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Privacy Preservation by Intermittent Transmission in
Cooperative LQG Control Systems

Wenhao Lin⋆, Yuqing Ni†, Wen Yang⋆, and Chao Yang⋆

Abstract—In this paper, we study a cooperative linear
quadratic Gaussian (LQG) control system with a single user and
a server. In this system, the user runs a process and employs
the server to meet the needs of computation. However, the user
regards its state trajectories as privacy. Therefore, we propose
a privacy scheme, in which the user sends data to the server
intermittently. By this scheme, the server’s received information
of the user is reduced, and consequently the user’s privacy is
preserved. In this paper, we consider a periodic transmission
scheme. We analyze the performance of privacy preservation
and LQG control of different transmission periods. Under the
given threshold of the control performance loss, a trade-off
optimization problem is proposed. Finally, we give the solution
to the optimization problem.

Index Terms—privacy preservation, Kalman filter, cooperative
networked control systems

I. INTRODUCTION

Networked control systems (NCSs) have been widely de-
ployed in many fields of our lives for a long time [1],
such as smart grids, intelligent transportation and intelligent
manufacturing. Due to the reliability of information and
communication technologies, NCSs can effectively perform a
multitude of complex functions. In NCSs, various components
of the system are connected through a network, which enables
them to cooperate more conveniently. For example, the system
could belong to different parties, and the system’s operation
is achieved through the cooperative efforts by various parties.
We call systems characterized by this behavior as cooperative
networked control systems. Such cooperative behavior should
indeed become a prevailing trend in the future. For example, in
the domain of computer science, data owners frequently out-
source their data to servers to access functions such as storage,
management, and computation, thus significantly reducing the
cost associated with data maintenance [2]. For example, cloud
services and cooperative networked control systems serve as
robust enablers for this paradigm, offering robust support and
facilitation.

In this paper, we consider a basic cooperative control system
called user-server system, which is composed of a single
user and a server. In this system, the user needs to ask the
server for services and thus shares information with it, but
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the information may contain what the user think is privacy.
Meanwhile, the server is considered to be “honest but curious”,
i.e., it will honestly provide the user with services it needs, but
also analyzes the user’s information and explores its behavior
as much as possible. Therefore, it is necessary to study the
privacy preservation at the user side in cooperative NCSs,
which is the focus of this paper.

A. Related Studies

Several various frameworks are proposed to study privacy
preservation based on different understandings. Three im-
portant frameworks are differential privacy [3], information-
theoretic [4], and homomorphic encryption [5].

Differential privacy, which is originally applied in the pri-
vacy preservation of static databases [6], due to its strong pri-
vacy guarantees, has attracted attention recently. The Laplace
mechanism for differential privacy is proposed in [7]. Yu
Kawano et al. [8] analyzed the differential privacy level of
the Laplace mechanism in the cloud-based control system.
Jerome Le Ny et al. [9] developed approximate MIMO filters
to implement differential privacy guarantees. Kasra Yazdani
et al. [10] presented a multi-agent LQ control framework
which guarantees differential privacy. Kwassi H. Degue et al.
[11] studied a cooperative differentially private LQG control
problem with measurement aggregation, and proposed a two-
stage architecture to solve it. Martin Abadi et al. [12] studied
the applications of differential privacy in deep learning and
developed new algorithmic techniques for it. Arik Friedman
et al. [13] applied differential privacy in data mining and
proposed an improved algorithm. Tie Ding et al. [14] proposed
a algorithm that guarantees differential privacy to deal with
a constrained resource allocation problem. Francois Gauthier
et al. [15] proposed a privacy-preserving personalized graph
federated learning algorithm by applying differential privacy.

Information-theoretic framework focuses on the nature of
information, using quantitative metrics such as conditional en-
tropy, mutual information, and directed information to evaluate
privacy level. Peng Hao et al. [16] applied the proposed offline
maximum entropy-based quantization rule to the security in
Internet of things. Ehsan Nekouei et al. [17] designed a
privacy-aware estimator by an entropy constrained approach.
Ruoxi Jia et al. [18] used mutual information between the
location trace and the reported occupancy measurement as
a privacy metric, and designed a scheme that can balance
the privacy and control performance. Ehsan Nekouei et al.
[19] considered a multi-sensor estimation problem, where the
conditional entropy of each sensor is applied as a privacy
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level. Causal conditioned directed information was proposed
in [20]. Takashi Tanaka et al. [21] studied an optimization
problem of cloud-based LQG systems, in which Kramer’s
causal conditioned directed information is used as a privacy
metric, and an algorithm is proposed to solve the problem.

