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Phase separation plays an role in determining the self-assembly of biological and soft-matter
systems. In biological systems, liquid-liquid phase separation inside a cell leads to the formation
of various macromolecular aggregates. The interaction among these aggregates is soft, i.e., these
can significantly overlap at a small energy cost. From the computer simulation point of view,
these complex macromolecular aggregates are generally modeled by the so-called soft particles.
The effective interaction between two particles is defined via the generalized exponential potential
(GEM-n) with n = 4. Here, using molecular dynamics simulations, we study the phase separation
dynamics of a size-symmetric binary mixture of ultrasoft particles. We find that when the mixture is
quenched to a lower temperature below the critical temperature, the two components spontaneously
start to separate. Domains of the two components form, and the equal-time order parameter reveals
that the domains grow in a power-law manner with exponent 1/3, which is consistent with the
Lifshitz-Slyozov law for conserved systems. Further, the static structure factor shows a power-law
decay with exponent 4 consistent with the Porod law.

I. INTRODUCTION

In many biological and polymeric systems liquid-liquid
phase separation in binary (or more component) systems
plays an eminent role in triggering self-assembly pro-
cesses and the morphology of systems (see, e.g., [1, 2]).
In biological cells, such phase separation scenarios are
induced by the differences in the molecular affinity or
chemical potential of the species, thus macromolecules
condense into high- and low-density phases (see, for ex-
ample, [3, 4]). These biological systems are in general
characterized by a high density and the effective inter-
action among the constituent molecular assemblies can
be considered as soft, allowing thereby significant spatial
overlap between the entities [5, 6].
In computer simulations, such mutually penetrable,

complex macromolecular aggregates can conveniently be
modeled via so-called ultrasoft particles, i.e., potentials
that are characterized by a finite energy penalty at zero
separation. These effective interactions emerge as the
degrees-of-freedom of the constituting microscopic parti-
cles (such as atomic or molecular entities) are traced out
[5, 6]. Among these ultrasoft interactions the so-called
generalized exponential model (with index n) [7]– GEM-
n (with typically n ≥ 2) – ranges among the most familiar
ones, due to the simplicity of its functional form and its
wide-spread use in various investigations (see, e.g., [7–15].
For n > 2 GEM-n particles form – despite their mutual
repulsion – stable clusters of overlapping particles: these
clusters are polydisperse in the disordered phase and con-
dense upon increasing the densities in stable cluster crys-
tals, i.e., BCC or FCC lattices, where each lattice site is
populated by a well-formed cluster of overlapping par-
ticles. The phase diagram of such systems (notably for
n = 4) is well-explored both at high [7–9] as well as at low
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temperatures [13]. The mechanism behind this unusual
phase behaviour and of various other interesting prop-
erties [11] is well-understood and documented [12]. The
particle dynamics in the crystalline state is even more
intriguing as particles keep hopping from one cluster to
another, preserving the overall crystalline structure [16].
Thus cluster crystals represent an interesting model for
defect-rich clusters with interesting structural and me-
chanical properties (see, e.g., [14, 15, 17].

Ever since the publication of Ref. [7] a few attempts
have been made to extend investigations of such a sys-
tem to more component mixtures of ultrasoft particles.
Molecular dynamics simulations have revealed that a
polydisperse mixture of ultrasoft particles shows a clus-

ter glass phase: the structure of the clusters (represented
via the positions of their centers of mass of clusters) re-
mains disordered and their dynamics becomes drastically
slowed down, both features that represent signatures of
the emergence of a glassy phase [18]. On the other hand,
a size-asymmetric binary mixture of ultrasoft particles
shows micro-segregation of the two components in the
clusters [18]. Finally, a few investigations on the ordered
phases of binary mixture can be reported (see, e.g., , de-
spite clear evidence of the emergence of cluster crystals
for such systems [19, 20].

