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Convergence of a model-free entropy-regularized

inverse reinforcement learning algorithm

Titouan Renard∗ Andreas Schlaginhaufen∗† Tingting Ni∗‡ Maryam Kamgarpour

Abstract

Given a dataset of expert demonstrations, inverse reinforcement learning (IRL)
aims to recover a reward for which the expert is optimal. This work proposes a
model-free algorithm to solve the entropy-regularized IRL problem. In particular,
we employ a stochastic gradient descent update for the reward and a stochastic soft
policy iteration update for the policy. Assuming access to a generative model, we
prove that our algorithm is guaranteed to recover a reward for which the expert is
ε-optimal using an expected number of O(1/ε2) samples of the Markov decision
process (MDP). Furthermore, with an expected number of O(1/ε4) samples we
prove that the optimal policy corresponding to the recovered reward is ε-close to
the expert policy in total variation distance.

1 Introduction

The problem of inverse reinforcement learning (IRL) can be informally characterized as follows.
Given observations of an expert acting optimally with respect to an unknown reward in a Markov
decision process (MDP), we aim to recover a reward for which the expert is optimal. While early
inquiries can be traced back to optimal control theory [8] and to econometrics [16], IRL was first
introduced to the machine learning community by Russell [15]. The motivation behind IRL is two-
fold: First, IRL is a powerful tool for imitation learning, where the goal is to recover the expert’s
policy from a dataset of expert demonstrations. This is particularly useful in scenarios such as
autonomous driving [13] where it is easy to collect expert demonstrations. Second, compared to
other imitation learning methods that only recover a policy, IRL comes with the advantage that
recovering a reward provides a more interpretable and transferable description of the task, as the
reward can be potentially used to learn optimal policies in a new environment.

A powerful family of imitation learning and IRL algorithms are based on a min-max game between a
policy and a reward player [19]. The policy player tries to maximize the expected reward, while the
reward player tries to minimize the suboptimality of the expert demonstrations. At a saddle point,
we recover a reward for which the expert is nearly optimal along with a policy that approximates the
expert’s. Hence, this game-theoretic approach is useful for both imitation learning, by recovering the
expert’s policy, and for IRL, by recovering a reward that rationalizes the expert’s behavior. However,
when applied to IRL, the non-uniqueness of the optimal policy leads to trivial solutions, like a
uniform reward for which all policies are optimal. This degeneracy is usually addressed through an
entropy regularization term, which guarantees the uniqueness of the optimal policy, leading to the
widely used entropy-regularized IRL framework [23, 7].
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Although approaches based on the aforementioned min-max game have shown tremendous success
in imitation learning and IRL applications [7, 4], only little is known about their convergence prop-
erties. From an optimization perspective, the min-max problem introduced by [19] is challenging
for two reasons. First, since the policy player aims to maximize its expected reward in an MDP, the
objective is inherently non-concave in the policy [1]. Second, as in practice we are often only given
sample-based access to the MDP, either via a simulator or by collecting samples in the real world,
we need to resort to stochastic optimization techniques to build a model-free algorithm.

1.1 Related work

Most previous work on the min-max approach to imitation learning and IRL considers the unregu-
larized setting and linear reward classes. For the infinite-horizon unregularized case, the authors of
[19] propose a multiplicative weights algorithm to update the reward and show that their algorithm
provably recovers a policy that is approximately optimal under the expert’s true reward. However,
they require access to an approximate solution of the forward MDP problem at each update step of
the reward. This results in an inner RL loop, which may lead to high per-iteration costs in prac-
tice. For infinite-horizon linear MDPs, the authors of [20] propose a single-loop proximal point
algorithm based on the so-called Q-LP formulation of the forward problem [2]. They show that the
policy learned by their algorithm efficiently convergences to the expert’s, where the convergence is
measured in a so-called integral probability metric [12] between the state-action occupancy mea-
sures.

For the finite-horizon unregularized case, the authors of [18] analyze a single-loop mirror descent-
ascent algorithm and show their algorithm achieves sublinear regret measured in terms of the worst-
case difference between the accumulated values of the learner and the expert. Furthermore, the
authors of [10] extend this approach to linear MDPs with function approximation. It can be shown
that the regret bounds established by [18] and [10] imply convergence of a randomized policy de-
rived from the algorithm iterates in the aforementioned integral probability metric.

Note that all of the above works consider the unregularized setting and their guarantees are on the
recovered policy rather than on the reward. To the best of our knowledge, [22] is the only work to
provide guarantees for the infinite-horizon entropy-regularized setting. Their method uses an exact
soft-policy iteration step to update the policy and stochastic gradient descent to update the reward.
They show that the proposed algorithm reaches an ε-stationary solution inO(1/ε2) iterations. How-
ever, they do not provide guarantees on the suboptimality of the expert with respect to the recovered
reward. Moreover, they require access to the exact state-action value function and an infinitely
long trajectory to estimate the reward gradient, which makes the algorithm unimplementable in a
model-free setting.

1.2 Contributions

We propose a model-free single-loop entropy-regularized IRL algorithm with a stochastic projected
gradient descent update for the reward and a stochastic soft policy iteration [6] update for the policy.
Assuming access to a generative model, we show that our algorithm is guaranteed to recover a
reward for which the expert is ε-optimal using an expected number of O(1/ε2) samples from the
MDP. Furthermore, we prove that with an expected number ofO(1/ε4) samples, the optimal policy
corresponding to the recovered reward is ε-close to the expert policy in total variation distance. To
the best of our knowledge, this is the first work to provide end-to-end guarantees on the rewards for
a model-free single-loop entropy-regularized IRL algorithm.

