

where J3 is the operator in 3-forms introduced in (2.13), and ⋆(dΦ) is the Hodge dual of dΦ.

Proof. On one hand, we have

⋆(dΦ)mnr =
1

5!
ǫmnr

aijkl∂aΦijkl. (4.16)

On the other hand, substituting here the right-hand-side of (4.12) we have

1

5!
ǫmnr

aijkl∂aΦijkl =
1

30
ǫmnr

aijklTaipΦpjkl. (4.17)

Now, using (2.5) we get

ǫmnr
aijklTaipΦpjkl = 6(Φmn

pqTrpq +Φnr
pqTmpq +Φrm

pqTnpq) = 12J3(T )mnr. (4.18)

This means we have

⋆(dΦ)mnr =
2

5
J3(T )mnr. (4.19)

Now, the operator J3 is invertible, with inverse given by (2.18). This proves the proposition. �

5. Riemann curvature identities

Having described the intrinsic torsion and its relation with the covariant and exterior deriva-
tives of the Cayley form, we can obtain very useful characterisations of (some parts of) the
Riemann curvature. This material is rather standard, except that we use the parametrisation
of the torsion by a 3-form.



DYNAMICS OF CAYLEY FORMS 15

5.1. Irreducible parts of the Riemann tensor. The Riemann tensor is an object with values
in Λ2⊗SΛ

2, with Λ4 removed. Given that Λ2 = Λ2
7⊕Λ2

21, it is easy to compute the decomposition
of Λ2 ⊗S Λ2 into irreducibles using the known in the literature formulas for the tensor products
of irreducible representations of Spin(7). We denote representations using the corresponding
dimension written in bold face. We need the following tensor product decompositions:

7⊗S 7 = 1⊕ 27, (5.1)

7⊗ 21 = 105⊕ 35⊕ 7,

21⊗S 21 = 1⊕ 27⊕ 35⊕ 168.

Taking into account that

Λ4 = 1⊕ 7⊕ 27⊕ 35, (5.2)

we see that Riemann curvature gets decomposed into the following irreducible components

Riemann = 1⊕ 27⊕ 35⊕ 105⊕ 168. (5.3)

Of these the Ricci part is

Ricci = 1⊕ 35, (5.4)

and the Weyl part is

Weyl = 27⊕ 105⊕ 168. (5.5)

Our next task is to characterise which parts of the Riemann curvature can be extracted from
the intrinsic torsion.

5.2. Part of Riemann curvature from the torsion. We now take the commutator of two
covariant derivatives applied to the basic 4-form to get

4Rab[i
pΦ|p|jkl] = 2∇[a∇b]Φijkl = 8∇[a(Tb][i|p|Φ

p
jkl]). (5.6)

Applying the product rule and using (4.12) one more time we get

4Rab[i
pΦ|p|jkl] = 4∇a(Tb[i|p|)Φ

p
jkl] − 4∇b(Ta[i|p|)Φ

p
jkl] (5.7)

+4Ta[i
pT|bp|

qΦjkl]q − 4Tb[i
pT|ap|

qΦjkl]q.

5.3. Identity for the divergence of the torsion 3-form. Before we proceed any further, a
useful consequence of this identity is obtained by multiplying it with ǫmnabijkl, and using (2.5).
On the left-hand side we get identically zero, by properties of the Riemann curvature. The
right-hand side is non-trivial and so we get

2∇aTbi[mΦn]
abi +∇aTabiΦ

bi
mn + 2Tai

pTbp[mΦn]
abi − 2Ta

pqTbpqΦmn
ab = 0. (5.8)

We would now like to extract from here the divergence ∇aTamn of the torsion 3-form in terms
of other quantities. Applying to this expression (1/4)(I + J2), we get

∇aTamn =
1

2
Φ[m

abc∇n]Tabc −
1

2
Φ[m

abc∇|a|Tn]bc − Φ[m
abcTn]a

pTbcp. (5.9)

We can rewrite this in a different form, by applying the projection to Λ2
7. We get

∇aTamn −
1

2
Φmn

pq∇aTapq =
1

2
Φ[m

abc∇n]Tabc −
3

2
Φ[m

abc∇|a|Tn]bc − 2Φ[m
abcTn]a

pTbcp. (5.10)

It is useful to rewrite this as the divergence of the original torsion. Using (4.12) we have