Homomorphic encryption permits third parties to operate on
the encrypted data without requiring prior decryption. Kiminao
Kogiso et al. [22] proposed a controller encryption scheme by
using the modified homomorphic encryption. Farhad Farokhi
et al. in [23] applied labeled homomorphic encryption in
LQG control systems. Farhad Farokhi et al. [24] considered
the sensors using the Paillier encryption which is a semi-
homomorphic encryption in cloud-based systems. Mohammad
Faiz et al. [25] used the particle swarm optimization to
improve homomorphic encryption for cloud security.

B. The Study of This Paper

In this paper, we consider a basic user-server cooperative
networked LQG control system. The user shares its informa-
tion with the server and asks the server to compute control
inputs. From the user’s view, certain shared information is
private. To guarantee the privacy level, we consider designing
a privacy scheme at the user side. The main contributions of
this paper could be summarized as follows.

1) We design a novel privacy preservation scheme, which is
achieved by intermittent transmission, for the user in a
user-server cooperative networked control system, which
is based on a closed-loop LQG control system.

2) For our proposed intermittent transmission scheme, we
analyze the estimation performance for infinite-time hori-
zon at the estimator, and propose a novel privacy metric.

3) We analyze the privacy level and the LQG control perfor-
mance, and study the trade-off problems between them.

Notations: Z+ is the set of non-negative integers and k ∈ Z+

is the time index. N is the set of natural numbers. R is the
set of real numbers. Rn is n-dimensional Euclidean space. Sn+
(and Sn++) is the set of n by n positive semi-definite matrices
(and positive definite matrices); when X ∈ Sn+ (and Sn++), it
is written as X ≥ 0 (and X > 0). It is defined by X ≥ Y
if X − Y ∈ Sn+. E(·) or E[·] is the expectation of a random
variable and E(·|·) or E[·|·] is the conditional expectation.
tr(·) is the trace of a matrix. ρ(·) is the spectrum radius of a
matrix.

II. PROBLEM SETUP

In this section, we introduce the model of the ordinary
user-server system for cooperative LQG control, and propose
a framework that simultaneously balances the control perfor-
mance and the user’s privacy preservation.

A. Ordinary System Model

The ordinary user-server system for cooperative LQG con-
trol is illustrated in Fig. 1. The user has a state process to
control and a sensor which measures the process states. The
server has sufficient computation capability. The user sends its
data to the server for the optimal LQG control input.

Fig. 1: The ordinary cooperative LQG control system.

The user needs to control the following dynamic process:

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rn is the state of the process at time k, uk ∈ Rm

is the control input, and wk is the Gaussian white noise
whose mean is zero and covariance is Q(Q ≥ 0). The
matrix A ∈ Rn×n is the system matrix, and B ∈ Rn×m is
the input matrix. The initial condition is assumed that x0 is
Gaussian with distribution N (x̄0,Σ0). The time horizon of
the process is assumed to be infinite. We assume that (A,B)
is controllable.

The user cannot directly get the state value and has a sensor
to measure the state as follows:

yk = Cxk + vk, (2)

where yk ∈ Rq is the measurement of xk, and vk is the
Gaussian white noise whose mean is zero and covariance is
R(R > 0). The matrix C ∈ Rq×n is the measurement matrix.
The noises {wk} and {vk} and the initial state x0 are mutually
independent of each other. The pairs (A,

√
Q) and (C,A) are

assumed to be stabilizable and detectable, respectively.
For the user, its demand is the optimal LQG control input.

The considered infinite-time quadratic objective function for
the LQG control is denoted as J , and is defined as follows:

J ≜ lim
N→∞

1

N
E
[N−1∑

k=0

(x′
kWxk + u′

kUuk)
]
, (3)

where W and U are weight matrices satisfying W ≥ 0 and
U > 0, and the expectation is taken with respect to the possible
randomness.

In this cooperative system, the user employs the server for
the needs of control, and the server computes the optimal
control input and returns it to the user. The server serves as
the estimator and the controller. Since the user’s process state
is unavailable, it needs to be estimated by the server at first,
and the server computes the optimal control input based on it.
The system parameters A,B,W,U for LQG control, C,Q,R
for state estimation, and the initial condition x0 with Gaussian
distribution N (x̄0,Σ0) are shared by the user with the server,
and the user is also supposed to provide yk at each time k.

When the process begins, the user sends yk to the server at
each time k. Let Yk ≜ {y1, y2, . . . , yk} denote the set of the
received measurements. Then the server computes the a priori
and a posteriori estimates x̂k|k−1 and x̂k|k defined as follows:

x̂k|k−1 ≜ E[xk|Yk−1],
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x̂k|k ≜ E[xk|Yk].

Meanwhile, we define Pk|k−1 and Pk|k as the estimate error
covariance matrices associated with x̂k|k−1 and x̂k|k, respec-
tively:

Pk|k−1 ≜ E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)

′|Yk−1

]
,

Pk|k ≜ E
[
(xk − x̂k|k)(xk − x̂k|k)

′|Yk

]
.

