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ABSTRACT
We propose an algorithm for computing Nash equilibria (NE) in a

class of conflicts with multiple battlefields with uniform battlefield

values and a non-linear aggregation function. By expanding the

symmetrization idea of Hart [9], proposed for the Colonel Blotto

game, to the wider class of symmetric conflicts with multiple battle-

fields, we reduce the number of strategies of the players by an ex-

ponential factor. We propose a clash matrix algorithm which allows

for computing the payoffs in the symmetrized model in polynomial

time. Combining symmetrization and clash matrix algorithm with

the double oracle algorithm we obtain an algorithm for computing

NE in the models in question that achieves a significant speed-up as

compared to the standard, LP-based, approach. We also introduce

a heuristic to further speed up the process. Overall, our approach

offers an efficient and novel method for computing NE in a specific

class of conflicts, with potential practical applications in various

fields.

KEYWORDS
chopstick auction; Nash Equilibrium; conflicts with multiple battle-

fields; zero-sum game; optimal strategies

1 INTRODUCTION
Real-life scenarios of rivalry between two or more players often

involve competition in more than one area at a time. Examples

include firms competing simultaneously for multiple markets, mil-

itary commanders deploying troops to the front lines, political

parties distributing campaign funds among different regions of the

country, or airport security having to assign a number of police

dogs among security checkpoints. Game theoretic models used to

formally capture such competition form a class called conflicts with
multiple battlefields [13]. A famous example of such a model is the

Colonel Blotto game [4]. In these models, two players distribute

their limited resources across a number of battlefields. Assignment

of resources determines the outcome at each battlefield and the

outcome of the game is an aggregate of the outcomes at the indi-

vidual battlefields. The way the outcomes at individual battlefields

are aggregated depends on a particular application. A well-known

aggregation function is taking the sum of outcomes across all the

battlefields. This leads to the Colonel Blotto game.

In this paper we address the problem of computing Nash equi-

libria under two natural aggregation functions called more than
opponent and majoritarian. The more than opponent aggregation

takes value 1, if the number of battlefields won is strictly greater

than the number of battlefields lost, 0, if it is equal, and −1, if it
is less. It is suitable for military conflicts where the fighting par-

ties care not about how many battles they win but about winning

more battles than the opponent in order to win the war. It is also

applicable to political competitions where candidates are rather

win-motivated than vote-motivated, caring predominantly about

winning the competition and not about the margin at which they

win. The majoritarian aggregation takes a value of 1, if the number

of battlefields won exceeds half of the total number, 0 if it is equal,

and −1 if it is less. It is applicable to single-member districts vot-

ing rivalry between two political parties. It is also considered in a

model of simultaneous standard auctions with externalities, called

chopstick auctions [6, 19, 20], where only winning more than half

of the objects bears any value to each bidder. Unlike in the Colonel

Blotto game, the aggregation functions in question do not result in

bilinear payoffs and, therefore, we can not apply the polynomial

time algorithms designed for conflicts with multiple battlefields

and bilinear payoffs [1, 3].

In this paper, we give a homogeneous formulation of conflicts

with multiple battlefields. The main obstacles in computing the NE

in these models are the exponential (wrt the model parameters)

size of the strategy sets of the players and non-bilinear payoffs.

Generalizing the idea of Hart [9], we use a reduction of the strat-

egy sets of the models in question by an exponential factor, called

symmetrization. The reduction of the strategy sets makes the com-

putation of payoffs in the symmetrized model challenging. Our

main contribution is a clash matrix algorithm which allows for com-

puting the payoffs in the symmetrized models in polynomial time.

We combine the polynomial time algorithm for computing payoffs

with the double oracle algorithm [15], used to compute equilibria in

zero-sum games with large strategy spaces. We propose a heuristic,

based on the natural monotonicity properties of the aggregation

functions, that allows us to further speed up this algorithm. We

show, via computational experiments, that thus obtained algorithm

achieves a significant speed-up as compared to any approach that

requires calculating the entire payoff matrix.

1.1 Related literature
Conflicts with multiple battlefields, considered since the beginning

of modern game theory, were first introduced by Borel [4], where

the Colonel Blotto game is defined. Since then, many game theoretic

models that fall into this category were studied, including the hide-

and-seek game [21], chopstick auctions [20], audit games [2], as well

as some types of security games [12, 16]. See [13] for an excellent

survey of this type of models.

The literature on NE computation is vast, and we restrict at-

tention to the closest related works. The models we consider are

two-player zero-sum games. The computation of NE in such games

can be reduced to solving an LP problem [18] and requires polyno-

mial time with respect to the number of strategies of both players.
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An exponential number of pure strategies with respect to the model

parameters makes those methods inapplicable in the case of con-

flicts with multiple battlefields. In the case of bilinear payoffs, like in

Colonel Blotto game, NE can be computed in polynomial time [1, 3].

This is also possible for some types of security games [12].

The double oracle algorithm (DOA)was first proposed as amethod

for solving zero-sum games in [15]. It was later used for solving

zero-sum security games on graphs in [10], which showed that it is

worth considering as an alternative for LP-solver-based algorithms.

Games considered in this paper fall into a broader category of

integer programming games (IPGs) [11]. [5] proposed a sampled
generation method (SGM) which is a significant generalization of

DOA to multiple players and arbitrary payoffs. They show that

SGM allows for finding NE in a finite number of steps. SGM (and,

in particular, DOA) proceeds by iteratively expanding the sets of

strategies of the players and solving thus obtained sampled games.

Since conflicts with multiple battlefields we consider are zero-sum

games, we solve the sample games using the LP solvers facilitated

with the clash matrix algorithm. In the case of the general IPGs the

PNS algorithm can be used [5, 17].

The rest of the paper is organized as follows. In Section 2 we

define the model of conflicts with multiple battlefields. Section 3

provides the complexity result of finding the best response in chop-

stick auctions and majoritarian auctions. In Section 4 we define

the symmetrized version of the model. Computation of payoffs

from symmetrized strategy profiles and the clash matrix algorithm

are given in Section 5. Section 6 presents the double oracle algo-

rithm and the heuristic for improving its performance in the case

of models in question. We provide a computational evaluation of

our approach in Section 7 and conclude in Section 8.

