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Abstract. This paper addresses the problem of preference learning,
which aims to learn user-specific preferences (e.g., “good parking spot”,
“convenient drop-off location”) from visual input. Despite its similar-
ity to learning factual concepts (e.g., “red cube”), preference learning
is a fundamentally harder problem due to its subjective nature and the
paucity of person-specific training data. We address this problem using
a new framework called Synapse, which is a neuro-symbolic approach
designed to efficiently learn preferential concepts from limited demon-
strations. Synapse represents preferences as neuro-symbolic programs
in a domain-specific language (DSL) that operates over images, and
leverages a novel combination of visual parsing, large language mod-
els, and program synthesis to learn programs representing individual
preferences. We evaluate Synapse through extensive experimentation
including a user case study focusing on mobility-related concepts in mo-
bile robotics and autonomous driving. Our evaluation demonstrates that
Synapse significantly outperforms existing baselines as well as its own
ablations. The code and other details can be found on the project website
https://amrl.cs.utexas.edu/synapse.

Keywords: Concept learning · Neuro-symbolic programming · Program
Synthesis · Visual Reasoning

1 Introduction

Imagine trying to come up with a definition of “a good taxi drop-off location”.
One person may consider a spot to be a good drop-off location depending on
whether it is close to the door of a building, while someone else might want it
in the shade. Such concepts vary from person to person and inherently depend
on their preferences. We call them preferential concepts, and we are interested
in the problem of preference learning from visual input. Learning preferences is
important because we want systems that are customizable and that can adapt
to end-users. This problem is quite related to the task of visual concept learning,
wherein much of the work focuses on learning concepts such as having the color
red or being to the left of another object [5, 13, 23, 25, 26, 31, 33, 35, 40, 41, 43,
44, 49, 52, 55, 61]. All such prior work assumes there is a ground-truth for the
concept, i.e., the definition of the concept does not differ among people, and as
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Fig. 1: Illustration of Synapse for identifying good contingency locations. (a) Synapse
learns a neuro-symbolic program that represents the preferential concept based on user
demonstrations, which include both a NL explanation and a physical demonstration.
The learning algorithm consists of three steps, namely updating the concept library,
synthesizing a program sketch, and performing parameter synthesis; (b) The new sketch
gets synthesized based on the previous sketch and the current natural language descrip-
tion; (c) Parameter synthesis determines suitable values for numeric parameters in the
program sketch; (d) Synapse evaluates the program on a new query image to return a
preference (in this case, boolean) mask over the input image.

a consequence, sufficiently many examples are available, and can be objectively
evaluated. We refer to such concepts as factual concepts. While most prior work
that learns visual concepts exploits the availability of large datasets such as
CLEVR [29], those methods cannot be applied to preference learning because
it is a data-impoverished setting by its very nature: a single individual can put
up with providing only so much data. This limitation is also present in most
of the preference learning work in the reinforcement learning literature as well,
where human preferences are represented as neural networks [10, 59] or latent
reward models [2,7,14,15,48,60]. Furthermore, because preferences are inherently
individual, they can depend on entirely different concepts, such as in the drop-off
location example above (i.e., based on proximity to door as opposed to being in
the shade). This requires learning novel visual concepts in a hierarchical manner.
Lastly, coming up with a complete definition of a preferential concept at once is
itself a hard problem: it is much easier for someone to show examples that satisfy
their intuition as humans tend to build their notion of a preferential concept over
time. Thus, preference learning calls for an approach that can handle incremental
learning from visual demonstrations.
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To address these challenges, we present Synapse, a novel framework that
learns human preferences in a data-efficient manner. In contrast to prior pref-
erence learning approaches [2, 7, 10, 14, 15, 19, 48, 59, 60, 64] which take in weak
reward signals to learn preferences, we use a more direct form of a preference
signal, which consists of a physical demonstration including visual data, and a
natural language (NL) explanation for the preference. We use NL input from the
human to identify new concepts to be learned as well as how to compose them.
However, in addition to learning new concepts or composing existing ones, pref-
erences also have a quantitative aspect. For example, to be a good drop-off spot,
you should be close to a door, but exactly how close is a personal preference. This
is where the demonstrations come into play and allow us to infer quantitative
aspects of the preference that are hard to capture via natural language alone.
Finally, to allow incremental, data-efficient learning, Synapse expresses prefer-
ential concepts as programs in neuro-symbolic domain specific language (DSL)
operating over images, and learns these programs based on demonstrations. Such
a programmatic representation also facilitates life-long learning, allowing incre-
mental changes to the learnt program as new demonstrations arrive.

Fig. 1 shows a schematic of our proposed Synapse framework. Given a user
demonstration (i.e., the physical demonstration and NL input), the general work-
flow of Synapse has three main components: First, Synapse leverages the user’s
NL explanation, along with Synapse’s existing concept library, to ground the
visual concepts needed to represent the user’s preference. If the NL explana-
tion contains auxiliary concepts that are not part of Synapse’s existing concept
library, Synapse may query the user for additional demonstrations of the aux-
iliary concept, which are then used to update Synapse’s concept library. Once
the library contains all required concepts, Synapse uses the NL explanation to
generate a so-called sketch which is a program in our DSL with missing values for
numeric parameters. Finally, Synapse uses constrained optimization techniques
(based on maximum satisfiability [24]) to find values of the numeric paramaters
that are maximally consistent with the user’s physical demonstrations.

To demonstrate the effectiveness of our framework, we evaluate it on three
mobility-related visual preferential concepts which find their use in mobile robotics
and autonomous driving: a) CONTINGENCY: What is a good spot for a robot to
pull over to in case of contingency?, b) DROPOFF: What is a good location for an
autonomous car to stop and drop-off the customer?, and c) PARKING: Where can
the autonomous car be parked?. We carry out extensive experiments, including
a user study, spanning multiple baselines. Empirical results show that Synapse
outperforms the baselines by a significant margin, especially when evaluated
on out-of-distribution data — even when Synapse is trained on an order of
magnitude fewer examples than baseline Neural-Network (NN) approaches. A
case study with multi-user preferences demonstrates that our method can learn
personalized preferences unique to each user with just a few demonstrations.

In summary, this paper contributes:

1. Synapse, a neuro-symbolic framework to learn and evaluate preferences
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Fig. 2: A taxonomy of (visual) concept learning and VQA

2. A new method for hierarchical lifelong learning from visual demonstrations
and natural language

3. A comprehensive experimental evaluation of the proposed approach, includ-
ing a multi-user case study and comparison against baselines and ablations

2 Related work

Our framework positions itself in the larger field of concept learning and visual
question answering (VQA), a broad taxonomy depicted in Fig. 2. While there
exist Reinforcement-Learning based methods for preference learning, most of
them fall in the imitation learning setting, where human preferences are rep-
resented via neural policies [10, 59] or latent reward models [2, 7, 14, 15, 48, 60].
Further, they do not deal with natural language, but rather take some form of
weak preference signal as input. In the following discussion, we focus on work
that is most closely-related to Synapse.