However, phase separation in these mixtures has not
yet been studied, a phenomenon which is of utmost im-
portance in understanding the self-assembly occuring in
many biological and polymeric systems induced by phase
separation. Also, the kinetics of phase separation, i.e.,
the evolution of the dynamics of the system when ren-
dered thermodynamically unstable by a sudden change of
temperature, has not been studied, yet. Several theoreti-
cal, simulation, and experimental studies have been ded-
icated to understand phase separation kinetics in poly-
mer blends and soft-colloid mixtures (see, e.g., [21–23]).
However none of these have dealt with the phase sep-
aration kinetics of a mixtures of ultrasoft particles for
which interesting phenomena can be expected due to

http://arxiv.org/abs/2403.16663v1
mailto:gerhard.kahl@tuwien.ac.at


2

their cluster-forming capacity.
In this contribution we study the phase separation dy-

namics of a size-symmetric, equimolar binary mixture of
ultrasoft particles (with species A and B). Using molec-
ular dynamics simulations [24] in the canonical ensemble
and considering a fairly large number of particles, we de-
termine the tentative phase diagram of this mixture in
the temperature-density plane and identify the coexis-
tence curve and an estimate for the critical temperature
Tc. At high temperatures, the two components of the
mixture remain in a homogeneously mixed state, while
below Tc the species spatially separate into A-rich and B-
rich phases. The two phases are identified by recording
the spatial distribution of the difference in the concen-
trations of A and B particles [25]. When quenched from
a high-temperature mixed state to a subcritical temper-
ature, the mixture spontaneously phase separates, and
domains of A and B-rich regions are formed. In an effort
to quantify this dynamic process we correlate at the same
instant the local concentrations at two locations in the
system which are separated by a distance r via a correla-
tion function C(r, t). This function provides evidence of
a self-similar growth (when scaled with a time-dependent
length l(t) which estimates the size of the emerging clus-
ters) which shows asymptotically for large distances r a
power-law growth with an exponent equal to 1/3 [26].
This feature is consistent with the predictions of the Lif-
shitz–Slyozov law for conserved systems [27] and has been
extensively studied for Lennard-Jones fluids [28–31]. Fur-
thermore, the spatial Fourier transform of this correlation
function, a time-dependent structure factor shows at high
wave vectors a power-law decay with an exponent equal
to 4, a feature which is consistent with Porod’s law which
signifies the presence of sharp interfaces in the system
[32–34].
The remainder of the manuscript is organized as fol-

lows: in Section II, we introduce the model and provide
details about the simulation method and the related pro-
tocols. Results are presented and discussed in Section III,
while the final section, Section IV, contains the summary
of results, concluding remarks, and an outlook to related
future investigations.

II. MODEL AND SIMULATION DETAILS

For the interactions between the ultrasoft particles we
have used the generalized exponential (GEM-n) poten-
tial, whose functional form is given by (see also [7])

Φαβ(rij) = ǫαβ exp[−(rij/σαβ)
n]. (1)

In accordance with previous publications we choose n =
4. In Eq. (1) rij represents the distance between particles
i and j (with i, j = 1, ..., N), N being the total number of
particles in the system. The indices α and β can assume
the values A and B, representing the two species of the
particles. ǫαβ are the energy parameters and σαβ are

the range parameters of the respective interactions. As
we deal with a (size-)symmetric mixture we impose that
σAA = σBB = σAB ≡ σ. Further, ǫAA = ǫAB ≡ ǫ and
ξǫ = ǫAB with ξ = 1.5. Further N = NA +NB, NA and
NB(= NA) being the number of particles of species A
and B, respectively.
In our simulation-based investigations the potential is

truncated at a distance rc = 2.2σ with Φ(rc) ≃ ǫ 6.7 ×
10−11. All results presented in this contribution are
based on simulations of ensembles with N = 524 288 par-
ticles; we have deliberately chosen such a huge ensemble
in an effort to reduce size effects as much as possible.
The cubic volume V of the system (with box length L)
is chosen in such a way that the (reduced, dimensionless)
density, defined by ρ∗ = ρσ3 = σ3N/V = 2. Time t, tem-

perature T , and density ρ are given in units of σ
√

m/ǫ,
kBT/ǫ and ρσ

3, respectively, where m is the mass of the
particles and kB is the Boltzmann constant. For simplic-
ity we set henceforward ǫ, σ, m, and kB to unity.
To simulate the system, (non-equilibrium) molecular

dynamics (MD) simulations have been performed in an
NVT ensemble, taking advantage of the LAMMPS pack-
age [24]. The temperature of the ensemble is maintained
via a dissipative particle dynamics (DPD) thermostat,
which is equivalent to the non-conservative portion of a
DPD force field [35]. Within DPD, the equations of mo-
tion of the particles are given by,