2 MODEL
Conflicts with multiple battlefields model a competition between

two players, whom we will denote A and B. Each player has a

number of discrete resources, e.g. military units or coins, described

by 𝐷A and 𝐷B, respectively. Players compete on the set [𝑛] =

{1, 2, . . . 𝑛} of 𝑛 battlefields. We assume that 𝑛 ≥ 2. Each battlefield

𝑖 ∈ [𝑛] has value 1. The player’s strategy is to distribute her re-

sources across battlefields. The set of strategies of player𝐶 ∈ {A,B}
is:

𝑆𝐶 =

{
𝒔 ∈ N𝑛 :

𝑛∑︁
𝑖=1

𝑠𝑖 = 𝐷𝐶

}
. (1)

A pair of strategies (𝒔A, 𝒔B) is called a strategy profile.
Payoff from a single battlefield 𝑖 ∈ [𝑛] is defined as

𝑢A𝑖

(
𝒔A, 𝒔B

)
= −𝑢B𝑖

(
𝒔A, 𝒔B

)
= sign

(
𝑠A𝑖 − 𝑠

B
𝑖

)
, (2)

meaning that a battlefield is won by the player who assigned more

resources to it.

Applying (2) to a strategy profile we get a battlefield outcomes

vector

𝑢A
(
𝒔A, 𝒔B

)
= −𝑢B

(
𝒔A, 𝒔B

)
=

(
𝑢A
1

(
𝒔A, 𝒔B

)
, . . . , 𝑢A𝑛

(
𝒔A, 𝒔B

))
. (3)

Values of vector 𝒖, i.e. the result of (3), are in {91, 0, 1}𝑛 .

Definition 2.1 (Aggregation function). Function 𝑓 : {91, 0, 1}𝑛→𝑅

is an aggregation function if 𝑓 returns the same value for all per-

mutations of every vector 𝒖 ∈ {91, 0, 1}𝑛 .

Observation 1 (Aggregation functions). Each function 𝑓

satisfying Definition 2.1 can be defined as 𝑓 (𝒖)= 𝑓𝑛 (𝑘𝑊 , 𝑘𝐿), where
𝑘𝑊 and 𝑘𝐿 describe the number of 1s and -1s in vector 𝒖.

Given the aggregation function 𝑓 we define the payoffs of each

of the players by:

𝜋A
𝑓

(
𝒔A, 𝒔B

)
= −𝜋B

𝑓

(
𝒔A, 𝒔B

)
= 𝑓

(
𝑢A

(
𝒔A, 𝒔B

))
. (4)

As the payoffs of two players always sum up to 0, the defined class

of models describes zero-sum games. Some of the most commonly

used aggregation functions are:

𝑓𝑏𝑙𝑜𝑡𝑡𝑜 (𝒖) =
𝑛∑︁
𝑖=1

𝑢𝑖 , (5)

𝑓𝑚𝑡𝑜 (𝒖) = sign

(
𝑛∑︁
𝑖=1

𝑢𝑖

)
, (6)

𝑓𝑐ℎ𝑜 (𝒖) =
[
𝑛∑︁
𝑖=1

[𝑢𝑖 = 1] > 𝑛/2
]
9

[
𝑛∑︁
𝑖=1

[𝑢𝑖 = 91] > 𝑛/2
]
, (7)

where, given a condition 𝜑 , [𝜑] is the Iverson bracket taking

value 1 if 𝜑 is satisfied and value 0 otherwise.

Aggregation function (5) is the linear function used in Colonel

Blotto game [4], (6) is the “more than opponent” function, and (7)

is the “majoritarian” function. In general, many more aggregation

functions generate nontrivial games.

Definition 2.2 (Conflict with multiple battlefields). Quadruple
(𝐷A, 𝐷B, 𝑛, 𝑓 ) defines a zero-sum two-player game with strategies

sets defined by (1) and payoffs defined by (4).

We allow the players to make randomized choices. A mixed
strategy of player 𝐶 ∈ {A,B} is a probability distribution on 𝑆𝐶 .

Given a non-empty set 𝑋 , let Δ(𝑋 ) denote the set of all probability
distributions on 𝑋 . The expected payoff to player 𝐶 ∈ {A,B} from a

pair of mixed strategies (𝝃A, 𝝃B) ∈ Δ(𝑆A) × Δ(𝑆B) is equal to

Π𝐶
𝑓

(
𝝃A, 𝝃B

)
=

∑︁
(𝒙,𝒛 ) ∈𝑆A×𝑆B

𝜉A𝒙 𝜉
B
𝒛 𝜋

𝐶
𝑓
(𝒙, 𝒛) .

We assume that the players make their decisions “simultaneously”,

i.e. each player chooses her strategy without observing the choice of

the opponent. We are interested in (mixed strategy) Nash equilibria

(NE) of the game, i.e. mixed strategy profiles (𝝃A, 𝝃B) ∈ Δ(𝑆A) ×
Δ(𝑆B) such that no player can improve her expected payoff by

changing her strategy unilaterally, i.e. for each 𝐶 ∈ {A,B} and all

𝜻 ∈ Δ (𝑆𝐶 ),

Π𝐶
𝑓

(
𝝃A, 𝝃B

)
≥ Π𝐶

𝑓

(
𝜻 , 𝝃 9𝐶

)
,

where 9𝐶 denotes the player other than𝐶 and (𝜻 , 𝝃 9𝐶 ) is the strat-
egy profile obtained from (𝝃A, 𝝃B) by replacing 𝝃𝐶 with 𝜻 .



3 COMPLEXITY OF FINDING THE BEST PURE
RESPONSE

Although the complexity of computing Nash equilibria of the games

in question (defined by aggregation functions (6) and (7)) remains

unknown, we show that finding a pure strategy best response to

a given mixed strategy is a computationally hard problem. It is in

stark contrast to the Colonel Blotto game, where finding a pure

strategy best response is solvable in polynomial time. We prove

the result using a reduction from the max coverage problem. This

follows the idea in [2], where computing a pure strategy response

to a mixed strategy, that maximizes the probability of obtaining

payoff above a given threshold in the Colonel Blotto game is shown

to be computationally hard.

The hardness result of finding the best response does not neces-

sarily imply any hardness result for the considered game, however,

it can be considered an insightful indicator of how hard the game is

to solve. See [22] for results about a class of games where the hard-

ness of finding the best response implies the hardness of finding a

Nash equilibrium of the game.

Assume a mixed strategy 𝝃B of player B, given as a list of pure

strategies in its support, and their associated probabilities. The best

response problem for a given aggregation function 𝑓 , denoted by

𝐵𝑅𝑓 , is to find a pure strategy 𝒔A of player A that maximizes the

ΠA
𝑓
(𝒔A, 𝝃B).