The server runs the standard Kalman filter under the given
initial condition x̂0|0 = x̄0 and P0|0 = Σ0, and the estimates
and the associated error covariances satisfy the following
recursion:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1, (4)
Pk|k−1 = APk−1|k−1A

′ +Q, (5)

Kk = Pk|k−1C
′(CPk|k−1C

′ +R)−1, (6)
x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1), (7)
Pk|k = (I −KkC)Pk|k−1. (8)

Then the server computes the optimal control input and returns
it to the user. The computation follows

ST = W, (9)
Sk = A′Sk+1A+W

−A′Sk+1B(B′Sk+1B + U)−1B′Sk+1A, (10)

Lk = − (B′Sk+1B + U)−1B′Sk+1A, (11)
u∗
k = Lkx̂k|k, (12)

where eqn. (9)-(11) are computed before the process.
For the Kalman filter used in this paper, it has an asymptotic

steady error covariance [26], and we denote it as

lim
k→∞

Pk|k = P̄ .

The error covariance converges at an exponential rate. Hence,
for convenience, under the considered infinite-time horizon,
we assume that the initial covariance P0|0 = P̄ . Consequently
for all k ≥ 1, we have

Pk|k = P̄ ,

Kk = K.

Meanwhile, for the LQG controller, the matrix Sk also con-
verges to a steady value and becomes time-invariant, and we
have

lim
N→∞

Sk = S,

where

S = A′SA+W −A′SB(B′SB + U)−1B′SA.

Then we evaluate the performance of the optimal LQG control.
The optimal objective function value in infinite-time horizon,
denoted as J ∗, is given as follows [27]:

J ∗ = tr(SQ) + tr(ΦP̄ ), (13)

where

Φ = A′SB(B′SB + U)−1B′SA.

B. Privacy Preservation Model

Fig. 2: The privacy scheme is used.

In the ordinary cooperative LQG control system, the user’s
information of state is also known to the server. However, the
user treats the information of state as its privacy, so it decides
to employ a privacy scheme to preserve the privacy.

In this paper, we consider applying a scheme of intermittent
transmission (Fig. 2). Let γk be the user’s decision variable
to control the transmission of the measurement yk to the
server at time k, i.e., if γk = 1, yk is sent to the server,
and if γk = 0, yk is not sent. Intuitively, the user transmits
measurements intermittently, which reduces the amount of
information obtained by the server, thus preserving the privacy.

We consider the scenario that the intervals between mea-
surement transmissions are identical, i.e., the transmission is
periodic. We assume at time k = 1 the user chooses to transmit
the measurement, and denote the transmission period as T . For
l ∈ Z+, the scheme can be formulated as follows:

γk =

{
1, k = lT + 1,

0, k ̸= lT + 1.
(14)

An illustration of T = 3 is shown as follows:

100︸︷︷︸
T=3

100 100 1 . . .

C. Privacy Metric

In the system under the privacy scheme, the server is
unable to receive all the measurements from the user. Let
Ỹk ≜ {γ1y1, γ2y2, . . . , γkyk} denote the set of measurements
actually received by the server. The a priori and a posteriori
estimates in this scenario, denoted as x̂pri

k|k−1 and x̂pri
k|k, defined

as follows:

x̂pri
k|k−1 ≜ E[xk|Ỹk−1],

x̂pri
k|k ≜ E[xk|Ỹk].

Meanwhile, the estimate error covariance matrices associated
with x̂pri

k|k−1 and x̂pri
k|k are denoted as P pri

k|k−1 and P pri
k|k , defined

as follows:

P pri
k|k−1 ≜ E

[
(xk − x̂pri

k|k−1)(xk − x̂pri
k|k−1)

′|Ỹk−1

]
,

P pri
k|k ≜ E

[
(xk − x̂pri

k|k)(xk − x̂pri
k|k)

′|Ỹk

]
.

When γk = 1, they evolve as

x̂pri
k|k−1 = Ax̂pri

k−1|k−1 +Buk−1, (15)

P pri
k|k−1 = AP pri

k−1|k−1A
′ +Q, (16)
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Kpri
k = P pri

k|k−1C
′(CP pri

k|k−1C
′ +R)−1, (17)

x̂pri
k|k = x̂pri

k|k−1 +Kpri
k (yk − Cx̂pri

k|k−1), (18)

P pri
k|k = (I −Kpri

k C)P pri
k|k−1, (19)

and when γk = 0, we have

x̂pri
k|k = x̂pri

k|k−1, (20)

P pri
k|k = P pri

k|k−1. (21)

Hence, the privacy scheme will cause the increase of the
estimate error covariance. Based on it, we propose the privacy
metric to measure the quality of privacy preservation. For each
time k, we define the privacy metric as the deviation between
the estimate error covariance after using the privacy scheme
and the one in the ordinary system. Specifically, it is defined
as follows:

Qk
privacy ≜ P pri

k|k − Pk|k.