ṙi =
pi

mi

(2)

ṗi =
∑

j 6=i

[

FC
ij + FD

ij + FR
ij ], i, j = 1, ..., N. (3)

In the above relations the ri and pi are the positions and
the momenta of a particle with index i. The forces acting
on atom i due to other atoms (with index j) are given by
the sum over the conservative forces FC

ij , the dissipative

forces FD
ij , and the random forces FR

ij : the FC
ij can be

calculated from the interparticle potential defined in Eq.
(1). Further, the FD

ij and the FR
ij are given by,

FD
ij = −γωD(rij)(r̂ij · vij)r̂ij (4)

FR
ij =

√

2γkBTω
R(rij)Θij r̂ij . (5)

rij = |rij | = |ri − rj | is the distance between particles
with indices i and j, r̂ij = rij/|rij | is the unit vector
connecting these two particles, and vij = (vi − vj) is the
relative velocity between particles i and j. Further, γ is
the friction coefficient, which is set to unity. ωD(r) and
ωR(r) are distance-dependent weight functions vanishing
for r > Rc [36, 37]. The usual choice of the weight func-
tions for the continuous stochastic differential equation
within the DPD algorithm is given by,

ωD(rij) = [ωR(rij)]
2 =

{

1− rij/Rc, if 0 ≤ rij ≤ Rc.

0, otherwise.

(6)
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For simplicity we choose the cutoff radii Rc for these
functions as Rc = rc. Further, the Θij = Θij(t) repre-
sent uniformly distributed random numbers with a Gaus-
sian statistics, i.e., 〈Θij(t)〉 = 0 and 〈Θij(t)Θkl(t

′)〉 =
(δikδjl + δilδjk)δ(t − t′), with the brackets denoting en-
semble averages.
Initially all the A and B particles are randomly dis-

tributed within our simulation box; due to high density
of our system it is very likely that the particles overlap.
From this initial configuration we start our simulation
and equilibrate it during 106 MD steps ∆t at a tem-
perature T = 3.0; for the time increment we have used
∆t = 0.005. The equilibrated system is then simulated
over 106∆t, storing configurations in intervals of 105∆t.
All these configurations serve in the following as inde-
pendent initial configurations in subsequent MD runs.
The system is equilibrated over 106∆t at the respective
temperatures T . Eventually the equilibrated systems are
simulated over 106∆t in order to obtain the required in-
formation of the system.

III. RESULTS

In this Section, we present our results for the system
(as specified in the preceding Section II). We will start
by characterizing the morphologies of the system that
we have obtained across different temperature ranges;
we will then proceed to a discussion on the impact of a
quenching process (from high to a low, sub-critical tem-
perature) on the properties of the system.

A. Equilibrium morphologies

We first examine the equilibrium morphologies of the
system as they occur at different temperatures. In Fig. 1,
we show snapshots of the system in different perspectives
views (as specified in the caption) at three different tem-
peratures, T = 1.8, 1.4, and 1.0. At T = 1.8 and 1.4,
the two components of the system form a homogeneously
mixed phase, while at T = 1.0, a clear spatial separation
into an A- and a B-rich phase becomes visible.
In an order to characterize the structure of the sys-

tem, we have calculated the radial distribution functions
gαβ(r) (α, β = A or B) [38] of the two species, which are
defined as,

gαβ(r) =
N

ρNαNβ

〈

Nα
∑

i=1

Nβ
∑

j=1

′
δ(r − |ri − rj |)

〉

; (7)

where the brackets denote an ensemble average and the
prime indicates that the contribution is not considered in
case α = β and i = j.
The gαβ(r) are depicted in Fig. 2 as functions of dis-

tance r for two temperatures (as labeled) in the homoge-
neous, mixed phase (cf. panels (a) and (b) in Fig. 1 for