Proposition 3.1. For aggregation functions 𝑓 given by (6) and (7),
there is no polynomial time algorithm to solve 𝐵𝑅𝑓 unless 𝑃 = 𝑁𝑃 .

Proof. To prove this hardness we provide a reduction from the

max-coverage problem to 𝐵𝑅𝑓 . A number 𝑘 and a collection of sets

𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑚} are given. The maximum coverage problem is

to find a collection 𝑆 ′ ⊆ 𝑆 , such that |𝑆 ′ | ≤ 𝑘 and the number of

covered elements (i.e. |⋃𝑆𝑖 ∈𝑆 ′ 𝑆𝑖 |) is maximized.

Let 𝐸 =
⋃

𝑆𝑖 ∈𝑆 𝑆𝑖 denote the set of all elements in the given

max-coverage instance. Assume, that the number of sets in 𝑆 in

which a given element appears is the same for every element in 𝐸

and denote this number by 𝑡 . If that is not the case, a polynomial

number (with respect to |𝐸 | · |𝑆 |) of additional singleton sets can be

added to collection 𝑆 , without interfering with the max-coverage

complexity, or the resulting collection 𝑆 ′ as no singleton is more

desired than any other sets containing the only element of the

considered singleton.

Consider a game with aggregation function 𝑓 defined by (7),

2 · |𝑆 | battlefields, where the player A has |𝑆 | + 𝑘 resources and

player B has ( |𝑆 | + 𝑘 + 1) · ( |𝑆 | − 𝑡) · |𝐸 | resources. The first |𝑆 | of
2 · |𝑆 | battlefields correspond to the sets in 𝑆 . For every element

𝑒 ∈ 𝐸, we denote a corresponding pure strategy of player B, denoted
by 𝑠B,𝑒 , by assigning |𝑆 | + 𝑘 + 1 resources to each battlefield that its

corresponding set does not contain 𝑒 and assigning 0 resources in

all other battlefields. Assume that player B uses a mixed strategy

defined by choosing uniformly from the set of strategies

⋃
𝑒∈𝐸 𝑠

B,𝑒
.

Assume that the best response of player A that maximizes her

expected payoff is given. Note, that as player B always assigns

either 0 or |𝑆 | + 𝑘 + 1 resources to a single battlefield, it is sufficient

for the player A to assign either 0 or 1 resources on every battlefield.

We claim that the best response of player A assigns |𝑆 | resources
to the remaining |𝑆 | battlefields (one to each), which are always

assigned 0 by player B. This guarantees that player A does not lose

with probability 1, as it always wins at least half of the battlefields.

The remaining 𝑘 resources are assigned between the first |𝑆 | battle-
fields, yielding a max-coverage of size 𝑘 from sets in |𝑆 |, where each
battlefield corresponding to the set in the considered max-coverage

will be assigned exactly one resource.

The proof can be easily adapted for the aggregation function (6).

Instead of assigning additional |𝑆 | battlefields that are assigned

more than 0 by player B, we only add |𝑆 | − 𝑡 additional battlefields
and we reduce the number of resources of player A from |𝑆 | + 𝑘 to

|𝑆 | − 𝑡 + 𝑘 .
□

4 SYMMETRIZED MODEL
A player with 𝐷𝐶 resources to distribute over 𝑛 battlefields has(

𝑛 + 𝐷𝐶 − 1
𝑛 − 1

)
≤ (𝑛 + 𝐷𝐶 − 1)min(𝑛−1,𝐷𝐶 )

(8)

pure strategies. Thus, when the number of battlefields or the num-

ber of resources of the players are fixed, both players have poly-

nomial size strategy sets and, since the game is zero-sum, a NE

can be found in polynomial time [18]. It is important to note that

the degree of the polynomial that describes the time complexity is

limited by the parameter value (the number of battlefields or the

number of resources of the two players) which can be arbitrarily

large. Moreover, when we consider a model with 𝑛 battlefields and

a fixed parameter 𝑑 ∈ 𝑁 , such that the number of resources of both

players is (𝑛 + 𝑑), the number of strategies of the players grows

exponentially (c.f. (8)). For example, with 20 battlefields and 25

resources, the number of ways in which a player can distribute

the resources across the battlefields is more than 10
12
. With such a

number of pure strategies, LP solvers, which are standard tools used

for solving zero-sum games, become impossible to use in practice.

To address the problem of large strategy sets, we follow the

idea of Hart [9] and consider a symmetrized variant of the model,

defined as follows. Let 𝑃𝑛 denote the set of all permutations over

[𝑛]. Given a strategy 𝒔 = (𝑠1, . . . , 𝑠𝑛) ∈𝑆𝐶 of player𝐶 let 𝜎 (𝒔) be the
mixed strategywhich for each permutation 𝑝 ∈ 𝑃𝑛 over [𝑛] chooses,
with probability 1/𝑛!, an assignment 𝑝 (𝒔) = (𝑠𝑝 (1) , . . . , 𝑠𝑝 (𝑛) ) of
resources.

Definition 4.1 (Symmetrized conflict with multiple battlefields).
A symmetrized conflict with multiple battlefields is the variant of

conflict with multiple battlefields with the same set of players, each

player𝐶 ∈ {A,B} having a set of strategies 𝜎 (𝑆𝐶 ) = {𝜎 (𝒔) : 𝒔 ∈ 𝑆𝐶 }
and payoff from strategy profiles (𝜎 (𝒔A), 𝜎 (𝒔B)) ∈𝜎 (𝑆A) ×𝜎 (𝑆B)
defined by Π𝐶

𝑓
(𝜎 (𝒔A), 𝜎 (𝒔B)).

The elements of 𝜎 (𝑆𝐶 ) are called symmetric strategies. Since sym-

metric strategies are order-invariant, when referring to a symmetric

strategy 𝜎 (𝒔) we will assume that 𝑠1 ≥ . . . ≥ 𝑠𝑛 . Both models (de-

fined in Definitions 2.2 and 4.1) describe finite games and therefore,

by the Nash theorem, each of these games has a Nash equilibrium

in mixed strategies.