To study the privacy performance of infinite-time horizon, we
define the averaged privacy metric at all time as

Qprivacy = lim
N→∞

1

N

N−1∑
k=0

Qk
privacy.

D. Problems to Study

With respect to the proposed privacy preservation scheme,
our attention will be directed towards the following problems.

1 We evaluate the privacy preservation effectiveness. Mean-
while, the privacy scheme incurs a decrease in service
quality, which results in a relative loss for LQG control
performance, denoted by QLQG. We also analyze this
performance degradation.

2 We study the trade-off between the privacy preservation
and LQG control performances:

max tr(Qprivacy)

s.t. QLQG ≤ α,

where α > 0 represents a given loss level of LQG control
performance.

III. PERFORMANCE ANALYSIS

In this section, we firstly introduce preliminaries of Kalman
filtering and present the explicit forms of privacy and LQG
control performances. Secondly, we study and solve the trade-
off optimization problem about them.

A. Kalman Filtering Preliminaries

Before stating the main results of the paper, we provide a
summary of necessary properties of the Kalman filter.

The function h(X) : Sn+ → Sn+ is defined as

h(X) ≜ AXA′ +Q, (22)

which is also called the Lyapunov function. The function g̃ :
Sn+ → Sn+ is defined as follows:

g̃(X) ≜ X −XC ′(CXC ′ +R)−1CX. (23)

Define g = g̃ ◦ h(X). In the ordinary system, we have

Pk|k−1 = h(Pk−1|k−1), (24)
Pk|k = g(Pk−1|k−1). (25)

When k → ∞, it follows P̄ = g(P̄ ), and P̄ is the unique
solution to X = g(X).

B. Privacy Performance

For the estimate error covariance at the server side, we have
the following results.

Theorem 1. Given the transmission period T , based on the
assumption that (C,AT ) is detectable, we have

lim
l→∞

P pri
lT+1|lT+1 = P̃ ,

in which P̃ is the unique solution to the following equation:

P̃ = g ◦ hT−1(P̃ ).

Meanwhile two limits exist as follows:

lim inf
k→∞

P pri
k|k = P̃ ,

lim sup
k→∞

P pri
k|k = hT−1(P̃ ).

Proof: In appendix.
From Theorem 1, P̃ is the error covariance at the time when

the measurement is transmitted, and the server’s calculation of
P pri
k|k follows eqn. (21) until the next transmission. Hence, we

can see that the estimate error covariance at the server side is

P pri
k|k =

{
P̃ , if γk = 1,

h(P pri
k−1|k−1), if γk = 0.

(26)

In the original system, we have Pk|k = P̄ . We can now obtain
the metric of privacy performance:

Qprivacy =
1

T

T−1∑
i=0

hi(P̃ )− P̄ . (27)

C. LQG Control Performance

The server computes the control policy based on the user’s
state estimate. Adding the privacy scheme, the control input
computed by the server is

uk = Lkx̂
pri
k|k. (28)

From the above equation, we can see that a deviation is
caused by the privacy scheme for the control input. This
deviation is caused by the estimate without transmitting the
measurement. At that time, the result corresponds to the
a prior estimate of the original system, which makes the
control law {uk} be non-optimal under the scheme. Hence, the
resulting state trajectories {xk} is also non-optimal. Therefore,
privacy scheme can enhance the privacy performance while it
will lead to the sacrifice in the LQG performance. The optimal
LQG performance under the privacy scheme, denoted as O∗,
is studied below.
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Theorem 2. Under the privacy scheme, it holds that

O∗ = tr(SQ) + tr
(
Φ
1

T

T−1∑
i=0

hi(P̃ )
)
,

where

Φ = A′SB(U +B
′
SB)−1B′SA.

Proof: In appendix.
Now we can define the quality loss in LQG performance:

QLQG ≜ O∗ − J ∗ = tr(ΦQprivacy).

D. Optimization Problem

Through previous study, we can see that privacy preserva-
tion is gained while requiring the sacrifice in LQG control
performance. Hence, an optimization problem is proposed to
study the trade-off: to maximize the privacy metric Qprivacy

while the loss of LQG performance QLQG is under a given
level α. The problem is as follows:

Problem 1.

max
T

tr(Qprivacy)

s.t. tr(ΦQprivacy) ≤ α,

Qprivacy =
1

T

T−1∑
i=0

hi(P̃ )− P̄ .

The function involved in this problem is discrete, so we
consider using dichotomy (Algorithm 1) to solve it.