T = 1.8 T = 1.4 T = 1.0

y

x
z

(a) (b) (c)

FIG. 1. Snapshots of the system at hand at different temper-
atures. Upper panels: perspective views of snapshots of the
system at (a) T = 1.8, (b) T = 1.4, and (c) T = 1.0. Lower
panels: cross sections of the respective upper panels, taken at
z = L/2. A- and B-particles are shown in yellow and blue,
respectively.
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FIG. 2. Radial distribution functions gαβ(r) as defined in Eq.
(7) as functions of the distance r for different index combi-
nations (i.e., AA, BB, and AB – as labeled) of the system at
hand, calculated for two different temperatures: panel (a) –
T = 1.8 and panel (b) – T = 1.4. Inset: radial distribution
functions gc(r) of the centers of mass of the clusters – see text.
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the corresponding snapshots). The gαβ(r) show the typi-
cal behaviour as encountered in a liquid phase: the func-
tions oscillate at small r-values and then tend towards
unity at large distances. At small distances (i.e., for
r . 1), the gαβ(r) assume finite values (close to unity),
indicating the presence of clusters of overlapping parti-
cles, a typical feature occurring in systems of ultrasoft
particles.
As systems of ultrasoft particles are prone to form clus-

ters at any density [7–9, 11–14, 16, 39], we have to prop-
erly specify what we mean with a cluster in the disordered
phase. To this end we have defined a distance rcl, being
the position of the first (local) minimum in the gαβ(r)
– see Fig. 2 – as a rough estimate for the spatial extent
of a cluster; this distance amounts to rcl ≃ 0.6. For all
particles pertaining to the same cluster we then define
the center of mass, rCM, of this clusters of overlapping
particles via,

rCM =
1

Nc

Nc
∑

i=1

ri. (8)

In contrast to the partial radial distribution functions
gαβ(r), the radial distribution function of the clusters,
gc(r), plotted in the insets of the panels of Fig. 2, van-
ishes at small distances, akin to the radial distribution
function of a system with steeply repulsive interactions
[38]. This function indicates that the centers of mass of
the clusters do not overlap, i.e., that the clusters behave
essentially as strongly repulsive, effective particles.

B. Phase separation and critical behavior

In an effort to characterize the morphologies of the
system (as they have already been shown in Fig. 1 for
different temperatures) we subdivide the simulation box
into cubic cells of length 2σ and count the number of
A-particles (N i

A) in the cell with index i and relate this
number to the total number of particles contained in this
cell, i.e., (N i

A+N i
B); the fraction of these two numbers is

the local concentration Ψi (which might also be termed
xiA) [28] [40]

Ψi =
N i

A

N i
A +N i

B

; (9)

Obviously, Ψi ∈ [0, 1]. A typical color-coded map of Ψi is
shown in Fig. 3 for selected snapshots, taken at three dif-
ferent temperatures (as labeled): the upper panels show
again perspective views of the simulation box, while the
lower panels display cross sections of the respective snap-
shots, taken at z = L/2.
In an effort to learn more about the phase separation

of the system into A- and B-rich phases, we have calcu-
lated the probability distribution of the Ψi in the system
at different temperatures, which we term P (xA). This

is done by subdividing the range [0, 1] into 500 bins and
by recording the number of occurrences of Ψi in each
of these pin; in this manner we obtain – after normal-
izing – P (xA). The function P (xA) is shown in the top
panel of Fig. 4, as obtained for different temperatures (as
labeled). Obviously, in the homogeneous phase (occur-
ring at high temperatures), P (xA) shows a pronounced,
symmetric peak centered at xA = 0.5. In contrast, in
the heterogeneous regime (i.e, at low temperatures), two
peaks appear (which are located at xA-values symmet-
ric to xA = 0.5): here, the peak at the smaller xA-value
corresponds to the A-poor (or B-rich) phase, while the
peak at the larger xA-value corresponds to the A-rich (or
B-poor) phase. The fact that the distribution function
shows two pronounced peaks (and vanishes in between)
for the lowest temperature (i.e., at T = 1.0) provides
evidence that the system is clearly phase separated into
regions, hosting either a B-rich (peak at xA ≃ 0.06) and
an A-rich phase (peak at xA ≃ 0.94).
If we then plot the xA-values of the peaks in P (xA)

for the different temperatures we obtain the phase dia-
gram, shown in the bottom panel of Fig. 4. Below the
critical temperature, Tc, we see the characteristic coexis-
tence line, separating the two above mentioned phases.