Given a mixed strategy 𝝃 ∈ Δ (𝑆𝐶 ) of player 𝐶 in the original

game, let 𝜎 (𝝃 ) be the mixed strategy that for each permutation

𝑝 ∈ 𝑃𝑛 and each 𝒔 ∈ 𝑆𝐶 chooses, with probability 𝜉𝒔/𝑛!, assignment

(𝑠𝑝 (1) , . . . , 𝑠𝑝 (𝑛) ). Notice that for any mixed strategy 𝜻 ∈ Δ(𝜎 (𝑆𝐶 ))



in the symmetrized game there exists a mixed strategy 𝝃 in the

original game such that 𝜻 = 𝜎 (𝝃 ). We will call the mixed strategies

of the symmetrized game symmetric mixed strategies.
The following proposition implies that any NE of any game

that matches Definition 4.1 is also an NE of a corresponding game

described by Definition 2.2.

Proposition 4.2. For any mixed strategy profile
(
𝝃A, 𝝃B

)
of the

symmetric conflict with multiple battlefields, if
(
𝜎

(
𝝃A

)
, 𝜎

(
𝝃B

))
is

an NE of the symmetrized variant of the game then it is also an NE
of the original game.

Proof. First, observe that for any player 𝐶 ∈ {A,B}, any aggre-

gation function 𝑓 , any two mixed strategies 𝝃 ∈ Δ (𝑆𝐶 ), of 𝐶 and

𝜻 ∈ Δ (𝑆9𝐶 ) of the other player and any permutation 𝑞 ∈ 𝑃𝑛 ,

Π𝐶
𝑓
(𝜎 (𝝃 ) , 𝑞(𝜻 )) =

∑︁
𝑝∈𝑃𝑛

∑︁
𝒙∈Δ(𝑆𝐶 )

∑︁
𝒛∈Δ(𝑆9𝐶 )

𝜉𝒙

𝑛!
𝜁𝒛𝜋

𝐶
𝑓
(𝑝 (𝒙) , 𝑞 (𝒛))

=
∑︁
𝑝∈𝑃𝑛

∑︁
𝒙∈Δ(𝑆𝐶 )

∑︁
𝒛∈Δ(𝑆9𝐶 )

𝜉𝒙

𝑛!
𝜁𝒛𝜋

𝐶
𝑓

(
𝑝

(
𝑞−1 (𝒙)

)
, 𝒛

)
=

∑︁
𝑝∈𝑃𝑛

∑︁
𝒙∈Δ(𝑆𝐶 )

∑︁
𝒛∈Δ(𝑆9𝐶 )

𝜉𝒙

𝑛!
𝜁𝒛𝜋

𝐶
𝑓
(𝑝 (𝒙) , 𝒛) = Π𝐶

𝑓
(𝜎 (𝝃 ) , 𝜻 ) .

(9)

Take any mixed strategy profile (𝝃A, 𝝃B) of the game in question

and suppose that

(
𝜎

(
𝝃A

)
, 𝜎

(
𝝃B

))
is a MNE of the symmetrized

variant of the game. Assume, to the contrary, that it is not a MNE

of the original game. It means that there exists a player 𝐶 ∈ {A,B}
and a mixed strategy 𝜻 ∈ Δ (𝑆𝐶 ) of 𝐶 such that Π𝐶

𝑓

(
𝜻 , 𝜎

(
𝝃 9𝐶

))
>

Π𝐶
𝑓

(
𝜎

(
𝝃A

)
, 𝜎

(
𝝃B

))
. By (9), Π𝐶

𝑓

(
𝜻 , 𝜎

(
𝝃 9𝐶

))
=Π𝐶

𝑓

(
𝜎 (𝜻 ) , 𝜎

(
𝝃 9𝐶

))
.

Hence Π𝐶
𝑓

(
𝜎 (𝜻 ) , 𝜎

(
𝝃 9𝐶

))
>Π𝐶

𝑓

(
𝜎

(
𝝃A

)
, 𝜎

(
𝝃B

))
. Since 𝜎 (𝜻 ) is a

symmetric strategy, this contradicts the assumption that the profile(
𝜎

(
𝝃A

)
, 𝜎

(
𝝃B

))
is a MNE of the symmetrized variant of the game.

Thus the claim of the proposition must hold.

□

The advantage of considering the symmetrized models is that the

strategy sets of the players are reduced by the exponential factor,

which is presented in the following figure.

Figure 1a shows the comparison of the number of the pure strate-

gies and the number of the symmetric strategies, when the number

of resources is a linear function of the number of battlefields (here

the number of battlefields increased by 5). The vertical axis shows

the number of strategies using a logarithmic scale. By Eq. (8), when

only the number of battlefields or only the number of resources

grows, the size of strategy sets (both pure and symmetric) grows

polynomially. Only when both the parameters grow together at the

same time, the size of strategy sets grow exponentially.

Figure 1b shows the ratio of the number of pure strategies to the

number of symmetric strategies (the reduction factor) for data in

Figure 1b. Notice that although the number of symmetric strategies

is still exponential, the reduction is by an exponential factor with

rescpect to the parameters of the model.

To realize that the number of symmetrized strategies is still

exponential with respect to the model parameters when the number

(a) The number of pure and sym-
metric strategies for 𝑛 + 5 re-
sources.

(b) The reduction factor.

Figure 1: Comparison of number of pure and pure symmetric
strategies

of resources of a player is a linear function of the number of the

battlefields, note that, as shown in [8], the number 𝑝 (𝑛) of different
partitions of 𝑛 into the sum of non-negative integers has asymptotic

growth of:

𝑝 (𝑛) ∼ 1

4𝑛
√
3

· exp
(
𝜋

√︂
𝑛

2

)
. (10)

Consider a model with 𝑛 battlefields and a fixed parameter 𝑑 ∈ 𝑁 ,

such that the number of resources of both players is (𝑛 + 𝑑). The
number of symmetrized strategies of each player is a number of

partitions of (𝑛 + 𝑑) into at most 𝑛 parts. This is larger than the

number of partitions of 𝑛 into at most 𝑛 parts, which is exactly

𝑝 (𝑛). Therefore, the number of symmetrized strategies grows ex-

ponentially with respect to the number of battlefields in such a

setting.

5 COMPUTING PAYOFFS FROM SYMMETRIC
STRATEGIES

To benefit from restricting to the symmetrized variant of the model,

we need to be able to efficiently compute single payoffs from sym-

metric strategy profiles

(
𝜎

(
𝒔A

)
, 𝜎

(
𝒔B

))
.

