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Continuity of HYM connections with respect to metric

variations

Rémi Delloque

Abstract

We investigate the set of (real Dolbeault classes of) balanced metrics Θ on a balanced
manifold X with respect to which a torsion-free coherent sheaf E on X is slope stable. We
prove that the set of all such [Θ] ∈ Hn−1,n−1(X,R) is an open convex cone locally defined by
a finite number of linear inequalities.

When E is a Hermitian vector bundle, the Kobayashi–Hitchin correspondence provides as-
sociated Hermitian Yang–Mills connections, which we show depend continuously on the metric,
even around classes with respect to which E is only semi-stable. In this case, the holomorphic
structure induced by the connection is the holomorphic structure of the associated graded ob-
ject. The method relies on semi-stable perturbation techniques for geometric PDEs with a
moment map interpretation and is quite versatile, and we hope that it can be used in other
similar problems.

1 Introduction

The famous Kobayashi–Hitchin correspondence [14, 18, 5, 27] gives the equivalence between the
existence of Hermitian Yang–Mills (HYM) connections on a vector bundle E → X and slope stability
[20, 26]. HYM connections correspond to solutions of a differential equation while slope stability is
a purely algebraic notion. These tools are used to construct and study the moduli space of vector
bundles on a given complex manifold.

Both of these notions depend on the balanced metric on the balanced manifold X (balanced
metrics are defined below). It is a natural question to ask how E may become stable or unstable
when this metric varies, and to study the behaviour of the associated HYM connections. It is easy
to see that stability is an open condition in the space of balanced metrics and that we can locally
build a smooth family of associated HYM connections around a metric Θ0 with respect to which E
is stable. However, when E is only semi-stable with respect to Θ0, problems occur and wall-crossing
phenomena appear. The method used here is inspired from [25, 4, 3], and relies on semi-stable
perturbation techniques for geometric PDEs with a moment map interpretation.

Let g be a metric on X and ω be its Kähler form. Then, by definition, X is Kähler if and only
if dω = 0. However, slope stability of E is determined by the inequalities µ[ωn−1](S) < µ[ωn−1](E)
for all coherent sub-sheaves S of E with 0 < rk(S) < rk(E). Here, n = dim(X) and µ[ωn−1](E) =
c1(E)∪[ωn−1]

rk(E) is the slope of E . We see that these inequalities are linear in ωn−1 and ω is not

required to be closed, only ωn−1 is. When ωn−1 is closed (but not necessarily ω), we say that X
is balanced and this is enough to get the Kobayashi–Hitchin correspondence. This is inspired from
the idea of Greb, Ross and Toma in [9] where wall-crossing phenomena are studied with respect to
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multipolarisations to make the equations linear instead of polynomial. We recall general definitions
and results about balanced manifolds in Section 2.

From here, the inequalities that define slope stability are linear in Θ = ωn−1

(n−1)! . As in the Kähler

case, we define the balanced cone BX as the set of all real Dolbeault classes [Θ] ∈ Hn−1,n−1(X,R) =
Hn−1,n−1(X,C)∩H2n−1(X,R) of positive (n−1, n−1) forms Θ. In Section 3, we prove that locally,
there is only a finite number of these inequalities to verify in order to obtain all of them. This is a
consequence of the following result (Corollary 3.4 below).

Proposition 1. Let X be a compact complex balanced manifold of balanced cone BX and E → X
a torsion-free coherent sheaf. Then, for all compact K ⊂ BX , there is a finite family S1, . . . ,Sp ⊂ E
with for all k, 0 < rk(Sk) < rk(E) such that for all [Θ] ∈ K, E is [Θ]-stable (resp. [Θ]-semi-stable)
if and only if for all k, µ[Θ](Sk) < µ[Θ](E) (resp. µ[Θ](Sk) 6 µ[Θ](E)).

In the smooth projective setting, stronger results of the same kind are already known, such as
[10, Theorem 6.7]. The main results of this paper are the analytical ones. Proposition 1 gives the
structure of the set of metrics with respect to which E is stable (resp. semi-stable).

Theorem 2. The set CD
s (E) (resp. C

D
ss(E)) of balanced classes of metrics [Θ] with respect to which

E is stable (resp. semi-stable) is locally an open (resp. closed) convex polyhedral cone.

A more precise version of this theorem with topological properties is given by Theorem 3.5
below.

Let E = (E, ∂E , h) be a Hermitian holomorphic vector bundle. When E is [Θ]-stable (i.e. stable
with respect to [Θ]), the Kobayashi–Hitchin correspondence tells us that we can find a Θ-HYM
connection ∇ = ∂ + ∂ (i.e. HYM with respect to Θ) such that (E, ∂) is biholomorphic to E . In
other words, the holomorphic structure is preserved when we replace ∂E by ∂. Concretely, it is
characterised by the fact that ∂ is in the GC-orbit of ∂E , where GC is the complex gauge group,
whose action on complex structures is defined below.

In Section 4, we investigate the behaviour of the HYM connections when Θ approaches a metric
Θ0 with respect to which E is only semi-stable. When the graded object of E with respect to Θ0,
namely Gr[Θ0](E), is locally free, we show a convergence result when Θ → Θ0 (Theorem 4.7 below).

Theorem 3. For all Θε = Θ0 + ε L2
1-close to Θ0 such that E is [Θε]-semi-stable, there is an

associated connection ∇ε = ∂ε + ∂ε that has the three following properties,

1. ∇ε is HYM with respect to Θε.

2. (E, ∂ε) is biholomorphic to Gr[Θε](E), which is locally free. In particular, if E is Θε-stable,

then (E, ∂ε) ∼= E .

3. For all integer d > 2, the bound
∥

∥∂ε − ∂0

∥

∥

L2
d

= O
(

‖ε‖L2
d−1

+
√

‖[ε]‖
)

holds, where ‖·‖L2
d

is an L2
d Sobolev norm and ‖·‖ is an Euclidean norm on Hn−1,n−1(X,R). Therefore, the

same bound holds for ‖∂ε − ∂0‖L2
d
and ‖∇ε −∇0‖L2

d
. In particular, ∇ε → ∇0 for the C∞

topologies.

The HYM connection, when it exists in some gauge orbit, is not unique but it is exactly one
G-orbit where G is the group of smooth sections u of endomorphisms of E which verify uu∗ = IdE .
A consequence of the previous theorem is the following one (Theorem 4.10 below).
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Theorem 4. The function that maps each balanced metric Θ with respect to which E is semi-stable
and sufficiently smooth to the class modulo G of the Θ-HYM connections ∇ = ∂ + ∂ such that
(E, ∂) ∼= Gr[Θ](E), is a continuous function with respect to the C∞ topologies.

Theorem 2 is a generalisation of [3, Proposition 1.1] and Theorem 3 is a generalisation of [3,
Theorem 1.2], where in both cases, we remove the hypothesis that the group of automorphisms of
the graded object is abelian. Theorem 4 is a natural consequence of Theorem 3 and may be useful
to study the variations of the moduli space of vector bundles when the metric of the manifold varies.
Proposition 1 may also be more generally useful to study wall-crossing phenomena involving the
slope stability.

The method used in this article are classical semi-stable perturbation techniques. When E is
a [Θ0]-semi-stable vector bundle, it can be viewed as a small deformation of its graded object
Gr(E). Then, by Kuranishi theory [15], all the small deformations of Gr(E) belong, up to a gauge
transformation, in the Kuranishi slice which is a germ of finite dimensional complex manifold, on
which the group G of automorphisms of Gr(E) acts naturally. Moreover, for all Θ L2

1-close to
[Θ0], there is a Kähler form on this germ depending of Θ such that the action of G is Hamiltonian
with respect to this form. Additionally, the zeroes of the associated moment map correspond to
connections ∇ such that the contraction of the curvature with respect to Θ is orthogonal to the
Lie algebra k of the maximal compact subgroup of G. We want this contraction to be a constant
homothety in order to obtain a HYM connection.

From here, there are two methods. The first one is to find a zero of this moment map using GIT
theory, and then perturb the induced connection to obtain a new connection whose contraction of the
curvature is a constant homothety. This method is used in [4] in the case of Z-critical connections
for example. The second method is to first perturb the Kuranishi slice so the holomorphic structures
in the perturbed slice induce connections whose contraction of the curvature belongs to k. Then, we
find a zero of the associated perturbed moment map, whose induced connection is directly HYM.
The main issue with this second method is that the perturbed slice is no more a germ of complex
manifold, it is only real symplectic. Nevertheless, this second method is used in [22] in the context
of K-stability and in [3] with HYM equations. It is also used in [21] together with the moment map
flow in the context of constant scalar curvature metrics. In this paper, we use the second method too
with the moment map flow, which is versatile and can probably be used in similar settings whenever
there is a PDE with a moment map interpretation and have to study wall-crossing phenomena.

Acknowledgement I thank my PhD supervisor Carl Tipler for pointing out this problem, giving
me the idea of the perturbed Kuranishi slice and for his feedbacks on the paper. I also thank Lars
Martin Sektnan for his feedbacks on this paper and the talk we had about it and about his work
with Annamaria Ortu on constant scalar curvature metrics. I thank Matei Toma for pointing out
a mistake in the first draft of this paper.

2 Generalities about balanced metrics and their Laplace-

Beltrami operators

2.1 Operations on compact complex manifolds

Let (X, g) be a Hermitian compact complex manifold of dimension n > 2 and let ω be its Kähler

form (not necessarily closed). Then Θ = ωn−1

(n−1)! is a positive (n−1, n−1) form in the following sens.
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In a local frame (z1, . . . , zn), we can define ̂dzi ∧ dzj for each 1 6 i, j 6 n as dz1∧dz1∧· · ·∧dzn∧dzn
where we removed the terms dzi and dzj . Then, the local expression of Θ has the form,

Θ =
∑

16i,j6n

Θij
̂dzi ∧ dzj ,

Positivity of Θ means that the matrix formed of the Θij is Hermitian positive definite at each point,
and this does not depend on the choice of the local frame. By [19, Equation (4.8)], ω (thus g) is
entirely determined by Θ and depends smoothly on it. In other words, any positive (n− 1, n− 1)
form Θ gives rise to a metric g on X which depends smoothly on Θ. Let VolΘ = ωn

n! be the natural
associated volume form. For all Θ > 0, we can define the trace operator ΛΘ on complex forms as
⋆−1 ◦ (ω ∧ ·) ◦ ⋆ where ⋆ is the Hodge star. In particular, on (1, 1) forms α, it is characterised by
the equality,

(ΛΘα)VolΘ = α ∧Θ.