4∇aTa;mn = ∇aTamn −
1

2
Φmn

pq∇aTapq − Φ[m
abcTn]a

pTbcp, (5.11)

and thus

4∇aTa;mn =
1

2
Φ[m

abc∇n]Tabc −
3

2
Φ[m

abc∇|a|Tn]bc − 3Φ[m
abcTn]a

pTbcp. (5.12)



16 KRASNOV

5.4. Component of the Riemann curvature. Thinking about Rabcd as an object in Λ2⊗SΛ
2

(with a copy of Λ4 removed), and recalling the operator K introduced in (2.34), we see that
the object on the left-hand side of (5.7) is valued in Λ2 ⊗ Λ4

7. We can then apply the inverse
operator K ′ to obtain

Rabij −
1

2
Φij

pqRabpq = ∇aTbij −∇bTaij −
1

2
Φij

cd∇aTbcd +
1

2
Φij

cd∇bTacd (5.13)

+Tai
pTbjp − Tbi

pTajp − Φij
pqTap

kTbqk.

Both sides of this equality can be checked to be in Λ2
7 with respect to indices ij, by applying

the projector to Λ2
21 and seeing that the result is identically zero. This computation makes it

obvious that all apart from the 168 part of the Weyl curvature are determined by the intrinsic
torsion. Indeed, all parts but this one come from Λ2 ⊗ Λ2

7, and this is precisely what the part
of the Riemann curvature tensor that the intrinsic torsion determines.

5.5. Ricci curvature scalar. Before we use the facts above to obtain a formula for the Ricci
curvature, let us note that there are two different ways to extract the Ricci scalar from here.
One is to contract the indices with gaigbj . The other is to contract it with −(1/6)Φabij . Both
of these give

R = −Φabcd∇aTbcd + T abcTabc +ΦabcdTab
pTcdp. (5.14)

Note that this only depends on the exterior derivative dT of the torsion 3-form.

5.6. Extracting the Ricci curvature. We can extract the Ricci tensor from (5.13) by mul-
tiplying with Φc

bij , and applying the Bianchi identity Ra[bij] = 0 to get

−
1

2
Φij

pqRabpqΦc
bij = −6Rac. (5.15)

Doing the same operations with the right-hand side and we get

Rab = −∇cTabc −
1

2
Φb

ijk∇aTijk +
1

2
Φb

ijk∇iTajk + Ta
pqTbpq +Φb

ijkTai
pTjkp. (5.16)

This is not explicitly symmetric in ab, and must therefore become symmetric when Tijk is given
by its expression (4.15). And indeed, the anti-symmetric part of the right-hand side vanishes
in view of (5.9). Thus, the Ricci curvature is given by

Rab = −
1

2
Φ(a

ijk∇b)Tijk +
1

2
Φ(a

ijk∇|i|Tb)jk + Ta
pqTbpq +Φ(a

ijkTb)i
pTjkp. (5.17)

We have now proven the result known since [1]: when dΦ = 0 the metric is Ricci-flat. Indeed,
by (4.15) dΦ = 0 implies T = 0, which in turn gives Rab = 0 by (5.17). Note that, unlike
the Ricci scalar (5.14), the Ricci tensor depends on the full covariant derivative of the torsion
3-form.

6. The action

This section is central to the whole paper. We consider a one-parameter family of action
functionals of the Cayley form Φ and an auxiliary 3-form C. The Euler-Lagrange equations
for C are algebraic. There is a member in the family of actions for which the Euler-Lagrange
equation for C equates it with the intrinsic torsion T of the Spin(7) structure. But we will treat
an arbitrary member of the family of actions, and derive the arising from it second order PDE’s
for Φ.
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6.1. A one-parameter family of action functionals. The action we want to construct is a
functional of Φ ∈ Λ4 and C ∈ Λ3. It will contain a term imposing the constraints that guarantee
that Φ is the of algebraic type of the Cayley form. We will never need to specify what these
constraints are, as we will only need their consequences. Given Φ, C there is a natural top form
that can be constructed, which is Φ ∧ dC. We take the integral of this to be our ”kinetic” i.e.
derivative containing term. We then want to add to the Lagrangian terms quadratic in C, such
that the variation of the action with respect to C gives a set of linear equations for C.