Language Model Programs (LMPs). Generating executable programs from
natural language is not a new idea. Many earlier works [5, 13, 23, 35, 40, 41, 44,
52,63] use custom semantic parsers to perform specific tasks. However, with the
advent of Large Language Models (LLMs) such as GPT-4 [1], LMPs have gained
significant attention [16, 22, 25–27, 37, 50, 53, 54, 56] due to the extensive knowl-
edge that these foundation models possess. Code-as-Policies [36] pioneered the
effort in this direction and demonstrated that LLMs can generate simple Python
programs for tasks ranging from drawing shapes to tabletop manipulation. This
approach uses recursive prompting as a strategy to get rid of invalid function
calls. Voyager [55] builds an LLM-powered embodied agent that can learn a
diverse set of skills in a lifelong manner in the game of Minecraft.
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Neuro-symbolic visual learning and reasoning. Neuro-symbolic approaches
couple the interpretability of rule-based symbolic AI with the flexibility of neu-
ral networks. This idea of composing neural networks into classical symbolic
programs to learn a particular concept for VQA dates back to Neural Module
Networks (NMN) [5]. NMNs compose neural modules into an end-to-end differ-
entiable network, which are then jointly trained. While methods like LLaVa [38]
and GPT-4V aim to tackle visual-language problems in a completely neural way,
works such as VisProg [22] and ViperGPT [53] build on top of these and take
the zero-shot route by composing the available pretrained models. One work [52]
uses a trained semantic parser to first extract useful feature definitions from a
few statements describing the concept, which are then evaluated for each dat-
apoint to build feature vectors on which standard classification can be done.
NS-VQA [63] is another approach that uses a separately trained visual parser
to generate a structured representation of objects in the image and a seman-
tic parser trained to parse the question into a predefined DSL format, which
is followed by Pythonic program execution to generate the answer. NS-CL [40]
uses the same framework as NS-VQA [63], but instead of answering questions
given the trained modules, it represents concepts as neural operators and tries
to learn them given the question-answer pairs. DCL [13] goes one step further
and extracts keyframes from video and tracks object trajectories to build latent
feature vectors that describe dynamic concepts such as collision. Similarly, a host
of other methods have been developed [23,25,26,31,33,35,41,43,44,49,55,61], of
which a few [31,35] also use learning from demonstrations such as GUI feedback
in a mobile app to guide interactive learning.

Program synthesis. There is a rich literature on synthesizing programs from
user-provided specifications in the programming languages community [3,4,9,11,
12,17,18,20,21,28,30,45,51,57,58]. Closer to our application domain, LDIPS [24]
is a recent approach that makes use of the dimensionality of variables to sythesize
Action Selection Policies (ASPs) given user demonstrations. From the viewpoint
of visual reasoning and concept learning, [43] tries to solve Visual Discrimination
Puzzles (VDP) by first constructing scene graphs for all images in the puzzle,
and then synthesizing a discriminator expressed in first-order logic by perform-
ing a full-blown discrete search. However, this can quickly become inefficient as
problem size scales. To tackle this, our method uses natural language informed
sketch generation and performs synthesis over the space of parameters.

3 Method

We define a preference task T := ⟨O,Q, P ⟩ as a tuple consisting of an observation
space O, a query space Q, and a preference space P . A preference evaluator π ac-
cepts an observation and a query, and returns a preference value: π : O×Q → P .
The goal of preference learning is to synthesize a suitable evaluator π that accu-
rately predicts a person’s visual preferences given an image. As stated earlier, a
distinguishing feature of preference learning is that it must be performed using
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Inputs

q ∈ Q
o ∈ O

Constants

v ∈ {Int,Real, . . . }
p ∈ P

Terms

t := q | o | v
| f(t1, . . . , tn) where f ∈ Cf

Conditions

ϕ := pc(t1, . . . , tn) where pc ∈ Cb
| ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

Programs

π := p | if (ϕ) then π else π′

Fig. 3: The Synapse neuro-symbolic DSL parametrized over concept library C, which
consists of a set of predicates Cb and functions Cf .

small amounts of training data due to the subjective nature of preferences. To
enable data-efficient learning, our proposed Synapse approach represents the
preference evaluator π as a neuro-symbolic program in a DSL and synthesizes π
from a small number of user demonstrations, where each demonstration includes
a sequence of images along with a natural language explanation for the user’s
preference. In the following discussion, we first present our DSL for representing
preferences and then describe our learning algorithm.

3.1 Representing Preferences

We represent preference evaluation functions π (or preferences for short) in the
neuro-symbolic DSL shown in Fig. 3. This DSL is parameterized over a so-called
concept library C, which includes both predicates Cb as well as non-boolean func-
tions Cf . The concept library includes built-in operators and predicates (e.g.,
+,×,≤, . . .), pre-trained neural networks (e.g., for object classification and ter-
rain detection), zero-shot visual language models (VLMs), as well as previously
learned concepts and functions (expressed in the same DSL). We sometimes
use the notation πC to denote programs using concept library C and omit the
subscript C where it is clear from context.

At a high level, a program π consists of (nested) if-then-else statements and
is therefore conceptually similar to a decision tree. Each leaf of this decision
tree is a preference (e.g., good, bad, neutral) drawn from the preference space P ,
which is assumed to be a finite set. Internal nodes of the decision tree are neuro-
symbolic conditions ϕ, which include boolean combinations of predicates of the
form p(t1, . . . , tn) where each ti is a neuro-symbolic term and p is a predicate
drawn from Cb, which could be a built-in relation (e.g., ≤), result of a neural
classifier, or a previously-learned concept (e.g., close-to).

3.2 Learning Preferences

We now discuss our learning algorithm, Synapse-Learn, for synthesizing prefer-
ence evaluation functions from a set of demonstrations D. As Synapse-Learn is
meant to be used in a life-long-learning setting, we present it as an incremental
algorithm that takes one additional demonstration in each invocation and returns
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Algorithm 1: Synapse-Learn
Input: a set of previously seen demonstrations D, the new demonstration dn, a
potentially empty previous sketch π̂o, a previous concept library C

Output: The new demonstrations set D′, a neuro-symbolic preference evaluator π
parameterized by the new concept library C′, the sketch π̂ used to generate π
1: Learn(D, dn, π̂o, C)
2: # Update concept library with new natural language utterance
3: C′ ← UpdateConceptLibrary(dn.e, C)
4: # Get the updated sketch from the new demonstration and previous sketch
5: π̂ ← SketchSynth(dn, π̂o, C′)
6: # Fill the holes in π̂ based off of the demonstrations D′

7: π ← ParamSynth(π̂,D ∪ {dn})
8: return D ∪ {dn}, π, C′, π̂

Algorithm 2: Update Concept Library
Input: A new natural language explanation e and the previous concept library C
Output: A new concept library C′
1: UpdateConceptLibrary(e, C)
2: C′ ← C # Initialize new concept library with old concept library
3: # Extract new visual groundings from natural language and
4: # add them to concept library
5: g ← ExtractEntities(e, C)
6: C′ ← C′ ∪ g
7: # Extract new predicates from e
8: Preds← ExtractPredicates(e, C)
9: # Recursively update concepts with user feedback
10: for pred ∈ Preds where pred /∈ C
11: D ← ∅ #Empty initial demonstration set
12: C′′ ← C′
13: π̂ ← None
14: do
15: d← QueryUserForDemonstration(pred)
16: D, π, C′′, π̂ ← Learn(D, d, π̂, C′′)
17: while d
18: C′ ← C′′
19: return C′

an updated preference evaluation function. As mentioned earlier, we represent
each demonstration d as a pair (t, e) where t is a physical demonstration consist-
ing of a sequence of images and LiDAR point clouds and e is a natural language
explanation for the preference. Given a demonstration d, we write d.t and d.e to
denote its physical demonstration and explanation component respectively.