This operator naturally extends to forms with values in a complex vector bundle E on X . Let
(E, h) be a complex Hermitian vector bundle on X . Following for example [11, Definition 4.1.11],
let us recall the natural Hermitian product on Ωp,q(X,E) with respect to the metric Θ,

〈α, β〉Θ =

∫

X

(α|β)Θ,hVolΘ, (1)

where (·|·)Θ,h is the natural Hermitian product on Λp,qT ∗X⊗E depending on Θ and h, and we see
α and β as sections of this bundle. It makes the decomposition Ω∗(X,E) =

⊕

06p,q6n Ω
p,q(X,E)

orthogonal. In particular, on sections ξ, η and on 1-forms α, β, we have,

〈ξ, η〉Θ =

∫

X

h(ξ, η)VolΘ, 〈α, β〉Θ =

∫

X

h(α, Jβ) ∧Θ.

Here, J is the natural complex structure on Ω∗(X,E) given by J = ip−q on (p, q)-forms. It enables
us to consider adjoints of operators with respect to these Hermitian products. Let ∇ = ∂ + ∂ be

an integrable unitary connection on E (i.e. ∂
2
= 0 and ∇ is the Chern connection associated to

(∂, h)). Then, we can define the Laplacian operators with respect to Θ and ∇,

∆Θ,∂ = ∂∂∗ + ∂∗∂, ∆Θ,∂ = ∂∂
∗
+ ∂

∗
∂, ∆Θ,∇ = ∇∇∗ +∇∗∇,

The second one is called the Dolbeault Laplacian and the third one the Laplace-Dolbeault Laplacian.
These three operators are real self-adjoint and elliptic of order 2. See for example [12, Chapter VI,
Section 5.4].

2.2 When X is balanced

The Hermitian metric g on X is said to be a balanced metric if the associated Kähler form ω is
such that ωn−1 is closed. Balanced metrics where introduced by Michelsohn in [19], see [6] for a

reference. Gauduchon showed that Θ = ωn−1

(n−1)! is closed (i.e. ω is balanced) if and only if ω is

co-closed [7, Proposition 1]. We also call abusively Θ a balanced metric in this case. When such a
metric exists, we say that X is balanced. A characterisation of balanced manifolds is given by [19,
Theorem A]. Similarly to the Kähler cone, we can introduce the balanced cone,

BX = {[Θ] ∈ Hn−1,n−1(X,R)|Θ positive (n− 1, n− 1)-form},

where the Hp,p(X,R) = Hp,p(X,C) ∩H2p(X,R) are the real Dolbeault cohomology groups.
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Remark. In the literature about balanced manifolds, the balanced cone usually contains elements
of the Bott-Chern cohomology groups instead of the real Dolbeault ones, where the boundary
morphisms are i∂∂ instead of d. Here, we only need to work modulo d. Since ∂∂ = 1

2 (∂ − ∂)d,
the real Dolbeault cohomology groups are naturally quotients of the Bott-Chern ones. Therefore,
this article’s balanced cone can be seen as a projection of the classical balanced cone on a quotient
space.

From now on, we assume that Θ is balanced.

Lemma 2.1. The following Kähler identities hold on the space Ω1(X,E),

ΛΘ∂ = i∂
∗
,

ΛΘ∂ = −i∂∗,

and the following hold on the space of smooth sections Ω0(X,E),

∆Θ,∂ = iΛΘ∂∂,

∆Θ,∂ = −iΛΘ∂∂,

∆Θ,∂ +∆Θ,∂ = ∆Θ,∇ = iΛΘ(∂∂ − ∂∂),

∆Θ,∂ −∆Θ,∂ = ΛΘiF∇,

where F∇ = ∇2 = ∂∂ + ∂∂ is the curvature form of ∇.

Proof. The proof is the same as the standard proof of Kähler identities, but only on sections and
1-forms. Indeed, if α is a (0, 1) form and s a 0-form with values in E,

〈

ΛΘ∂α, s
〉

Θ
=

∫

X

h(ΛΘ∂α, s)VolΘ

=

∫

X

h(∂α, s) ∧Θ

=

∫

X

dh(α, s) ∧Θ+

∫

X

h(α, ∂s) ∧Θ

=

∫

X

h(α,−J i∂s) ∧Θ because dΘ = 0,

= 〈α,−i∂s〉Θ .

We obtain the second identity. The first one is similar. We deduce that, on smooth sections,

∆Θ,∂ = ∂∂∗ + ∂∗∂ = ∂∗∂ = iΛΘ∂∂,

and similarly,
∆Θ,∂ = ∂∂

∗
+ ∂

∗
∂ = ∂

∗
∂ = −iΛΘ∂∂.

The equality ∆Θ,∇ = ∆Θ,∂ + ∆Θ,∂ always hold by definition even if we don’t assume dΘ = 0.
The third equality involving Laplacians is the sum of the two first and the fourth one is their
difference.
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Proposition 2.2. On smooth sections, ∆Θ,∇ verifies ker(∆Θ,∇) = ker(∇) is the space of ∇-parallel
sections and if ΛΘiF∇ = 0, then ker(∆Θ,∇) = ker(∂) is the space of ∂-holomorphic sections.

Proof. The first equality is a direct consequence of the fact that ∆Θ,∇ = ∇∗∇ on smooth forms.
The second one comes from Lemma 2.1, which implies that ∆Θ,∇ = ∆Θ,∂+∆Θ,∂ and if ΛΘiF∇ = 0,

∆Θ,∂ = ∆Θ,∂ hence ∆Θ,∇ = 2∆Θ,∂ = 2∂
∗
∂.

By abuse of notation, we still call ∇ = ∂+ ∂ the natural connection on End(E) that arises from
∇ on E.

2.3 Gauge action and its derivative

Let us to introduce the complex gauge group GC of smooth sections of End(E) which are isomor-
phisms on each fibre. It is an infinite dimensional complex Lie group and Lie(GC) = Ω0(X,End(E)).
This group acts on connections on E with,

f · ∂ = f−1∗ ◦ ∂ ◦ f∗, f · ∂ = f ◦ ∂ ◦ f−1, f · ∇ = f · ∂ + f · ∂.

The adjoints are computed with respect to the metric h. Notice that this action preserves the

integrability condition of the Dolbeault operator ∂
2
= 0 and it preserves the compatibility with

the metric h of the connection. When ∂1 = f · ∂2, the holomorphic vector bundles E1 = (E, ∂1)
and E2 = (E, ∂2) are isomorphic because f : E2 → E1 is a biholomorphism. Conversely, such an
isomorphism gives rise to a gauge equivalence between the Dolbeault operators of E1 and E2.

Similarly, we call G ⊂ GC the unitary gauge group defined as the set of all u ∈ GC such that
uu∗ = IdE . It is an infinite dimensional real Lie group with Lie(G) = iΩ0(X,EndH(E, h)) where
EndH(E, h) ⊂ End(E) is the real smooth bundle of Hermitian endomorphisms with respect to h.
Notice that the action of G on connections is given by u · ∇ = u ◦ ∇ ◦ u∗, thus the associated
curvature verifies Fu·∇ = uF∇u

∗.
We will be interested in finding a Dolbeault operator ∂ on E which satisfy the property of being

Hermitian Yang–Mills (see Definition 3.6 in Section 3) such that (E, ∂) is isomorphic to a given
holomorphic vector bundle E = (E, ∂E). Therefore, we shall search ∂ in the GC-orbit of ∂E . For
this, it will be useful to compute infinitesimal variations of f 7→ f · ∂E .

Proposition 2.3. For any ∇, the map

Ψ :

{

Ω0(X,EndH(E, h)) → Ω0(X,EndH(E, h))
s 7→ ΛΘiFes·∇

,

verifies dΨ(0) = ∆Θ,∇ (on End(E)). Notice that since ∆Θ,∇ is a real operator, it preserves
EndH(E, h).

Proof. We have for all smooth Hermitian sections s of End(E),

es · ∇ = ∇+ es∂(e−s) + e−s∂(es),

hence
Fes·∇ = F∇ +∇αs + αs ∧ αs,
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where αs = es∂(e−s)+e−s∂(es) ∈ iΩ1(X,EndH(E, h)). We have α0 = 0 and if v ∈ TsΩ
0(X,EndH(E, h)) =

Ω0(X,EndH(E, h)),

∂

∂s
|s=0(e

s∂(e−s)) · v =
∂

∂s
|s=0(e

s) · v∂(e−0) + e0∂

(

∂

∂s
|s=0(e

−s) · v

)

= −∂v.

Hence ∂
∂s |s=0αs · v = ∂v − ∂v symmetrically. Since αs ∧ αs is quadratic and α0 = 0, its derivative

at 0 vanishes thus
∂

∂s
|s=0iFes·∇ = i∇(∂v − ∂v) = i(∂∂ − ∂∂)v.

After applying ΛΘ, by Lemma 2.1, we deduce that dΨ(0) = ∆Θ,∇.

3 Hermitian Yang–Mills equation and finiteness results about

slope stability

3.1 Slope stability

Any holomorphic vector bundle can be seen as the locally free coherent sheaf of its holomorphic
sections. In this subsection, we study more generally coherent sheaves on X and their slope stablity
with respect to a positive real Dolbeault class [Θ].

Definition 3.1. We define the [Θ]-slope µ[Θ] of a non-zero torsion-free coherent sheaf E as

µ[Θ](E) =
c1(E) ∪ [Θ]

rk(E)
.

Following Mumford [20], we say that,

• E is [Θ]-stable if for all coherent sub-sheaf S ⊂ E with 0 < rk(S) < rk(E), µ[Θ](S) < µ[Θ](E),

• E is [Θ]-semi-stable if for all coherent sub-sheaf S ⊂ E with 0 < rk(S) < rk(E), µ[Θ](S) 6

µ[Θ](E),

• E is [Θ]-polystable if E is a direct sum of stable coherent sheaves of the same [Θ]-slope.

Clearly, stability implies polystability. When E can be written as a direct sum
⊕m

i=1 Ei (or more
generally as an extension of the Ei), then c1(E) =

∑m
i=1 c1(Ei) thus µ[Θ](E) is a weighted average of

the µ[Θ](Ei) where the weights are the rk(Ei). Therefore, polystability implies semi-stability.
In the case where E is only [Θ]-semi-stable, we may use a Jordan-Hölder filtration to reduce to

the polystable case.