2 Background

2.1 Notation

We use R and N to denote the set of real and natural numbers, respectively. For a vector x in R
d,

we denote its p-norm by ‖x‖p and its projection onto a closed convex set X ⊂ R
d by PX (x) =

argminy∈X ‖x − y‖2. For any two vectors x, y ∈ R
d, we denote the standard inner product by

〈x, y〉. Furthermore, we let YX be the set of all functions mapping from the set X to Y . Given

a finite set X the infinity-norm of a vector valued function f : X → R
d over X is defined as
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‖f‖∞ := maxx∈X ‖f(x)‖∞. Moreover, we denote the probability simplex over X by ∆X . For
p ∈ ∆X , we denote the Shannon entropy of p byH(p) := −∑x∈X p(x) log p(x). Finally, a random

variable X taking values in N is geometrically distributed with parameter p ∈ (0, 1), denoted as

X ∼ Geom(p), if Pr(X = k) = (1− p)kp.

2.2 Markov decision processes

Throughout this paper, we consider an entropy-regularized MDP defined by the tuple

(S,A, P, ν0, r, γ, τ). Here, S and A denote finite state and action spaces, P ∈ ∆S×A
S is a Marko-

vian transition kernel, and ν0 ∈ ∆S is the initial state distribution. Moreover, r ∈ R
S×A is a reward

function, γ ∈ (0, 1) a discount factor, and τ > 0 is the regularization parameter. Starting from
s0 ∼ ν0, the agent chooses at each step in time, h, an action ah ∈ A, receives reward r(sh, ah), and
arrives in state sh+1 ∼ P (·|sh, ah). Given a stationary Markov policy π ∈ ∆S

A, the agent selects
at each state sh its next action ah by sampling from π(·|sh). We use P

π
ν0

to denote the distribution

over the sample space (S ×A)∞ = {(s0, a0, s1, a1, . . .) : sh ∈ S, ah ∈ A, h ∈ N} induced by the
policy π and the initial distribution ν0. Moreover, we let Eπ be the expectation with respect to P

π
ν0

.

The goal of the forward MDP problem is to find a policy π ∈ ∆S
A maximizing the entropy-

regularized expected discounted reward

Jπ
r := Eπ

[ ∞∑

h=0

γhr(sh, ah)

]

+ τH(π), (O-RL)

where H(π) := Eπ

[∑∞
h=0 γ

hH (π(·|sh))
]

is the discounted causal entropy of π [23]. For a fixed
reward r, we denote the optimal policy as

π∗
r := arg max

π∈∆S
A

Jπ
r , (1)

and the optimal objective value as J∗
r := J

π∗

r

r . Note that the entropy regularization ensures that π∗
r

is unique [5]. To help characterize expectations over trajectories, we introduce the state occupancy
measure νπ ∈ ∆S defined by

νπ(s) := (1− γ)

∞∑

h=0

γh
P
π
ν0
(sh = s).

For a function f ∈ R
S , this allows us to rewrite the expectation Eπ

[∑∞
h=0 γ

hf(s)
]

as

Es∼νπ [f(s)] /(1− γ) [14].

2.3 Problem statement

The IRL problem is specified as follows: given access to a dataset of expert trajectories,

DE =
{(

si0, a
i
0, . . . , s

i
H−1, a

i
H−1

)}N

i=1
,

sampled from an unknown expert policy πE , we aim to recover a reward r̄, in some reward class
R ⊆ R

S×A, for which the expert is optimal. However, this is problematic for two reasons. First, the
expert policy πE may not be optimal for any reward inR. Second, we only have access toDE rather
than to πE itself. To address the first issue, we relax our goal to recovering a reward minimizing the
suboptimality of the expert. This leads us to the min-max formulation

min
r∈R

max
π∈∆S

A

Jπ
r − JπE

r . (2)

We can interpret (2) as a zero-sum game between a policy player that aims to maximize the MDP
objective (O-RL) and a reward player that aims to minimize the suboptimality of the expert policy.
If the expert is optimal for some reward in R, then the set of minimizers in (2) coincides with the
set of rewards for which the expert is optimal [17].

To address the second issue, we need to estimate JπE

r from the expert data set DE . To this end, we
consider the bounded linear reward class

R =
{
rw := 〈w, φ(·, ·)〉 : φ : S ×A → R

k, w ∈ W
}
,
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where w is a weight vector in W :=
{
w ∈ R

k : ‖w‖1 ≤ 1
}

and φ(s, a) is a feature vector in R
k.

The features can either be task-specific, such as distance to target and speed in a driving task, or
general, allowing for all state-only or state-action rewards, resulting in k = |S| or k = |S||A|,
respectively. Introducing the feature expectation

σπ := Eπ

[ ∞∑

h=0

γhφ(sh, ah)

]

, (3)

associated with the policy π, and the empirical expert feature expectation

σ̂E :=
1

N

N∑

i=1

H−1∑

h=0

γhφ(sih, a
i
h),

we can rewrite Jπ
rw

= 〈w, σπ〉 + τH(π) and estimate the expected reward of the expert policy as

EπE [
∑∞

h=0 γ
trw(sh, ah)] ≈ 〈w, σ̂E〉. Plugging this back into (2) leads us to the IRL problem

min
w∈W

max
π∈∆S

A

〈w, σπ − σ̂E〉+ τH(π) − τH(πE)
︸ ︷︷ ︸

=:L(π,w)

, (O-IRL)

where compared to (2) we replaced 〈w, σπE 〉 with its empirical estimate 〈w, σ̂E〉. The unknown
term H(πE) is constant in both parameters w and π and thus, is irrelevant for optimization. Note
that for a fixed w, the maximizer of L(·, w) is the optimal policy π∗

rw
defined in (1). Hence, the

inner maximization in (O-IRL) is equivalent to the forward MDP problem (O-RL). Our goal is to
find w̄ minimizing (O-IRL). An approximate expert policy can then be recovered from w̄ by solving
for the optimal policy corresponding to rw̄ .

3 Proposed algorithm

To solve the problem described in (O-IRL) with exact gradient information, we employ soft policy
iteration for policy updates and projected gradient descent for reward updates. As detailed below,
this can be viewed as a simple gradient descent-ascent type algorithm.