In addition to the new demonstration dn, Synapse-Learn takes three addi-
tional arguments, namely the previous set of demonstrations D, the previously
learnt preference evaluation function πo (None for the first invocation), and the
current concept library C, which is initialized to contain only a set of built-in
concepts. Synapse-Learn uses the old program πo to bootstrap the learning pro-
cess, and the previous demonstrations are required to ensure that the updated
program is consistent with all demonstrations provided thus far.

At a high level, the learning procedure consists of three steps, which are
explained in more detail in the remainder of this section:

1. Updating the concept library: Synapse first checks whether the existing
concept library C is sufficient for successfully learning the desired preference
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Algorithm 3: Parameter Synthesis
Input: A program sketch π̂, a set of demonstrations D
Output: A complete program π
1: ParamSynth(π̂,D)
2: φ←true # Initialize condition
3: for d ∈ D
4: # Perform partial evaluation on the sketch and demonstration
5: # to get a simplified sketch π̂ and expected result r
6: (π̂′, r)← PartialEval(π̂, d)
7: # Merge with condition
8: φ← φ ∧ [[π̂′]]r

9: # Include negation for each parameter ∈ P
10: for i ∈ P
11: if (i ̸= r) φ← φ ∧ ¬[[π̂′]]i

12: # Use solver to fill holes over symbolic features
13: π ← Model(φ)
14: return π

evaluation function. For example, if the natural language explanation uses
the term “far away” but the concept library does not contain a suitable
definition, Synapse-Learn interactively queries the user for clarification and
updates its concept library as needed.

2. Synthesizing a program sketch: If the concept library is sufficient for rep-
resenting the preference, Synapse-Learn proceeds to synthesize a so-called
program sketch, which is a program with missing constants to be synthesized.
We differentiate between program sketches and complete programs because
the user’s natural language explanation is often sufficient to understand the
general structure of the preference evaluation function but not its numeric
parameters, which can only be accurately learned from the physical demon-
strations. Thus, Synapse-Learn generates the program sketch based only on
the natural language explanation.

3. Parameter synthesis: The final phase of the learning algorithm utilizes
all physical demonstrations provided thus far to synthesize the unknown
numeric parameters of the sketch using a constraint-solving approach. For
example, if the user’s NL explanation mentions “not too close to the side-
walk”, the physical demonstrations are needed to understand what the user
considers “too close”. For this reason, Synapse-Learn utilizes a separate pa-
rameter synthesis procedure to determine suitable numeric parameters from
the physical demonstrations.

Concept Library Update. Synapse analyzes the user’s natural language ex-
planation e to extract concepts of interest. We differentiate between two types
of concepts: (1) entities (e.g., car, door, sidewalk) and (2) predicates (e.g., far,
near). Because Synapse uses an open-vocabulary visual language model to find
entities of interest in the current observation, new entity concepts do not require
interacting with the user. On the other hand, if the natural language explana-
tion contains new predicates that are not part of the existing concept library,
Synapse needs to query the user to provide suitable demonstrations.
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Algorithm 2 summarizes this discussion as an algorithm. As shown in lines
5-6, the ExtractEntities procedure grounds the entities used in the NL descrip-
tion and cross-references them against existing entities in the concept library.
Any new entities are added to the concept library without requiring user in-
teraction, as we assume that any entity can be extracted from the observation
using a modern VLM. Lines 8-17, on the other hand, extract new predicates from
the natural language description. Since the semantics of these predicates are not
known a priori (unless they are already in the concept library), we must query the
user to learn their semantics. Thus, the QueryUserForDemonstration procedure
obtains new demonstrations, which are then used to synthesize the implemen-
tation of the new predicate through recursive invocation of Synapse-Learn at
line 15. Thus, when the UpdateConceptLibrary procedure terminates, the new
concept library C′ contains all entities and predicates of interest.

Program Sketch Synthesis. Once Synapse has all the required concepts
as part of its library, it uses a large language model to synthesize a suitable
program sketch based on the natural language description and concept library.
In particular, it first prompts the LLM to translate the NL explanation e to a
pair (Φ, p) where Φ is a formula (in conjunctive normal form) over the predicates
in the concept library and p is the user’s preference. Then, in a second step,
Synapse prompts the LLM to update the previous sketch π̂ to a new one π̂′

such that π̂′ returns p when Φ evaluates to True. We found this two-stage process
of first converting the NL explanation to a CNF formula and then prompting the
LLM to repair the old sketch to work better in practice compared to prompting
the LLM directly with all inputs (see Section 4).

Parameter Synthesis. As mentioned earlier, a program sketch contain un-
known numeric parameters that arise from the ambiguity of natural language
(e.g., what does “close” mean in terms of distances between objects?) Thus, the
last step of the Synapse pipeline utilizes the user’s physical demonstrations
to synthesize numeric parameters in the sketch. Our parameter synthesis algo-
rithm is summarized in Algorithm 3 and constructs a logical formula φ whose
models are guaranteed to be consistent with all demonstrations. The algorithm
constructs this formula φ, which is initialized to true at line 2, as follows: First,
for each physical demonstration d, it partially evaluates π̂ by concretely evalu-
ating all expressions without unknowns. For example, if the sketch contains the
predicate distanceTo(car), we can use the observation from d to compute the
actual distance between the subject and the car. This partial evaluation (line 6)
yields a much simpler sketch containing only unknowns to be synthesized but
no other variables. Now, given a sketch π̂, let Jπ̂Ki denote the condition under
which π̂ returns preference pi ∈ P , and suppose that the current demonstration
d illustrates preference class pr. Since we would like the synthesized program to
return pr for demonstration d, Jπ̂Kr should evaluate to true, and for all other
preference classes pi where i ̸= r, Jπ̂Ki should evaluate to false. Thus, the loop
in lines 10-12 iteratively strengthens formula φ by conjoining it with Jπ̂Kr and
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the negation of Jπ̂Ki for any i distinct from r. Finally, we use an off-the-shelf
constraint solver to obtain a model of the resulting formula.1 By substituing the
unknowns in the sketch with the model returned by the solver, Synapse obtains
a program that is maximally consistent with the user’s demonstrations.