Proposition 3.2. If E is a [Θ]-semi-stable vector bundle, then it admits a Jordan-Hölder filtration,
i.e. a filtration by coherent sub-sheaves 0 ( F1 ( · · · ( Fm = E such that for all k, µ[Θ](Fk) =
µ[Θ](E) and each Gk = Fk/Fk−1 is torsion-free and [Θ]-stable. Moreover, the graded object,

Gr[Θ](E) =
m
⊕

k=1

Gk,

is unique up to isomorphism.
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Proof. This is a standard categorical result. See for example [24, Lemma 12.9.7].

When E is locally free i.e. a vector bundle, it is said to be sufficiently smooth if its graded object
Gr[Θ](E) is locally free too, or equivalently, each Gi is locally free.

Remark. When F ⊂ E are smooth vector bundles, a Hermitian metric h on E gives rise to a
diffeomorphism between E/F and F⊥. In other words, any exact sequence of smooth vector bundles
splits. In particular, E and Gr[Θ](E) have the same smooth structure when E is a sufficiently smooth
vector bundle.

Remark. E is [Θ]-polystable if and only if it is [Θ]-semi-stable and Gr[Θ](E) ∼= E .

3.2 Stable and semi-stable polyhedral cones

Let E be a torsion-free coherent sheaf. We are interested here in the structure of the set of Θ such
that E is [Θ]-stable (resp. [Θ]-semi-stable). Let us introduce,

Cs(E) = {Θ > 0|dΘ = 0 and E is [Θ]-stable}, Css(E) = {Θ > 0|dΘ = 0 and E is [Θ]-semi-stable},

and their real Dolbeault projection counterparts,

CD
s (E) = {[Θ]|Θ ∈ Cs(E)} = {[Θ] ∈ BX |E is [Θ]-stable},

CD
ss(E) = {[Θ]|Θ ∈ Css(E)} = {[Θ] ∈ BX |E is [Θ]-semi-stable}.

When S ⊂ E verifies 0 < rk(S) < rk(E), let,

lS :







Hn−1,n−1(X,R) → R

[Θ] 7→ µ[Θ](E/S)− µ[Θ](S) =

(

c1(E/S)

rk(E/S)
−

c1(S)

rk(S)

)

∧ [Θ]
.

Each lS is a linear form on Hn−1,n−1(X,R) and the see-saw property of slopes implies that for each
[Θ] ∈ BX , E is [Θ]-stable (resp [Θ]-semi-stable) if and only if for all S, lS([Θ]) > 0 (resp. > 0). In
other words, we have,

CD
s (E) = BX ∩

⋂

S⊂E

{lS > 0}, CD
ss(E) = BX ∩

⋂

S⊂E

{lS > 0},

In particular, these four sets all are convex cones. The purpose of the next subsection is to show
that the number of linear inequalities lS > 0 to verify in order to obtain stability is locally finite,
so CD

ss(E) and CD
s (E) are locally polyhedral convex cones.

3.3 Local finiteness

Lemma 3.3. Let V be a finite dimensional real vector space and D ⊂ V a non-empty discrete
subset. Let U ⊂ V ∨ be open and such that for all ϕ ∈ U , ϕ(D) ⊂ R is bounded from above. Then,
for all compact K ⊂ U , there is a finite set F ⊂ D that may depend on K such that for all ϕ ∈ K,
sup(ϕ(D)) = max(ϕ(F )).
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Proof.
Step 1 : For all real number a, for all K ⊂ U compact, the set FK,a =

⋃

ϕ∈K{ϕ > a}∩D is finite.
Indeed, FK,a ⊂ D is discrete so if it is infinite, then it is unbounded. In this case, there is a

sequence (vm) of elements of FK,a such that ‖vm‖ → +∞ where ‖·‖ =
√

〈·, ·〉 is any Euclidean norm
on V . Up to extracting, vm

‖vm‖ → v∞ ∈ V is in the unit sphere. For all fixed m, vm ∈
⋃

ϕ∈K{ϕ > a}

hence there is a ϕm ∈ K such that ϕm(vm) > a. Up to extracting again, ϕm → ϕ∞ ∈ K.
Let ǫ > 0 and ϕ = ϕ∞ + ǫ 〈v∞, ·〉. Since U is open, for ǫ small enough, ϕ ∈ U . For all integer

m,

ϕ(vm) = ϕ∞(vm) + ǫ 〈v∞, vm〉

= ϕm(vm) + O(‖ϕm − ϕ∞‖ ‖vm‖) + ǫ

〈

vm
‖vm‖

+ o(1), vm

〉

> a+ ǫ ‖vm‖+ o(‖vm‖)

−→
m→+∞

+∞.

This contradicts the boundedness from above of ϕ(D). It proves that FK,a is indeed finite. In
particular, when K = {ϕ} is a singleton and a = sup(ϕ(D)) − 1, we obtain that for all ϕ ∈ U ,
{ϕ > sup(ϕ(D))− 1}∩D is finite. In particular, it proves that the sup is reached (and it is reached
finitely many times).
Step 2 : The map ϕ 7→ max(ϕ(D)) is continuous on U .

Let ϕ0 ∈ U and K ⊂ U be a compact set such that ϕ0 ∈
o

K. Let v ∈ D such that max(ϕ0(D)) =
ϕ0(v) and a = max(ϕ0(D)) − 1. Clearly, v ∈ FK,a and when ϕ is close enough to ϕ0, then ϕ ∈ K
and ϕ(v) > a. Thus max(ϕ(D)) > ϕ(v) > a so the w ∈ D that verify max(ϕ(D)) = ϕ(w) belong
to FK,a. In other words, for all ϕ close enough to ϕ0, max(ϕ(D)) = max(ϕ(F )).

Clearly, since FK,a is finite, ϕ 7→ max(ϕ(F )) is continuous at ϕ0, proving the wanted result.
Step 3 : Conclusion.

LetK ⊂ U be an arbitrary compact set. By the continuity result of step 2, a = minϕ∈K(max(ϕ(D)))
is well defined and by the result of step 1, F = FK,a =

⋃

ϕ∈K{ϕ > a} ∩D is finite. For all ϕ ∈ K,
if v ∈ D is such that max(ϕ(D)) = ϕ(v), then ϕ(v) > a so v ∈ F . We deduce that sup(ϕ(D)) is
reached by an element in the finite set F , which is the wanted result.

We can now prove Introduction’s Proposition 1.

Corollary 3.4. For all torsion-free vector bundle E and all compact K ⊂ BX, there is a finite tuple
S1, . . . ,Sp of coherent sub-sheaves of E with for all k, 0 < rk(Sk) < rk(E) that may depend on K
such that for all [Θ] ∈ K, E is [Θ]-stable (resp. [Θ]-semi-stable) if and only if for all k, lSk

([Θ]) > 0
(resp. lSk

([Θ]) > 0).

Proof. Let V = H1,1(X,R). By Serre duality, V ∨ is naturally identified with Hn−1,n−1(X,R) thus

we can see BX as an open subset of V ∨. Let D =
{

c1(S)
rk(S)

∣

∣

∣
S ⊂ E , 0 < rk(S) < rk(E)

}

. D is discrete

because the first Chern classes belong to the lattice H2(X,Z) hence D ⊂ 1
rk(E)!H

2(X,Z). For each

fixed [Θ] ∈ BX , {c ∪ [Θ]|c ∈ D} ⊂ R is bounded from above. This is a standard fact uses to build
Harder-Narasimhan filtrations (see for example [13, Lemma 5.7.16]).

Therefore, we can use Lemma 3.3 which tells us that for all compact K ⊂ BX , there is a finite
set F ⊂ D such that for all [Θ] ∈ K, sup{c∪ [Θ]|c ∈ D} = max{c∪ [Θ]|c ∈ F}. Let F = {c1, . . . , cp}
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and for all k, Sk ⊂ E with 0 < rk(Sk) < rk(E) such that c1(Sk)
rk(Sk)

= ck. This tuple fits. Indeed, when

[Θ] ∈ K,

E is [Θ]-stable ⇔ ∀S ⊂ E , 0 < rk(S) < rk(E) ⇒
c1(S)

rk(S)
∪ [Θ] <

c1(E)

rk(E)
∪ [Θ]

⇔ sup{c ∪ [Θ]|c ∈ D} <
c1(E)

rk(E)
∪ [Θ] because the sup is reached,

⇔ max{c ∪ [Θ]|c ∈ F} <
c1(E)

rk(E)
∪ [Θ]

⇔ ∀1 6 k 6 p, lSk
([Θ]) > 0.

The same equivalence holds with large inequalities.

This last corollary enables us to understand better the geometric properties of the stable and
semi-stable cones. For the topological structures, we endow the space of (n− 1, n− 1) closed forms
with the L2

1 topology. We call ‖·‖L2
1
an L2

1 norm (computed thanks to some background metric on

X). In particular, the L2
1 topology makes the subset of exact forms closed hence its projection on

Hn−1,n−1(X,R) continuous.
Clearly, Cs(E) is an L2

1-open convex cone in the space of closed (n − 1, n − 1) forms. CD
s (E)

is an open convex cone in Hn−1,n−1(X,R). Css(E) is an L2
1-closed convex cone in the space of

balanced metrics. CD
ss(E) is a convex cone in Hn−1,n−1(X,R) and is closed in BX . All of these are

an trivial consequences of the local finiteness result of Corollary 3.4 and of the continuity of the
natural projection onHn−1,n−1(X,R). Moreover, we have the more precise version of Introduction’s
Theorem 2.

Theorem 3.5. On a balanced manifold X, for all torsion-free coherent sheaf E, the stable and
semi-stable cones satisfy the following properties,

• CD
s (E) and CD

ss(E) are locally polyhedral convex cones.

• If there is a coherent S ⊂ E such that 0 < rk(S) < rk(E) and c1(S)
rk(S) = c1(E)

rk(E) , then Cs(E) =

CD
s (E) = ∅.

• If there is no coherent S ⊂ E such that 0 < rk(S) < rk(E) and c1(S)
rk(S) = c1(E)

rk(E) , then
o

Css(E) =

Cs(E) and
o

CD
ss(E) = CD

s (E).

• If CD
s (E) 6= ∅, Cs(E) ∩ BX = Css(E) and CD

s (E) ∩ BX = CD
ss(E).