Policy update For a known transition law P , we can maximize the objective in (O-RL) via regu-
larized dynamic programming [5]. In particular, for a fixed reward, we update the policy as

πt+1
r (·|s) ∝ exp

(

Qπt

r (s, ·)/τ
)

, (4)

with the state-action value function

Qπt

r (s, a) := r(s, a) + Eπ

[ ∞∑

h=1

γh (r(sh, ah) + τH(π(·|sh))) |s0 = s, a0 = a

]

. (5)

The above policy update is known as soft policy iteration, which converges linearly to the optimal
policy [5]. Additionally, it can be shown that the soft policy iteration update coincides with entropy-
regularized natural policy gradient with a specific stepsize [3]. Hence, the policy update (4) can be
interpreted as a gradient ascent update. However, note that computing the update (4) requires access

to the state-action value function Qπt

r (s, a) for all state-action pairs (s, a).

Reward update To find the optimal reward that minimizes the objective in (O-IRL), we update
the reward parameter w using a projected gradient descent update

wt+1 = PW

(

wt − ηw
∂L(πt, w)

∂w

∣
∣
∣
w=wt

)

= PW

(

wt − ηw

(

σπt − σ̂E
))

, (6)

where PW represents the orthogonal projection onto W , and ηw is the reward learning rate.

3.1 Sampling scheme

Both the policy update (4) and the reward update (6) require access to the transition law P for
evaluating the state-action value function (5) and the feature expectation (3), respectively. Hence, to
devise a model-free algorithm, we need to estimate the state-action value and the feature expectation
from samples of the MDP. To this end, we adopt the geometric sampling scheme, described below,
which enables us to get unbiased estimates of the state-action value and the feature expectation.
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State-action value estimation We assume access to a generative model of the MDP, allowing
us to obtain multiple independent trajectories starting from any arbitrary state-action pair with any
policy. Given a policy π, for each state-action pair (s, a), we construct an unbiased estimate of the

state-action value Qπ
r (s, a) by sampling B independent trajectories τi := (s, a, {sih, aih}Hi

h=0)
B
i=1

from π, with horizon Hi ∼ Geom(1− γ). As shown in [1, Assumption 6.3], the estimator

Q̂π
r (s, a) := r(s, a) +

1

B

B∑

i=1

Hi∑

h=0

(
r(sih, a

i
h) + τH(π(·|sih))

)
.

is an unbiased estimator of Qπ
r (s, a). In the following, we will denote the above sampling procedure

outputting Q̂π
r (s, a) as EstQ(s, a, π, r, B).

Feature expectation estimation Similarly, as for the state-action value estimate, we construct
an unbiased estimate of the feature expectation σπ, by sampling B independent trajectories τi :=
({sih, aih}Hi

h=0)
B
i=1 from π, with horizon Hi ∼ Geom(1 − γ) and initial state si0 ∼ ν0. As shown in

Lemma A.1, the estimator

σ̂π :=
1

B

B∑

i=1

Hi∑

h=0

φ(sih, a
i
h),

is an unbiased estimator of σπ. We denote this sampling procedure as Estσ(π,B).

3.2 Algorithm summary

Combining the above steps, we present Algorithm 1 for learning the reward in (O-IRL), which
simultaneously updates the policy with stochastic soft policy iteration and the reward parameter
via stochastic projected gradient descent. Note that Algorithm 1 updates the policy and the reward

Algorithm 1 Primal-dual IRL algorithm

Input: Reward learning rate ηw > 0 and batch size B.
Initialize π0 ∈ ∆S

A and w0 = 0.

Estimate σ̂E = 1
N

∑N−1
i=0

∑H−1
h=0 γhφ(sih, a

i
h) from DE .

for t← 0 to T − 1 do
rt = 〈wt, φ(·, ·)〉.
// Estimate values:

for s ∈ S, a ∈ A do

Q̂πt

rt (s, a) = EstQ(s, a, πt, rt, B).

σπt

= Estσ(πt, B).
// Update policy and reward:

πt+1(·|s) ∝ exp
(

Q̂πt

rt (s, ·)/τ
)

.

wt+1 = PW

(

wt − ηw

(

σ̂πt − σ̂E
))

.

Output: Reward r̄ = rw̄, with w̄ = 1
T

∑T−1
t=0 wt.

parameters in a single loop. That is, we do not have to solve an RL problem at every reward step,
but we only employ a single approximate policy iteration update. This is in contrast to the algorithm
proposed by [19]. Moreover, unlike the algorithm provided by [22], which requires the exact state-
action value function (5) for the policy update and an infinitely long trajectory to estimate the feature
expectation (3), Algorithm 1 is both model-free and implementable. It requires only a finite expected
number of samples from the MDP per iteration.

In the next section, we show that Algorithm 1 enjoys strong guarantees for the recovered reward.

4 Convergence analysis

In Section 4.1, we prove that our algorithm is guaranteed to recover a reward for which the expert
is ε-optimal using an expected number of O(1/ε2) samples of the MDP, as detailed in Theorem
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4.3. Then, in Section 4.2, we establish that with an expected number of O(1/ε4) samples, the
optimal policy corresponding to the recovered reward is ε-close to the expert policy in total variation
distance, as stated in Corollary 4.6. Furthermore, we show that the total variation distance is a
stronger metric for measuring policy differences compared to the metrics used in [19, 20, 18, 10].

4.1 Reward convergence

To establish guarantees for the recovered reward r̄, we require two assumptions. First, Assumption
4.1 below ensures that the policy iterates of Algorithm 1 sufficiently explore the state space.

Assumption 4.1. The distribution mismatch coefficient, defined by ϑ :=

max0≤t≤T−1 maxs∈S νπ
∗

rt (s)/νπ
t

(s), is bounded from above.