4 Evaluation

To test the effectiveness of Synapse, we evaluate it on three mobility-related
preferential concepts relevant to mobile robotics and autonomous driving do-
mains: a) CONTINGENCY: What is a good spot for a robot to pull over to in case of
an emergency?, b) DROPOFF: What is a good location for an autonomous taxi to
stop and drop-off a customer?, and c) PARKING: What is a good location for park-
ing an autonomous car?. The following subsection gives some details on how we
ground Synapse to learn such mobility-related concepts. Further information is
provided in supplementary material.

4.1 Implementation Details

Inputs. Human demonstrations include the robot trajectories of the user driving
the robot to the desired location using a joystick based on the user’s preference,
and a natural language description to explain the rationale for choosing that
location. We use RGB-camera images as well as the LIDAR sensor data for the
entire trajectory to construct a symbolic representation of the scene.

Models. We use Grounded-SAM [32, 39, 46] zero-shot VLM for object detec-
tion and a custom terrain model with SegFormer architecture [62] trained to
segment terrains from sensor data. We use both of these models to get segmen-
tation masks of the neural concepts (i.e., objects and terrains) currently in the
concept library. We use GPT-4 [1] as the language model for sketch synthesis in
Synapse.

Concept Library Initialization. We impart some basic capabilties to the
learning framework by seeding the concept library with a total of six func-
tions based on neural models (i.e., terrain model and VLM) as well as some
domain-specific predicates. For example, terrain_at returns the terrain type
at a specific pixel location on a provided image, while project_map_to_pixel
transforms real-world 3D coordinates to pixel coordinates.

Querying the user. As mentioned earlier in Sec. 3.2, Synapse can interac-
tively query the user to clarify new concepts that are present in the user’s NL
explanation but not in the current concept library. In principle, Synapse can
1 In general, the demonstration may be noisy, meaning that φ could be unsatisfiable.

Since this is quite often the case, our implemetation uses a MaxSMT solver [8] to
find a solution that maximizes the number of satisfied clauses in the formula.
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query the user for both physical demonstrations and NL explanations. To re-
duce the burden on the user, Synapse, by default, only queries the user for NL
explanations of auxiliary concepts and performs synthesis of auxiliary concepts
using NL explanations alone.

4.2 Results

To evaluate Synapse, we create a dataset of 815 labeled images taken from the
UT Austin campus area, where the labels mark the locations on the images that
are consistent with the intended user preference for each of the three tasks. We
split the dataset into three sets: train, in-distribution test, and out-of-distribution
test sets. The train and in-distribution sets belong to the same part of the UT
Austin campus region, while the out-of-distribution set belongs to a different part
of the region. Table 1 shows the comparison against various baselines. We use
mean Intersection-Over-Union (mIOU) as the metric and evaluate the following
baselines: (1) pure neural models based on SegFormer [62] architecture with
pretrained weights, with and without depth input, fine-tuned on our custom
dataset; (2) GPT4 [1] with vision capabilities, and (3) VisProg [22]. The ‘+’ for
the latter two indicate additional prompting that provides additional information
about the underlying reasoning behind the preferential concept. More details
about the dataset and how different baselines are trained and/or evaluated can
be found in the supplementary material.

We find that Synapse outperforms all baselines, and improves on the closest
baseline by a significant margin on out-of-distribution test data — 74.07 vs.
57.42 for CONTINGENCY, 80.72 vs. 55.04 for DROPOFF, and 62.75 vs. 52.90 for
PARKING. Further, even though Synapse is trained on an order of magnitude
fewer samples (for instance, 29 demonstration for CONTINGENCY) than neural
baselines (for instance, 224 images for CONTINGENCY), it performs at-par, if not
better, on the train dataset.

4.3 Ablations

We investigate three types of ablations: (1) NN-ablations, in which we compare
the performance of neural baselines against Synapse when trained on the same
number of samples (i.e., 29), (2) LLM-based ablations, where we see how using
different LLMs affect the performance of Synapse, and (3) framework ablations
where we test different design choices. We investigate ablations based on these
framework features: (1) feat1: whether it queries the user for auxiliary concepts,
(2) feat2: whether it performs lifelong learning by building on its concept library,
and (3) feat3: whether it has got direct access to the full concept library learned
by Synapse. More details are provided in the supplementary material.

Table 2 show how the ablation methods differ based on these features as
well their performance when evaluated on the CONTINGENCY dataset. It can be
seen that the neural ablations perform poorly since they are only exposed to so
few training samples that they aren’t able to generalize well to the full dataset.
Changing the program synthesis process of Synapse (i.e., doing direct synthesis
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Table 1: Mean IOU (%) results for the three concepts. The train set represents the
training set for neural baselines – Synapse only needs 29 demonstrations (from the
train area), and the visual-language baselines have not been fine-tuned.

CONTINGENCY DROPOFF PARKING

train in-test out-test train in-test out-test train out-test

Synapse 77.64 76.29 74.07 79.32 80.18 80.72 68.60 62.76
SF-RGB-b0 70.49 62.75 57.42 72.99 68.13 52.21 57.68 49.66
SF-RGB-b5 74.59 70.48 56.00 77.26 72.83 55.04 68.63 52.91
SF-RGBD-b0 72.17 67.23 54.75 74.33 69.80 54.90 60.90 50.69
SF-RGBD-b5 76.48 67.81 56.11 77.69 70.70 52.39 71.06 49.99
GPT4V 26.56 29.71 30.45 30.54 32.97 37.65 38.41 40.18
GPT4V+ 28.73 28.96 33.92 39.38 38.34 39.14 41.38 39.77
VisProg 45.62 45.63 44.98 46.29 47.49 48.07 39.43 40.99
VisProg+ 38.94 39.21 41.83 39.17 39.44 43.14 38.88 38.99

Preference 
Query Predictions

Synapse Synapse-SynthDirect Synapse-SynthCaP SF-RGBD-b5 GPT4V+ VisProg+

False NegativeFalse PositiveTrue Positive True Negative

Fig. 4: An illustrative comparison between Synapse, baselines, and ablations for
CONTINGENCY. Color coding shows the overlap of the predictions with the ground-truth.

instead of two-step) or the LLM which in turn affects the accuracy of the pro-
gram sketch being synthesized, also has a significant impact on the performance.
Examples showing the difference in inference outputs for a few of the baselines
and the ablations is shown in Fig. 4.