T = 1.8 T = 1.4 T = 1.0(a) (b) (c)

y

x
z

FIG. 3. Color-coded representation of Ψi (as defined in the
text) for selected snapshots. Upper panels: perspective views
of snapshots of the system at (a) T = 1.8, (b) T = 1.4, and (c)
T = 1.0. Lower panels: cross sections of the respective upper
panels, taken at z = L/2. The actual value of Ψi ∈ [0, 1] of a
cell with index i can be extracted from the respective color-
codes, depicted on the right hand side of the snapshots.

The critical temperature Tc can be extracted from
these data by fitting the difference in the concentra-
tions of the two coexisting phases (indices ’(1)’ for the
B-rich and ’(2)’ for the A-rich phase, respectively), i.e.,

(x
(2)
A − x

(1)
A ) (as obtained from the positions of the max-

ima of the distribution function P (xA) with the usual
functional form [25]:

x
(2)
A − x

(1)
A = B(1− T/Tc)

β ; (10)

here, B and Tc are fitting parameters, anticipating that
the phase separation scenario at hand pertains to the 3D-
Ising universality class, i.e., β ≃ 0.325. The inset of the
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bottom panel of Fig. 4 provides evidence that (x
(2)
A −x

(1)
A

can indeed be nicely fitted via Eq. (10); the fitted values
are: B = 3.52± 0.05 and Tc = 1.351± 0.001.
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1
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T
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0

0.05

0.1

0.15

0.2

1.28 1.3 1.32 1.34

∆
x A

1
/β

T

FIG. 4. Top panel (a): probability distribution, P (xA) (as
defined in the text) as a function of xA for selected, different
temperatures (as labeled). Bottom panel (b): symbols – val-

ues of the coexistence densities x
(1)
A and x

(2)
A (as identified as

maxima of P (xA)) for the different (sub-critical) temperatures
investigated in this study. The red line displays the function
specified in Eq. (10), using the fitting parameters given in

the text. The inset shows
[

x
(2)
A − x

(1)
A

](1/β)

as a function of

temperature T ; the dotted line displays again the function
specified in Eq. (10).

C. Phase separation dynamics

We proceed by exploring the non-equilibrium dynam-
ics of the mixture when quenched from a high temper-
ature to a low, subcritical temperature. We start off
from the equilibrated mixture at T = 3.0 which is in a
homogeneous phase. We instantaneously quench the sys-
tem down to T = 0.68 (≃ 0.5Tc), i.e., to a state located
inside the coexistence region of the phase diagram. The
two components of the system demix, forming A-rich and

B-rich domains. In an effort to visualize the emerging
morphologies, we assign a value +1 to A-rich (sub-)cells
(introduced above) and a value −1 to B-rich (sub-)cells.
Snapshots of the mixture and their coarse-grained ver-
sions (with binary values) at T = 0.5 Tc are shown in
Figs. 5 and 6, respectively. In each of the figures panels
(a), (b), and (c) show the snapshot of the mixture in after
different time-spans after the quench (as labeled). The
respective top panels show the the snapshots in perspec-
tive views, while the bottom panels are cross sections of
the respective upper panels, taken at z = L/2.

t = 100 t = 300

y

x
z

(a) (b) (c) t = 500

FIG. 5. Snapshots of the system at different times t after
the system has been quenched down to T = 0.5 Tc (as de-
tailed in the manuscript). Upper panels: perspective views of
snapshots of the system at (a) t = 100, (b) t = 300, and (c)
t = 500. Lower panels: cross sections of the respective upper
panels, taken at z = L/2. A- and B-particles are shown in
yellow and blue, respectively.

y

x
z

(a) t = 100 (b) t = 300 (c) t = 500

FIG. 6. Same as Fig. 5, now in a coarse-grained representa-
tion, based on the cubic (sub-)cells (see text).