The representation theoretic fact Λ3 = Λ3
8 ⊕Λ3

48 implies that there are two linearly indepen-
dent quadratic invariants that can be constructed from a 3-form C. A computation gives

π8(C)abcC
abc =

1

7
(Cabc)

2 −
3

14
ΦabcdCab

pCcdp, (6.1)

π48(C)abcC
abc =

6

7
(Cabc)

2 +
3

14
ΦabcdCab

pCcdp.

This shows that the two linearly independent quadratic invariants constructed from C can be
taken to be (Cabc)

2 and ΦabcdCab
pCcdp. The coefficient in front of one of these can always be

chosen as desired by rescaling the C field. This leads us to consider the following one-parameter
family of action functionals

S[Φ, C] =

∫

Φ ∧ (dC − 6C ∧g C) +
κ

6
(C)2vΦ +

λ

6
vΦ + constraint terms. (6.2)

The choice of coefficients here will be convenient for what follows. The constant λ is a ”cosmo-
logical constant” term that can be set to zero if desired. The object C ∧g C is the 4-form

C ∧Φ C :=
1

4!
gpqCijpCklq dx

i ∧ dxj ∧ dxk ∧ dxl, (6.3)

and vΦ = (1/14)Φ ∧Φ is the volume form. Written in index notations the action becomes

S[Φ, C] =
1

3!

∫
(

1

4!
ǫ̃ijklabcdΦijkl(∂aCbcd −

3

2
gpqCabpCcdq) + κ(Cabc)

2vg + λvg

)

d8x. (6.4)

The constraint terms are omitted for brevity. The object ǫ̃ijklabcd is the density weight one
totally anti-symmetric tensor. This exists on any manifold, and does not need a metric for its
definition. Using the self-duality (2.4) of Φ we can see that the two C-invariants added to the
Lagrangian are indeed (Cabc)

2 and ΦabcdCab
pCcdp.

6.2. The variation with respect to the torsion 3-form. The variation of the action with
respect to C is given by

δCS =
1

3!

∫

vg

(

−5
1

5!
ǫijklabcd∂aΦijkl − 3ΦaecdCae

b + 2κCbcd

)

δCbcdd
8x, (6.5)

where vg is the volume form for g, and we used the self-duality of the basic 4-form in the second
term. The resulting Euler-Lagrange equation is therefore

5
1

5!
ǫbcd

aijkl∂aΦijkl − 2J3(C)bcd + 2κCbcd = 0. (6.6)

When κ = 0, comparing to (4.19), we see that C = T . The coefficient in front of the second
term in the action was selected so that this happens. In general we have

J3(T ) = J3(C)− κC. (6.7)

For a general κ this relation can be inverted

C =
6T + κJ3(T )

6− (5 + κ)κ
, (6.8)

which shows that κ = 1,−6 are the values when the relation cannot be inverted. These are of
course also the eigenvalues of J3. We are particularly interested in the case when κ = 0, where
C = T , and κ = −2 where

C =
1

2
T −

1

6
J3(T ). (6.9)
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6.3. Variation of the metric with respect to the 4-form. To vary the action with respect
to the 4-form, we need a formula for the variation of gij with respect to the 4-form Φijkl. The
best way to obtain this is to consider a variation of the metric, thought of as an GL(8,R)
transformation. As we have already discussed in (2.36), such a transformation effected by a
symmetric 8× 8 matrix hij induces a change in the basic 4-form given by

K(h)ijkl = 4h[i|p|Φ
p
jkl]. (6.10)

It will be more convenient, however, to consider the variation of Φijkl. We have

δΦijkl = 4αδg[i|p|Φ
p
jkl]. (6.11)

The coefficient of proportionality α should be fixable by taking the variation of any of the
algebraic relations satisfied by Φ. For example we have

ΦabcdΦijklg
iagjbgkcgld = 336. (6.12)

Varying this gives

2δΦijklΦ
ijkl + 4 · 42δgiagia = 0, (6.13)

where we used (2.3). Using (6.11) we have

4αδg[i|p|Φp
jkl]Φijkl + 2 · 42δgiag

ia = 0. (6.14)

Using (2.3) again this becomes

2αδgijg
ij + δgijgij = 0, (6.15)

which shows that α = 1/2. Thus, we have

δΦijkl = 2δg[i|p|Φ
p
jkl]. (6.16)

As a check of consistency of these expressions, we also compute

δ(Φijkl) = δ(giagjbgkcgldΦabcd) = giagjbgkcgldδΦabcd + 4δ[i|agjbgkcgl]dΦabcd = (6.17)

2δg[i|p|Φp
jkl] − 4δg[i|p|Φp

jkl] = −2δg[i|p|Φp
jkl] = −giagjbgkcgldδΦabcd.

