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Abstract

Porous media, while ubiquitous across many engineering disciplines, is inherently

difficult to characterize due to their innate stochasticity and heterogeneity. The key for

predicting porous material behavior comes down to the structuring of its microstruc-

ture, where the linkages of microstructural properties to mesoscale effects remain as

one of the key questions in unlocking understanding of this class of materials. One pro-

posed method of linking scales comes down to using Minkowski functionals–geometric

morphometers that describe the spatial and topological features of a convex space–to

draw connections from microstructural form to mesoscale features. In this work, chemi-

cal equilibrium and kinetics on a microstructure surface were explored, with Minkowski

functionals used as the basis for relating microstructural geometry to chemical perfor-

mance. Using surface CRNs to model chemical behavior–a novel asynchronous cellular

automaton– linkages were found between the Minkowski functionals and equilibrium

equilibrium constant, as well as properties related to the dynamics of the system’s

reaction quotient.
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Introduction

While ubiquitous, from bone to rock to fuel cells, porous media represents a wide class of

materials that remain elusive to fully characterize. While their properties at the microstruc-

tural level have shown to be intrinsically linked to mesoscale effects, the exact nature of this

scaling has proven to be highly elusive.1,2 In order to link these effects, one approach has

been to use geometric homogenization schemes to derive energetic linkages from microstruc-

tural form to behavior.3–5

Minkowski functionals are geometric morphometers, characterizing both morphology and

topology of spatial patterns, that are conceptualized from the field of statistical physics.6

They have seen wide application in describing phenomenon from the spin of galaxies7 to the

permeability of porous media.8 The use of these functionals as a descriptor for meso-scale

phenomenon is supported by Hadwiger’s theoerm,9 which guarantees that for a polyconvex,

isotropic system of dimension D, D + 1 Minkowski functionals can be used to sufficiently

describe the behavior of the system. In particular, Minkowski functionals have shown to

have a powerful connection between the geometry and the free energy of a system, creating

an important linkage between structural and energetic properties of materials.9

Of particular interest for porous media is quantifying their chemical behavior.10–13 Chem-

ical activity in porous media drives both immediate behavior14,15 and long-term perfor-

mance.16–18 Due to the many complexities typical of porous systems, from the many inter-

acting chemical species to the inherent challenges of accurately modeling chemical surface

interactions, homogenization schemes for succinct characterization of microstructural per-

formance are of perticular interest.19–21

In the world of modeling well-mixed systems, the classic approach to homogenizing complex

chemical systems is through chemical reaction networks.22,23 Chemical reaction networks

(CRNs) are graph-based models of dynamic chemical systems that typically organize chem-

ical species as functions f(x) and their evolution as ẋ to form a continuous autonomous

dynamic system of the form ẋ = f(x). These models provide powerful tools in identi-
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fying reaction system steady states,24 steady state stability,25 persistence,26 existence of

stable periodic solutions,27 and performing model reduction.28,29 While these models are

quite powerful in driving understanding of these complex dynamic systems, there are certain

assumptions of a traditional CRN that limit their ability to fully characterize interfacial

systems such a porous media. Namely, CRN models typically assume a well mixed system

of comparable density across the entire domain.30 To address this limitation, Qian et al.

proposed a novel method for implementing a CRN on a surface, applying a graph structure

to a geometric boundary with CRN-like kinetics.31 This method, known as a surface CRN,

is implemented as an asynchronous cellular automata with probabilistic transition rules that

mimic a continuous-time Markov chain process. Through Qian and Winfree’s work, as well

as advancements from Clamons et al., surface CRNs have demonstrated the ability to form

dynamic spatial patterns, operate as DNA circuits, and model adsorption and desoprtion

behavior on a surface.31,32 Through this work, we aim to extend the implementation of these

models to solid-fluid interfacial behavior on a porous microstructure.