4.4 Case study with multi-user preferences

We also perform a case study2 to evaluate the alignment and customizability
characteristics of Synapse with inputs from different users. We ask three par-
ticipants to provide demonstrations for their preferences in the CONTINGENCY
task. We also each participant to label a set of 15 images with their ground-
truth preference to be used for evaluation, which are not seen by the algorithm
during training. The results are summarized in Tab. 3. For each user, the high-
est performance is attained by the program that learned from the same user’s
demonstrations, which indicates good alignment. The results also indicate that
2 Reviewed by IRB and the determination was ‘Not Human Research’
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Table 2: The results for the ablation studies. It highlights the importance of different
elements of Synapse. All methods trained on 29 images (for neural) or 29 demonstra-
tions (for Synapse-based). Evaluation is on the full CONTINGENCY dataset.

feat1 feat2 feat3 LLM mIOU (%)

Synapse ✓ ✓ ✗ GPT-4 76.11
Synapse-SynthDirect ✗ ✗ ✗ GPT-4 60.74
Synapse-SynthDirect+ ✗ ✗ ✓ GPT-4 68.86
Synapse-SynthCaP ✗ ✓ ✗ GPT-4 64.11
Synapse-CodeLLama ✓ ✓ ✗ CodeLLama [47] 69.88
Synapse-StarCoder ✓ ✓ ✗ StarCoder [34] 63.62
Synapse-PaLM2 ✓ ✓ ✗ PaLM2 [6] 71.62
SF-RGB-b0 - - - - 54.58
SF-RGB-b5 - - - - 56.30
SF-RGBD-b0 - - - - 55.84
SF-RGBD-b5 - - - - 63.81

Table 3: The results (mean IOU (%)) for case study. Rows represent the learned
programs for the particular user, and columns represent the ground-truth for that user.

user-1 user-2 user-3

user-1 76.85 66.29 67.74
user-2 65.66 73.75 69.28
user-3 65.46 68.97 73.82

the preference programs trained on one user’s input performs poorly on a differ-
ent user’s evaluation set, indicating that there are indeed user-specific preferences
captured by Synapse.

4.5 Reordering of demonstrations

We investigate if Synapse is susceptible to performance degradation if the or-
der of demonstrations is altered. For this evaluation, we provide the demonstra-
tions in a randomized order for the CONTINGENCY concept and then evaluate the
learned program. The variations in the mean IOU are shown in Fig. 5. It is
clearly visible that after about 10-15 demonstrations, the effect of re-ordering
diminishes which shows the robustness of Synapse.

5 Discussion of Limitations

Our experimental results demonstrate that Synapse significantly outperforms
baselines when it comes to generalizing to new data, which is crucial for achiev-
ing transferability of learned models. However, Synapse has three potential
limitations that we discuss below.
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# demonstration

train in-test out-test

m
io

u 
(%

)

Fig. 5: Plot showing susceptibility of Synapse to reordering of demonstrations. Gray
area represents the mean IOU (%) variation as Synapse sees more demonstrations.

First, Synapse relies substantially on how good the underlying neural mod-
ules are and their capabilities, specifically, the zero-shot LLMs and VLMs. In
our experiments, we observe that a careful selection of parameters and verbose
prompting is needed to achieve best performance. Additionally, due to the poor
performance of existing VLMs for terrain detection, our implementation of the
Synapse framework uses a custom terrain model.

Second, Synapse relies on the quality of the user’s physical demonstrations
for accurate parameter synthesis. In practice, the demonstrations may be noisy
and imperfect, and Synapse tries to compensate for slight inconsistencies in
the user demonstration by using a constrained optimization approach based on
MaxSMT. While poor-quality demonstrations can still negatively impact over-
all accuracy, our experiments show that Synapse is effective for demonstra-
tions provided by participants in our user study and that it is not particularly
sensitive to the other of demonstrations. Third, another limitation of operat-
ing on real-world data with Synapse is the incomplete depth information –
Synapse approximates depth at all locations by interpolation, however, that
introduces noise into the quantitative evaluation. Better approaches for scene
completion [42] would reduce such noise.

6 Conclusion

We presented Synapse, a data-efficient, neuro-symbolic framework for learning
preferential concepts from a small number of human demonstrations. The frame-
work utilises a novel combination of visual parsing, large language models, and
program synthesis to represent preferences as interpretable programs that can
be synthesized from demonstrations. We experimentally showed that Synapse
achieves strong generalization on new data and that it outperforms the baselines
by a large margin (≈ 15% mIOU). Further, we demonstrated that Synapse is
able to align well with user preferences and that it is robust to the order in which
demonstrations are given. Finally, we demonstrated the importance of key design
choices underlying Synapse through ablation studies.



Synapse 15

Acknowledgement

This work is supported in part by NSF awards OIA-2219236, CCF-1762299,
CCF-1918889, CNS-1908304, CCF-1901376, CNS-2120696, CCF- 2210831, and
CCF-2319471, as well as Amazon and JP Morgan. We thank the members of
Autonomous Mobile Robotics Laboratory (AMRL) at UT Austin for participat-
ing in the user case study. We are also grateful to the amazing Hugging Face
ecosystem for simplifying the use of state-of-the-art neural models.

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv
preprint arXiv:2303.08774 (2023)

2. Akrour, R., Schoenauer, M., Sebag, M., Souplet, J.C.: Programming by feedback.
In: International Conference on Machine Learning. pp. 1503–1511. No. 32, JMLR.
org (2014)

3. Alur, R., Bodík, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-Gazit,
H., Madhusudan, P., Martin, M.M.K., Raghothaman, M., Saha, S., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Dependable Software Systems Engineering, pp. 1–25 (2015)

4. Alur, R., Černý, P., Radhakrishna, A.: Synthesis through unification. In: Kroening,
D., Păsăreanu, C.S. (eds.) Computer Aided Verification. pp. 163–179. Springer
International Publishing, Cham (2015)

5. Andreas, J., Rohrbach, M., Darrell, T., Klein, D.: Neural module networks. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 39–48 (2016)

6. Anil, R., Dai, A.M., Firat, O., et al.: PaLM 2 Technical Report (2023)
7. Bestick, A., Pandya, R., Bajcsy, R., Dragan, A.D.: Learning human ergonomic

preferences for handovers. In: 2018 IEEE international conference on robotics and
automation (ICRA). pp. 3257–3264. IEEE (2018)

8. Bjørner, N., Phan, A.D., Fleckenstein, L.: νz-an optimizing smt solver. In: Tools
and Algorithms for the Construction and Analysis of Systems: 21st International
Conference, TACAS 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,
Proceedings 21. pp. 194–199. Springer (2015)

9. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: ACM SIGPLAN Notices. vol. 51, pp. 775–788. ACM (2016)

10. Busa-Fekete, R., Szörényi, B., Weng, P., Cheng, W., Hüllermeier, E.: Preference-
based evolutionary direct policy search. In: ICRA Workshop on autonomous learn-
ing. vol. 2 (2013)

11. Chasins, S.E., Mueller, M., Bodik, R.: Rousillon: Scraping distributed hierarchical
web data. In: Proceedings of the 31st Annual ACM Symposium on User Inter-
face Software and Technology. p. 963–975. UIST ’18, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3242587.
3242661, https://doi.org/10.1145/3242587.3242661