Algorithm 1 Optimal T by Using Dichotomy
Input: QLQG(T ): the objective function; Tl: the left bound of search range;

Tr : the right bound of search range; α: the given threshold;
Output: T ∗: optimal T ;

1: Initialize T ∗;
2: repeat
3: compute the mid index and round down: Tm = floor((Tl+Tr/2));
4: compute the objective value of mid index: Qm = QLQG(Tm);
5: if Qm < α then
6: T ∗ = Tm;
7: Tl = Tm + 1;
8: else
9: Tr = Tm − 1;

10: end if
11: until Tl > Tr

IV. EXAMPLE

We consider a second-order system with infinite-time hori-
zon, whose parameters are as follows:

A =

[
0.19 0.46
0.31 0.8

]
, B =

[
2
1

]
,

C =
[
1 0

]
, Q =

[
1.9 0.9
0.9 2.8

]
,

R = 1, W =

[
1.5 0.5
0.5 1.5

]
, U = 1.

Firstly we plot the traces of Qprivacy in different T (Fig. 3).
We find the curve is monotonically increasing, and it means

the larger T is, the greater the period between transmitting

Fig. 3: Qprivacy with T varying from 1 to 10.

the measurement is, and the better the privacy performance is,
which conforms to eqn. (27).

Then we study the relationship between LQG performance
loss QLQG and transmission period T (Fig. 4). From the

Fig. 4: QLQG with T varying from 1 to 10.

Fig. 4, QLQG is also monotonically increasing, which means
the less information transmitted, the larger the cost of LQG
control is. Recalling Theorem 2, we can find QLQG is linear
to Qprivacy. Hence their curves are similar.

Given different thresholds of LQG performance loss α, we
can get optimal T . We plot optimal T when α varies from
7 to 27 (Fig. 5). We can find that the curve is stepped, and
it means for a continuous range of α the optimal T is the
same because it is discrete. As the given LQG performance
loss threshold increases, a larger transmission period can be
selected.

Finally we plot the estimates in two different schemes when
T = 3 (Fig. 6), and we find that x̂pri

k|k is deviated from x̂k|k.

V. CONCLUSION

In this paper, we consider a cooperative LQG control system
with a single user and a server. We propose a scheme of
intermittently transmission to preserve the user’s privacy, and
the corresponding privacy metric. Then we analyze the privacy
level under the privacy scheme and the loss in LQG control
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Fig. 5: Optimal T with α varying from 7 to 27.

Fig. 6: Estimates in two different schemes.

performance. Finally, we propose an optimization problem and
solve it based on the trade-off between the privacy level and
the loss in LQG control performance. For the future work,
the multi-sensor system and new privacy metric could be
considered.

APPENDIX

For notional convenience, in the following sections, we omit
the superscript “pri” in x̂pri

k|k, P pri
k|k , xpri

k|k−1, and P pri
k|k−1 under

the privacy scheme. Furthermore, we use x̂k and Pk to replace
x̂k|k and Pk|k, and use x̂−

k and P−
k to replace x̂k|k−1 and

Pk|k−1.

A. Proof of Theorem 1

To prove the theorem, we follow the procedure in Sec. 4.4
of [26]. We show that Pk has two limits. When k → ∞,
the infimum limit corresponds to the covariance at the time
the server receives yk, i.e., PlT+1 (l ∈ Z+). Meanwhile the
supremum limit corresponds to the covariance at the previous
time before the server receives yk, i.e., PlT (l ∈ N). Since if
P−
lT+1 converges, PlT+1 = g̃(P−

lT+1) also converges. Hence,
we focus on the sequence of

{
P−
lT+1

}
. For general k, we

firstly have

x̂k = x̂−
k +Kk(yk − Cx̂−

k )

= (I −KkC)x̂−
k +KkCxk +Kkvk.

Then

xk − x̂k = (I −KkC)(xk − x̂−
k )−Kkvk.

We have

Pk = (I −KkC)P−
k (I −KkC)′ +KkRK ′

k.

Hence, when k = (l − 1)T + 1, we obtain

P(l−1)T+1 = (I −K(l−1)T+1C)P−
(l−1)T+1(I −K(l−1)T+1C)′

+K(l−1)T+1RK ′
(l−1)T+1.

Since when the estimator does not receive yk, the calculation
of estimate error covariance follows eqn. (21), and we have

PlT = hT−1(P(l−1)T+1).

Then

P−
lT+1 = h(PlT )

= AT (I −K(l−1)T+1C)P−
(l−1)T+1(I −K(l−1)T+1C)′(A′)T

+ATK(l−1)T+1RK ′
(l−1)T+1(A

′)T +

T−1∑
i=0

AiQ(A′)i.

We present the following steps to complete the proof.

Step 1
Firstly we prove that P−

lT+1 is bounded. Since we assume
(C,A) is detectable, there exits a K̃ which can formulate a
suboptimal, asymptotically stable filter by

x̃−
k = Ax̃−

k−1 +AK̃(yk − Cx̃−
k ) +Buk−1,

and its corresponding error covariance is

P̃−
k = A(I − K̃C)P̃−

k−1(I − K̃C)′A′ +AK̃RK̃ ′A′ +Q.