Similar assumptions on the distribution mismatch coefficient are used in the prior literature [1, 11,

21]. Since νπ
t

(s) ≥ (1−γ)ν0(s), Assumption 4.1 is satisfied if the initial distribution ν0 is bounded
away from zero.

Second, to show that the expert is approximately optimal for the recovered reward, we need the
following approximate realizability assumption that quantifies the best-case optimality of the expert
within our reward classR.

Assumption 4.2. There exists εreal ≥ 0 such that the expert policy πE is εreal-optimal for some
reward r ∈ R. That is,

min
w∈W

max
π

L(π,w) = min
r∈R

J∗
r − JπE

r ≤ εreal.

Assumption 4.2 has been introduced by [19]. The realizability error εreal can be reduced by increas-
ing the number of features k and the diameter of W [19]. Next, we are ready to state our main
convergence result.

Theorem 4.3. Suppose Assumptions 4.1 and 4.2 hold, and let ηw = (1−γ)√
kT‖φ‖∞

. The expert satisfies

the following optimality guarantee for the reward r̄ returned by Algorithm 1:

E

[

J∗
r̄ − JπE

r̄

]

≤ εreal +O
(
γH
)
+O

(

1/
√
T
)

.

Here, the expectation is taken with respect to all the randomness in Algorithm 1. Moreover, to
recover a reward for which the expert is (ε + εreal)-optimal we require the length of the expert
trajectories to be H = O(log ε−1) and we need an expected number of O(1/ε2) samples from the
MDP.

The proof of Theorem 4.3 is based on two key ingredients. First, Lemma 4.4 below shows that the
policy iterates πt converge to the optimal policy for the reward iterates rt defined in Algorithm 1.

Lemma 4.4. Suppose Assumption 4.1 holds and let ηw = 1−γ√
kT‖φ‖∞

. We can bound the suboptimal-

ity of the policy iterates of Algorithm 1 by

E

[

max
π

L(π,wt)− L(πt, wt)
]

≤ O
(

1/
√
T
)

.

The above lemma shows that if we control the changes of the reward rt by setting the reward learning

rate to ηw = Θ(1/
√
T ), the value of the policy πt converges to the optimal value under rt at the

same speed O(1/
√
T ). We provide the proof in Appendix A.

The second ingredient required for the proof of Theorem 4.3 is the following lemma that shows that
our algorithm has sublinear regret with respect to the reward.

Lemma 4.5 (Stochastic online gradient descent regret). If we set the learning rate to ηw =
1−γ√

kT‖φ‖∞

, we have

E

[
T−1∑

t=0

L(πt, wt)

]

≤ E

[

min
w∈W

T−1∑

t=0

L(πt, w)

]

+O
(√

T
)

.
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For exact gradient information, Lemma 4.5 is a well-known result in online convex optimization
[24]. Since we use an unbiased gradient estimator, this result can be easily extended to our case. We
provide a proof adapted to our setting in Appendix A. Equipped with the above two lemmas, we are
now ready to prove Theorem 4.3.

Proof of Theorem 4.3. We first upper bound J∗
r̄ − JπE

r̄ as follows:

E

[

J∗
r̄ − JπE

r̄

]

=E

[

max
π

T−1∑

t=0

L(π,wt) + 〈wt, σπE − σ̂E〉
T

]

(i)

≤E
[

max
π

T−1∑

t=0

L(π,wt)

T

]

+O(γH)

(ii)

≤E

[
T−1∑

t=0

maxπ L(π,w
t)

T

]

+O(γH)

(iii)

≤ E

[
T−1∑

t=0

L(πt, wt)

T

]

+O
(
γH
)
+O

(

1/
√
T
)

(iv)

≤ E

[

min
w∈W

∑T−1
t=0 L(πt, w)

T

]

+O
(
γH
)
+O

(

1/
√
T
)

. (7)

Here, (i) follows from the truncation error of the empirical expert feature expectation, as detailed
in Lemma A.1, and (ii) holds since maxπ L(π, ·) is a pointwise maximum of affine functions and
therefore convex. Moreover, in (iii) and (iv) we used Lemma 4.4 and 4.5, respectively. Next,
notice that we can expressL(πt, w) as a function of the state-action occupancy measure, µπ(s, a) :=
νπ(s)π(a|s). In particular, we can rewrite L(π,w) = L̄(µπ, w), with

L̄(µ,w) := 〈rw − τ log πµ, µ〉 − 〈w, σ̂E〉 − τH(πE),

where πµ denotes the policy induced by µ. It can be shown that L̄(·, w) is concave [17]. Therefore,

if µ̄ := 1
T

∑T−1
t=0 µπt

and π̄ := πµ̄, we have by Jensen’s inequality that

1

T

T−1∑

t=0

L(πt, w) =
1

T

T−1∑

t=0

L̄(µπt

, w) ≤ L̄ (µ̄, w) = L(π̄, w).

Plugging this back into (7), we have

E

[

J∗
r̄ − JπE

r̄

]

≤E
[

min
w∈W

L(π̄, w)

]

+O
(
γH
)
+O

(

1/
√
T
)

≤εreal +O
(
γH
)
+O

(

1/
√
T
)

,

where the last step follows by Assumption 4.2. To find the reward for which the expert is
(ε + εreal)-optimal, we need to set H = O

(
log ε−1

)
and T = O(1/ε2). Since each trajectory

in EstQ(s, a, π, r, B) and Estσ(πt, B) has an expected length of 1/(1 − γ), the expected total
number of samples used by Algorithm 1 is 2BT/ (1− γ) = O(1/ε2).