Methods

Surface CRNs

A surface CRN resembles the rules of a classic CRN modeling approach, but crucially imposes

spatial constraints on the manner at which reactions can occur. By definition, a surface

CRN is an asynchronous, stochastic cellular automaton with CRN-like transition rules.31

Informally, this can be seen as a CRN where individual chemical species are localized to

sites on a specific surface and may only interact with neighboring molecules.32 By a more

formal definition, a surface CRN is a continuous-time Markov chain defined by a lattice L of

connected sites i ∈ L with each site defined by a state si and each site defined as i. The ability

to switch states is determined by a set of unimolecular or bimolecular transition rules r ∈ R,

where each reaction is defined as A → B or A+B → C +D, with the rate of each reaction
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as λr. As an asynchronous cellular automata, each reaction occurs independently, with the

ordering of these reactions processing via a queuing system. Essentially, at each frame of the

simulation, the simulation grid is queried for all potential reactions that may occur based on

each node’s neighbors, and each potential reaction has the time for it occurring drawn from

an exponential distribution. This is time to next reaction ∆t is calculated as follows:

∆t = log

(
1

rand(x)

)(
1

λr

)
(1)

with rand(x) serving as the random draw from the distribution. After each time to next

reaction is calculated for all candidate nodes, each node has its corresponding reaction sched-

uled for time t+∆t and pushed to a priority heap queue. From here, the first reaction from

the queue is popped and processed, changing the respective reactants to products. With the

new map in place, the current time of the simulation is set to t = t + ∆t and all reactions

in the queue involving sites changed in the aforementioned step are removed. The new site

species are checked for any potential reactions and these are added to the queue as previously

described, and this is repeated until a stop condition is met. Simplified, this can be seen as:

1. Initialize with a global state grid at time t = 0.

2. Scan each node for potential reactions that can occur, and calculate a time to next

reaction t+∆t and add it to a priority heap queue.

3. Pop the first reacction in the queue and process reactants to products, setting the new

time as t = t+∆t.

4. Remove all reactions involving the same sites as the current reaction site in question

from the queue.

5. Scan the products in the current site for new potential reactions, and recalculate and

add to the queue as in step 2.
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6. Continue from step 3 until a stop condition (such as the maximum duration of the

simulation being reached, or an empty queue) has been met.

As described in Clamons et al, the total time complexity of the simulation is O(n+ r logw),

where n is the number of sites in the surface or the CRN, r is the total number of reaction

events simulated, and w is the maximum number of reactions in the queue at any given

time.32

Although explicitly surface CRN reactions may only take transition rules as chemical reac-

tions, other surface/species behavior may be emulated using the relative flexibility of what

is defined as a ”reaction.” For example, by default, surface CRNs do not allow for diffusion

of molecules. However, in this work, diffusion of mulecules is simulated using reactions of

the form X + E
k−→ E + X, where X is the diffusing species in question, E represents an

exmpy site that said species can travel to, and k controls the rate of diffusion.

While qualitative in nature, surface CRNs provide a simple and straightforward model of

CRN-like chemistry that accounts for the geometric considerations of an interface-sensitive

chemical system that a typical CRN model cannot provide. Compared to other discrete,

stochastic reaction-diffusion models such as Kinetic Monte Carlo (KMC) and stochastic

reaction-diffusion systems, surface CRNs come with a host of advantages and trade-offs. The

primary difference between surface CRNs and other models is the requirement for species

to exist in discrete spaces compared to continuous positions of species.33 This allows sur-

face CRNs to naturally capture macromolecular crowding behavior, as well as to preserve

local geometry of chemical reactions.34 The relative simplicity of calculating surface CRN

switching rules also make them highly parallizable–every reaction occurs in a queue and

is processed one-at-a-time. One could easily segment a space into multiple surface CRNs,

allowing for rapid parallel processing of large-system behavior.

For this study, a benchmark dissolution reaction was studied to understand the linkage be-

tween Minkowski functionals and chemical behavior. The benchmark dissolution reaction is
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of the form:

A+Q ⇀↽ 2R (2)

With A defined as a reactive solid species, Q as a reactive liquid, and R as a reaction liquid

product. This reaction is seen here as a generic form of fluid-release reactions where no solids

are produced and theliquid products are not mixing with preexisting fluids. This makes the

transition rules of the reaction at a solid-liquid interface straightforward since no solid is

retained. Indeed, this is reflected in Table 1 which lists the input transition rules for the

surface CRN simulator. It is to be noted that this choice of interface reaction is constraining

the conclusions of the present study to non-mixing fluid-release reactions rather than to any

generic interfacial reaction, which should be the subject of future works.