Hence, we can obtain

P̃−
lT+1 = AT (I − K̃C)P̃−

(l−1)T+1(I − K̃C)′(A′)T

+AT K̃RK̃ ′(A′)T +

T−1∑
i=0

AiQ(A′)i.

We assume (C,AT ) is detectable, which makes
ρ(AT (I − K̃C)) < 1, and AT (I − K̃C) is stable and
a constant matrix. Therefore, the result has a bounded
solution. Based on the optimality of Kalman filter, we have
P−
lT+1 ≤ P̃−

lT+1, hence P−
lT+1 is also bounded.

Step 2
Next we prove the incrementality of P−

lT+1. We firstly
assume P−

1 = 0. By simple computation, it can be obtained
that P−

T+1 ≥ P−
1 = 0. For general l,

P−
lT+1

= AT(I−K(l−1)T+1C)P−
(l−1)T+1(I−K(l−1)T+1C)′(A′)T

+ATK(l−1)T+1RK ′
(l−1)T+1(A

′)T +

T−1∑
i=0

AiQ(A′)i
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= min
K

[AT (I −KC)P−
(l−1)T+1(I −KC)′(A′)T

+ATKRK ′(A′)T +

T−1∑
i=0

AiQ(A′)i]

≤ AT (I −KlT+1C)P−
(l−1)T+1(I −KlT+1C)′(A′)T

+ATKlT+1RK ′
lT+1(A

′)T +

T−1∑
i=0

AiQ(A′)i

≤ AT (I −KlT+1C)P−
lT+1(I −KlT+1C)′(A′)T

+ATKlT+1RK ′
lT+1(A

′)T +

T−1∑
i=0

AiQ(A′)i

= P−
(l+1)T+1.

Now we have proved the incrementality and boundedness of
P−
lT+1, hence P−

lT+1 is asymptotically stable, and so is PlT+1.
For P−

lT+1 we have

P−
lT+1 = hT ◦ g̃(P−

(l−1)T+1).

Denote Σ̄ is the asymptotically stable value of P−
lT+1, and it

is the unique solution to the following equation:

Σ̄ = hT ◦ g̃(Σ̄).

We denote the infimum value of Pk as P̃ , and it is simple to
see that P̃ is the asymptotically stable value of PlT+1, hence
we have

P̃ = g̃(Σ̄) = g̃ ◦ hT ◦ g̃(Σ̄) = g ◦ hT−1(P̃ ).

Therefore, we obtain the following results:

lim
l→∞

PlT+1 = P̃ ,

where P̃ is the unique solution to follows:

P̃ = g ◦ hT−1(P̃ ).

Meanwhile, two limits of Pk are given as

lim inf
k→∞

Pk = P̃ ,

lim sup
k→∞

Pk = hT−1(P̃ ).

In summary, we prove Theorem 1 under the zero initial
covariance condition.

Step 3
Finally we consider P−

1 ̸= 0. Define a transition matrix Ψl

as

Ψl = [AT (I −K(l−1)T+1C)][AT (I −K(l−2)T+1C)]

[AT (I −K(l−3)T+1C)] · · · [AT (I −K1C)].

Then P−
lT+1 follows

P−
lT+1 = ΨlP

−
1 Ψ′

l + nonnegative definite terms

≥ ΨlP
−
1 Ψ′

l.

We firstly take P−
1 = βI(β > 0), and it follows that βΨlΨ

′
l.

Since P−
lT+1 is proved to be bounded before, Ψl is also

bounded. Assume that P−
lT+1 has a asymptotically stable value

at this scenario. We rewrite P−
lT+1 as follows:

P−
lT+1 = hT ◦ g̃(P−

(l−1)T+1) = hT−1 ◦
(
h ◦ g̃(P−

(l−1)T+1)
)
.

Hence, we have

P−
lT+1

= hT−1(A(I −K(l−1)T+1C)P−
(l−1)T+1A

′ +Q)

= hT−1(AP−
(l−1)T+1(I −K(l−1)T+1C)

′
A′ +Q)

= ATP−
(l−1)T+1(I −K(l−1)T+1C)′(A′)T +

T−1∑
i=0

AiQ(A′)i.

And Σ̄ can also be computed as follows:

Σ̄ = hT−1(A(I −KC)Σ̄A′ +Q)

= AT (I −KC)Σ̄(A′)T +

T−1∑
i=0

AiQ(A′)i.

By subtraction, it is follows that

P−
lT+1 − Σ̄

= AT (I−KC)(P−
(l−1)T+1−Σ̄)(I−K(l−1)T+1C)′(A′)T

+ATKCP−
(l−1)T+1(I −K(l−1)T+1C)′(A′)T

−AT (I −KC)Σ̄C ′K ′
(l−1)T+1(A

′)T .