4.2 Policy convergence

In Theorem 4.3, we quantified the optimality of the expert for the recovered reward r̄. In this section,
we show that the optimal policy corresponding to the recovered reward is also close to the expert
policy. We first introduce a total variation metric for measuring the distance to the expert policy

max
s
‖πE(·|s)− π(·|s)‖TV. (8)

We define π to be ε-close to the expert policy if the total variation metric described above is bounded
by ε. To ensure convergence in the policy, we need the following additional assumption. The state

7



occupancy measure νπ
E

(s) generated by the expert satisfies ϑE := mins∈S νπ
E

(s) > 0. The
above assumption ensures that the expert sufficiently explores the state space of the MDP. Similar
to Assumption 4.1, it is satisfied when the initial distribution ν0 is bounded away from zero. Under
Assumption 4.2, we have the following convergence guarantee for the optimal policy corresponding
to the recovered reward r̄.

Corollary 4.6. Suppose Assumptions 4.1, 4.2, and 4.2 hold, and let ηw = 1−γ√
kT‖φ‖∞

. Algorithm 1

requires an expected number ofO(1/ε4) samples to ensure that the optimal policy corresponding to
the recovered reward r̄ is (ε+

√
εreal)-close to the expert policy.

Proof. The result follows from

J∗
r̄ − JπE

r̄

(i)
=

τ

1− γ
Es∼νE

[

KL(πE(·|s)||π∗
rw̄ (·|s))

]

=
τ

1− γ

∑

s∈S
νE(s)KL(πE(·|s)||π∗

rw̄ (·|s))

(ii)

≥ 2τ

1− γ

∑

s∈S
νE(s)‖πE(·|s)− π∗

rw̄(·|s)‖2TV

(iii)

≥ 2τϑE

1− γ
max

s
‖πE(·|s)− π∗

rw̄(·|s)‖2TV,

where the equality (i) follows from the soft suboptimality Lemma [11, Lemma 26], (ii) holds
by Pinsker’s inequality, and (iii) by Assumption 4.2. Therefore, to ensure maxs ‖πE(·|s) −
π∗
rw̄(·|s)‖TV ≤ ε +

√
εreal, we need J∗

r̄ − JπE

r̄ to be upper bounded by Ω
(
ε2 + εreal

)
. By The-

orem 4.3, we need an expected number of O(1/ε4) samples in total.

In Corollary 4.6, we show that the optimal policy corresponding to the reward recovered by Al-
gorithm 1 converges to the expert’s policy in the total variation metric (8). In the following, we
demonstrate that (8) is a stronger metric for measuring policy convergence compared to the metrics
used by [19, 20, 18, 10]. In particular, the authors of [19] prove convergence in the metric

〈wtrue, σ
π − σπE 〉, (9)

where wtrue ∈ W is an unknown true reward parameter. Moreover, [20, 18, 10] provide their con-
vergence guarantees in terms of the integral probability metric [12]

δR(µπ, µπE

) := max
r∈R
〈r, µπ − µπE 〉 = max

w∈W
〈w, σπ − σπE 〉, (10)

between the state-action occupancy measures µπ and µπE

. The metric (10) measures the worst-case
difference in the unregularized expected value between the recovered policy and the expert policy.
It is easy to see that the integral probability metric (10) is stronger compared to the metric (9). In
the following proposition, we demonstrate that the total variation metric (8) is a stronger metric for
measuring policy convergence compared to the integral probability metric (10).

Proposition 4.7. 1) If the policy π is ε-close to the expert policy in the total variation metric, then
it is also ε-close to the expert policy in the integral probability metric.

2) Convergence in the integral probability metric does not imply convergence in the total variation
metric.

Proof. To prove 1), we bound (10) as follows:

max
w∈W
〈w, σπ − σπE 〉

(i)

≤ max
w∈W

‖w‖1‖σπ − σπE‖∞
(ii)

≤ ‖σπ − σπE‖∞
(iii)

≤ 2‖φ‖∞
(1− γ)2

max
s
‖πE(·|s)− π(·|s)‖TV,

8



where (i) follows from Hölder’s inequality, (ii) holds because ‖w‖1 ≤ 1, and (iii) uses the Lips-
chitz continuity of σπ with respect to π, as shown in Lemma B.7.

To prove 2), we consider a one-state MDP, as illustrated in Figure 1, where the policy is optimal in
the integral probability metric (10) but is far from the expert policy in the total variation metric.

Consider an MDP with a single state S = {s1} and two actions A = {a1, a2}. We let the feature
vector be a scalar constant φ(s, a) = 1, and we consider the expert policy πE(a1|s1) = 1/2 and the
policy π(a2|s1) = 1. Then,

max
w∈W
〈w, σπ − σπE 〉 = 0, max

s
‖πE(·|s)− π(·|s)‖TV =

1

2
.

s1a1 a2

Figure 1: One-state MDP

As shown by Proposition 4.7, convergence in the total variation metric (8) is stronger than con-
vergence in the integral probability metric (10). This is because the total variation metric directly
measures the difference between policies, while the integral probability metric measures the differ-
ence in their unregularized expected value, ignoring the entropy regularization values. In the above
example, the expert policy πE has maximum entropy and is therefore realizable with εreal = 0.
Therefore, Algorithm 1 is guaranteed to recover a reward with a corresponding optimal policy that
is ε-close to the expert policy in the total variation metric. However, in the case of a large real-
izability error εreal, Corollary 4.6 fails to provide such strong guarantees. Hence, compared with
[19, 20, 18, 10], we can get stronger convergence guarantees for the optimal policy corresponding
to the recovered reward if the expert is realizable with a small realizability error εreal.

5 Discussion and conclusion

We proposed a model-free single-loop algorithm to tackle the entropy-regularized IRL problem. Our
algorithm simultaneously updates the policy using stochastic soft policy iteration and the reward
parameters via stochastic projected gradient descent. We provided theoretical guarantees for the
recovered reward and characterized the algorithm’s sample complexity. Moreover, we demonstrated
that the optimal policy under the recovered reward is close to the expert policy, measured using the
total variation metric. Furthermore, we showed that this metric is stronger than the metrics used by
[19, 20, 18, 10].