Table 1: Transition rules for benchmark diffusion reaction.

Transition Rule Reaction Rate
A+Q → R +R 0.4
R +R → A+Q 0.1
R +Q → Q+R 1.0

Whittaker-Eilers Filter

Due to the inherent stochasticity of a surface CRN simulation, data generated these simu-

lations is inherently noisy, even at a steady state. While the system may have settled into

a state of relatively constant concentration, the inherent movement of species in the system

can lead to small variations in overall species counts. As more species are added or as faster

reactions are added to the regime relative the overall duration of the simulation, the number

of concentrations calculated increases dramatically. This compounds the noisy data problem

to be incredible dense, making sensitive calculations of values such as Keq and Q inherently

messy. In order to properly calculate systemic descriptors such as Keq and Q, chemical data

must be smoothed in order to eliminate noise propagation in results. One method for ad-
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dressing this is through the Whittaker-Eilers smoother, a smoother based on penalized least

squares. Extremely fast compared to classic data smoothing techniques like the Savitzky-

Golay filter and moving averages, the Whittaker-Eilers filter gives continuous smoothness

control as well as automatic interpolation and fast leave-one-out cross-validation. Fig. 1

compares the curve generation of the Whittaker-Eilers smoother on noisy Q data, showing

a marked reduction in data noise similar to that of a moving average calculation, albeit at a

fraction of the time to calculate.

Given a set of noisy data y, there is a series z that is believed to be the optimal smoothness

of y. As z increases in smoothness, the residual between z and y increases. This residual ϵ

is calculated as:

ϵ =
∑
i

(yi − zi)
2 (3)

and the smoothness s of the data is calculated as:

s =
∑
i

(zi − zi−1)
2 =

∑
i

(∆z)2 (4)

To balance the ϵ and s is tuned by the user through smoothing parameter λ, with the

relationship between this quantity represented as q:

q = ϵ+ λs (5)

Ultimately, the Whittaker-Eilers smoother finds the series z that minimizes q. Combining

the above expressions and defining y and z as vectors y and z as well as a differential matrix

D, the expression for q evolves to:

q = |y − z|2 + λ|Dz|2 (6)
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Minimizing q via setting the gradient of q to 0, we arrive at the following expression:

(I+ λDTD)z = y (7)

with I defined as the identity matrix. Eq. 7 is of the form Az = y and can thus be solved

via matrix decomposition to find z.

Figure 1: Comparison of filter results on a sample Q calculation over 14.7 million data-
points, comparing a moving average series calculated with a window size of 1,000,000 and
a Whittaker-Eilers series with λ = 80, 000. Note the time to completion of the smoothing
algorithms, with the Whittaker-Eilers smoothing function calculating at a speed 106 times
faster.
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Minkowski Functionals

Minkowski functionals are geometric and topological descriptors derived from integral geom-

etry used to describe spatial patterns.35 For a system of dimension D, D+1 functionals are

required to describe it. In the case of a 2D system with a surface Ω and a smooth boundary

δΩ, the required functionals are defined as:

M0(Ω) =

∫
δΩ

dA (8)

M1(Ω) =
1

2

∫
δΩ

dL (9)

M2(Ω) =
1

2

∫
δΩ

k(Ω)dL = πχ (10)

Where dA is defined as a surface element, dL is a line element, and k(Ω) is the signed

curvature. For our purposes, M0 defined as the surface area of the system, M1 as the

perimeter, and M2 as the signed curvature, which is directly proportional to the Euler

characteristic χ via the Gauss-Bonnett theorem.5 For any functional M(Ω) that is additive,

motion invariant and continuous, per Hadwiger’s theorem,9 this functional can be described

as a linear combination of Minkowski functionals Mn(Ω) as follows:

M (Ω) =
d∑

n=0

cnMn(Ω) (11)

Keq selection

In order to benchmark the effect Minkowski functionals have on chemical reaction systems,

a simple dissolution reaction as described in Eq. 2 was studied. For experimental repro-

ducibility and observability purposes,the homogenized properties of the reaction on a given

microstructure have to be evaluated at the reaction’s steady-state. At this point,the reaction

is classically characterized through a measure of the total extent of the reaction measured

through the reaction quotient Qr and its value at steady-state called the equilibrium con-
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stant Keq, as well as a measure of its duration measured through its equivalent reaction

rate/constant. These two are going to be the properties that the present work will focus on

as well, starting from defining a representative form of Keq for non-mixing systems.