• For all [Θ0] ∈ Css(E), if [Θ] ∈ BX is close enough to [Θ0], [Θ] ∈ Cs(E) (resp. [Θ] ∈ Css(E)) if
and only if for all S ⊂ E such that lS([Θ0]) = 0, lS([Θ]) > 0 (resp. lS([Θ]) > 0).

Proof. By Corollary 3.4, ifK ⊂ BX is compact, there is an integer p and a finite p-tuple S1, . . . ,Sp (
E of coherent sheaves such that for all k, 0 < rk(Sk) < rk(E) and,

CD
s (E) ∩K =

p
⋂

k=1

{lSk
> 0} ∩K, CD

ss(E) ∩K =

p
⋂

k=1

{lSk
> 0} ∩K.
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It gives then local polyhedral structures.
Moreover, since the pairing Hn−1,n−1(X,R) × H1,1(X,R) → R is non-degenerate by Serre

duality, for each S, lS = 0 ⇔ c1(S)
rk(S) = c1(E)

rk(E) . From here, the results about the finite dimensional

cones follow from basic topology and convex geometry, and the results about the infinite dimensional
cones follow from the continuity of the projection onto Hn−1,n−1(X,R).

3.4 Hermitian Yang–Mills equation

Definition 3.6. Following [13, Section 4.1], we say that ∇ is a Θ-Hermitian Yang–Mills connection
(or satisfies the Einstein condition) if

ΛΘiF∇ = cIdE ,

for some constant c.

Remark. When it exists, c is entirely determined by the topology of E and the real Dolbeault class

[Θ] ∈ Hn−1,n−1(X,R). Indeed, by Chern-Weil theory, we have c[Θ] =
2πc1(E)∪[Θ]
rk(E)Vol(X) by integrating

over X the above equality.

Since the Hermitian metric h on E is fixed, ∇ depends only on ∂ as it is the Chern connection
associated with (∂, h). We write F∂ = F∇ and we also say abusively that ∂ is Θ-HYM.

A powerful analytic tool to study stability is the Kobayashi–Hitchin correspondence, which was
originally proven for Kähler metrics [27] and extended to more general cases, including balanced
metrics [16], and on Higgs bundles [17].

Proposition 3.7. If E = (E, ∂E) is a holomorphic vector bundle of positive rank, then it is [Θ]-
polystable if and only if it admits a Θ-HYM operator ∂ in the gauge orbit of ∂E. In this case, it is
unique up to a unitary gauge transformation.

Our purpose from now on is to extend locally the algebraic results of Theorem 3.5 to analytic
results. Concretely, we want to show that when Θ ∈ Cs(E) approaches a point Θ0 ∈ Css(E), we
can build some Θ-HYM ∂ in the gauge orbit of ∂E that approaches some Θ0-HYM ∂0, which is
in the gauge orbit of the Dolbeault operator of Gr[Θ0](E) (under the additional condition that E is
sufficiently smooth with respect to [Θ0]).

4 Local analytic results

Let Θ0 be a balanced metric on X and E = (E, ∂E) a [Θ0]-semi-stable sufficiently smooth vector
bundle. Assume that Cs(E) 6= ∅ so Θ0 ∈ Cs(E) by Theorem 3.5 and E is simple. We associate
to E a Jordan-Hölder filtration 0 ( F1 ( · · · ( Fm = E given by Proposition 3.2 and we set
Gr(E) = Gr[Θ0](E) =

⊕m
k=1 Gk to be its graded object where the Gk = Fk/Fk−1 are its stable

components. We call ∇0 = ∂0 + ∂0 the connection on Gr(E). We may assume it is Θ0-HYM by
Proposition 3.7.

Being a balanced metric is an open condition in the space of closed (n−1, n−1) forms endowed
with the L2

1 topology. During all this article, U will be an L2
1 open neighbourhood of 0 such that

for all ε ∈ U , Θε = Θ0 + ε is positive. With the L2
1 topology, all the natural operations involving Θ

like Θ 7→ VolΘ or Θ 7→ ΛΘα for some (1, 1)-form α, are smooth. In particular, up to shrinking U ,
the L2 norms ‖·‖ε are uniformly equivalent. From now on, when we consider objects that depend
on the balanced metric, we replace the subscript Θ = Θε by ε for simplicity.
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4.1 Perturbed Kuranishi slice and moment map

We call G = Aut0(Gr(E)) ⊂ GC the group of automorphisms of Gr(E) of determinant 1 and
K = Aut0(Gr(E), h) = G ∩G the group of unitary automorphisms of Gr(E) of determinant 1. They
are both finite dimensional, K is compact and G = KC, hence G is a reductive Lie group with
maximal compact subgroup K. Let g = Lie(G) ⊂ Lie(GC) and k = Lie(K) = Lie(G) ∩ g. Notice
that the condition of having a determinant that equals 1 on G and K implies that all elements
of g and k have a trace that equals 0. Each of these Lie algebras is identified with its dual space
thanks to the scalar products 〈·, ·〉ε on Lie(GC) = Ω0(X,End(E)). We must be careful that this
identification depends on ε. Notice also that Aut(Gr(E)) = C∗G and its Lie algebra is g ⊕ CIdE .
Similarly, Aut(Gr(E), h) = S1K and Lie(Aut(Gr(E), h)) = k ⊕ iRIdE . The reason why we restrict
ourselves to the automorphisms that have a determinant equal to 1 is that C∗IdE ⊂ Aut(Gr(E))
acts trivially on connections.

Define ΩD
ε : (α, β) 7→ 〈Jα, β〉ε to be the symplectic form associated to the Hermitian product

introduced at (1) with respect to Θε on End(E). We will mostly be interested in the case where α
and β are (0, 1)-forms. In this case,

ΩD
ε (α, β) =

∫

X

tr(α ∧ β∗) ∧Θε.

The set of (not necessarily integrable) Dobleault operators is an affine space of direction Ω0,1(X,End(E)).
Thus it is in particular an infinite dimensional manifold and ΩD

ε is formally a Kähler form on it.
Moreover, by [1, 5], the gauge group acts by Hamiltonian actions on this manifold and the asso-
ciated equivariant moment map is ν∞,ε : ∂ 7→ ΛεF∂ . Concretely, it means that for all ∂, for all v

tangent to ∂ and all a ∈ Lie(GC) = Ω0(X,End(E)),

〈

dν∞,ε(∂)v, a
〉

ε
= ΩD

ε (L∂a, v), (2)

where ∂ 7→ L∂a = ∂
∂t |t=0e

ta · ∂ is the vector field induced by the infinitesimal action of a. We use
here the same notation as in [8]. We want now to reduce ourselves to the same kind of moment
map, but for finite dimensional Lie groups. For this, we use first the same method as in [4, 3, 25]
involving the Kuranishi slice.

Let V be the finite dimensional complex spaceH0,1(X,End(Gr(E)),Θ0) of harmonic (0, 1)-forms
with values in End(Gr(E)) with respect to Θ0. Let Φ : B → Ω0,1(X,End(Gr(E))) be the Kuranishi

slice [15] where B ⊂ V is a ball around 0. It is explicitly given by Φ : b 7→ b+ ∂
∗

0A(b ∧ b) where A
is the Green operator associated to ∆0 = ∆Θ0,∇0 . In particular, it is holomorphic. Recall that Φ
verifies the following properties,

1. Φ(0) = 0 and dΦ(0) : v 7→ v for v ∈ T0V = V ⊂ Ω0,1(X,End(E)) is injective hence, up to
shrinking B, Φ is an embedding.

2. B is K-invariant and Φ is G-equivariant where it is defined in the sens that for all b ∈ B and
all g ∈ G such that g · b ∈ B, ∂g·b = g · ∂b where ∂b is defined as ∂0 +Φ(b).

3. For any small enough deformation ∂ of ∂0, there is a gauge transformation f ∈ GC such that
f · ∂ ∈ Φ(B).

4. Z =
{

b ∈ B
∣

∣

∣
∂
2

b = 0
}

is a complex subspace of B.
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Since E is a small holomorphic deformation of Gr(E) (see for example [3, Section 3]), we can
find some b0 ∈ B such that ∂b0 = ∂0 + Φ(b0) is gauge equivalent to ∂E . From now on, we call
O = G · b0 ∩B the G-orbit of b0 in B. Any b ∈ O is such that ∂b is gauge equivalent to ∂E .

Then, we deform Φ because we are interested in Dolbeault operators ∂ such that ν∞,ε(∂) belongs
to the Lie algebra k of K as in [3, Proposition 3.2]. In the following, we build functions that depend
on ε ∈ U . To understand accurately the smoothness of these objects with respect to ε, let us
introduce for all integer d > 1, an L2

d Sobolev norm ‖·‖L2
d
on Ωn−1,n−1(X,C). For example, we can

compute them with respect to a background metric on X and the resulting norm doesn’t depend
on the choice of this metric up to equivalence.

Proposition 4.1. Up to shrinking U and B, there exists a map σ : U × B → Ω0
0(X,EndH(E, h))

such that for all integer d > 1, if U is endowed with an L2
d norm and Ω0

0(X,EndH(E, h)) with an
L2
d+2 norm, σ is smooth and we have the following properties : σ(0, 0) = 0, ∂

∂b |b=0σ(0, b) = 0 and

if we set Φ̃ : (ε, b) 7→ eσ(ε,b) · ∂b − ∂0 ∈ Ω0,1(X,End(E)), ∂ε,b = ∂0 + Φ̃(ε, b) and Fε,b = F∂ε,b
, we

have,

1. For all b ∈ O, ∂ε,b is gauge equivalent to ∂E.

2. For all ε ∈ U , Φ̃(ε, ·) is K-equivariant.

3. For all (ε, b) ∈ U ×B, ΛεFε,b + icεIdE ∈ k.

4. ∂
∂b |b=0Φ̃(0, b) : v 7→ v. In particular, up to shrinking U×B, each Φ̃(ε, ·) is a smooth embedding.

Proof. Let Π⊥ : Ω0
0(X,EndH(E, h)) → ik⊥ be the orthogonal projection on ik⊥ (thus parallel to ik)

with respect to 〈·, ·〉0 and,

Ψ :

{

U × B × ik⊥ → ik⊥

(ε, b, s) 7→ Π⊥(ΛεiFes·∂b
− cεIdE)

.