12. Chen, Q., Lamoreaux, A., Wang, X., Durrett, G., Bastani, O., Dillig, I.: Web
question answering with neurosymbolic program synthesis. In: Proceedings of the

https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661


16 S. Modak et al.

42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation. p. 328–343. PLDI 2021, Association for Computing Machin-
ery, New York, NY, USA (2021). https://doi.org/10.1145/3453483.3454047,
https://doi.org/10.1145/3453483.3454047

13. Chen, Z., Mao, J., Wu, J., Wong, K.Y.K., Tenenbaum, J.B., Gan, C.: Grounding
physical concepts of objects and events through dynamic visual reasoning. arXiv
preprint arXiv:2103.16564 (2021)

14. Christiano, P.F., Leike, J., Brown, T., Martic, M., Legg, S., Amodei, D.: Deep
reinforcement learning from human preferences. Advances in neural information
processing systems 30 (2017)

15. Cui, Y., Niekum, S.: Active reward learning from critiques. In: 2018 IEEE inter-
national conference on robotics and automation (ICRA). pp. 6907–6914. IEEE
(2018)

16. Ding, Y., Zhang, X., Paxton, C., Zhang, S.: Task and motion planning with large
language models for object rearrangement. arXiv preprint arXiv:2303.06247 (2023)

17. Feng, Y., Martins, R., Bastani, O., Dillig, I.: Program Synthesis Using Conflict-
Driven Learning. In: Proceedings of the 39th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. p. 420–435. PLDI 2018, Associ-
ation for Computing Machinery, New York, NY, USA (2018). https://doi.org/
10.1145/3192366.3192382, https://doi.org/10.1145/3192366.3192382

18. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices 50(6), 229–239 (2015)

19. Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.H.: Preference-based reinforce-
ment learning: a formal framework and a policy iteration algorithm. Machine learn-
ing 89, 123–156 (2012)

20. Gulwani, S.: Automating string processing in spreadsheets using input-output ex-
amples. In: Proc. of POPL. pp. 317–330 (2011)

21. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. vol. 4, pp. 1–119 (2017)
22. Gupta, T., Kembhavi, A.: Visual programming: Compositional visual reasoning

without training. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. pp. 14953–14962 (2023)

23. Han, C., Mao, J., Gan, C., Tenenbaum, J., Wu, J.: Visual concept-metaconcept
learning. Advances in Neural Information Processing Systems 32 (2019)

24. Holtz, J., Guha, A., Biswas, J.: Robot action selection learning via layered dimen-
sion informed program synthesis. In: Conference on Robot Learning. pp. 1471–
1480. PMLR (2021)

25. Hsu, J., Mao, J., Tenenbaum, J.B., Wu, J.: What’s left? concept grounding with
logic-enhanced foundation models. arXiv preprint arXiv:2310.16035 (2023)

26. Hsu, J., Mao, J., Wu, J.: Ns3d: Neuro-symbolic grounding of 3d objects and re-
lations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 2614–2623 (2023)

27. Hu, Z., Lucchetti, F., Schlesinger, C., Saxena, Y., Freeman, A., Modak, S., Guha,
A., Biswas, J.: Deploying and evaluating llms to program service mobile robots.
arXiv preprint arXiv:2311.11183 (2023)

28. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based pro-
gram synthesis. In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering. vol. 1, pp. 215–224. IEEE (2010)

29. Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C.,
Girshick, R.: Clevr: A diagnostic dataset for compositional language and elemen-
tary visual reasoning. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 2901–2910 (2017)

https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3453483.3454047
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192382


Synapse 17

30. Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P., Gulwani, S.: Neural-guided
deductive search for real-time program synthesis from examples (2018). https:
//doi.org/10.48550/ARXIV.1804.01186, https://arxiv.org/abs/1804.01186

31. Kane, B., Gervits, F., Scheutz, M., Marge, M.: A system for robot concept learning
through situated dialogue. In: Proceedings of the 23rd Annual Meeting of the
Special Interest Group on Discourse and Dialogue. pp. 659–662 (2022)

32. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., Dollár, P., Girshick, R.: Segment anything.
arXiv:2304.02643 (2023)

33. Koh, P.W., Nguyen, T., Tang, Y.S., Mussmann, S., Pierson, E., Kim, B., Liang,
P.: Concept bottleneck models. In: International conference on machine learning.
pp. 5338–5348. PMLR (2020)

34. Li, R., Allal, L.B., Zi, Y., et al.: StarCoder: may the source be with you! (2023)
35. Li, T.J.J., Radensky, M., Jia, J., Singarajah, K., Mitchell, T.M., Myers, B.A.:

Interactive task and concept learning from natural language instructions and gui
demonstrations. arXiv preprint arXiv:1909.00031 (2019)

36. Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., Zeng,
A.: Code as policies: Language model programs for embodied control. In: 2023
IEEE International Conference on Robotics and Automation (ICRA). pp. 9493–
9500. IEEE (2023)

37. Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., Stone, P.: Llm+
p: Empowering large language models with optimal planning proficiency. arXiv
preprint arXiv:2304.11477 (2023)

38. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. arXiv preprint
arXiv:2304.08485 (2023)

39. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu,
J., et al.: Grounding dino: Marrying dino with grounded pre-training for open-set
object detection. arXiv preprint arXiv:2303.05499 (2023)

40. Mao, J., Gan, C., Kohli, P., Tenenbaum, J.B., Wu, J.: The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from natural supervision. arXiv
preprint arXiv:1904.12584 (2019)

41. Mei, L., Mao, J., Wang, Z., Gan, C., Tenenbaum, J.B.: Falcon: fast visual concept
learning by integrating images, linguistic descriptions, and conceptual relations.
arXiv preprint arXiv:2203.16639 (2022)

42. Meng, X., Hatch, N., Lambert, A., Li, A., Wagener, N., Schmittle, M., Lee, J.,
Yuan, W., Chen, Z., Deng, S., et al.: Terrainnet: Visual modeling of complex terrain
for high-speed, off-road navigation. arXiv preprint arXiv:2303.15771 (2023)

43. Murali, A., Sehgal, A., Krogmeier, P., Madhusudan, P.: Composing neural learning
and symbolic reasoning with an application to visual discrimination. arXiv preprint
arXiv:1907.05878 (2019)

44. Namasivayam, K., Singh, H., Bindal, V., Tuli, A., Agrawal, V., Jain, R., Singla,
P., Paul, R.: Learning neuro-symbolic programs for language guided robot ma-
nipulation. In: 2023 IEEE International Conference on Robotics and Automation
(ICRA). pp. 7973–7980. IEEE (2023)

45. Patton, N., Rahmani, K., Missula, M., Biswas, J., Dillig, I.: Programming-by-
demonstration for long-horizon robot tasks. Proc. ACM Program. Lang. 8(POPL)
(jan 2024). https://doi.org/10.1145/3632860, https://doi.org/10.1145/
3632860