Since our proposed algorithm uses a stochastic soft policy iteration update for the policy, it requires
re-estimating the state-action values for all state-action pairs at each time step. This may be infeasi-
ble for large state and action spaces and may require a large batch size to control the variance of the
policy iterates. This highlights a limitation in our theoretical results, as we have only demonstrated
convergence in expectation without providing a high probability bound. Therefore, a potential av-
enue for future research involves redesigning the policy update steps to establish convergence with
a high probability bound and validating the algorithm on benchmarks or real-world scenarios.
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A Proof of main lemmas

Lemma A.1 (Property of the estimators). The estimators Q̂π
r (s, a) and σ̂π returned by

EstQ(s, a, π, r, B) and Estσ(π,B) respectively, are unbiased, meaning

E

[

Q̂π
r (s, a)

]

= Qπ
r (s, a), E [σ̂π] = σπ.

For the estimator σ̂E , we have, for all w ∈ W ,

〈σπE

, w〉 − γH‖φ‖∞
1− γ

≤ 〈E
[
σ̂E
]
, w〉.

For the reward gradient estimator ∇̂wL(π,w), we have

E‖∇̂wL(π,w)‖∞ ≤
2‖φ‖∞
1− γ

, E‖∇̂wL(π,w)‖22 ≤
6k‖φ‖2∞
(1− γ)2

.

Here, the expectations are with respect to the randomness of the corresponding sampling strategies.

Proof of Lemma A.1. From [1, Assumption 6.3], we have E

[

Q̂π
r (s, a)

]

= Qπ
r (s, a) and (sH , aH)

with H ∼ Geom(1 − γ) is sampled from the state-action occupancy measure µπ. Therefore, we
have

E [σ̂π] = E

[

1

B(1− γ)

B∑

i=1

Hi∑

h=0

φ(sih, a
i
h)

]

= E(si
h
,ai

h
)∼µπ(s,a)

[

1

B

B∑

i=1

Hi∑

h=0

φ(sih, a
i
h)

]

= σπ.

For estimator σ̂E , we have

E
[
σ̂E
]
= EπE

[
H−1∑

t=0

γtφ(s, a)

]

= EπE

[ ∞∑

t=0

γtφ(s, a)

]

− EπE

[ ∞∑

t=H

γtφ(s, a)

]

= σπE − EπE

[ ∞∑

t=H

γtφ(s, a)

]

.

Taking the inner product with w ∈ W on both sides of the above equality, we have

〈E
[
σ̂E
]
, w〉 = 〈σπE

, w〉 − EπE

[ ∞∑

t=H

γt〈φ(s, a), w〉
]

≥ 〈σπE

, w〉 − γH‖φ‖∞
1− γ

,

where the last inequality follows from 〈φ(s, a), w〉 ≤ ‖φ‖∞‖w‖1 ≤ ‖φ‖∞.

For reward gradient estimator ∇̂wL(π,w), we have

E

∥
∥
∥∇̂wL(π,w)

∥
∥
∥
∞

= E
∥
∥σ̂π − σ̂E

∥
∥
∞ = E

∥
∥
∥
∥
∥
∥

1

B

B∑

i=1

Hi∑

h=0

φ(sih, a
i
h)−

1

N

N∑

j=1

H−1∑

h=0

γhφ(sjh, a
j
h)

∥
∥
∥
∥
∥
∥
∞

≤ E

∥
∥
∥
∥
∥

1

B

B∑

i=1

Hi∑

h=0

φ(sih, a
i
h)

∥
∥
∥
∥
∥
∞

+ E

∥
∥
∥
∥
∥

1

N

N∑

i=1

H−1∑

h=0

γhφ(sih, a
i
h)

∥
∥
∥
∥
∥
∞

(i)

≤ ‖φ‖∞EH∼Geom(1−γ)H +
‖φ‖∞
1− γ

≤ (1 + γ)‖φ‖∞
1− γ

≤ 2‖φ‖∞
1− γ

,
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where (i) we apply the expectation of Geom(1 − γ) is γ
1−γ

. Similarly, we can bound

E

∥
∥
∥∇̂wL(π,w)

∥
∥
∥

2

2
as follows:

E

∥
∥
∥∇̂wL(π,w)

∥
∥
∥

2

2
= E

∥
∥
∥
∥
∥
∥

1

B

B∑

i=1

Hi∑

h=0

φ(sih, a
i
h)−

1

N

N∑

j=1

H−1∑

h=0

γhφ(sjh, a
j
h)

∥
∥
∥
∥
∥
∥

2

2

≤ 2E

∥
∥
∥
∥
∥

1

B

B∑

i=1

Hi∑

h=0

φ(sih, a
i
h)

∥
∥
∥
∥
∥

2

2

+ 2E

∥
∥
∥
∥
∥

1

N

N∑

i=1

H−1∑

h=0

γhφ(sih, a
i
h)

∥
∥
∥
∥
∥

2

2

(i)

≤ 2k‖φ‖2∞EH∼Geo(1−γ)H
2 +

2k‖φ‖2∞
(1− γ)2

≤ 2k(1 + γ + γ2)‖φ‖2∞
(1− γ)2

≤ 6k‖φ‖2∞
(1− γ)2

,

where (i) we apply the fist moment of Geom(1 − γ) is γ+γ2

(1−γ)2 .

Lemma 4.4. Suppose Assumption 4.1 holds and let ηw = 1−γ√
kT‖φ‖∞

. We can bound the suboptimal-

ity of the policy iterates of Algorithm 1 by

E

[

max
π

L(π,wt)− L(πt, wt)
]

≤ O
(

1/
√
T
)

.