In classical mixing systems, the forms of Keq and Qr for this dissolution reaction are

assumed to be derived from the law of mass action, as follows:

Keq =
[Req]

2

[Qeq][Aeq]
(12)

Qr =
[R]2

[Q][A]
(13)

Equilibrium values used to calculate Keq take the mean of the last few values of the system

at steady state, reducing the overall noise for calculations. However, the ultimate results of

this assumption comes into question, specifically in the agreement of Keq results relative to

the work proposed by Boelens et al.35 From this work, an agreement of the following form

is expected based on classical (additive) concepts of thermodynamics:

∆G = −RT lnKeq = αM0 + βM1 + γM2 (14)

Based on this relation, an additive, linear combination of Minkowski functionals in an expo-

nential distribution is traditionally expected to describe the energetics of the system.

However, non-mixing systems have been shown to deviate from the law of mass action for

over 50 years.36 The burgeoning work of surface chemistry energetics has resurfaced these

considerations, suggesting that the traditional law of mass action described in Eqns. 12 is

not accurate in systems with multiple state phases.37–39 Bauermann et al. specifically defines

Keq as a relationship between stroichiometric coefficients , activity coefficients , and reference

chemical potentials suggesting slower versions ofKeq for non-mixing interface reactions based

on these metrics.Unfortunately, in this synthetic system these considerations are not exactly

applicable since energetic terms like chemical potential and activity coefficients are assigned
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a priori in the form of transition rule rates and diffusion rates, respectively. As a result we

can only homogenize numerically and to this extent threeKeq formulations will be examined–

those from Eqns. 12 and two slower versions defined as

KRn

eq =
[Req]

n

[Qeq][Aeq]
, n = 1; 3/2; 2 (15)

The contrasting results from these varying KRn

eq calculations will inform an ultimate selection

for theKeq criteria that Minkowski functional analysis will be based on. Further to the extent

of the reaction, its equivalent rate will be represented through a characteristic time of the

reaction, ∆τ , that will in turn be investigated as a function of Minkowski functionals of an

assumed form:

∆τ = f(cnMn) (16)

Numerical Results on synthetic microstructures

Microstructure Selection

One of the challenges with testing the localized effects of individual Minkowski functionals on

microstructural properties is the inherent difficulty in isolating Minkowski functionals from

each other in microstructural generation. Indeed, while these functionals are by definition lin-

early independent, it is quite difficult creating a schema that only varies one functional while

fixing the others. In order to isolate individual Minkowski functionals, three microstructural

designs were created.

Fig. 2 demonstrates the first microstructural design, a periodic unit cell. Each unit cell

is designed as an NxN square with four circles of equal radius r at each corner. White pixels

represent solid species while black pixels represent voids for fluid species to diffuse. Each
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Figure 2: Example of a unit cell microstructure. The radius of the circles at the corners are
varied per individual unit cell designs. The boundary of the unit cells are periodic, allowing
for chemical reactions to occur from one edge to another.

edge of the unit cell is a periodic boundary, allowing for chemical reactions to occur from

one end of the cell to the other. To generate unit cells of differing Minkowski functionals,

the unit cell bounding box is fixed at side length N as r is varied. While Eqs. 8-10 hold as

the basis for calculating Minkowski functional values, M0 and M1 are nondimensionalized

by the reference length N of the bounding box. Thus, Minkowski functionals are calculated

as follows:

M0 = 1− πr2

N2
(17)

M1 =
2πr

N
(18)

M2 = V − E + F (19)

With V , E, and F of Eq. 19 representing the vertices, edges, and faces of the microstructure,

respectively. Note that Eq. 17 is calculated as the porosity of the system (fraction of void
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to total box size). For unit cell tests, M2 is held constant (χ = 1 for a circle split into four

slices) while M0 and M1 vary with r.