We track the spatial evolution of these domains with
time t by calculating the correlation function C(r, t) of
the parameter Ψ(r, t) (previously introduced as Ψi) – r

being the position vector of the sub-cell within the simu-
lation box –, evaluated at the time t; where the time-scale
starts once the quench of the system has been realized;
the above function is defined as:
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FIG. 7. Top panel: correlation function C(r, t) as defined in
Eq. (11) as a function of r, evaluated for different values of
time t (as labeled) after the quench; the considered tempera-
ture isT = 0.5Tc. Bottom panel: correlation function C(r, t),
shown in the top panel, now as a function of the scaled dis-
tance r/l(t), as defined in the text.

C(r, t) =
1

V

∫

V

dR
[〈

ψ(R, t)ψ(R + r, t)
〉

−
〈

ψ(R, t)
〉〈

ψ(R+ r, t)
〉]

(11)

This function correlates the quantity Ψ(r, t), evaluated
for two different sub-cells within the simulation box at
the same time t: R and (R + r) are the positions of
two sub-cells and r is the vector between these two cells
points.
The above correlation function C(r, t) = C(r, t), cal-

culated for different values of t (namely t = 100, 300 and
500) is shown in the top panel of Fig. 7 at a tempera-
ture T = 0.5 Tc. C(r, t) is displayed as a function of
r (with the range in r being limited by the simulation
box). The correlation function initially decays linearly
for all t-values considered, then fluctuates around zero,
and eventually tends towards zero.
The correlation functions collapse – when their r-

dependence is appropriately scaled via a time-dependent

scaling factor l(t) – on a single master curve, as shown
in the bottom panel of Fig. 7. Thus,

C(r, t) = g
( r

l(t)

)

, (12)

introducing thereby the function g(r). The spatial scal-
ing factor for the distance is the (time-dependent) av-
erage size of the domains, l(t), which can be estimated
as follows: a measure for l(t) is obtained by identifying
the first zero of the function C(r, t) (see, e.g., [28]). This
length is shown in Fig. 8 as a function of t.

 1

 2

 4

 8

 16

 10  20  40  80  160  320  640

t1/3

t1/3

l(
t)

t

from C(r,t)

from S(k,t)

FIG. 8. l(t) as a function of t in a double-logarithmic repre-
sentation, calculated at the temperature T = 0.5Tc. Data are
obtained – as labeled – from the correlation function C(r, t)
– as defined in Equation (11) – and via the time-dependent
structure factor – as defined in Equation (13) – as labeled by
the different symbols. For details see text. The broken lines
indicate a t1/3 behaviour of l(t), as predicted by Lifshitz and
Syolov (see text).

For t & 80 the length l(t) shows a power-law behaviour
with an exponent 1/3 [41, 42], a behaviour which is con-
sistent with the theoretical predictions for conserved sys-
tems, found, e.g., by Lifshitz and Slyozov [27].
We further define the spatial Fourier transform of the

correlation function C(r, t] via

S(k, t) =

∫

dreik·rC(r, t) = l(t)dg̃(kl(t)). (13)

S(k, t) = S(k, t) can be considered as a time-dependent
structure factor. d(= 3) represents the dimension of the
system Further, k is the wave vector and g̃(p) is the
Fourier transform of g(x), i.e.,

g̃(p) =

∫

dxeip·xg(x) (14)

The panels of Fig. 9 show the function S(k, t), either
as a function of k – top panel – or of the scaled wave vec-
tor, i.e. kl(t) – bottom panel; S(k, t) is shown for three
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different values of time t (as labeled), evaluated at the
temperature T = 0.5Tc; note the semi-logarithmic rep-
resentations. The unscaled functions show pronounced
peaks at k-values, which indicate (via their respective in-
verse values) the size of the above mentioned domains.
Replotting S(k, t) as a function of the scaled wave vec-
tor, i.e., of kl(t), we find that the functions, calculated
for different t-values collapse on a single master curve –
see bottom panel of Fig. 9, showing thus essentially the
function g̃(kl(t)) as defined above in Equation (13). Fur-
ther we observe that the S(kl(t), t) show for kl(t) & 1.6 a
power-law type decay with an exponent 4(= d+1). This
observation is consistent with Porord’s law [32], which
predicts for larger k-values a decay of the scaled func-
tion S(kl(t), t) with an exponent (d + 1) signifying the
presence of sharp interfaces in the mixture.
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FIG. 9. Time-dependent structure factor S(k, t) as defined
in Eq. (13) as a function of the wave vector k – top panel
– and of the scaled wave vector kl(t) – bottom panel; S(k, t)
is evaluated for different values of t (as labeled). The dotted
line in the bottom panel indicates a power-law decay in k with
∼ k−4. Note the semi-logarithmic presentation of the data.