46. Ren, T., Liu, S., Zeng, A., Lin, J., Li, K., Cao, H., Chen, J., Huang, X., Chen,
Y., Yan, F., Zeng, Z., Zhang, H., Li, F., Yang, J., Li, H., Jiang, Q., Zhang, L.:
Grounded sam: Assembling open-world models for diverse visual tasks (2024)

https://doi.org/10.48550/ARXIV.1804.01186
https://doi.org/10.48550/ARXIV.1804.01186
https://doi.org/10.48550/ARXIV.1804.01186
https://doi.org/10.48550/ARXIV.1804.01186
https://arxiv.org/abs/1804.01186
https://doi.org/10.1145/3632860
https://doi.org/10.1145/3632860
https://doi.org/10.1145/3632860
https://doi.org/10.1145/3632860


18 S. Modak et al.

47. Rozière, B., Gehring, J., Gloeckle, F., et al.: Code Llama: Open Foundation Models
for Code (2023)

48. Sadigh, D., Dragan, A.D., Sastry, S., Seshia, S.A.: Active preference-based learning
of reward functions (2017)

49. Silver, T., Athalye, A., Tenenbaum, J.B., Lozano-Perez, T., Kaelbling, L.P.: Learn-
ing neuro-symbolic skills for bilevel planning. arXiv preprint arXiv:2206.10680
(2022)

50. Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D.,
Thomason, J., Garg, A.: Progprompt: Generating situated robot task plans using
large language models. In: 2023 IEEE International Conference on Robotics and
Automation (ICRA). pp. 11523–11530. IEEE (2023)

51. Solar-Lezama, A.: Program synthesis by sketching. Citeseer (2008)
52. Srivastava, S., Labutov, I., Mitchell, T.: Joint concept learning and semantic pars-

ing from natural language explanations. In: Proceedings of the 2017 conference on
empirical methods in natural language processing. pp. 1527–1536 (2017)

53. Surís, D., Menon, S., Vondrick, C.: Vipergpt: Visual inference via python execution
for reasoning. arXiv preprint arXiv:2303.08128 (2023)

54. Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., Ikeuchi, K.: Gpt-4v (ision)
for robotics: Multimodal task planning from human demonstration. arXiv preprint
arXiv:2311.12015 (2023)

55. Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., Anand-
kumar, A.: Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291 (2023)

56. Wang, R., Mao, J., Hsu, J., Zhao, H., Wu, J., Gao, Y.: Programmatically
grounded, compositionally generalizable robotic manipulation. arXiv preprint
arXiv:2304.13826 (2023)

57. Wang, Y., Shah, R., Criswell, A., Pan, R., Dillig, I.: Data migration using datalog
program synthesis. VLDB (2020)

58. Wang, Y., Wang, X., Dillig, I.: Relational program synthesis. PACMPL
2(OOPSLA), 155:1–155:27 (2018)

59. Wilson, A., Fern, A., Tadepalli, P.: A bayesian approach for policy learning from
trajectory preference queries. Advances in neural information processing systems
25 (2012)

60. Wirth, C., Fürnkranz, J., Neumann, G.: Model-free preference-based reinforcement
learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 30
(2016)

61. Xie, A., Finn, C.: Lifelong robotic reinforcement learning by retaining experiences.
In: Conference on Lifelong Learning Agents. pp. 838–855. PMLR (2022)

62. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
Simple and efficient design for semantic segmentation with transformers. Advances
in Neural Information Processing Systems 34, 12077–12090 (2021)

63. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.: Neural-symbolic
vqa: Disentangling reasoning from vision and language understanding. Advances
in neural information processing systems 31 (2018)

64. Zhang, R., Bansal, D., Hao, Y., Hiranaka, A., Gao, J., Wang, C., Martín-Martín,
R., Fei-Fei, L., Wu, J.: A dual representation framework for robot learning with
human guidance. In: Conference on Robot Learning. pp. 738–750. PMLR (2023)



Synapse 19

Appendix

A Implementation Details

Inputs. For learning the program, we collected 29 demonstrations where each
demonstration had a trajectory of robot poses, the associated RGB camera im-
age, and pointcloud data from Ouster-128 LiDAR sensor. A high-resolution Li-
DAR was needed to achieve as accurate a mapping as possible from 2D to 3D.
A few of the natural language prompts from the user are listed below:

1. It is safe since it is on a sidewalk, and is far from any person and the pole,
and it is not on grass.

2. This looks good since it is on a sidewalk, and is far from the approaching
person and the pole.

3. This is not safe since it is not far from bushes, even though its on a
sidewalk.

Models. The details are as follows:

a. Grounded-SAM: Using a set of hyperparameters for all objects does not
always yield good results due to the limitations of current VLMs, i.e., their
accuracy and sensitivity differs a lot between different classes of objects. We
use Grounded-SAM [46] with the object-specific hyperparameters as shown
in Table 4 to perform zero-shot object detection and segmentation on images.

b. Terrain segmentation: Our experiments showed that present VLMs do not
do so well on terrain segmentation, which was a domain-specific essential
capability to be able to represent the preferential concept well enough. Thus,
we finetuned the SegFormer-b5 [62] model, with pretrained weights from the
HuggingFace transformers library, on our custom UT campus dataset. The
details about the models can be found on the project website.

c. We use GPT-4 [1] as our language model for the sketch synthesis module. We
set a temperature of 0.0 and seed it for enhancing reproducibility. Prompts
for doing different tasks in our framework (i.e., grounding, synthesis etc.)
can be found in the codebase. Note that they have certain placeholders like
<! . . .! > and < dyn! . . .!dyn > which refer to other prompt instances or are
replaced dynamically in the code based on generated outputs.

Concept Library Initialization. We impart some basic neural and domain-
specific capabilities to the learning framework by seeding it with the functions
shown in Fig. 6.
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Table 4: Object-specific hyperparameters for VLM

box-threshold text-threshold nms-threshold

barricade 0.5 0.5 0.3
board 0.3 0.3 0.5
bush 0.4 0.4 0.4
car 0.3 0.3 0.3
entrance 0.3 0.3 0.2
person 0.25 0.25 0.6
pole 0.4 0.4 0.5
staircase 0.25 0.25 0.4
tree 0.4 0.4 0.45
wall 0.5 0.5 0.4

Fig. 6: Concept library seeded with some basic predicates

B Detailed Results & Explanations

B.1 Baselines

We curate a custom dataset on UT campus region, consisting of 815 pixel-level
labeled images (375 each for CONTINGENCY and DROPOFF, and 65 for PARKING).
We evaluate the following baselines:

* SegFormer b0 and b5 models, both with or without depth input. For taking
in depth, we only modify the input layer, and still retain all other pretrained
weights. We take measures such as early stopping to prevent overfitting.
The hyperparameters used to finetune each of these models can be found
on their model cards in HuggingFace (links to which can be found on the
project website).