In order to separate the effects of M0 and M1, a second test was designed to hold M0 and M2

constant while only varying M1. In Fig. 3, an example of a perimeter test microstructure

is shown. In order to hold a constant M0 and M2, a boundary on a solid region of the

microstructure has a periodic wave applied to it, varying perimeter while keeping the same

area ratio from the solid to fluid area. The number of waves on the perimeter is denoted by

the wave number ν. The perimeter and area of the wave boundary is calculated in a similar

manner to that of an ellipse, thus a and b represent shape measures for calculating wave area

and perimeter. Because of the periodic nature of the wave boundary, M0 and M2 remain

constant while a, b, and ν are varied (assuming ν remains an even number). Based on the

Ramanujan approximation for the perimeter of an ellipse, M1 is calculated as:

M1 =
νπ(a+ b)

2

(
1 +

3h

10 +
√
4− 3h

)

h =
(a− b)2

(a+ b)2

(20)

Figure 3: Example of a perimeter test microstructure. a and b control the wave properties
along the perimeter, varying M1 while maintaining a constant M0. One periodic wave is
highlighted in the red bounding box, with the wave number of the cell defined as ν.

The final microstructural design aims to maintain a constant M0 and M1 while varying

M2. Fig. 4 represents how this test was performed, with a circle of solid material immersed
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in a bounding cell of fluid. As pixel-sized holes are added to the circle, χ, and therefore M2,

decreases. Due to the small size of these holes, M0 and M1 change negligibly through the

test.

Figure 4: Euler characteristic test. All microstructures are circles of constant radius, with
pixel-sized holes added. Each hole lowers χ by 1, at a negligible change in porosity and
perimeter.

Resolution Convergence

In order to assess the performance of surface CRNs as a modeling tool for chemical behavior,

a resolution convergence study was performed to check if Keq values scaled directly with sim-

ulation resolution. If resolution showed to have a considerable effect on model performance,

special consideration would have to be made when considering the scaling dimensions of a

simulation.

To perform a resolution convergence study, repeated simulations were performed on the pe-

riodic unit cell, varying cell side length N while keeping the ratio of side length to circle

radius r at a consistent 4:1 N : r ratio. KR
eq was selected as the convergence criteria, allowing

14



for steady state solutions to be the sole source of comparison, as seen in Fig. 5. By solely

comparing steady-state values, the effects of cell resolution can be investigated on their own.

Due to increased resolution, dynamic effects in the unit cell would need to be scaled via

the transition rule rate laws, as the increased resolution would effectively increase the ”dis-

tance” each set of molecules would need to travel due to the fixed grid nature of surface

CRN simulations.

Figure 5: Resolution convergence study, varying unit box size.

As seen in Fig. 5, Keq values show a clear exponential decrease with increasing resolution,

converging at a consistent solution at about N = 200.

15



Figure 6: The effect of diffusion rate on the Keq of the system for each Keq formulation.

Rate Effects

According to the work of Boelens et al.,35 the primary discrepancy in Keq values found in

interfacial systems compared to well-mixed systems manifests from differing reaction rates,

both within the separate phases but also in the transition from one phase to another. In

surface CRN simulations, these discrepancies can manifest in the a priori transition rule

rates, as well as the assigned diffusion rate for ”motile” species in the simulation space. Fig.

6 demonstrates how an increasing diffusion rate increases Keq consistently across varying

methods for Keq calculation. These increases all matched closely to a power law, with

consistent power scaling across all three calculation schemes. The primary difference in each

curve stems from the order of magnitude of [R] at a consistent linear scaling.

A similar class of study was performed comparing the rate of reaction in transition rules.

As detailed in Eq. 2, the benchmark reaction is a reversible reaction that in its outset favors

a forward reaction. For this study, the ratio of the forward reaction kf to the reverse reaction
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Figure 7: The effect on reaction rate ratio for the forward and reverse reaction on Keq for
each Keq formulation.
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kr was varied, as in Fig. 7. Similar to the behavior exhibited in Fig. 6,Keq calculations varied

consistently across the same order power law, modulating by constant orders of magnitude

per the Keq formulation.

