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Abstract
An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamical observables
from imaginary chemical potential. The phase diagram features a crossover line starting from the transition temperature
already determined at zero chemical potential. In this work we focus on the Taylor expansion of this line up to µ4

contributions. We present the continuum extrapolation of the crossover temperature based on different observables at
several lattice spacings.
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1. Introduction

An important question in the study of QCD is the investigation of the (T, µB)-phase diagram. Due to the
infamous sign problem direct lattice simulations are restricted to vanishing or imaginary baryon chemical
potential. However, since it is established that at µB = 0 the transition is an analytic crossover [1, 2],
this opens the possibility to gain knowledge about the (T, µB)-plane by analytical continuation. In this
proceedings we address the extrapolation of the crossover line from imaginary to real chemical potential as
done in [3, 4, 5, 6]. Another approach to gain the same results is the determination of the Taylor coefficients
at vanishing chemical potential ([7, 3, 8, 9]). With both methods it is possible to determine the coefficients
κ2 and κ4 which describe the transition line as

Tc(µB)
Tc(0)

= 1 − κ2

(
µB

Tc

)2

− κ4

(
µB

Tc

)4

+ O(µ6
B). (1)

1speaker: Jana.Guenther@t-online.de

ar
X

iv
:2

40
3.

16
70

9v
1 

 [
he

p-
la

t]
  2

5 
M

ar
 2

02
4



2 / Nuclear Physics A 00 (2024) 1–4
-0

.0
05

-0
.0

02
5 0

0.
00

25

4

0.
00

5
0.

00
8

0.
01

1
0.

01
4

0.
01

7
0.

02

2

Bonati:2015bha, ψψ, χψψ

Bellwied:2015rza, ψψ, χψψ, χSS

Bonati:2018nut, ψψ, dψψ
dµ2

B

T 2
c

Bonati:2018nut, ψψ, dψψ
dµ2

B

T 2
c

Bazavov:2018mes, χ, Σ

This work ψψ

Fig. 1. A comparison of recent results for κ2 and κ4 as defined in eq. (1).
[7] and the lower point of [3] use the Taylor method, while the result from
this work, the upper point of [3], [4] and [6] used lattice data at imaginary
chemical potential.
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Fig. 2. The chiral susceptibility as a function of the
chiral condensate on an 483 × 12 lattice for different
imaginary chemical potentials. Most of the depen-
dence of µB is removed and the data collapses to one
curve.

A comparison of recent results is done in fig. 1. Both methods agree well with each other. In this proceedings
we summarize the updated results for κ2 and κ4 recently published in [10].

2. Analysis

In this work we are investigating the chiral condensate ⟨ψ̄ψ⟩ and the chiral susceptibility χψ̄ψ. The bare
quantities are the derivatives of the partition function Z with respect to the quark masses:

⟨ψ̄ψ⟩bare =
T
V
∂ ln Z
∂mq

, χbare
ψ̄ψ
=

T
V
∂2 ln Z
∂m2

q
. (2)

For renormalization the finite and zero temperature values have to be subtracted, yielding the renormalized
quantities:

⟨ψ̄ψ⟩ =
(
⟨ψ̄ψ⟩bare(0, β) − ⟨ψ̄ψ⟩bare(T, β)

) ml

f 4
π

, χψ̄ψ =
(
χbare
ψ̄ψ

(T, β) − χbare
ψ̄ψ

(0, β)
) m2

l

f 4
π

. (3)

Due to the analytic nature of the transition the definition of the crossover temperature is ambiguous. In this
analysis we capitalize on an observation which can be made in fig. 2: If one considers the chiral susceptibility
as a function of the chiral condensate most of the dependence of µB is removed and the data collapses for
different values of imaginary chemical potential. This allows us to fit χψ̄ψ for fixed Nt but various µB with
the ansatz:

χψ̄ψ(⟨ψ̄ψ⟩) =
n∑

i=0

αi

(
1 + βi

(
µB

T

)2
)
⟨ψ̄ψ⟩i, (4)

n ∈ {2, 3, 4} for appropriate fit ranges. This fit removes most of the µB dependence and allows for a precise
determination of the transition value of ⟨ψ̄ψ⟩ at the peak. In a next step this has to be translated into
temperature. To determine the temperature from the the ⟨ψ̄ψ⟩ value we use a spline. This procedure is
illustrated in fig. 3.

After determining the transition temperature for various imaginary chemical potentials and lattice spac-
ings, we perform a combined extrapolation in µ2

B
T 2 and to the continuum, which uses a fully correlated fit.

From a mock analysis we learned that, to reliably extract κ2 and κ4 with our current accuracy on the tran-
sition temperatures we need to use at least three free parameters to describe the µB dependence in our fit.
Therefore we use these two different fit functions for the µ2

B
T 2 direction:

Tc(µB)
Tc(0)

= 1 + a
(
µB

T

)2
+ b

(
µB

T

)4
+ c

(
µB

T

)6
,

Tc(µB)
Tc(0)

=
1

1 + a
(
µB
T

)2
+ b

(
µB
T

)4
+ c

(
µB
T

)6 . (5)
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Fig. 3. Left and middle: Illustration of the determination of the crossover temperature on an 403 × 10 lattice at µB = 0. First the
position of the peak in the chiral susceptibility as a function of the chiral condensate is determined. In a second step a spline is used to
translate the value of the chiral condensate to a temperature. Right: The extrapolation of the cross over line to finite chemical potential.
The band was obtained the from Lattice simulations described in this proceedings. The line is the result from [11] calculated with
Dyson-Schwinger equations. Please note, that the absolute value at µB = 0 is set by a lattice computation. Therefor a comparison
should only be done for the curvature. The points from [13, 14, 12, 15, 16] illustrate the freeze-out regime in heavy ion collisions.

To estimate the error on our results we do 768 different analyses, varying fit functions and ranges as well as
the scale sitting. We determine a systematic error by looking at the width of the distribution of the different
results. However we only keep values where the Q-value of the fits is lager then 0.1. The statistical error
is estimated by the Jackknife method and both errors are added in quadrature. This error measures how
precisely we can determine the crossover temperature (or its Taylor coefficients) for one definition of the
transition. It does not measure the width of the transition region, which has to be investigated in an additional
analysis.

3. Results

To extrapolate the crossover line to real chemical potential we use the two fit functions from eq. 5. Our
result is shown by the band in the right side of fig. 3. We also compare our extrapolation to several other
recently published results. The line is the result from [11] calculated with Dyson-Schwinger equations. One
should note, that the absolute value at µB = 0 is set by a lattice computation. Therefor an comparison should
only be done for the curvature, which agrees well with both of the bands, obtained by lattice calculations.
The points from [13, 14, 12, 15, 16] illustrate the freeze-out regime in heavy ion collisions. This does not
have to be directly on the curve as the transition region is wider than the error band for Tc. However they
are expected to be in the same temperature range, which they are.

Our results for κ2 and κ4 as defined in eq. 1, are

κ2 = 0.0153 ± 0.0018, κ4 = 0.00032 ± 0.00067. (6)

They are shown in fig. 1. The value for κ2 agrees well with previous determinations, both from the Taylor
and the imaginary µB method. For κ4 we do the second determination of this quantity and reduce the error
significantly, confirming the expectation that κ4 ≪ κ2.
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