By Proposition 2.3, ∂
∂s |s=0

Ψ(0, 0, s) = Π⊥∆0 and ∆0 is a symmetric semi-definite positive operator

and it is continuous from the L2
3 completion of Ω0

0(X,EndH(E, h)) to its L2
1 completion. In par-

ticular, Ψ is smooth when we endow the starting ik⊥ with an L2
3 norm, the arrival one with an L2

1

norm and U with an L2
1 norm. According to Proposition 2.2, its kernel (hence its cokernel) is ik.

In particular, Π⊥∆0 = ∆0 and ∂
∂s |s=0

Ψ(0, 0, s) = ∆0 : L2
3(ik

⊥) → L2
1(ik

⊥) is an isomorphism. With

the same argument, for any integer d > 1, Ψ : L2
d(U)×B × L2

d+2(ik
⊥) → L2

d(ik
⊥) is smooth. Here,

L2
d(W ) is the completion of a space W endowed with an L2

d norm.
By the implicit functions theorem, up to shrinking U×B, there is a unique smooth σ : U×B →

L2
3(ik

⊥) such that σ(0, 0) = 0 and for all (ε, b) ∈ U × B, Ψ(ε, b, σ(ε, b)) = 0. When we set
Φ̃(ε, b) = eσ(ε,b) ·∂b−∂0, the first point is immediate and the third point is verified. For the second
one, notice that for all u ∈ K and all (ε, b) ∈ U ×B

Ψ(ε, b, u∗σ(ε, u · b)u) = Π⊥(ΛεiFeu∗σ(ε,u·b)u·∂b
− cεIdE)

= Π⊥(ΛεiFu∗eσ(ε,u·b)·∂u·bu
− cεIdE)

= Π⊥(u
∗(ΛεiFeσ(ε,u·b)·∂u·b

− cεIdE)u)

= 0.
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By uniqueness of σ, it implies that u∗σ(ε, u · b)u = σ(ε, b). Therefore,

∂ε,u·b = ∂0 + Φ̃(ε, u · b) = eσ(ε,u·b) · ∂u·b = ueσ(ε,b)u∗u∂bu
∗ = u(∂0 + Φ̃(ε, b))u∗ = u∂ε,bu

∗.

It proves the second point. For the fourth point, we have for all b,

Ψ(0, b, 0) = Π⊥(Λ0F∂b
+ ic0IdE)

= −iΠ⊥(Λ0iF∂0
+∇0(Φ(b)− Φ(b)∗) + (Φ(b)− Φ(b)∗) ∧ (Φ(b)− Φ(b)∗)− c0IdE)

= −iΠ⊥∇0(Φ(b)− Φ(b)∗) + o(b).

Therefore, ∂
∂b |b=0

Ψ(0, b, 0) = −iΠ⊥∇0(dΦ(0)− dΦ(0)∗). Now, recall that the image of dΦ(0) is the

space V of (0, 1)-harmonic forms. In particular, it is included in the kernel of ∇0. Same thing for
dΦ(0)∗ since ∇0 is unitary. Thus ∂

∂b |b=0
Ψ(0, b, 0) = 0. Therefore, when we differentiate the equality

Ψ(0, b, σ(0, b)) at b = 0,

0 =
∂

∂b
|b=0Ψ(0, b, 0) +

∂

∂s
|s=0Ψ(0, 0, s)

∂

∂b
|b=0σ(0, b) = ∆0

∂

∂b
|b=0σ(0, b).

Since ∂
∂b |b=0σ(0, b) belongs to ik⊥ where ∆0 is injective, we have ∂

∂b |b=0σ(0, b) = 0 hence,

Φ̃(0, b)− ∂0 = eσ(0,b) · ∂b − ∂0 = eσ(0,b)∂0(e
−σ(0,b)) + eσ(0,b)Φ(b)e−σ(0,b) = Φ(b) + o(b).

We deduce the fourth point and we showed along the way that ∂
∂b |b=0σ(0, b) = 0. All we have left to

show is that the σ(ε, b) are smooth as sections and that σ has the wanted regularity. The first part
follows from elliptic regularity. For the second one let d > 1 be an integer. Then, Ψ : L2

d(U)×B ×
L2
d+2(ik

⊥) → L2
d(ik

⊥) is smooth. When we differentiate m times the equality Ψ(ε, b, σ(ε, b)) = 0, we

can, by the Faà di Bruno formula, express ∂
∂sΨ(ε, b, s)dmσ(ε, b) as a polynomial expression of the

successive derivatives of Ψ and the lower order derivatives of σ, which are all smooth by induction
on m. ∂

∂s |s=0Ψ(0, 0, s) = ∆0 : L2
d+2(ik

⊥) → L2
d(ik

⊥) is an isomorphism and this condition is open,

hence σ : L2
d(U)×B → Ld+2(ik

⊥) is smooth.

Following [3, Section 3.2], we define for all ε ∈ U , the closed 2-form Ωε = Φ̃(ε, ·)∗ΩD
ε on B and,

νε :

{

B → k

b 7→ ν∞,ε(∂ε,b) = ΛεFε,b + icεIdE
.

By Proposition 4.1, this function indeed takes values in k. It is easy to compute that since ν∞,ε is a

K-equivariant moment map for ΩD
ε and Φ̃(ε, ·) is a K-equivariant embedding, νε is a K-equivariant

moment map for Ωε, which is a simplectic form. We must be careful about the fact that Ωε is not
compatible with the complex structures because Φ̃(ε, ·) is a priori not holomorphic, but we still
have the following positivity condition.

Lemma 4.2. Up to shrinking U and B, for all b ∈ B and v ∈ TbB\{0}, Ωε(v, iv) has a positive
real part.

Proof. This is due to the fact that dΦ̃(0, 0) : v 7→ v is C-linear, hence, for all v ∈ T0B = V ,

Ω0(v, iv) = ΩD
0 (dΦ̃(0, 0)v, dΦ̃(0, 0)(iv)) = ΩD

0 (v, iv) > 0.

It means that Ω0(·, i·) at b = 0 is a positive quadratic form. By openness of positivity, up to
shrinking U and B, ℜΩε is positive at any point b of B, hence the result.
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4.2 Bound on the norm of b

Now, when Θε is in the stable cone of E , we want to find a Θε-HYM connection in the image of
∂0 + Φ̃(ε, ·) restricted to the orbit O, because if ∂ = ∂ε,b = ∂0 + Φ̃(ε, b), then all the Sobolev norms
of ∂−∂0 can be controlled by the norm of b for any Euclidean norm (see the later Proposition 4.3).
The first thing to do is the following estimate on the norm of b in term of the norm of νε(b). We
denote by ‖·‖ Euclidean norms on the finite dimensional vector spaces V and Hn−1,n−1(X,R).

Proposition 4.3. Up to shrinking U and B, for all ε ∈ U and b ∈ O, ‖b‖2 6 C(‖νε(b)‖ε+‖ε‖2L2
1
+

‖[ε]‖) for some positive constant C independent from ε and b.

Proof. By density, it is enough to verify it for b ∈ O.

Step 1 : Finding an orthogonal decomposition of E where Φ(b) is strictly upper triangular.

If b ∈ O, ∂b is gauge equivalent to ∂E thus the holomorphic vector bundle Eb = (E, ∂b) admits
a Jordan-Hölder filtration,

0 ( F1,b ( · · · ( Fm,b = Eb,

For all k, the smooth structure of Fk,b is Fk and the smooth structure of Gk,b = Fk,b/Fk−1,b is Gk.
The (0, 1)-form Φ(b) can be decomposed as Φ(b) =

∑m
i,j=1 γij with γij ∈ Ω0,1(X,Hom(Gj , Gi)).

Since each Fk,b is a sub-bundle of Eb (isomorphic to Fk), ∂b preserves it, meaning that γij = 0
whenever i > j. Therefore, Φ(b) =

∑

i6j γij is upper triangular.

Now, let for all t > 1, gt =
∑m

k=1 att
kIdGk

where at ∈ R∗
+ is chosen such that gt has determinant

1. In particular, gt ∈ G and for all t, when gt · b ∈ B, gt · ∂0 = ∂0 so,

∂gt·b = gt · ∂b = ∂0 + gtΦ(b)g
−1
t = ∂0 +

∑

i6j

ti−jγij .

Moreover, the decomposition E =
⊕m

k=1 Gk is orthogonal, which implies that the decomposition
Ω0,1(X,End(E)) =

⊕m
i,j=1 Ω

0,1(X,Hom(Gj , Gi)) is orthogonal too for any 〈·, ·〉ε. In particular,

‖Φ(gt · b)‖
2
ε =

∑

i6j

t2i−2j ‖γij‖
2
ε 6 ‖Φ(b)‖2ε ,

because t > 1. Since Φ is a smooth embedding, there are, up to shrinking B, positive constants
C1, C2 such that for all b′ ∈ B, 1

C1
‖b‖ 6 ‖Φ(b)‖0 6 C2 ‖b‖. Let r > 0 such that the closed ball of

centre 0 and radius r is included in B. Let B′ be the open ball of centre 0 and radius r
C1C2

and
assume that b ∈ B′. Let T = sup{t > 1|gt · b ∈ B}. g1 = IdE so T > 1 is well defined. If T is

finite, we have, for all t < T , ‖gt · b‖ 6 C1 ‖Φ(gt · b)‖
2
0 6 C1 ‖Φ(b)‖

2
0 6 C1C2 ‖b‖ 6 r. We stay in

the closed ball of radius r, included in B. When t → T , we reach a point of B and we contradict
the maximality of T by openness of B. It proves that T = +∞ and,

lim
t→+∞

Φ(gt · b) =
m
∑

k=1

γkk.

This convergence implies that gt · b → b∞ for some b∞ in the closed ball of radius r because Φ is a
closed embedding. In particular, b∞ ∈ B. Notice that for all k, (Gk, ∂b∞|Gk

) = (Gk, ∂0 + γkk) =

Gk,b
∼= Gk is [Θ0]-stable. It means that E ′ = (E, ∂b∞) is [Θ0]-polystable and by [2, Theorem 1, 3,
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4]1, ∂b∞ is in the G-orbit of ∂0 i.e. it equals ∂0. It means that for all k, γkk = 0. Up to replacing
B by B′, it means that Φ(b) =

∑

i<j γij is strictly upper diagonal in the orthogonal decomposition

E =
⊕m

k=1 Gk whenever b ∈ B.