This is analogous to the relation that we have for the metric

δgij = −giagjbδgab. (6.18)

We now extract δgij in terms of δΦijkl. To do so we multiply the above expression by Φa
jkl.

We get

δΦ(i|jkl|Φa)
jkl = 12δgia + 9δgpqg

pqgia. (6.19)

One more contraction gives

δgpqg
pq =

1

84
δΦijklΦ

ijkl, (6.20)

and so

δgij =
1

12
(δΦ(i|pqr|Φj)

pqr −
3

28
gijδΦpqrsΦ

pqrs). (6.21)

Because the variation of the 4-form with all upper indices is given by minus the variation of the
form with the lower indices, and the same is true for the metric variation, we can also write

δgij =
1

12
(δΦ(i|pqr|Φj)

pqr −
3

28
gijδΦpqrsΦpqrs), (6.22)

which is the form of the relation that will be used later.
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6.4. Variation of the action with respect to the 4-form. We now derive the other half
of the Euler-Lagrange equations. We first rewrite the action in terms of Φabcd

S[Φ, C] =
1

3!

∫
(

vgΦ
abcd(∂aCbcd −

3

2
gpqCabpCcdq) + κ(Cabc)

2vg + λvg

)

d8x. (6.23)

and then vary with respect to Φabcd. We have

δΦS[Φ, T ] =
1

3!

∫

vg

(

δΦabcd(∂aCbcd −
3

2
gpqCabpCcdq)− Φabcd 3

2
δgpqCabpCcdq (6.24)

−
1

2
δgpqgpqΦ

abcd(∂aCbcd −
3

2
gpqCabpCcdq)−

1

2
δgpqgpq(κ(Cabc)

2 + λ)
)

d8x.

We now substitute (6.22). The last term in the first line becomes
(

−
1

8
ΦijklCijaCkleΦ

e
bcd +

3

8 · 28
ΦijklCij

pCklpΦabcd

)

δΦabcd. (6.25)

Thus, the variation of the action with respect to Φabcd is

Eabcd = ∂[aCbcd] −
3

2
C[ab

pCcd]p −
1

8
ΦijklCij[aC|kle|Φ

e
bcd] +

3

8 · 28
ΦijklCij

pCklpΦabcd (6.26)

−
1

2 · 84
Φabcd

(

Φijkl(∂iCjkl −
3

2
Cij

pCklp) + κ(Cijk)
2 + λ

)

.

This does not need to be zero, as it the action also contains terms imposing the constraints
guaranteeing that Φabcd is of the correct algebraic type. The constraint terms produce a variation
that is an arbitrary tensor in Λ4

27. So, we can only deduce that the Λ4
35+1 and Λ4

7 projection of
the above vanishes. Before we extract these projections, it is worth evaluating the trace of the
field equations. We have

ΦabcdEabcd = −2λ− 2κ(Cabc)
2 − Φabcd(∂aCbcd −

3

4
Cab

pCcdp). (6.27)

This is the projection of the field equations onto Λ4
1, which must vanish. We therefore get the

following consequence of the field equations

Φabcd(∂aCbcd −
3

4
Cab

pCcdp) + 2λ+ 2κ(Cabc)
2 = 0. (6.28)

We can use this to simplify Eabcd. We have

Φijkl(∂iCjkl −
3

2
Cij

pCklp) + κ(Cijk)
2 + λ = −λ− κ(Cijk)

2 −
3

4
ΦijklCij

pCklp, (6.29)

and so we can rewrite

E′
abcd = ∂[aCbcd] −

3

2
C[ab

pCcd]p −
1

8
ΦijklCij[aC|kle|Φ

e
bcd] (6.30)

+
1

56
ΦabcdΦ

ijklCij
pCklp +

1

2 · 84
Φabcd(λ+ κ(Cijk)

2).