Both rate effect studies shared consistent results in terms of the scalability ofKeq calculations

across various rate schemes and diffusion rules. The influence of these varying rates points

to the validity of Boelens’ work, as the kinetics of the varying phases of the reaction, both

chemically and physically, have a direct influence on the overall steady state behavior of the

system.

Interface Diffusion Phenomenon as Internal Branching

While the kinetics of the system have direct, tangible effects on the overall behavior of theKeq

calculation, another important area of consideration is the idiosyncrasies of the simulation

medium used in this study. While surface CRNs possess inherent advantages compared to

other discrete stochastic simulators in their inherent spatiality and simple solving scheme,

secondary behavior may arise depending on the nature of the reaction rules given to the

system. In the case of this reaction, a slow but noticeable phenomenon of diffusion was

observed to occur, even in systems where no diffusion amongst fluids was prescribed.

Typically, in a system where diffusion is disabled (in our case, the rate of the diffusion

transition rule is set to 0), chemical reactions occur almost instantaneously at the solid-fluid

interface and then stop, creating a layer of product at the boundary. This is because without

some form of transport, reacting species may only form a layer at the surface boundary before

the subsequent product shields further reactions from occurring, ultimately terminating the

surface CRN simulation early due to the reaction queue collapsing. However, in the case

of the class of reaction discussed in this work, the fact that the product of the reversible

reaction is two of the same species creates a unique scenario where a slow diffusion manifold

is allowed to propagate in the system. Diagrammed in Fig. 8, this slow self-propagating

diffusion manifold–or internal branching diffusion–is tied directly to the probabilistic nature
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Figure 8: Diagramatic description of branching diffusion.

of asynchronous cellular automata.

After the initiation of a chemical reaction on a surface that generates two identical product

species with the contact of a reactive fluid Q in the presence of a reactive solid A, the surface

CRN faces a conundrum for its next step–how to resolve the two identical species with the

potential for the reverse reaction. As the surface CRN scans each newly generated node

species for potential chemical reactions, it finds that both R product species are eligible for

a subsequent chemical reaction to occur. Thus, both reaction sites draw a random ∆t that

dictates which of the two sites initiates a reaction first. Depending on which site draws a

faster reaction–of which both sites have an equal probability of this occurring–the reverse

reaction may assign either site to revert to either Q or A. If this reversibility goes back

to the direction of the initial propagation, the reaction oscillates at the boundary between

products and reactants. However, if the order of the Q and A reactive sites flip, the dynamics

of the reactions change as now there are sites inside of the solid past the initial boundary

that are in contact with reactive nodes. At each step of this flip occuring, new internal

potential reaction sites are exposed, propagating the initial reaction through the solid phase.
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This effect is bidirectional, as these flips may occur in the other direction to move species

at the original solid-fluid boundary outward, essentially mirroring a slow diffusion process.

With these dynamics incorporated in the system, even with no diffusion prescribed in the

transition rules, the ultimate fate of the system at steady state eventually sees the entire

solid state dissolve into product, with product dispersed evenly throughout the reacting cell

as seen in Fig. 9.

While this phenomenon occurs at an incredibly slow rate, with convergence to steady state

occurring orders of magnitude further than systems with even the slowest diffusion constant,

this slow manifold directly influences the rate and availability of the reactions in this chemical

system. This small-scale diffusion phenomenon absolutely has the potential to influence the

ultimate Keq behavior of the system, further lending discrepancies in Keq in well mixed

systems versus those in interfacial systems.

Figure 9: Time evolution of interface diffusion across a periodic unit cell.
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Homogenization of Microstructure Geometry

Unit Cell

As discussed above, when investigating the effects Minkowski functionals have on the chemi-

cal performance of the system, a clear definition of Keq must be defined. In Fig. 10, it is clear

that depending on the selected scheme of calculating Keq, the reference scaling and relational

behavior with regards to radius changes dramatically. Fig. 10B shows a weak linear, bor-

dering on trivial, relationship between radius and KR
eq. Fig. 10C on the other hand shows

a strong linear relationship between radius and KR3/2

eq . Finally, Fig. 10D shows a strong

exponential relationship between radius and KR
eq. The differentiation in these schemes only

appears in the calculation of Keq itself, and not in other kinetics related factors such as ∆τ .