Notice that payoff to player 𝐶 ∈ {A,B} from a strategy profile(
𝜎

(
𝒔A

)
, 𝜎

(
𝒔B

))
∈ 𝜎 (𝑆A)×𝜎 (𝑆B) is given by:

Π𝐶
𝑓

(
𝜎

(
𝒔A

)
, 𝜎

(
𝒔B

))
=

1

(𝑛!)2
∑︁
𝑞∈𝑃𝑛

∑︁
𝑝∈𝑃𝑛

𝜋𝐶
𝑓

(
𝑞

(
𝒔A

)
, 𝑝

(
𝒔B

))
=

1

𝑛!

∑︁
𝑝∈𝑃𝑛

𝜋𝐶
𝑓

(
𝒔A, 𝑝

(
𝒔B

))
. (11)

To calculate the payoff from a pair of symmetric strategies(
𝜎

(
𝒔A

)
, 𝜎

(
𝒔B

))
in a naïve way, we need to calculate the payoff

of the general model for each permutation. This makes calculating

the payoff matrices of the symmetrized games almost as costly as

calculating the payoff matrices of unsymmetrized games. To ad-

dress this issue, we provide an algorithm that computes a single

payoff from a pair of symmetric strategies in polynomial time with

respect to 𝑛.



5.1 Clash matrix
By a clash matrix of a pair of symmetric strategies

(
𝜎

(
𝒔A

)
, 𝜎

(
𝒔B

))
we mean a matrix of dimension 𝑛 × 𝑛 defined as follows:

𝑴𝒔A,𝒔B

𝑖, 𝑗
= sign

(
𝑠A𝑖 − 𝑠

B
𝑗

)
.

That is, the matrix cell at coordinates (𝑖, 𝑗) stores information (dif-

ference sign) of the result of clashing the 𝑖-th resource in player

A’s vector 𝒔A with the 𝑗-th resource in player B’s vector 𝒔B.

Example 5.1 (Clash matrix).

𝑴 (3,1,0),(2,2,0) = ©­«
2 2 0

3 1 1 1

1 −1 −1 1

0 −1 −1 0

ª®¬
Note that each permutation in formula (5) can be used to select

a subset of elements in matrix 𝑴𝒔A,𝒔B
in such a way that exactly

one element is selected from each row and each column. This is

illustrated by the following formula:

ΠA
𝑓

(
𝜎

(
𝒔A

)
, 𝜎

(
𝒔B

))
=

1

𝑛!

∑︁
𝑝∈𝑃𝑛

𝜋A
𝑓

(
𝒔A, 𝑝

(
𝒔B

))
=

1

𝑛!

∑︁
𝑝∈𝑃𝑛

𝑓

(
𝑴𝒔A,𝒔B

1,𝑝 (1) , . . . ,𝑴
𝒔A,𝒔B

𝑛,𝑝 (𝑛)

)
(12)

We can think of the problem of computing a single payoff from

a pair of symmetric strategies as follows. A matrix 𝑴𝒔A,𝒔B
is a

chessboard of dimension 𝑛 × 𝑛, divided into three distinct areas:

𝑊 𝒔A,𝒔B = {(𝑖, 𝑗) ∈ [𝑛] × [𝑛] : 𝑴𝒔A,𝒔B

𝑖, 𝑗
= 1},

𝑇 𝒔A,𝒔B = {(𝑖, 𝑗) ∈ [𝑛] × [𝑛] : 𝑴𝒔A,𝒔B

𝑖, 𝑗
= 0},

𝐿𝒔
A,𝒔B = {(𝑖, 𝑗) ∈ [𝑛] × [𝑛] : 𝑴𝒔A,𝒔B

𝑖, 𝑗
= −1}.

Each permutation 𝑝 ∈ 𝑃𝑛 corresponds to distributing 𝑛 rooks on

the mentioned chessboard of dimension 𝑛×𝑛 in such a way that no

two rooks attack each other. Each row contains one rook and the

rook in the 𝑖’th row is located in 𝑝 (𝑖)’th column. For 𝐷 ∈ {𝑊,𝑇, 𝐿},
let 𝐾𝐷 (𝑝 |𝑴) denote the number of rooks distributed in area 𝐷 of

clash matrix 𝑴 by permutation 𝑝 . By Observation 1, it follows that:

𝜋A
𝑓

(
𝒔A, 𝑝

(
𝒔B

))
= 𝑓𝑛 (𝐾𝑊 (𝑝 |𝑴), 𝐾𝐿 (𝑝 |𝑴)) . (13)

Let ℎ(𝑘𝑊 , 𝑘𝐿 |𝑴) be the number of permutations 𝑝 ∈ 𝑃𝑛 that

place exactly 𝑘𝑊 rooks in area𝑊 and 𝑘𝐿 rooks in area 𝐿 for a given

clash matrix 𝑴 , i.e.

ℎ(𝑘𝑊 , 𝑘𝐿 |𝑴)=
∑︁
𝑝∈𝑃𝑛
[𝐾𝑊 (𝑝 |𝑴)=𝑘𝑊 ∧ 𝐾𝐿 (𝑝 |𝑴)=𝑘𝐿] .

Using function ℎ and (13) we can redefine payoff (12):

ΠA
𝑓

(
𝜎

(
𝒔A

)
, 𝜎

(
𝒔B

))
=

1

𝑛!

𝑛∑︁
𝑘𝑊 =0

𝑛∑︁
𝑘𝐿=0

ℎ(𝑘𝑊 , 𝑘𝐿) 𝑓𝑛 (𝑘𝑊 , 𝑘𝐿) . (14)

For better clarity, we omit 𝑴𝒔A,𝒔B
parameter in ℎ and 𝑓𝑛 notation.

In the following subsections, we show how to compute values of

function ℎ for a given clash matrix.

5.2 Properties of clash matrices
Note that due to the non-increasing ordering of the strategy vectors

of both players, each column and row of a clash matrix describes a

monotonic sequence of length 𝑛. Using this observation, we con-

clude that all clash matrices share a very particular structure. Area

𝑊 occupies the upper part of the matrix, potentially reaching lower

and lower in each successive column, and area𝑇 consists of rectan-

gles, perhaps touching one another at the corners but never sharing

a side. Example 5.2 illustrates such a matrix.

When looking for the recursive formula for function ℎ we will

be “cutting off” certain parts of the matrix (submatrix) with a cer-

tain number of distributed rooks and thus reducing the size of the

considered matrix (submatrix).