Proof of Lemma 4.4. We first upper bound the improvement of the suboptimality gap as follows:

E

[(

max
π

L(π,wt+1)− L(πt+1, wt+1)
)

−
(

max
π

L(π,wt)− L(πt, wt)
)]

=E

[(

J∗
rt+1 − Jπt+1

rt+1

)

−
(

J∗
rt − Jπt

rt

)]

(i)
=E

[

J∗
rt+1 − Jπt+1

rt+1 − Jπt+1

rt + Jπt+1

rt − J∗
rt + Jπt

rt

]

≤E
[∣
∣J∗

rt+1 − J∗
rt

∣
∣+
∣
∣Jπt+1

rt+1 − Jπt+1

rt

∣
∣−
(
Jπt+1

rt − Jπt

rt

)]

(ii)

≤ 2ηw‖φ‖∞
(1 − γ)2

− E

[

Jπt+1

rt − Jπt

rt

]

(iii)

≤ 2ηw‖φ‖∞
(1 − γ)2

− τ

1− γ
E
[
E
s∼νπt+1 KL(πt(·|s)||πt+1(·|s))

]

≤2ηw‖φ‖∞
(1 − γ)2

− τ

1− γ
E

[(

min
s

νπ
t+1

(s)

νπ
∗

rt (s)

)

E
s∼ν

π∗

rt
KL(πt(·|s)||πt+1(·|s))

]

(iv)

≤ 2ηw‖φ‖∞
(1 − γ)2

− τ

ϑ(1− γ)
E

[

E
s∼ν

π∗

rt
KL(πt(·|s)||πt+1(·|s))

]

(v)

≤ 2ηw‖φ‖∞
(1 − γ)2

− 1

ϑ
E

[

J∗
rt − Jπt

rt

]

=
2ηw‖φ‖∞
(1 − γ)2

− 1

ϑ
E

[

max
π

L(π,wt)− L(πt, wt)
]

where (i) holds by adding and subtracting Jπt+1

rt , (ii) holds by Lemma B.5, (iii) holds by Lemma
B.3, (iv) holds by Assumption 4.1 and (v) holds by Lemma B.4. Rearrange the above inequality,
we have

E

[

max
π

L(π,wt+1)− L(πt+1, wt+1)
]

≤ 2ηw‖φ‖∞
(1− γ)2

+

(

1− 1

ϑ

)

E

[

max
π

L(π,wt)− L(πt, wt)
]

.
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Recursively applying the above inequality, we obtain

E

[

max
π

L(π,wt)− L(πt, wt)
]

≤2ηwϑ‖φ‖∞
(1 − γ)2

+

(

1− 1

ϑ

)t (

max
π

L(π,w0)− L(π0, w0)
)

=
2ϑ√

kT (1 − γ)
,

where we apply ηw = 1−γ√
kT‖φ‖∞

and maxπ L(π,w
0) − L(π0, w0) = 0 since r(0) = 0 in the last

step.

Lemma 4.5 (Stochastic online gradient descent regret). If we set the learning rate to ηw =
1−γ√

kT‖φ‖∞

, we have

E

[
T−1∑

t=0

L(πt, wt)

]

≤ E

[

min
w∈W

T−1∑

t=0

L(πt, w)

]

+O
(√

T
)

.

Proof. We start from the projected descent step

‖w(t+1) − w∗‖22 =
∥
∥
∥PW

(

wt − ηw∇̂wL(π
t, wt)

)

− w∗
∥
∥
∥

2

2

(i)

≤
∥
∥
∥wt − ηw∇̂wL(π

t, wt)− w∗
∥
∥
∥

2

2

= ‖wt − w∗‖22 − 2ηw〈∇̂wL(π
t, wt), wt − w∗〉+ η2w‖∇̂wL(π

t, wt)‖22,
where (i) holds by the non expansiveness of projection. Therefore

〈∇̂wL(π
t, wt), wt − w∗〉 ≤ ‖w

t − w∗‖22 − ‖wt+1 − w∗‖22
2ηw

+
ηw
2
‖∇̂wL(π

t, wt)‖22.

Taking the expectation on both sides, we have

E
[〈
∇wL(π

t, wt), wt − w∗〉] ≤ E

[‖wt − w∗‖22 − ‖wt+1 − w∗‖22
2ηw

+
3kηw‖φ‖2∞
(1− γ)2

]

, (11)

where we use Lemma A.1. Let w∗ be the following optimizer:

w∗ = arg min
w∈W

T−1∑

t=0

L(πt, w).

We have

E

[
T−1∑

t=0

L(πt, wt)− min
w∈W

T−1∑

t=0

L(πt, w)

]

= E

[
T−1∑

t=0

L(πt, wt)−
T−1∑

t=0

L(πt, w∗)

]

(i)

≤ E

[
T−1∑

t=0

〈
∇wL(π

t, wt), wt − w∗〉
]

(ii)

≤ E

[
T−1∑

t=0

‖wt − w∗‖22 − ‖wt+1 − w∗‖22
2ηw

+
3kTηw‖φ‖2∞
(1 − γ)2

]

≤ E

[‖wT−1 − w∗‖22
2ηw

]

+
3kTηw‖φ‖2∞
(1 − γ)2

≤ 1

ηw
+

3kTηw‖φ‖2∞
(1− γ)2

(iii)

≤ 3
√
2kT‖φ‖∞
1− γ

,

where (i) holds by convexity, (ii) by (11), and (iii) by plugging in ηw = 1−γ√
2kT‖φ‖∞

.
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B Supporting lemmas

Lemma B.1 (Soft suboptimality [11, Lemma 26]). For any policy π ∈ ∆S
A and reward r ∈ R, we

have

J∗
r − Jπ

r =
τ

1− γ
Es∼νπ KL(π(·|s)||π∗(·|s)).

Lemma B.2 (Soft performance difference [9]). For any two policies π, π′ ∈ ∆S
A, we have

Jπ
r − Jπ′

r =
1

1− γ

(

E(s,a)∼µπ

[

Aπ′

r (s, a)
]

− τEs∼νπ [KL (π(·|s)||π′(·|s))]
)

,

where Aπ′

r (s, a) := Qπ′

r (s, a)− V π′

r (s)− τ log π′(a|s) is the advantage function.