Figure 10: Comparing the effect of radius on various Keq calculation schemes. A) compares

across all three schemes of KR
eq, K

R3/2

eq , KR2

eq , B) plots K
R2

eq as a function of radius, C) plots

KR3/2

eq as a function of radius, and C) plots KR
eq as a function of radius.

In examining the unit cell behavior of the benchmark dissolution reaction, a range of

radii from 10 to 40 were tested. In terms of M0, this resulted in a porosity range from 0.5

to 0.95. As shown in Fig. 12, an exponential relationship was found between the terms and
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Figure 11: KR
eq values for unit cell reactions of a benchmark dissolution reaction. A) plots

the evolution of KR
eq as a function of unit cell radius. B) plots the evolution of KR

eq as a
function of M0.

Keq
R, with a negative exponential found relating to radius, and a positive exponential found

with respect to M0. The greatest error in the plot can be found at the largest radius (and

thus, lowest porosity) of the unit cell. This is likely due to the chemical bearing capacity

of the unit cell itself–without a transport means for chemical species to exit the unit cell

system, lower porosity unit cells likely experience greater chemical exclusion effects due to

the spatial nature of surface CRNs.

When plotting the entire QR profile, as seen in Fig. 11, the exponential relationship

between the radius of the unit cell and the steady state of the system is made clear. There

is also a clear relationship between the maximum dQR

dt
and the overall radius of the circles in

the unit cell. Notably, while the maximum dQR

dt
varies significantly with radius and porosity,

there is less clear of a trend in the time to reach the maximum dQR

dt
, or ∆τ . Indeed, outside

of edge cases (highest radius and lowest radius), ∆τ appears to be largely unchanged.

Perimeter

Perimeter was varied as was described in the section above, with both wave parameters a

and b varied to generate different perimeter values for the testing sample, as seen in Fig. 3.

Ultimately these results were combined to draw overall conclusions surrounding the effect of
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Figure 12: QR values for unit cell reactions of a benchmark dissolution reaction. A) plots
the evolution of QR as a function of unit cell radius over time for all test systems. B) plots

the evolution of the first derivative of QR, dQR

dt
as a function of unit cell radius.

M1 on microstructural chemical performance.

From Fig. 14, in all cases of perimeter, Keq is unchanged outside of minor fluctuations

expected of the stochastic nature of Surface CRN experiments. However, in the dQ
dt

plots in

Fig. 14B and D, clear hierarchy is seen through the relationship of perimeter to dQ
dt

behavior.

This is further examined in Fig. 15, where the relationship between M1 and the maximum

dQ
dt

and time to maximum dQ
dt

(∆τ) is examined. In both cases, an exponential relationship

is derived, although the relationship between M1 and maximum dQ
dt

is positive exponential

while the relationship between M1 and ∆τ is negative exponential.

Euler Characteristic

As in the preceding sections, the benchmark chemical reaction from Eq. 2 was applied

to the Euler characteristic χ testing scheme described in the methods section. Fig. 16A

demonstrates that KR
eq of the reaction system seems largely unaffected by the variations of

the Euler characteristic. This is further corroborated in 16B, where the overall Q profile of
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Figure 13: dQR

dt
values for unit cell reactions of a benchmark dissolution reaction. A) plots

the maximum dQR

dt
as a function of unit cell radius. B) plots dQ

dt
as a function of unit cell M0.

C) plots the time to maximum rate ∆τ as a function of radius. D) plots ∆τ as a function
of M0.

each test varies minimally as χ changes.

While there is no clear relationship between KR
eq and χ, a negative exponential relation-

ship was observed between χ and the maximum dQ
dt

of the system. There was no visible

relationship between χ and ∆τ .

Dependency of reaction to morphometers

From the data extracted from the various unit tests, the following table of relationships

between morphometers and chemical reaction properties were extracted:
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Figure 14: Plots of QR evolution through varying perimeter tests. A) tracks the overall
evolution of QR at different perimeters, controlled by varying a. B) tracks dQ

dt
at different

perimeters, also through varying a. C) tracks the overall evolution of QR at different perime-
ters, controlled by varying b. D) tracks dQ

dt
at different perimeters, also through varying b.