Example 5.2 (Successive cut-offs of the clash matrix). An exam-

ple of the clash matrix with the successive “cut-offs”, marked by

their numbers is shown in Figure 2. Areas are colored as follows:

yellow (𝐿), blue (𝑇 ), and red (𝑊 ). An example of a strategy pair that

yields the considered clash matrix is 𝑠𝐴 = (8, 8, 6, 5, 4, 2, 1, 1, 0), 𝑠𝐵 =

(8, 8, 8, 7, 5, 3, 3, 1, 0).

9

6

2

1

3

5

7 4

8

8 8 8 7 5 3 3 1 0

8

8

6

5

4

2

1

1

0

Figure 2: Clash matrix with successive cut-offs

5.3 Recursive formula
In this section, we derive a recursive formula describing the number

of possible distributions of rooks that do not attack one another on

a chessboard (clash matrix) with designated areas𝑊 , 𝐿, and 𝑇 . Let:

𝑴 | (𝑖, 𝑗 ) – the submatrix of 𝑴 consisting of the intersection

of the first 𝑖 rows and first 𝑗 columns of 𝑴 .

𝐻 (𝑖, 𝑗,𝑚, 𝑘𝑊 , 𝑘𝐿 | 𝑴) – the number of ways in which 𝑚

rooks can be distributed in the intersection of the first 𝑖 rows

and 𝑗 columns of the clash matrix 𝑴 , such that there are

exactly 𝑘𝑊 rooks in area𝑊 and exactly 𝑘𝐿 rooks are in area

𝐿.

𝑅(𝑖, 𝑗, 𝑡) =
( 𝑗
𝑡

) (𝑖
𝑡

)
𝑡 ! – the number of ways to distribute 𝑡 rooks

in a uniform area with 𝑖 rows and 𝑗 columns.

From the definition of 𝐻 it follows that

ℎ (𝑘𝑊 , 𝑘𝐿 | 𝑴) = 𝐻 (𝑛, 𝑛, 𝑛, 𝑘𝑊 , 𝑘𝐿 | 𝑴) .
To find the recursion, in each step, we choose the number of

columns and rows so as to cover the entire coherent section of 𝑇



lying in the right lower corner. If the corner lies in 𝐿, we say that

the width of the considered section of 𝑇 is 0. When the corner is in

𝑊 , we say that the height of the considered section of 𝑇 is 0. The

recursive formula is expressed as follows:

𝐻1 (𝑖, 𝑗,𝑚, 𝑘𝑊 , 𝑘𝐿 | 𝑴) =∑︁
𝑟1,𝑟2,𝑟3≥0

𝑟1+𝑟2+𝑟3≤𝑚

𝐻 (𝑖′, 𝑗 ′,𝑚 − 𝑟𝑠 , 𝑘𝑊 − 𝑟3, 𝑘𝐿 − 𝑟1 | 𝑴 | (𝑖′, 𝑗 ′ ) )

· 𝑅(𝑖 − 𝑖′, 𝑗 ′ − (𝑚 − 𝑟𝑠 ), 𝑟1) · 𝑅(𝑖 − 𝑖′ − 𝑟1, 𝑗 − 𝑗 ′, 𝑟2)·
𝑅(𝑖′ − (𝑚 − 𝑟𝑠 ), 𝑗 − 𝑗 ′ − 𝑟2, 𝑟3),

where 𝑟𝑠 = 𝑟1 + 𝑟2 + 𝑟3. To show the recursion, we consider every

possible division of𝑚 rooks into four groups, as indicated below in

Figure 3. When the height or width of the considered section of 𝑇

is 0, two of these groups have a size of 0.

𝑇𝐿

𝑊𝑴 | (𝑖′, 𝑗 ′ )

1

2

𝑖′

𝑖

1 2 𝑗 ′ 𝑗

𝑟1 rooks
𝑟2 rooks

𝑟3 rooks
(𝑚 − 𝑟1 − 𝑟2 − 𝑟3)

rooks

Figure 3: Cutting-off procedure

We can think of it as follows:

(1) We place (𝑚 − 𝑟1 − 𝑟2 − 𝑟3) rooks in area 𝑴 | (𝑖′, 𝑗 ′ ) .
(2) In the rectangle lying in 𝐿 (whose (𝑚 − 𝑟1 − 𝑟2 − 𝑟3) columns

have already been excluded in (1)) we place 𝑟1 rooks in 𝑖 − 𝑖′
free rows and 𝑗 ′ − (𝑚 − 𝑟1 − 𝑟2 − 𝑟3) free columns.

(3) In the rectangle lying in𝑇 (whose 𝑟1 rows have already been

excluded in (2)), we place 𝑟2 rooks in 𝑖 − 𝑖′ − 𝑟1 free rows and
𝑗 − 𝑗 ′ free columns.

(4) In the rectangle lying in𝑊 (whose (𝑚 − 𝑟1 − 𝑟2 − 𝑟3) rows
and 𝑟2 columns have already been excluded in (1) and (3))

we place 𝑟3 rooks in 𝑖
′ − (𝑚 − 𝑟1 − 𝑟2 − 𝑟3) free rows and

𝑗 − 𝑗 ′ − 𝑟2 free columns.

(5) As 𝑟3 rooks were placed in𝑊 and 𝑟1 rooks were placed in 𝐿,

we subtract those values from 𝑘𝑊 and 𝑘𝐿 respectively in the

recursive call of 𝐻 in point (1).

Using the formula described above, we will eventually arrive at a

situation where submatrix 𝑴 is entirely within one of the three

areas under consideration. Then:

𝐻0 (𝑖, 𝑗,𝑚, 𝑘𝑊 , 𝑘𝐿 | 𝑴) =
𝑅(𝑖, 𝑗,𝑚), if 𝑘𝑊 =𝑚 and 𝑘𝐿 = 0 and 𝑴 ⊆𝑊 ,

𝑅(𝑖, 𝑗,𝑚), if 𝑘𝐿 =𝑚 and 𝑘𝑊 = 0 and 𝑴 ⊆ 𝐿,
𝑅(𝑖, 𝑗,𝑚), if 𝑘𝐿 = 𝑘𝑊 = 0 and 𝑴 ⊆ 𝑇 ,
0, otherwise.

Algorithm 1: The dynamic algorithm for calculating payoff

from a pair of symmetric strategies

Input: Two non-increasing vectors 𝒔A and 𝒔B

Result: Payoff value from a given profile.