The Λ4
35+1+7 projections of this vanish when the Λ4

35+1+7 projections of Eabcd vanish and vice
versa, so this gives an equivalent encoding of field equations.

6.5. Extracting Λ4
35+1+7 projections. To understand the implications of the field equations

we extract the Λ4
35+1 and Λ4

7 projections. This gives

Φb
pqrE′

apqr =
1

4
Φb

pqr∇aCpqr −
3

4
Φb

pqr∇rCapq −
3

2
Φb

pqrCap
sCqrs −

3

4
ΦpqrsCapqCbrs (6.31)

+
1

4
gab

(

λ+ κ(Cpqr)
2 +

3

4
ΦpqrsCpq

pCrsp

)

.

Its ab symmetrisation and anti-symmetrisation compute the Λ4
35+1 and Λ4

7 parts respectively.
We wrote the derivatives here as the covariant derivatives, for the computations to follow.
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6.6. Rewriting the κ = 0 field equations - antisymmetric part. For κ = 0 we have
C = T . Let us understand the arising field equations. We start with the anti-symmetric part.
Taking (twice) the anti-symmetric part of the field equations (6.31) we get

1

2
Φ[a

pqr∇b]Tpqr −
3

2
Φ[a

pqr∇|r|Tb]pq − 3Φ[a
pqrTb]p

sTqrs = 0. (6.32)

With the help of the curvature identity (5.12) we can rewrite this as

∇rTr;ab = 0, (6.33)

which is just vanishing of the divergence of the original torsion. This also makes it manifest
that this equation is Λ2

7 valued. Note also that this equation does not hold automatically. It is
a non-trivial field equation to be imposed, and it becomes a second order PDE on the original
4-form. It can be interpreted as the evolution equation for the Λ4

7 part of the Cayley form
perturbation, as is confirmed by the linearised analysis below.

6.7. Rewriting the κ = 0 field equations - symmetric part. For the analysis of the
symmetric part, we take (twice) the symmetric part of (6.31), also writing it with the opposite
sign

−
1

2
Φ(a

pqr∇b)Tpqr +
3

2
Φ(a

pqr∇|r|Tb)pq + 3Φ(a
pqrTb)p

sTqrs +
3

2
ΦpqrsTapqTbrs (6.34)

+
3

8
gabΦ

ijklTij
pTklp + λgab = 0.

Contract the resulting equation with gab we get (6.28). Comparing this with (5.14) we see that
this is not the condition that the Ricci scalar is constant. Rather, using (5.14), we can rewrite
this equation as

R = TabcT
abc +

1

4
ΦabcdTab

pTcdp + 4λ. (6.35)

A computation shows that this can be rewritten as

R = T abc(T +
1

6
J3(T ))abc =

7

6
(T 48

abc)
2 + 4λ. (6.36)

Here T48 = π48(T ) is the Λ3
48 part of the torsion 3-form. We thus see that the curvature scalar

is sourced just by this part of the torsion.
For the complete symmetric part of the equation, comparing this with (5.17), we can see that

the second order part here does not reduce to that in Rab. The comparison with (5.17) suggests
that we can rewrite (6.34) as

3Rab +Φ(a
pqr∇b)Tpqr − 3Ta

pqTbpq +
3

2
ΦpqrsTapqTbrs +

3

8
gabΦ

ijklTij
pTklp + λgab = 0. (6.37)

We thus see that the field equations do not state that the metric is Einstein. Instead, there are
extra contributions coming from the torsion 3-form, and its derivatives. Note that the covariant
derivative appears in this equation in such a way that, while both Rab and Φ(a

pqr∇b)Tpqr do
depend on it, the specific combination of these terms that appears does not depend on ∇. This
will become more pronounced once we rewrite the field equations as a condition that a certain
4-form vanishes.

6.8. Different ways of writing the field equations. We note that we can introduce a
symmetric tensor

Tab := ΦijklTijaTklb −
1

7
gabΦ

ijklTij
pTklp. (6.38)

The 4-form encoding the field equations can then be written very compactly as

E′
abcd = ∂[aTbcd] −

3

2
T[ab

pTcd]p −
1

8
T[a|e|Φ

e
bcd] +

λ

84
Φabcd. (6.39)
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The field equations are then the statement that this equals to an arbitrary tensor in Λ4
27, which

we know can be parametrised as (2.43). So, we get one of the possible ways of writing the field
equations

∂[aTbcd] −
3

2
T[ab

pTcd]p −
1

8
T[a|e|Φ

e
bcd] +

λ

84
Φabcd = Ψ[ab

pqΦ|pq|cd], (6.40)

where Ψabcd is an arbitrary symmetric tracefree matrix in Λ2
7 ⊗S Λ2

7.