Figure 15: Effect of M1 on dQ
dt
. A) demonstrates the exponential relationship between M1

and the maximum dQ
dt

of the system. B) demonstrates the exponential relationship between

M1 and the time to maximum dQ
dt
.

KR
eq

dQ
dt max

∆τ

Relevant Morphometers M0 M0, M1, M2 M0, M1
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Figure 16: KR
eq and QR values for Euler characteristic χ test of a benchmark dissolution

reaction. A) Shows no relationship between KR
eq and χ, while B) corroborates for the overall

profile of QR.

Figure 17: Rate effects of the QR response from χ. A) demonstrates the relationship between
χ and dQ

dt
. B) demonstrates the relationship between χ and ∆τ .

In all cases, exponential relationships were found. Ultimately, the only morphometer with

a direct, tangible impact on the Keq was M0. This is likely due to adjusting M0 modulating

the ratio of reactants in the system (i.e., a greater M0 would decrease the amount of reactive

solid A and increase the amount of reactive fluid Q). However, while M1 and M2 had

a minimal effect on the equilibrium behavior of the system, both functionals affected the

dynamics of the system–dQ
dt max

and ∆τ . These effects are likely due to M1 and M2 dictating

the number of available reaction sites available in a system–perimeter determines the number

of potential interfacial nodes while χ is a measure of the topological connectivity of the solid

portion of the system. In both cases for these dynamic measures, M0 would be relevant

simply for adding more potentially reactive sites into the system.
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Linkage to Gibbs free energy

With the simulation scaling in mind, the following mathematical relationships can be derived.

For the equilibrium definition of Gibbs’ free energy ∆Go, the following relationship is defined:

∆Go = −RT lnKeq (21)

When examining the relationships between Minkowski functionals and Keq, we can define

Keq as a function of M0 in the following form:

Keq = K0e
aM0 (22)

for some constants K0 and α. In a similar vein, ∆τ can be seen as a function of M0 and M1.

This is of the form:

∆τ = ∆z0(M1)e
bM0

∆z0 = ∆z1e
cM1

∆τ = ∆z1e
bM0+cM1

(23)

Finally, this methodology can be applied to dQ
dt max

for its relationship with M0, M1, and

M2. This takes the form of:

dQ

dt max
= Q0(M1,M2)e

−dM0

Q0 = Q1(M2)e
fM1

Q1 = Q2e
−gM2

dQ

dt max
= Q2e

−dM0+fM1−gM2

(24)

27



Discussion and Conclusions

Minkowski functionals have shown promise in their ability to describe geometrially-influenced

complex mesoscale phenomenon in porous media. Through the use of surface CRNs–a unique

model of asynchronous cellular automata–to model dissolution behavior in chemical systems,

the effects of Minkowski functionals on chemical behavior were extracted. Due to the unique

challenges of modeling and characterizing interfacial chemical reactions, the effects of indi-

vidual simulation hyperparameters were examined to understand their impact on equilibrium

metrics, namely Keq. Reaction rate scaling showed a simple log-linear relationship in dic-

tating Keq behavior and the dissolution rate in the system appeared to have a direct effect

on Keq. This verifies previous literature that has shown discrepancies in the classical Law

of Mass Action and true Keq values of non-well mixed systems, with these discrepancies

related to energetic considerations tied directly to interphase behavior and reaction rates.

Beyond the modeled chemistry influence on Keq valuation, unique artifacts of the surface

CRN simulator must also be taken into account. Specifically, the nature of the reaction se-

lected introduces a branching interface diffusion phenomenon even in systems of no assigned

chemical diffusion. This adds an additional layer of slow manifold evolution with potential

direct effects on equilibrium behavior of the system.

Ultimately, exponential relationships were found for Keq,
dQ
dt max

, and ∆τ and extracted

Minkowski functionals. With this linkage found and the appropriate scaling quantified, this

work stands as an important step in further understanding how Minkowski functionals in-

fluence microstructural behavior.
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