/* initialization */

Determine the clash matrix;

Determine the array 𝑘𝑛𝑜𝑡𝑠 [], containing pairs of
coordinates of consecutive points at which the “cut-off”

occurs, in ascending order;

Allocate a 4-dimensional array 𝑣𝑎𝑙𝑢𝑒𝑠 [], of size
2𝑛 × (𝑛 + 1) × (𝑛 + 1) × (𝑛 + 1);
for 𝑘𝑛𝑜𝑡𝐼𝑛𝑑𝑒𝑥 ← 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑘𝑛𝑜𝑡𝑠) − 1 do

𝑘𝑛𝑜𝑡 ← 𝑘𝑛𝑜𝑡𝑠 [𝑘𝑛𝑜𝑡𝐼𝑛𝑑𝑒𝑥];
𝑖 ← 𝑘𝑛𝑜𝑡 [0];
𝑗 ← 𝑘𝑛𝑜𝑡 [1];
for 𝑟𝑜𝑜𝑘𝑠𝑁𝑢𝑚 ← 0 to min(𝑖, 𝑗) do

for 𝑘𝑊 ← 0 to min(𝑖, 𝑗) do
for 𝑘𝐿 ← 0 to min(𝑖, 𝑗) do

𝑣𝑎𝑙𝑢𝑒𝑠 [𝑘𝑛𝑜𝑡𝐼𝑛𝑑𝑒𝑥, 𝑟𝑜𝑜𝑘𝑠𝑁𝑢𝑚,𝑘𝑊 , 𝑘𝐿] ←
𝐻 (𝑖, 𝑗, 𝑟𝑜𝑜𝑘𝑠𝑁𝑢𝑚,𝑘𝑊 , 𝑘𝐿);

/* function H uses 𝑣𝑎𝑙𝑢𝑒 [] and clash

matrix */

𝑙𝑎𝑠𝑡𝐾𝑛𝑜𝑡 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑘𝑛𝑜𝑡𝑠) − 1;
/* last knot is always (𝑛, 𝑛) */

𝑟𝑒𝑠𝑢𝑙𝑡 = 0;

for 𝑘𝑊 ← 0 to 𝑛 do
for 𝑘𝐿 ← 0 to 𝑛 do

𝑟𝑒𝑠𝑢𝑙𝑡+ = 𝑣𝑎𝑙𝑢𝑒𝑠 [𝑙𝑎𝑠𝑡𝐾𝑛𝑜𝑡, 𝑛, 𝑘𝑊 , 𝑘𝐿] · 𝑓𝑛 (𝑘𝑊 , 𝑘𝐿)
return 𝑟𝑒𝑠𝑢𝑙𝑡/𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 (𝑛);

5.4 Dynamic algorithm
Values of the recursive formula described above can be computed

using dynamic programming using Algorithm 1. Algorithm 1 runs

in memory limited by 𝑂 (𝑛4) = 2𝑛 · (𝑛 + 1) · (𝑛 + 1) · (𝑛 + 1) and
requires no more than𝑂 (𝑛7) = 4 · 2𝑛 · (𝑛 + 1) · (𝑛 + 1) · (𝑛 + 1) ·

(𝑛+3
3

)
arithmetic operations.

6 DOUBLE ORACLE ALGORITHM
In Section 5 we presented an algorithm for computing single payoffs

from symmetric strategy profiles in polynomial time with respect

to the model parameters. Sizes of the sets of symmetric strategies

of both players, although much smaller, are still exponential with

respect to the model parameters. Because of that, LP based methods

for solving zero-sum games, which require calculating the whole

payoff matrix, are still inefficient for large parameters values. For

that reason we use the Double Oracle Algorithm (DOA), described

by Algorithm 2, which can be used for finding NE of zero-sum

games without calculating the whole payoff matrix. Double Oracle

Algorithm correctness was proven in [15].

6.1 Oracle
When using DOA, one has to use an oracle that for a given mixed

strategy of a player 𝐶 returns a best-response pure strategy of the

opponent. Given a mixed strategy 𝝃𝐶 of player 𝐶 , we consider



all the strategy profiles (𝝃𝐶 , 𝒔9𝐶 ), where 𝒔9𝐶 is a pure strategy of

player 9𝐶 , and find a pure strategy that maximizes payoff for player

9𝐶 . To compute these payoffs we use Algorithm 1. Given two sets

of pure strategies, 𝑋A
and 𝑋B

, of players A and B, respectively, by
CoreLP(𝑋A, 𝑋B) we mean a strategy profile that is NE of the zero-

sum game restricted to the pure strategies in 𝑋A
and 𝑋B

, found by

an LP-solver.

Algorithm 2: The Double Oracle Algorithm for solving

zero-sum games

Result: NE of the zero-sum game

/* initialization */

1. Initialize 𝑋A
with one pure strategy of player A;

2. Initialize 𝑋B
with one pure strategy of player B;

repeat(
𝝃A, 𝝃B

)
← CoreLP

(
𝑋A, 𝑋B

)
;

𝑋A ← 𝑋A ∪ {𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (𝝃B)};
𝑋B ← 𝑋B ∪ {𝑏𝑒𝑠𝑡_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (𝝃A)};

until convergence;

return
(
𝝃A, 𝝃B

)
;

As we can choose the initial strategies of both players arbitrarily,

we decided to start with the most even assignment between all the

battlefields for each player.

6.2 Proposed heuristic
In this section we propose a simple, but effective, heuristic that

allows us to avoid unnecessary calculations for a subset of strategies.

We first prove a simple observation regarding the pure strategies

that are the best responses to a mixed strategy of the opponent. By a

best response of player𝐶 to a mixed strategy 𝝃 9𝐶 of the opponent we

mean a pure strategy 𝒔𝐶
𝑏𝑒𝑠𝑡

that maximizes the payoff of 𝐶 against

𝝃 9𝐶 .

Definition 6.1 (Maximal assignment). Wedefinemax_assign(𝝃𝐶 ) ∈
𝑁 , of player 𝐶 as

max

𝑠∈𝑆𝐶
𝝃𝐶 (𝑠 )>0

max

𝑖∈{1,...,𝑛}
𝑠𝑖 , (15)

i.e. the biggest number of resources that player 𝐶 assigns to single

battlefield with positive probability when playing the strategy 𝝃𝐶 .

Let 𝑓 be an aggregation function that ismonotonic non-decreasing

in its first argument and monotonic non-increasing in its second

argument, meaning that a player cannot decrease her payoff by

increasing the number of battlefields won and cannot increase her

payoff when the number of battlefields won by the opponent in-

creases. When the disproportion of resources between the players,

meaning |𝐷A −𝐷B | is not greater then 𝑛, the following proposition
always holds.