Step 2 : Computing the scalar product between ν∞,ε(b) and each aS = i

rk(S) IdS − i

rk(S⊥)
IdS⊥ ∈ k.

Let S ⊂ Eb be a sub-bundle with 0 < rk(S) < rk(E) and S its smooth structure. Then, in the
decomposition E = S ⊕ S⊥, we can write ∂b = ∂b|S + βS,b and by [13, Equation (1.6.12)],

iFb =

(

iFS − iβS,b ∧ β∗
S,b i∂ε,bβS,b

−i∂bβ
∗
S,b iFS⊥ − iβ∗

S,b ∧ βS,b

)

,

where Fb is the curvature of the Chern connection associated to ∂b on E, FS is some curvature
form on S and FS⊥ is some curvature form on Eb/S (they depend on b). By Chern-Weil theory,

∫

X

tr(iFS) ∧Θε = 2πrk(S)µε(S),

∫

X

tr(iFS⊥) ∧Θε = 2πrk(E/S)µε(E/S),

and for any (0, 1)-form β,

∫

X

tr(iβ∗ ∧ β) ∧ Θε = ‖β‖2ε and

∫

X

tr(iβ ∧ β∗) ∧ Θε = −‖β‖2ε. We can

now compute that,

〈

ν∞,ε(∂b), aS
〉

ε
= 〈ΛεFb + icεIdE , aS〉ε

=

∫

X

tr

(

ΛεiFb

(

1

rk(S)
IdS −

1

rk(S⊥)
IdS⊥

))

Volε

=
1

rk(S)

∫

X

tr(iFbIdS) ∧Θε −
1

rk(S⊥)

∫

X

tr(iFbIdS⊥) ∧Θε

=
1

rk(S)

∫

X

tr(iFS − iβS,b ∧ β∗
S,b) ∧Θε −

1

rk(S⊥)

∫

X

tr(iFS⊥ − iβ∗
S,b ∧ βS,bIdS⊥) ∧Θε

= 2πµε(S) +
1

rk(S)
‖βS,b‖

2
ε − 2πµε(E/S) +

1

rk(S⊥)
‖βS,b‖

2
ε

= −2πlS(ε) +

(

1

rk(S)
+

1

rk(S⊥)

)

‖βS,b‖
2
ε .

Step 3 : Inequality with ν∞,ε.

Applying step 2 with the particular case S = Fk,b ⊂ E with k < m, we obtain βS,b =

1In this paper, the results are proven in the Kähler case. However, in the third point of their conclusion and in
the remark following [2, Proposition 3.2], the authors notice that the only obstruction for it to work on any compact
complex manifold equipped with a Gauduchon metric is that in this case, the slope might not be of topological
nature. In the balanced case, the slope is of topological nature since it only depends on the first Chern class of the
bundle and not on the choice of its representative.
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IdFk,b
∂b|F⊥

k,b
=
∑

i6k6j γij . Moreover, all the lS : Hn−1,n−1(X,R) → R are continuous thus,

m
∑

k=1

〈

ν∞,ε(∂b), aFk,b

〉

ε
=

m
∑

k=1

−2πlFk,b
(ε) +

(

1

rk(Fk,b)
+

1

rk(F⊥
k,b)

)

∥

∥

∥
IdFk,b

Φ(b)|F⊥

k,b

∥

∥

∥

2

ε

>

m
∑

k=1

C3

∑

16i6k6j6m

‖γij‖
2
0 − C4 ‖[ε]‖

> C3 ‖Φ(b)‖
2
0 − C4 ‖[ε]‖

>
C3

C1
‖b‖2 − C4 ‖[ε]‖ ,

where C3 and C4 are positive constants that only depend on rk(E), max16k6m

{∥

∥lFk,b

∥

∥

}

, maxε∈U{Volε(X)}
(which is finite up to shrinking U) and the fact that the ‖·‖ε are uniformly equivalent. Clearly, it
exists a constant C5 independent from ε and b such that for all k and ε,

∥

∥aFk,b

∥

∥

ε
6 C5. Let for all

ε, Πε be the orthogonal projection on k with respect to 〈·, ·〉ε. We have,

m
∑

k=1

〈

ν∞,ε(∂b), aFk,b

〉

ε
=

m
∑

k=1

〈

Πεν∞,ε(∂b), aFk,b

〉

ε
6 C5

m
∑

k=1

∥

∥Πεν∞,ε(∂b)
∥

∥

ε
= mC5

∥

∥Πεν∞,ε(∂b)
∥

∥ .

We deduce that ‖b‖2 = O
(∥

∥Πεν∞,ε(∂b)
∥

∥

ε
+ ‖[ε]‖

)

where the O is independent from ε and b. From

now on, all the asymptotic developments are with respect to (ε, b) → (0, 0) with respect to the L2
1

Sobolev norm for ε.

Step 4 : Conclusion.

By Proposition 4.1, we have νε(b) = ν∞,ε(∂ε,b) with ∂ε,b = eσ(ε,b) · ∂b for some smooth σ :
L2
1(U) × B → L2

3(Ω
0
0(X,EndH(E, h))) which verifies σ(0, 0) = 0 and ∂

∂b |b=0σ(0, b) = 0. Therefore

‖σ(ε, b)‖L2
3
= O(‖ε‖L2

1
+ ‖b‖2) and using the fact that νε takes values in k,

∥

∥νε(b)−Πεν∞,ε(∂b)
∥

∥

ε
=
∥

∥Πε(νε(b)− ν∞,ε(∂b))
∥

∥

ε

=
∥

∥Πε(ν∞,ε(∂ε,b)− ν∞,ε(∂b))
∥

∥

ε

=
∥

∥

∥
Πε(ν∞,ε(e

σ(ε,b) · ∂b)− ν∞,ε(∂b))
∥

∥

∥

ε

=
∥

∥

∥
Πε∆ε,∂b

σ(ε, b)
∥

∥

∥

ε
+O(‖σ(ε, b)‖2L2

3
) by Proposition 2.3,

= ‖Π0∆0σ(ε, b)‖ε +O((‖ε‖L2
1
+ ‖b‖) ‖σ(ε, b)‖2L2

3
) + O(‖σ(ε, b)‖2L2

3
)

= O(‖ε‖2L2
1
+ ‖b‖3).

The last equality holds because ∆0 takes values in k⊥ (for 〈·, ·〉0) hence Π0∆0 = 0. Finally,

‖b‖2 = O
(∥

∥Πεν∞,ε(∂b)
∥

∥

ε
+ ‖[ε]‖

)

= O(‖νε(b)‖ε + ‖ε‖2L2
1
+ ‖b‖3 + ‖[ε]‖),

so ‖b‖2 = O(‖νε(b)‖ε + ‖ε‖2L2
1
+ ‖[ε]‖), which is the wanted bound.
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4.3 Finding a zero of the moment map

The method now consists in defining a vector field whose flow converges toward a zero of the moment
map. When b ∈ B and a ∈ g, we denote by Lba = ∂

∂t |t=0e
ta · b ∈ TbB the infinitesimal action of a

on b. Following [8, Chapter 3], we define the vector field,

Vε : b 7→ −iLbνε(b).

Let t 7→ bε(t) be the flow on Vε whose starting point will be defined by the following proposition.

Proposition 4.4. Up to shrinking U , for all ε ∈ U , if we choose bε(0) close enough to 0, bε is

defined for all non-negative times, t 7→ ‖νε(bε(t))‖ε decreases and ‖bε(t)‖ = O
(
√

‖ε‖L2
1

)

uniformly

with respect to t.

Proof. For all t where the flow is defined, whatever is the choice of the starting point,

∂

∂t

(

1

2
‖νε(bε(t))‖

2
ε

)

= 〈dνε(bε(t))(−iLbνε(bε(t))), νε(bε(t))〉ε

= −Ωε(Lbνε(bε(t)), iLbνε(bε(t))) because νε is a moment map,

6 0 by Lemma 4.2.

It proves that t 7→ ‖νε(bε(t))‖ε decreases while the flow is defined. In particular, by Proposition
4.3,

‖bε(t)‖
2
6 C(‖νε(bε(t))‖ε + ‖ε‖2L2

1
+ ‖[ε]‖) 6 C(‖νε(bε(0))‖ε + ‖ε‖2L2

1
+ ‖[ε]‖) (3)

Let r > 0 such that the closed ball of centre 0 and radius r is included in B. Assume, up to shrinking

U , that for all ε, ‖ε‖2L2
1
+ ‖[ε]‖ 6

r2

2C and ‖νε(0)‖ε 6
r2

4C . Then choose bε(0) close enough to 0 so

‖νε(bε(0))‖ε 6 2 ‖νε(0)‖ε 6
r2

2C . It implies by (3) that ‖bε(t)‖ 6 r hence bε stays in a compact set
included in B. By the finite time explosion theorem, the flow is defined at all time. Moreover,

‖bε(t)‖
2
6 C(‖νε(bε(0))‖ε + ‖ε‖2L2

1
+ ‖[ε]‖) 6 C(2 ‖νε(0)‖ε + ‖ε‖2L2

1
+ ‖[ε]‖) = O(‖ε‖L2

1
).

Let (gε(t)) in G be the smooth function defined by,

gε(0) = IdE , gε(t)
−1g′ε(t) = iνε(bε(t)).

Similarly to [8, Lemma 3.2], we have for all t,

∂

∂t
(gε(t)

−1 · bε(0)) = −gε(t)
−1g′ε(t)g

−1
ε (t) · bε(0) = −iLgε(t)−1·bε(0)νε(bε(t)).