For the last two terms, we have

ATKCP−
(l−1)T+1(I −K(l−1)T+1C)′(A′)T

−AT (I −KC)Σ̄C ′K ′
(l−1)T+1(A

′)T

= ATKCP(l−1)T+1(A
′)T −AT P̃C ′K ′

(l−1)T+1(A
′)T .

Substitute Kk = PkC
′R−1 to it, and we obtain the result is

zero. Hence, we get

P−
lT+1 − Σ̄

= AT (I−KC)(P−
(l−1)T+1−Σ̄)(I−K(l−1)T+1C)′(A′)T .

Suppose PT = βI , we have

P−
lT+1 − Σ̄ = [AT (I −KC)]l(P−

1 − Σ̄)Ψ′
l.

Due to (C,AT ) is detectable, and Ψl is bounded, when l →
∞, we have P−

lT+1 = Σ̄.
For an arbitrary P−

1 , we take such β > 0 that βI > P−
1 , and

denote the solution to X = hT ◦ g̃(X) as Σ̄βI−. Meanwhile
we denote Σ̄0 and Σ̄βI as the solution to the same equation
when P−

1 = 0 and P−
1 = βI . We can simply get

Σ̄0 < Σ̄βI− < Σ̄βI .

From the previous proof, both Σ̄0 and Σ̄βI tend to Σ̄, hence
Σ̄βI− converges to Σ̄ as well, i.e., P−

lT+1 converges at this
scenario. Therefore, PlT+1 also converges. Then we can obtain
the same conclusions as in the case of zero initial covariance.

B. Proof of Theorem 2

We consider the case of transmission period T = 2, and
other cases can also be proved similarly. In this case, according
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to eqn. (14), for l ∈ Z+, the transmission scheme is formulated
as follows:

γk =

{
1, k = 2l + 1,

0, k ̸= 2l + 1.

Firstly we consider the scenario of a finite-time horizon N ,
and assume that N = 2L + 1, where L is a positive integer.
Then at time k = N − 1 the measurement is not sent, and at
time k = N − 2 it is sent. Define the information set Ik as

I0 = {∅} ,
Ik = {γ1y1, . . . , γkyk, u0, . . . , uk−1} , k = 1, . . . , N.

The finite-time quadratic objective function for the LQG
control is denoted as J0:N , and is defined as follows:

J0:N ≜ E
[N−1∑

k=0

(x′
kWxk + u′

kUuk) + x′
NWxN

]
.

Meanwhile, we define Jk:N as

Jk:N = min
uk

E
[
x′
kWxk + u′

kUuk + Jk+1|Ik
]
.

At time N , we have JN :N = E[x′
NWxN |IN ]. Therefore, at

time k = N − 1,

JN−1:N

= min
uN−1

E
[
x′
N−1WxN−1 + u′

N−1UuN−1 + JN :N |IN−1

]
= min

uN−1

E
[
x′
N−1WxN−1 + u′

N−1UuN−1 + x′
NWxN |IN−1

]
= min

uN−1

E
[
u′
N−1UuN−1 + x′

N−1A
′WBuN−1

+ u′
N−1B

′WAxN−1 + u′
N−1B

′WBuN−1|IN−1

]
+E

[
x′
N−1WxN−1 + x′

N−1A
′WAxN−1|IN−1

]
+ tr(WQ).

Since the measurement is not sent at this time, for the server
we have x̂N−1 = x̂−

N−1, i.e., E(xN−1|IN−1) = x̂N−1 =
x̂−
N−1. Hence, we have

JN−1:N

= min
uN−1

[
u′
N−1(U +B′WB)uN−1 + 2u′

N−1B
′WAx̂−

N−1

]
+E

[
x′
N−1(W +A′WA)xN−1|IN−1

]
+ tr(WQ).

To find the minimum value, we take the derivative of the term
containing uN−1 in the above result and let it be zero:

2(B′WB + U)u∗
N−1 + 2B′WAx̂−

N−1 = 0,

which leads to

u∗
N−1 = −(B

′
WB + U)−1B

′
WAx̂−

N−1.

Substituting it into the above equation:

JN−1:N

= E
[
x′
N−1(W +A′WA)xN−1|IN−1

]
+ tr(WQ)

− (x̂−
N−1)

′A′WB(B′WB + U)−1B′WAx̂−
N−1.

Let

SN = W,

ΦN−1 = A′SNB (B′SNB + U)
−1

B′SNA,

SN−1 = A′SNA+W − ΦN−1.

Then we have

JN−1:N

= E
[
x′
N−1SN−1xN−1|IN−1

]
+ tr(SNQ)

+E
[
x′
N−1ΦN−1xN−1|IN−1

]
− (x̂−

N−1)
′ΦN−1x̂

−
N−1

= E
[
x′
N−1SN−1xN−1|IN−1

]
+tr(SNQ)+tr(ΦN−1P

−
N−1).