Proposition 6.2. For any mixed strategy 𝝃𝐶 of player𝐶 and any
aggregation function 𝑓 as described above, there exists a best response
pure strategy 𝒔9𝐶

𝑏𝑒𝑠𝑡
of player 9𝐶 , that satisfies

max_assign(𝒔9𝐶
𝑏𝑒𝑠𝑡
) ≤ max_assign(𝝃𝐶 ) + 1. (16)

(a) More than opponent (b) Majoritarian

Figure 4: Run times to the number of battlefields

Proof. Take any pure strategy 𝒔9𝐶 that maximizes payoff of

player 9𝐶 against a given mixed strategy 𝝃𝐶 . If this strategy does

not satisfy (16) thenwe can reduce the number of resources at battle-

fields where the number of resources exceeds (max_assign(𝝃𝐶 )+1)
to (max_assign(𝝃𝐶 ) + 1), as those battlefields are still always won
by 9𝐶 , and increase the number of resources at the battlefields

where the current assignment is below (max_assign(𝝃𝐶 ) + 1). As
the aggregation function is monotonic non-decreasing in its first

argument and monotonic non-increasing in its second argument,

the payoff of player 9𝐶 does not decrease after such a redistribu-

tion. □

By Proposition 6.2, when computing a best response to a given

mixed strategy 𝝃𝐶 , we can restrict attention to the pure strate-

gies of the opponent for which the max_assign value exceeds the

max_assign value of the mixed strategy 𝜉𝐶 by at most one. This

significantly reduces the number of necessary calculations and

therefore the time required to compute the NE of the game in

question.

7 EXPERIMENTAL EVALUATION
We implemented two versions of Algorithm 1 for finding payoff

matrices of the symmetrized games with the aggregation functions,

one given by (7) and one given by (6), using𝐶++’s vector class from
𝐶++’s standard library. We compared the acquired run times of

the algorithm with CPU and GPU-based approaches that calculate

payoffs based on (5) for finding payoff matrices of the symmetrized

game. Experiments were run on a computational cluster XXXX

(anonymization) with a central processing unit (CPU) Intel Xeon

E5-2640 v4 (10 cores) and the GPU unit Titan V. Four cores of the

processor were used while conducting each of the experiments. All

the time results in the experiments are averages from 10 runs of

the program. The program we used to obtain payoff matrices with

CPU and GPU is proposed and described in [14]. Figure 4 shows the

comparison of the times required by all three methods for finding

the whole payoff matrices of both games. The numbers of battle-

fields are shown on the horizontal axis. The number of resources

of each player is a linear function of the number of battlefields (the

number of battlefields increased by 5). The vertical axis shows the

run times of the programs using a logarithmic scale. The time limit

for each experiment was set to 10
5
seconds.



When considering the more than opponent (Figure 4a) game, the

maximal value of parameters that GPU based approach was able

to calculate the payoff matrix for was 23 resources to distribute

over 18 battlefields. The achieved speedup of the clash matrix for

the same parameters was 18 times. For the majoritarian (Figure 4b)

game, the maximal value of parameters that GPU based approach

was able to calculate the payoff matrix for was 24 resources to

distribute over 19 battlefields. The achieved speedup of the clash

matrix for the same parameters was 48 times. The speedup for 23

resources to distribute over 18 battlefields was 16 times (similar for

both aggregation functions).

Although our method is significantly faster, the time required

to calculate the payoff matrix is still the bottleneck for solving the

models in question. Therefore we include Figure 5, which shows a

comparison of the time results of the calculation of the entire payoff

matrix of the game, with the two versions of DOA (with andwithout

the proposed heuristic) that yield a Nash Equilibrium of a game.

We use the time results for calculating the entire payoff matrix as

a time-bound on every approach that calculates the entire payoff

matrix and then solves the game using this matrix (e.g. the standard

LP-solver approach). All of the programs use a symmetrized model

and calculate single payoffs using the clash matrix. The numbers

of battlefields are shown on the horizontal axis. The number of

resources of each player is once again a linear function of the

number of battlefields (the number of battlefields increased by 5).

We used the state-of-the-art Gurobi [7] LP-solver for solving the

matrix games as well as finding the NE when using DOA (CoreLP

function).

For the more than opponent game (Figure 5a), speed-up achieved

for the game where both players have 25 resources to distribute

over 20 battlefields by the DOA algorithm when compared to the

LP-solver is 34 times. In contrast, when using the DOA algorithm

with the heuristic that we propose, one gets a speed-up of more

than 300 times. When considering the more than opponent game

(Figure 5b), speed-up achieved for the game where both players

have 25 resources to distribute over 20 battlefields by the DOA

algorithm when compared to the LP-solver is 10 times. In contrast,

when using the DOA algorithm with the heuristic that we propose,

one gets a speed-up of more than 80 times. This shows that the

proposed heuristic, although simple, is very effective in both mod-

els. When comparing the LP-solver-based approach, where payoff

matrices are computed using a GPU, and the clash matrix-based

DOA approach, using the proposed heuristic, the achieved speed-up

for the game where both players have 25 resources to distribute

over 20 battlefields would be more than 3000 times for both models.

Unfortunately, the run time of the GPU-based method for finding

the payoff matrix takes too long for us to know the exact speedups

that could be achieved.

8 CONCLUSIONS
In this paper, we consider a class of conflicts with multiple battle-

fields with discrete resources and uniform battlefields values. We

show that the NE of the models in question can be found by ex-

amining the symmetrized models, where the number of strategies,

although still exponential with respect to the model parameters, is

reduced by an exponential factor.

(a) More than opponent (b) Majoritarian

Figure 5: Run times of different algorithms

Our contribution has two main components. First, we propose a

clash matrix algorithm to obtain a single payoff for a pair of sym-

metric strategies in polynomial time. We carry out a comparison

of run times required to compute the payoff matrices using the

clash matrix algorithm and naïve algorithms (CPU and GPU based).

Our algorithm, which works for the whole class of the described

models, is significantly faster in practice than both mentioned ap-

proaches. The symmetrization combined with the proposed clash

matrix algorithm allows for reducing the number of strategies by an

exponential factor at the expense of polynomial time for computing

the payoffs.

Second, we apply the Double Oracle Algorithm to find an NE

of the Chopstick Auctions. Using DOA with the heuristic that we

propose, combined with the clash matrix approach for calculating

single payoffs gives significant speed-up for the considered subclass

of games.
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