IV. CONCLUSIONS AND OUTLOOK

With the help of extensive molecular dynamics simula-
tions (both with respect to ensemble size and simulation
length), carried out in an NVT ensemble we have studied
the liquid-liquid phase separation scenario in an equimo-
lar, size-symmetric binary mixture of ultrasoft particles
(with species labeled A and B). Consistent with previous
publications we use the generalized exponential model of
index n = 4 for the interparticle interaction. In an effort
to keep the temperature fixed we use a DPD thermo-
stat, inbuilt in the LAMMPS program package. While
the interactions among like particles are identical, the
cross interactions is by a factor of 1.5 stronger, i.e., more
repulsive, inducing thereby the desired phase separation
scenario.

In a first step we have investigated the equilibrium
morphologies of the system via static correlation func-
tions and trace out the phase diagram of the system via
calculating and analysing the distribution functions of
the local concentration of particle species A. An analysis
of these distribution functions in combination with an ex-
trapolation of the coexistence densities (and anticipating
that the phase separation scenario pertains to the Ising
3D universality class) yields a critical point at a temper-
ature Tc = 1.35. Snapshots of the system confirm the ex-
pected behaviour at super-critical, at close-to-critical and
at sub-critical temperatures. The structure of the system
is analysed for a wide range of temperatures (both above
and below Tc) in terms of the (partial) radial distribu-
tions and the radial distribution function of the centers
of mass of the clusters of overlapping particles formed
in the system. At supercritical temperatures the radial
distribution function of the clusters shows the expected
behaviour: a finite value at short distances, indicating
the formation of clusters of mutually overlapping parti-
cles as well as oscillations at long distances. The cluster
correlation function shows a behaviour akin to a system
of strongly repulsive particles, indicating that the clus-
ters behave as effective, mutually repulsive particles.

In a further step we have explored the dynamics of
the phase separation process within the system. To this
end we have rapidly (i.e., instantaneously) quenched the
ensemble from a high temperature to the subcritical tem-
perature T = 0.5Tc. In a time-dependent process, the ini-
tially homogeneously mixed system then phase separates
into A- and B-rich phases, a process which is tracked
over time via the time- and space-dependent correlation
function C(r, t) of the local concentration: to this end we
have subdivided the simulation box in small cubic sub-
cells and have recorded the local concentration of either
species. This function correlates at the same instant the
concentrations in two sub-cells, separated by a distance r.
As the properties of the system is tracked along the time
scale, a time-dependent (average) size of clusters of parti-
cles, l(t), which grows (from intermediate times onwards)
in time via a power law (consistent with the predictions of
Lifshitz and Slyozov). Scaling the distance between two



8

sub-cells via l(t) makes the correlation functions calcu-
lated for different time instants collapse on a single, time-
independent master curve. Likewise, the time-Fourier
transform of C(r, t), the time-dependent structure fac-
tors collapse – when the wave-vector is scaled by the
cluster size – on a single master curve which shows at
large wave-vectors a power-law decay, as predicted by
Porod’s law.
With the knowledge achieved from this particular,

symmetric case we are ready to push forward our in-

vestigations on binary mixtures of ultrasoft particles in
two directions: on one side we plan to introduce asym-
metry into the system, namely both with respect to the
size of the particles as well as to the interaction strength.
On the other side we will expose the system to other
non-equilibrium conditions, such as the exposure to shear
forces. Investigations in both directions are currently on
their way.
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