6.9. Yet another rewriting the field equations. Yet another way of writing the field equa-
tions, potentially useful, is obtained by computing Φabc

sΦs
pqrE′

dpqr, and anti-symmetrising on

abcd. This gives a 4-form that is projected onto the Λ4
35+1 and Λ4

7 parts, eliminating the Λ4
27

part of E′
abcd that does not need to be zero. For a general 4-form we have

1

6
Φabc

sΦs
pqrσdpqr = (I−

1

2
J4)(σ)abcd, (6.41)

explicitly showing that the Λ4
27 component is projected away. We now apply this projector to

the 4-form E′
abcd to get the following 4-form field equations

∇[aTbcd] −
3

4
Φ[ab

pq∇cTd]pq −
3

4
Φ[ab

pq∇|p|Tcd]q (6.42)

−
3

2
T[ab

pTcd]p +
3

4
Φ[ab

pqTcd]
rTpqr −

1

8
Φ[abc

pΦijklTd]ijTklp −
3

2
Φ[ab

pqTc|p|
rTd]qr

+
1

32
ΦabcdΦ

ijklTij
pTklp +

λ

12
Φabcd = 0.

Since the first line here can be rewritten as

(I−
1

2
J4)(∇[aTbcd]), (6.43)

we see that the operator that appears in the field equations is built from the usual partial
derivative, rather than the covariant one.

6.10. Analysis of the κ = −2 field equations. In the general κ case, we can rewrite the
field equations (6.31) in terms of the intrinsic torsion 3-form T , using the relation between C
and T . However, the arising general κ results are too cumbersome. Using as the motivation the
computation of the linearised action in the last section, we now specialise to the particularly
interesting case κ = −2, when the linearised action coincides with that of GR. Our intention is
to see whether the full non-linear equations of the theory in this case also reduce to the Einstein
condition.

We substitute C in the form (6.9) to (6.31) and whenever the derivatives get applied to the
basic 4-form, evaluate them using (4.12). The resulting field equations are as follows

1

4
Φb

pqr∇aTpqr −
1

2
Φb

pqr∇rTapq +
1

4
Φa

pqr∇rTbpq +
1

2
(∇pTabp −

1

2
Φab

cd∇pTcdp) (6.44)

−
23

24
Φb

pqrTap
sTqrs −

5

24
Φa

pqrTbp
sTqrs −

1

4
ΦpqrsTapqTbrs +

1

6
Ta

pqTbpq

−
1

24
ΦpqrsTabpTqrs +

1

48
Φab

pqΦijklTpqiTjkl −
1

24
Φa

pqrΦijk
b TpqiTrjk

+
1

4
gab

(

λ−
17

12
(Tpqr)

2 +
17

24
ΦpqrsTpq

pTrsp +
1

2
Φpqrs∇pTqrs

)

= 0.

We now use (5.10) to simplify the first line. We also separate the symmetric and anti-symmetric
parts. We get

1

4
Φ(a

pqr∇b)Tpqr −
1

4
Φ(a

pqr∇rTb)pq (6.45)

−
7

6
Φ(a

pqrTb)p
sTqrs −

1

4
ΦpqrsTapqTbrs +

1

6
Ta

pqTbpq −
1

24
Φa

pqrΦijk
b TpqiTrjk

+
1

4
gab

(

λ−
17

12
(Tpqr)

2 +
17

24
ΦpqrsTpq

pTrsp +
1

2
Φpqrs∇pTqrs

)

= 0
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for the symmetric part and

−
1

4
Φ[a

pqrTb]p
sTqrs −

1

24
Φpqrs(Tabp −

1

2
Φab

cdTcdp)Tqrs = 0 (6.46)

for the anti-symmetric part.