By uniqueness of the flow, it proves that for all t, gε(t)
−1 ·bε(0) = bε(t). In particular, O is preserved

by the flow. Let for all t, g̃ε(t) = eσ(ε,bε(0))gε(t)e
−σ(ε,bε(t)) ∈ GC. We have,

∂ε,bε(t) = eσ(ε,bε(t)) · ∂bε(t)

= eσ(ε,bε(t))gε(t)
−1 · ∂bε(0)

= eσ(ε,bε(t))gε(t)
−1e−σ(ε,bε(0)) · ∂ε,bε(0)

= g̃ε(t)
−1 · ∂ε,bε(0).
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Now, when ∂ is a Dolbeault operator on E, we call Mε,∂ the Donaldson functional [5, Proposition

6] associated with Θε and ∂. It takes two Hermitian metrics on E as argument and is characterised
by,

∀k1, k2, k3,Mε,∂(k1, k2) +Mε,∂(k2, k3) = Mε,∂(k1, k3), (4)

∂

∂s
|s=0Mε,∂(k, e

−s/2 · k) =

∫

X

tr
(

v(ΛεiF∂,k − cεIdE)
)

Volε. (5)

Here, s ∈ Ω0(X,EndH(E, k)) and v ∈ TsΩ
0(X,EndH(E, k)) are k-Hermitian, F∂,k is the curvature

associated to the Chern connection of (∂, k) and GC acts on metrics by (f ·k)(ξ, η) = k(f−1ξ, f−1η)2.
Ulhenbeck and Yau showed that on a stable bundle, M(h, e−s/2 · h) uniformly bounds s [27]. We
refer the reader to Simpson’s proof of this result [23, Proposition 5.3]3. Concretely, when (E, ∂)
is [Θε]-stable, there exists positive constants C1,ε, C2,ε that depend on ε (and ∂) such that for all
s ∈ Ω0

0(X,EndH(E, h)),
‖s‖ε 6 C1,ε + C2,εMε,∂(h, e

−s/2 · h). (6)

We could even get this inequality with a C0 norm instead of an L2 norm on s. Now, let,

ϕε : b 7→ Mε,∂E
(h, fε,b · h),

where fε,b is defined as the gauge transformation up to constant homothety such that ∂ε,b = f−1
ε,b ·∂E .

It is unique by simplicity of E . We want now to show that ϕ decreases with the flow and use the
inequality (6) to show that gε is bounded, thus converges up to extraction.

In the classical case where we consider the heat equation flow, the derivative of t 7→ ϕ(bε(t))

is given by −2 ‖νε(bε(t))‖
2
ε (the constant 2 may disapear in function of the conventions). See for

reference [13, Proposition 6.9.1], [23, Lemma 7.1], [5, Section 1.2]. It is a natural consequence of
(5). Here, the fact that g̃ε(t) is not exactly gε(t) makes this equality false in general. However, since
these two gauge transformations are close when ε → 0 uniformly with respect to t, we are still able
to show the wanted decrease. The issue is that we fix the metric and we make the complex structure
vary to find a HYM connection. However, Donaldson’s functional works better with variations of
the metric when the holomorphic structure is fixed. This issue however, is only technical and we
can move from one to the other. The proof of the next proposition is the only part of this article
where we need to consider an other metric on E .

Proposition 4.5. We have for all t,

∂

∂t
ϕε(bε(t)) = −2 ‖νε(bε(t))‖

2
ε + o(‖νε(bε(t))‖

2
ε),

where the o is when ε → 0 and is uniform with respect to t. In particular, up to shrinking U , for
all ε, t 7→ ϕε(bε(t)) decreases.

2In literature, it is more common to only consider the action of a positive definite Hermitian e
s with respect to

the metric k. In this case, the notation used is kes : (ξ, η) 7→ k(esξ, η). By symmetry, we obtain that e−s/2
·k = kes.

To avoid confusion, we only the use in this case the notation e
−s/2

· k.
3Simpson proves it in the Kähler case but the closedness of ω is not used in the proof of [23, Proposition 5.3].

Only the closedness of ωn−1 is necessary for [23, Proposition 5.1]. He also only proves it when tr(s) = 0 identically,
but this hypothesis is only useful to get that the u∞ built in [23, Lemma 5.4] is not a homothety (see [23, Lemma
5.5]). For this, it is enough to know that

∫
X

tr(s)Vol0 = 0 so the inequality holds in this more general case.
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Proof.
Step 1 : Derivative of the Hermitian part of a gauge transformation.

ϕε is defined intrinsically in the sens that it doesn’t depend on the choice of the starting point
bε(0). Since we have moreover a uniform bound on the norm of bε(t) given by Proposition 4.4, it is
enough to verify the wanted equality at t = 0 and the uniform bound follows.

For all t near 0, we have ∂ε,bε(t) = g̃ε(t)
−1 · ∂ε,bε(0) = g̃ε(t)

−1f−1
ε,bε(0)

· ∂E hence fε,bε(t) =

fε,bε(0)g̃ε(t). In particular, if we set k = fε,bε(0) · h, we have,

fε,bε(t) · h = fε,bε(0)g̃ε(t)f
−1
ε,bε(0)

· k.

Let us write the polar decomposition of fε,bε(0)g̃ε(t)f
−1
ε,bε(0)

with respect to k as e−s(t)/2u(t). In

particular,
e−s(t) = fε,bε(0)g̃ε(t)f

−1
ε,bε(0)

(fε,bε(0)g̃ε(t)f
−1
ε,bε(0)

)†,

where † is the adjoint with respect to k. s is smooth with respect to any Sobolev norm and we have
s(0) = 0 because g̃ε(0) = 0 so,

−s(t) = e−s(t) − IdE + o(t)

= fε,bε(0)g̃ε(t)f
−1
ε,bε(0)

f−1†
ε,bε(0)

g̃ε(t)
†f †

ε,bε(0)
− IdE + o(t)

= (fε,bε(0)g̃
′
ε(0)f

−1
ε,bε(0)

+ f−1†
ε,bε(0)

g̃′ε(0)
†f †

ε,bε(0)
)t+ o(t)

= 2ℜk(fε,bε(0)g̃
′
ε(0)f

−1
ε,bε(0)

)t+ o(t),

where ℜk is the Hermitian part with respect to k. We deduce that s′(0) = −2ℜk(fε,bε(0)g̃
′
ε(0)f

−1
ε,bε(0)

).

Now, recall that for all t, g̃ε(t) = eσ(ε,bε(0))gε(t)e
−σ(ε,bε(t)). Therefore, since ‖bε(0)‖ = o(1) when

ε → 0,

g̃′ε(0) = d exp(σ(ε, bε(0)))
∂

∂b
|b=bε(0)σ(ε, b)b

′
ε(0) + eσ(ε,bε(0))g′ε(0)e

−σ(ε,bε(0))

= g′ε(0) + o(b′ε(0)) + o(g′ε(0)) because σ(0, 0) = 0 and
∂

∂b
|b=0σ(0, b) = 0,

= iνε(bε(0)) + o(Lbε(0)νε(bε(0))) + o(νε(bε(0)))

= iνε(bε(0)) + o(νε(bε(0))).

iνε(bε(0)) is Hermitian with respect to h and k = fε,bε(0) ·h so ifε,bε(0)νε(bε(0))f
−1
ε,bε(0)

is Hermitian

with respect to k. We deduce that s′(0) = −2ifε,bε(0)νε(bε(0))f
−1
ε,bε(0)

+ o(fε,bε(0)νε(bε(0))f
−1
ε,bε(0)

).

Step 2 : Relation between curvatures.

Since fε,bε(t) · h = e−s(t)/2u(t) · k = e−s(t)/2 · k, we have, by (4),

ϕε(bε(t)) − ϕε(bε(0)) = Mε,∂E
(h, e−s(t)/2 · k)−Mε,∂E

(h, k) = Mε,∂E
(k, e−s(t)/2 · k).

Moreover, if we call ∂E,k the (1, 0) part of the Chern connection associated with (∂E , k) and we set
∂ε,bε(0) = f−1

ε,bε(0)
◦ ∂E,k ◦ fε,bε(0), we can compute that the connection ∇ε,bε(0) = ∂ε,bε(0) + ∂ε,bε(0)
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is unitary with respect to h. Thus, by uniqueness, ∇ε,bε(0) is the Chern connection associated with

(∂ε,bε(0), h). Therefore,

F∂E ,k = ∂E,k∂E,k + ∂E,k∂E,k

= fε,bε(0) ◦ ∂ε,bε(0) ◦ f
−1
ε,bε(0)

◦ fε,bε(0) ◦ ∂ε,bε(0) ◦ f
−1
ε,bε(0)

+ fε,bε(0) ◦ ∂ε,bε(0) ◦ f
−1
ε,bε(0)

◦ fε,bε(0) ◦ ∂ε,bε(0) ◦ f
−1
ε,bε(0)

= fε,bε(0)F∂ε,bε(0),h
f−1
ε,bε(0)

.

Thus, ΛεiF∂E ,k − cεIdE = ifε,bε(0)νε(bε(0))f
−1
ε,bε(0)

.

Step 3 : Conclusion.

Finally, by (5),

∂

∂t
ϕε(bε(t)) =

∫

X

tr
(

s′(0)(ΛεiF∂E ,k − cεIdE)
)

Volε

= −2

∫

X

tr
(

(fε,bε(0)iνε(bε(0))f
−1
ε,bε(0)

+ o(fε,bε(0)iνε(bε(0))f
−1
ε,bε(0)

))fε,bε(0)iνε(bε(0))f
−1
ε,bε(0)

)

Volε

= −2 ‖νε(bε(0)‖
2
ε + o(‖νε(bε(0)‖

2
ε).

We are now ready to conclude this subsection.

Proposition 4.6. If E is [Θε]-semi-stable, there exists a b∞,ε ∈ B ∩ O such that νε(b∞,ε) = 0. If

moreover, E is [Θε]-stable, then b∞,ε ∈ O. Moreover, ‖b∞,ε‖ = O
(

‖ε‖L2
1
+
√

‖[ε]‖
)

.

Proof. Assume first of all that E is [Θε]-stable. Let for all t, fε,bε(t) · h = e−s(t)/2 · h for some s(t)

Hermitian with respect to h. We may assume that for all t,

∫

X

tr(s(t))Vol0 = 0. Then, by the

inequality (6) and Proposition 4.5, for all t,

‖s(t)‖ε 6 C1,ε + C2,εM(h, e−s(t)/2 · h) = C1,ε + C2,εϕε(bε(t)) 6 C1,ε + C2,εϕε(bε(0)).

It means that (s(t)) is L2 bounded. We have by definition e−s(t) = fε,bε(0)g̃ε(t)f
−1
ε,bε(0)

hence

(g̃ε(t)) and
(

g̃ε(t)
−1
)

are L2 bounded. We also have gε(t) = e−σ(ε,bε(0))g̃ε(t)e
σ(ε,bε(t)) thus (gε(t))

and (gε(t)
−1) are bounded too (for any norm since they live in a finite dimensional vector space).