* GPT4-vision: Due to token limitations, we query GPT4-vision to output a
20×20 output class array given the image. For reporting the IOU for GPT4-
vision, we downsample the ground-truth to the same size for the comparison
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Table 5: Results for CONTINGENCY concept

iou_pos (%) iou_neg (%) miou (%)

train in-test out-test train in-test out-test train in-test out-test

Synapse 57.22 54.46 50.18 98.06 98.11 97.96 77.64 76.29 74.07
SF-RGB-b0 43.54 28.46 17.77 97.44 97.03 97.07 70.49 62.75 57.42
SF-RGB-b5 51.63 43.87 19.04 97.54 97.08 92.96 74.59 70.48 56.00
SF-RGBD-b0 46.71 37.07 13.49 97.62 97.39 96.00 72.17 67.23 54.75
SF-RGBD-b5 55.10 38.48 15.71 97.85 97.13 96.50 76.48 67.81 56.11
GPT4V 01.73 01.91 02.74 51.38 57.51 58.15 26.56 29.71 30.45
GPT4V+ 02.29 02.18 02.59 55.16 55.74 65.24 28.73 28.96 33.92
VisProg 04.99 01.25 05.04 86.24 90.01 84.92 45.62 45.63 44.98
VisProg+ 08.13 06.36 07.15 69.75 72.06 76.51 38.94 39.21 41.83

Table 6: Results for DROPOFF concept

iou_pos (%) iou_neg (%) miou (%)

train in-test out-test train in-test out-test train in-test out-test

Synapse 60.64 62.05 63.13 97.99 98.31 98.31 79.32 80.18 80.72
SF-RGB-b0 48.59 38.93 08.12 97.39 97.32 96.30 72.99 68.13 52.21
SF-RGB-b5 56.73 48.00 15.94 97.78 97.66 94.13 77.26 72.83 55.04
SF-RGBD-b0 51.09 42.17 13.89 97.57 97.43 95.90 74.33 69.80 54.90
SF-RGBD-b5 57.43 43.86 08.93 97.95 97.54 95.84 77.69 70.70 52.39
GPT4V 02.40 02.25 03.09 58.67 63.69 72.20 30.54 32.97 37.65
GPT4V+ 04.43 01.90 03.02 74.33 74.77 75.25 39.38 38.34 39.14
VisProg 01.48 01.94 06.58 91.10 93.03 89.56 46.29 47.49 48.07
VisProg+ 08.62 06.86 08.70 69.71 72.01 77.57 39.17 39.44 43.14

to be fair. The ‘+’ variant essentially means that we prompt it with ad-
ditional information about the user’s ground-truth, i.e., we provide it the
program that Synapse has learned, in natural language. All prompts can
be found in the codebase.

* VisProg and VisProg+ come from a related approach to VQA [22]. We again
follow the same methodology of prompting as for GPT4-vision. Here too, no
finetuning is done and the evaluation is zero-shot. All prompts can be found
in the codebase.

Tables 5 to 7 show the full evaluation for the three concepts, with the IOU
for each class. Due to unavoidable data imbalance on the pixel-level (i.e., ≈ 90%
negative pixels against 10% positive class pixels), it is much easier to learn the
negative class.

B.2 Ablations

We test the following ablations for our framework:
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Table 7: Results for PARKING concept

iou_pos (%) iou_neg (%) miou (%)

train out-test train out-test train out-test

Synapse 39.14 27.24 98.06 98.27 68.60 62.76
SF-RGB-b0 21.28 04.91 94.07 94.40 57.68 49.66
SF-RGB-b5 38.99 08.13 98.27 97.68 68.63 52.91
SF-RGBD-b0 24.80 04.67 97.00 96.70 60.90 50.69
SF-RGBD-b5 43.97 03.50 98.14 96.48 71.06 49.99
GPT4V 01.10 01.11 75.72 79.25 38.41 40.18
GPT4V+ 01.56 00.64 81.19 78.90 41.38 39.77
VisProg 04.72 01.69 74.13 80.29 39.43 40.99
VisProg+ 03.31 03.08 74.44 74.89 38.88 38.99

* Framework ablations: We test three alternative ways to generate the program
sketch from given natural language input from the user:
a. Synapse-SynthDirect: given only the basic predicates, we adopt a one-

step approach to synthesis, where we ask LLM to update the program
sketch based on the new NL input and previous program sketch, while
utilising only the basic predicates, i.e., it has no way to hierarchically
build and retain higher-level predicates, as well as it does not do any
CNF extraction.

b. Synapse-SynthDirect+: we provide the higher-level concepts learned by
our main framework and then given these already learned higher-level
predicates, we again adopt a one-step approach to synthesis, where we
ask LLM to update the program sketch based on the new NL input and
previous program sketch, i.e., it still does not do any CNF extraction.
Note, however, this is only possible for a post-learning ablation study,
as in an actual learning framework, we do not have apriori access to the
higher-level learned predicates.

c. Synapse-SynthCaP: we disallow the framework from querying the user
for auxiliary demonstrations to learn auxiliary concepts, i.e., the frame-
work is forced to generate code (using the concept library) for the auxil-
iary concepts solely based on the information available, which essentially
is the name of that particular concept. This is similar to the recursion
performed in Code-as-Policies [36].

* NN-ablations: We finetune the four SegFormer models on the same number
of samples as Synapse, which is 29 for the CONTINGENCY concept.

* LLM-ablations: We test the performance of our overall framework using other
language models available: (1) CodeLLama [47], (2) StarCoder [34], and (3)
PaLM2 [6]. We see that it is essential for the LLM to be strong enough for
the performance of Synapse to be good.

The results reaffirm the design choices made in Synapse.
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def contingency(pixel_loc):
    if terrain(pixel_loc) == 0:
        if distance_to_person(pixel_loc) > 2.152957 and ... frontal_distance_entrance(pixel_loc) > 25.123699 and ... and slope(pixel_loc) < 2.809002:
            return True
    elif terrain(pixel_loc) == 3:
        ...
    return False

contingency(pixel_loc)

terrain(pixel_loc) == 0

False Positive: incorrect terrain
classification

frontal_distance_entrance(pixel_loc) > 25.123699

False Negative: wrong object detection for entrance and slightly tilted frontal direction estimation

Fig. 7: Illustration of reasoning about failures using the learned program

B.3 User-study

The user case study involved each of the three participants using Synapse to
have it learn their notion about the preferential concept under consideration.
We chose CONTINGENCY for the study. Each of the three participants gave 10-15
demonstrations after which each of them labeled 15 images with their ground-
truth.

It was observed that the learned programs differed on two levels: (1) symbolic
concepts, and (2) quantitative parameters. While many of the symbolic concepts
were similar across users, there were a few such as is_too_far or is_next_to
that differed. We then evaluated each learned program on the ground-truth labels
of all the users, which showed good one-one correspondence between learned
programs and ground-truth of users, indicating good alignment.

C Error Analysis using Synapse

An added benefit of the neuro-symbolic representation of the preferential concept
with Synapse is that it facilitates reasoning about failures. Fig. 7 shows one
such example where we can easily reason about the false positives and false
negatives comparing the prediction with the individual component outputs of
the program.
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