6.11. The trace. It will be useful for the later to compute the trace of the field equations. We
get

2λ−
11

4
(Tabc)

2 −
1

8
ΦabcdTab

pTcdp +
3

2
Φabcd∇aTbcd = 0. (6.47)

Using (5.14) we can rewrite this as

3

2
R = 2λ−

5

4
(Tabc)

2 +
11

8
ΦabcdTab

pTcdp. (6.48)

6.12. An identity. Contracting (2.8) with TbcdT
jkl we get the following identity

1

4
Φa

pqrΦijk
b TpqiTrjk = −2Φ(a

pqrTb)p
sTqrs +

1

2
gabΦ

ijklTij
pTklp −

1

2
ΦpqrsTapqTbrs (6.49)

+
1

12
Φa

pqrΦijk
b TpqrTijk.

Using this in the symmetric part of the field equations we can transform it to

1

4
Φ(a

pqr∇b)Tpqr −
1

4
Φ(a

pqr∇rTb)pq (6.50)

−
5

6
Φ(a

pqrTb)p
sTqrs −

1

6
ΦpqrsTapqTbrs +

1

6
Ta

pqTbpq −
1

72
Φa

pqrΦijk
b TpqrTijk

+
1

4
gab

(

λ−
17

12
(Tpqr)

2 +
3

8
ΦpqrsTpq

pTrsp +
1

2
Φpqrs∇pTqrs

)

= 0.

We can now rewrite this in terms of the Ricci tensor using (5.17). We get

Rab = −
2

3
Φ(a

pqrTb)p
sTqrs −

1

3
ΦpqrsTapqTbrs +

4

3
Ta

pqTbpq −
1

36
Φa

pqrΦijk
b TpqrTijk (6.51)

+
1

2
gab

(

λ−
17

12
(Tpqr)

2 +
3

8
ΦpqrsTpq

pTrsp +
1

2
Φpqrs∇pTqrs

)

.

We can also use (5.14) to rewrite this as

Rab +
1

4
gabR = −

2

3
Φ(a

pqrTb)p
sTqrs −

1

3
ΦpqrsTapqTbrs +

4

3
Ta

pqTbpq −
1

36
Φa

pqrΦijk
b TpqrTijk(6.52)

+
1

2
gab

(

λ−
11

12
(Tpqr)

2 +
7

8
ΦpqrsTpq

pTrsp

)

.

This makes it clear that the κ = −2 non-linear equations do not coincide with Einstein equations.
Rather, these are Einstein equations with ”stress-energy” tensor sourced by the intrinsic torsion.
Better understanding of these equations requires further work.

6.13. Rewriting the κ = −2 field equations - antisymmetric part.

Φ[a
pqrTb]p

sTqrs +
1

6
Φpqrs(Tabp −

1

2
Φab

cdTcdp)Tqrs = 0. (6.53)

The expression in brackets contains a multiple of the projector π7, so it is in Λ2
7. The first

term can also be checked to be in Λ2
7 by computing the π21 projection and verifying that it is

identically zero. Moreover, it can be checked that the above expression is invariant under the
change

Tabc → Tabc +ΦabcdV
d, (6.54)

which means that it only depends on the Λ3
48 part of Tabc. This means we can write this equation

as

Φ[a
pqrT̃b]p

sT̃qrs = 0. (6.55)
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where T̃ = π48(T ). There is precisely one copy of the 7 representation in the tensor product

48⊗ 48, and the field equation (6.55) states that π7(T̃ ⊗ T̃ ) = 0.

7. Linearisation

We now compute the linearisation of the general action (6.2) and verify that it gives the most
general diffeomoprhism invariant linearised theory (3.28).

7.1. Linearisation of the non-linear action. We start with the full action without the
cosmological constant part, and without the constraint terms, which we assume to be satisfied

S[Φ, C] =
1

3!

∫
(

1

4!
Φijkl(∂aCbcd −

3

2
gpqCabpCcdq)ǫ̃

ijklabcd + κ(Cabc)
2vg

)

d8x. (7.1)

We will then linearise around the background given by C = 0 and a constant Φ. Denoting the
variation of Φ by φ and of C by c we get for the first variation

S(2)[φ, c] =
1

3!