Therefore, we can find a sequence tm → +∞ such that gε(tm) → gε ∈ G is invertible and in
particular, bε(tm) → b∞,ε = gε · bε(0) ∈ O. Let l = νε(b∞,ε) ∈ k. Since the norm of the moment
map decreases by Proposition 4.4, ‖νε(bε(t))‖ε → ‖l‖ε. By Proposition 4.5, up to shrinking U ,
∂
∂tϕε(bε(t)) 6 −‖l‖2ε + o(t) and inequality (6) implies that ϕ is bounded from below hence l = 0.

In the semi-stable case, we have by Theorem 3.5 that ε = limm→+∞ εm for some εm such that
E is [Θεm ]-stable. The b∞,εm remain in a compact set included in B so, up to extraction, we may
build b∞,ε ∈ B ∩ O as limm→+∞ b∞,εm . The bound on the norm of b∞,ε is given by Proposition
4.3.
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4.4 Convergence when ε → 0 and continuity results

A consequence of Proposition 4.6 is Introduction’s Theorem 3.

Theorem 4.7. Let (X,Θ0) be a compact balanced manifold and E a [Θ0]-semi-stable sufficiently
smooth holomorphic vector bundle. There is an L2

1 open neighbourhood U of 0 in the space of closed
(n− 1, n− 1) forms and a family (∂ε)ε∈U|Θε∈Css(E) of integrable Dolbeault operators on E such that

for all ε, ∂ε is Θε-HYM and (E, ∂ε) ∼= Gr[Θε](E). Moreover, for all integer d > 2,

∥

∥∂ε − ∂0

∥

∥

L2
d

= O
(

‖ε‖L2
d−1

+
√

‖[ε]‖
)

In particular, ∂ε −→
ε→0

∂0 for the C∞ topology on U and on the space of Dolbeault operators.

Proof. Let for all ε ∈ U such that E is [Θε]-semi-stable, ∂ε = ∂0 + Φ̃(ε, b∞,ε) where b∞,ε is
given by Proposition 4.6. The HYM condition is fulfilled and when Θε is in the stable cone,
b∞,ε ∈ O so (E, ∂ε) ∼= E ∼= Gr[Θε](E). When Θε is only in the semi-stable cone, by [2, Theorem 4],

(E, ∂ε) ∼= (E, ∂0 +Φ(b∞,ε)) ∼= Gr[Θε](E).
By smoothness of σ given by Proposition 4.1 and the bound on the norm of b given by Proposition

4.6, we have for all d > 2,

∥

∥∂ε − ∂0

∥

∥

L2
d

=
∥

∥

∥
eσ(ε,b∞,ε) · (∂0 +Φ(b∞,ε))− ∂0

∥

∥

∥

L2
d

=
∥

∥

∥
eσ(ε,b∞,ε)∂0(e

−σ(ε,b∞,ε)) + eσ(ε,b∞,ε)Φ(b∞,ε)e
−σ(ε,b∞,ε)

∥

∥

∥

L2
d

= O(‖σ(ε, b∞,ε)‖L2
d+1

) + O(‖Φ(b∞,ε)‖L2
d

)

= O(‖ε‖L2
d−1

+ ‖b∞,ε‖
2
) + O(‖b∞,ε‖)

= O
(

‖ε‖L2
d−1

+ ‖ε‖L2
1
+
√

‖[ε]‖
)

= O
(

‖ε‖L2
d−1

+
√

‖[ε]‖
)

.

Remark. Clearly, the same bound holds for ‖∂ε − ∂0‖L2
d
and ‖∇ε −∇0‖L2

d
, where ∇ε = ∂ε + ∂ε is

the Chern connection associated to (∂ε, h).

Lemma 4.8. Let E be a torsion-free coherent sheaf and K ⊂ E compact and convex. By Theorem
3.5, C = Css(E) ∩ K is a convex polyhedral cone. Thus for all [Θ] ∈ C, there is a unique face
F[Θ] ⊂ C such that [Θ] belongs to the relative interior of F[Θ]. If [Θ1] and [Θ2] are in C and
F[Θ1] ⊂ F[Θ2], then Gr[Θ2](E) is [Θ1]-semi-stable and Gr[Θ1](Gr[Θ2](E))

∼= Gr[Θ1](E). In particular,
if F[Θ1] = F[Θ2], Gr[Θ1](E)

∼= Gr[Θ2](E).

Proof. Let S1, . . . ,Sp ⊂ E be a finite family of coherent sheaves given by 3.4 such that C =
⋂p

k=1{lSk
> 0} ∩K. We may assume that the lSk

are pairwise distinct. Up to rearranging the Sk,
we may also assume that the faces F[Θ2] and F[Θ1] ⊂ F[Θ2] are defined by the equations,

F[Θ1] =

j
⋂

k=1

{lSk
= 0} ∩

p
⋂

k=j+1

{lSk
> 0} ∩K, F[Θ2] =

i
⋂

k=1

{lSk
= 0} ∩

p
⋂

k=i+1

{lSk
> 0} ∩K,
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for some 0 6 i 6 j 6 p. Moreover, since [Θ1] (resp. [Θ2]) belongs to the relative interior of F[Θ1]

(resp. F[Θ2]), we have lSk
([Θ1]) > 0 when k > j (resp. lSk

([Θ2]) > 0 when k > i).
Let 0 ( F1 ( · · · ( Fm = E be a Jordan-Hölder filtration for E with respect to [Θ2]. We

have Gr[Θ2](E) =
⊕m

k=1 Gk where Gk = Fk/Fk−1. By definition, for all k, lFk
([Θ2]) = 0. Since

the Fk destabilise E with respect to [Θ2] ∈ K, there must exist an integer 1 6 q 6 p such that
c1(Fk)
rk(Fk)

=
c1(Sq)
rk(Sq)

. The equality lFk
([Θ2]) = lSq

([Θ2]) = 0 implies that q 6 i. In particular, q 6 j so

for all k, lFk
([Θ1]) = 0. It implies that each Fk is [Θ1]-semi-stable by [Θ1]-stability of E . Therefore,

for all k, lGk
([Θ1]) = 0 and Gk is [Θ1]-semi-stable as a quotient of [Θ1]-semi-stable sheaves of the

same [Θ1]-slope.
It means that the Fk form a filtration of E by semi-stable sub-sheaves with torsion-free semi-

stable quotients with respect to [Θ1]. Let us consider a maximal refinement of this filtration with
for all 1 6 k 6 m,

Fk−1 = Fk−1,0 ( Fk−1,1 ( · · · ( Fk−1,pk
= Fk = Fk,0.

Then, the Fk,q form a Jordan-Hölder filtration of E with respect to [Θ1] hence on the one hand,

Gr[Θ1](E) =
m
⊕

k=1

pk
⊕

q=1

Fk−1,q/Fk−1,q−1,

and on the other hand, for each k, the Fk−1,q/Fk−1 form a Jordan-Hölder filtration of Gk = Fk/Fk−1

with respect to [Θ1] so,

Gr[Θ1](Gr[Θ2](E)) =
m
⊕

k=1

Gr[Θ1](Gk) =
m
⊕

k=1

pk
⊕

q=1

Fk−1,q/Fk−1,q−1.

It proves the lemma.

Let Css(E) ⊂ Css(E) be the set of all Θ with respect to which E is semi-stable and sufficiently
smooth. Let CD

ss(E) ⊂ CD
ss(E) be its projection on the real Dolbeault cohomology group. Lemma

4.8 has the following consequence,

Corollary 4.9. CD
ss(E) is an open subset of CD

ss(E) whose complement is locally formed of a union
of closed faces of CD

ss(E). Similarly, Css(E) is an open subset of Css(E).

Proof. This is a direct consequence of Lemma 4.8 and the fact that the graded object of a sheaf
which is not locally free is itself not locally free (in particular, if E is not locally free, these cones
are empty).

We come back to the case where E is locally free. Let H(E) be the set of holomorphic structures
on E i.e. the set of the integrable Dolbeault operators. We endow it with the C∞ topology. By [13,
Corollary 7.1.15], the action of G onH(E) is proper hence the spaceH(E)/G is Hausdorff. We endow
Css(E) ⊂ Ωn−1,n−1(X,R) with the C∞ topology too. We are now ready to prove Introduction’s
Theorem 4.

Theorem 4.10. The function,

ΓE :

{

Css(E) → H(E)/G
Θ 7→ {∂ ∈ H(E)|(E, ∂) ∼= Gr[Θ](E) and ∂ is Θ-HYM}

,

is well-defined and continuous.
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Proof. For all Θ ∈ Css(E), Gr[Θ](E) is a [Θ]-polystable vector bundle so Proposition 3.7 tells us

that the set {∂ ∈ H(E)|(E , ∂) ∼= Gr[Θ](E) and ∂ is Θ-HYM} is exactly one G-orbit hence ΓE is well
defined and indeed takes values in H(E)/G. Let K ⊂ BX be a convex compact subset. It is enough
to show continuity on the polyhedral cone C = Css(E) ∩K for all such K and we may assume that
C 6= ∅. We have to consider three cases.

First case : Cs(E) ∩ C 6= ∅. In this case, continuity of Γ at each point Θ0 is a consequence of
Theorem 4.7.

Second case : It exists Θ0 ∈ C such that F[Θ0] is the whole cone C and E is [Θ0]-polystable. In
this case, let us write E =

⊕m
k=1 Ek with the Ek [Θ0]-stable with the same [Θ0]-slope. The unitary

gauge group of E is the direct product of the unitary gauge groups of the smooth structures Ek of Ek.
For all Θ ∈ Css(E), each Ek is [Θ]-semi-stable and have the same [Θ]-slope as E because [Θ] ∈ F[Θ0].
It implies that Gr[Θ](E) =

⊕m
k=1 Gr[Θ](Ek). Moreover, any [Θ]-HYM connection on Gr[Θ](E) makes

this decomposition holomorphic and induces a [Θ]-HYM connection on each Gr[Θ](Ek). Therefore,
it makes sens to write that ΓE =

∑m
k=1 ΓEk

. The fact that each ΓEk
is continuous is the first case

because for all k, Θ0 ∈ Cs(Ek) ∩ C.
Third case : General case. C is assumed to be non-empty so there is a Θ0 such that F[Θ0] = C.

Thus, for all Θ ∈ Css(E), F[Θ] ⊂ F[Θ0]. Therefore, a consequence of Lemma 4.8 is that ΓE =
ΓGr[Θ0](E) and Gr[Θ0](E) is a [Θ0]-polystable vector bundle. We conclude thanks to the second
case.
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