At time k = N − 2,

JN−2:N

= min
uN−2

E
[
x′
N−2WxN−2+u′

N−2UuN−2+JN−1:N |IN−2

]
= min

uN−2

{
u′
N−2UuN−2 +E

(
x′
N−1SN−1xN−1|IN−2

)}
+E

[
x′
N−2WxN−2|IN−2

]
+tr(SNQ)+tr(ΦN−1P

−
N−1)

= min
uN−2

{
u′
N−2UuN−2 +E

[
(AxN−2 +BuN−2 + wN−2)

′

SN−1(AxN−2 +BuN−2 + wN−2)|IN−2

]}
+E

[
x′
N−2WxN−2|IN−2

]
+tr(SNQ)+tr(ΦN−1P

−
N−1)

= min
uN−2

{
u′
N−2(U +B′SN−1B)uN−2

+E
[
x′
N−2A

′SN−1BuN−2+u′
N−2B

′SN−1AxN−2|IN−2

]}
+E

[
x′
N−2A

′SN−1AxN−2|IN−2

]
+ tr(SN−1Q)

+E
[
x′
N−2WxN−2|IN−2

]
+tr(SNQ)+tr(ΦN−1P

−
N−1)

= min
uN−2

{
u′
N−2(U +B′SN−1B)uN−2

+E
[
x′
N−2A

′SN−1BuN−2+u′
N−2B

′SN−1AxN−2|IN−2

]}
+E

[
x′
N−2(A

′SN−1A+W )xN−2|IN−2

]
+ tr

[
(SN−1 + SN )Q

]
+ tr(ΦN−1P

−
N−1).

Similarly, we take the derivative of the term containing uN−2

in the above result and let it be zero:

2(U +B′SN−1B)u∗
N−2 + 2B′SN−1Ax̂N−2 = 0,

which leads to

u∗
N−2 = −(U +B′SN−1B)−1B′SN−1Ax̂N−2.

Substituting it into the above equation, we obtain

JN−2:N

= E
[
x′
N−2(A

′SN−1A+W )xN−2|IN−2

]
+ tr

[
(SN−1 + SN )Q

]
+ tr(ΦN−1P

−
N−1)

−x′
N−2A

′SN−1B(U+B′SN−1B)−1B′SN−1Ax̂N−2.
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Let

ΦN−2 = A
′
SN−1B(U +B

′
SN−1B)−1B

′
SN−1A,

SN−2 = A
′
SN−1A+W − ΦN−2.

Then

JN−2:N

= E
[
x′
N−2SN−2xN−2|IN−2

]
+E

[
x′
N−2ΦN−2xN−2|IN−2

]
− x̂′

N−2ΦN−2x̂N−2 + tr
[
(SN−1 + SN )Q

]
+ tr(ΦN−1P

−
N−1)

= E
[
x′
N−2SN−2xN−2|IN−2

]
+ tr

[
(SN−1 + SN )Q

]
+ tr(ΦN−1P

−
N−1) + tr(ΦN−2PN−2).

Similarly, for any time k, we have

Φk = A′Sk+1B(U +B′Sk+1B)−1B′Sk+1A,

SN = W,

Sk = A′Sk+1A+W − Φk,

Lk = −(B′Sk+1B + U)−1B′Sk+1A,

u∗
k = LkE[xk|Ik].

Then the optimal objective function at time k is

Jk:N = E(x′
kSkxk|Ik) + rk + tk,

where

rN = 0,

rk = rk+1 + tr(Sk+1Q),

tN = 0,

tk =

{
tk+1 + tr(ΦkP

−
k ), k ̸= 2l + 1,

tk+1 + tr(ΦkPk), k = 2l + 1.

Hence, the optimal objective function is

J0:N = E(x
′

0S0x0) +

N−1∑
k=0

tr(Sk+1Q)

+
∑

k ̸=2l+1, k∈[0,N−1]

tr(ΦkP
−
k ) +

∑
k=2l+1, k∈[0,N−1]

tr(ΦkPk).

After straightforward calculation we can see that, for other
values of T , the similar conclusions can also be drawn through
the similar proof steps. For general T , we have

J0:N = E(x
′

0S0x0) +

N−1∑
k=0

tr(Sk+1Q)

+
∑

k ̸=lT+1, k∈[0,N−1]

tr(ΦkP
−
k ) +

∑
k=lT+1, k∈[0,N−1]

tr(ΦkPk).

Under the infinite-time horizon, we have

O∗ = lim
N→∞

1

N
J0:N .

According to eqn. (26) and the above equations, we can write
O∗ as

O∗ = tr(SQ) + tr
(
Φ
1

T

T−1∑
i=0

hi(P̃ )
)
.
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