∫
(

1

4!
ǫijklabcdφijkl∂acbcd −

3

2
Φabcdcab

pccdp + κ(cabc)
2

)

, (7.2)

where the volume element d8x is omitted for compactness. A calculation shows

J3(c)abcc
abc =

3

2
Φabcdcab

pccdp, (7.3)

which it makes it easy to derive the Euler-Lagrange equation for cabc, which is given by

1

4!
ǫbcd

aijkl∂aφijkl = 2J3(c)bcd − 2κcbcd. (7.4)

We can now integrate by parts in (7.2) in the first term to rewrite it in terms of the torsion. We
see that it is given by (2J3(c)bcd − 2κcbcd)c

bcd. This means that the linearised action written in
terms of φ only is given by

S(2)[φ] =
1

6

∫

J3(c)abcc
abc − κ(cabc)

2. (7.5)

We note that the linearised action is manifestly diffeomoprhism invariant. Indeed, the linearised
4-form transforms as (3.24). This is clearer in the form notations

δφ = diξΦ. (7.6)

Thus, the variation is an exact form. The formula (7.4) shows that the linearised torsion
is obtained from the Hodge dual of the exterior derivative of the linearised 4-form, which is
clearly diffeomorphism invariant. So, any linearised action written in terms of the linearised
torsion is diffeomoprhism invariant.

7.2. Rewriting of the linearised action. We now rewrite the linearised action explicitly in
terms of φ. To compute tabc explicitly we need to compute the action of J3 on the left-hand
side in (7.4). We have

J3(tabc) =
1

48
ǫabc

pijkl∂pφijkl, (7.7)

and

J3(
1

48
ǫabc

pijkl∂pφijkl) =
1

2
Φ[a

pqr∂bφc]pqr +
3

4
Φ[a

pqr∂|p|φbc]qr. (7.8)

This means that

tabc =
5

288
ǫabc

pijkl∂pφijkl +
1

12
Φ[a

pqr∂bφc]pqr +
1

8
Φ[a

pqr∂|p|φbc]qr. (7.9)

For completeness, we state the result of computation of the Λ3
8 part of the torsion 3-form. We

have

tabcΦ
mabc =

1

48
Φabcd∂mφabcd +

1

12
Φabcd∂aφbcd

m. (7.10)
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A long calculation using (2.7) gives
∫

J3(tabc)t
abc =

∫

5

96
φabcd∂p∂pφabcd +

1

32
Φabcdφab

pq∂e∂eφcdpq (7.11)

+
5

24
(∂aφabcd)

2 +
1

16
Φabcd∂iφabip∂

jφcdj
p −

1

8
Φabci(∂i∂

rφcrpq)φab
pq.

We cannot exhibit this in a form that is elliptic modulo gauge without using additional properties
of the perturbation φabcd. To this end, we now pass to the parametrisation of φ by fields h, ξ.

7.3. Evaluation of the linearised action. We now use the parametrisation (3.21). In this
parametrisation, using (2.5) gives

J3(t)abc :=
1

48
ǫabc

pijkl∂pφijkl = (7.12)

−
1

2
Φbcd

a∂i(hia −
1

4
ξia) +

1

2
Φbcd

i∂ih−
3

2
Φ[bc

ai∂i(hd]a −
1

4
ξd]a).

We have introduced the notation J3(t) for this quantity. We also have

J3(t) = J3(c) − κc, (7.13)

and so we need to compute J3(t)abcc
abc. We have

c =
6t+ κJ3(t)

6− 5κ− κ2
. (7.14)

This means that we can write the linearised action as

S(2)[φ] =

∫

L(2) =
1

6(6 − 5κ − κ2)

∫

κJ3(t)J3(t) + 6J3(t)t = (7.15)

1

6(6− 5κ− κ2)

∫

κJ3(t)J3(t) + J3(t)(J3 + 5I)J3(t).

A computation gives
(

1−
5κ

6
−

κ2

6

)

L(2) =
1

2
(1 +

κ

6
)(∂ahbc)

2 −
1

6
(1−

κ

2
)(∂ah)

2 −
1

3
(1−

κ

2
)h∂a∂bhab (7.16)

−
2

3
(∂ahab)

2 +
1

24
(1 +

κ

2
)(∂aξbc)

2 −
2

3
(1 +

κ

2
)∂bh

ba∂cξca.

This is the diffeomorphism invariant Lagrangian of the type (3.15) with (3.27) and

ρ = 1 +
κ

6
, µ =

2

3

(

1 +
κ

2

)

. (7.17)

This shows that the linearisation of our general action gives the linearisation of the Einstein-
Hilbert Lagrangian for κ = −2.
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