Lemma B.3 (Performance improvement for the policy).

E

[

Jπt+1

rt − Jπt

rt

]

=
τ

1− γ
E
[
E
s∼νπt+1

[
KL
(
πt(·|s)||πt+1(·|s)

)]]

This result extends [3, Lemma 1] to the stochastic setting.

Proof. From the soft value iteration update,

πt+1(a|s) = 1

Zt(s)
exp

(
Q̂πt

rt (s, a)/τ
)
=

1

Zt(s)
exp

(

Qπt

rt (s, a) + ∆t(s, a)

τ

)

,

where ∆t(s, a) := Q̂πt

rt (s, a)−Qπt

rt (s, a). It follows that

τ logZt(s) =Qπt

rt (s, a) + ∆t(s, a)− τ log πt+1(a|s). (12)

Let Using Lemma B.2, we have that

E

[

Jπt+1

rt − Jπt

rt

]

=
1

1− γ
E

[

E(s,a)∼µπt+1

[

Aπt

rt (s, a)
]

− τE
s∼νπt+1

[
KL
(
πt+1(·|s)||πt(·|s)

)]]

(i)
=

1

1− γ
E

[

E(s,a)∼µπt+1

[

Qπt

rt (s, a)− V πt

rt (s)− τ log πt+1(a|s)
]]

(ii)
=

1

1− γ
E

[

E
s∼νπt+1Ea∼πt+1(·|s)

[

τ logZt(s)− V πt

rt (s)−∆t(s, a)
]]

(iii)
=

1

1− γ
E

[

E
s∼νπt+1Ea∼πt(·|s)

[

τ logZt(s)− V πt

rt (s)
]]

(iv)
=

1

1− γ
E

[

E
s∼νπt+1Ea∼πt(·|s)

[

Qπt

rt (s, a) + ∆t(s, a)− τ log πt+1(a|s)− V πt

rt (s)
]]

(v)
=

1

1− γ
E

[

E
s∼νπt+1Ea∼πt(·|s)

[

Aπt

rt (s, a) + ∆t(s, a) + τ log
πt(a|s)

πt+1(a|s)

]]

(vi)
=

τ

1− γ
E
[
E
s∼νπt+1

[
KL
(
πt(·|s)||πt+1(·|s)

)]]
.

Here, we use the definition of the advantage in (i) and (12) in (ii). In (iii) we use

E
[
E
s∼νπt+1Ea∼πt(·|s)

[
∆t(s, a)

]]
= E

[
E
s∼νπt+1Ea∼πt(·|s)

[
E
[
∆t(s, a)|πt, rt

]]]
= 0, (13)

where the last equality follows from Lemma A.1. In (iv) we again plug in (12). Finally, (v) follows

from rearranging and (vi) from Equation (13) and Ea∼πt(·|s)
[

Aπt

rt (s, a)
]

= 0.

Lemma B.4 (suboptimality gap for policy). For any iterates rt and πt generated by Algorithm 1,
we have

E

[

J∗
rt − Jπt

rt

]

≤ τ

1− γ
E

[

Es∼ν∗

rt

[
KL
(
πt(·|s)||πt+1(·|s))

)]]

.
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This result extends [3, Lemma 5] to the stochastic setting.

Proof. From Lemma B.2, it follows that

E

[

J∗
rt − Jπt

rt

]

=
1

1− γ
E

[

E(s,a)∼µ∗

rt

[

Aπt

rt (s, a)
]

− τEs∼ν∗

rt

[
KL
(
π∗
rt(·|s)||πt(·|s)

)]]

=
1

1− γ
E

[

E(s,a)∼µ∗

rt

[

Qπt

rt (s, a)− V πt

rt (s)− τ log π∗
rt(a|s)

]]

=
1

1− γ
E






Es∼ν∗

rt






Ea∼π∗

rt
(·|s)

[

Qπt

rt (s, a) + ∆t(s, a)− τ log π∗
rt(a|s)

]

︸ ︷︷ ︸

(A)

−V πt

rt (s)
︸ ︷︷ ︸

(B)












,

(14)

where we used ∆t(s, a) := Q̂πt

rt (s, a) − Qπt

rt (s, a) and Equation (13) in the last step. Next, we
bound (A) and (B) separately. For (A) we have by Jensen’s inequality

Ea∼π∗

rt
(·|s)

[

Qπt

rt (s, a) + ∆t(s)− τ log π∗
rt(a|s)

]

=τ
∑

a∈A
π∗
rt(a|s) log




exp

((

Qπt

rt (s, a) + ∆t(s, a)
)

/τ
)

π∗
rt(a|s)





≤τ log
(
∑

a∈A
exp

((

Qπt

rt (s, a) + ∆t(s, a)
)

/τ
)
)

= τ logZt(s).

For (B) the definition of the value function and the soft policy iteration update yield

V πt

rt (s) = Ea∼πt(·|s)
[

Qπt

rt (s, a)− τ log πt(a|s)
]

= Ea∼πt(·|s)
[

Qπt

rt (s, a)− τ log πt+1(a|s)
]

− τ KL
(
πt(·|s)||πt+1(·|s)

)

= Ea∼πt(·|s)
[
τ logZt(s)−∆t(s, a)

]
− τ KL

(
πt(·|s)||πt+1(·|s)

)
.

Plugging these bounds for (A) and (B) back into (14), using again that Equation (13), we arrive at
the desired inequality

E

[

J∗
rt − Jπt

rt

]

≤ 1

1− γ
E

[

Es∼ν∗

rt

[
τ KL

(
πt(·|s)||πt+1(·|s)

)]]

.

Lemma B.5. For any reward iterates rt, rt+1 generated by Algorithm 1 and any policy π ∈ ∆S
A,

we have

|Jπ
rt − Jπ

rt+1 | ≤
2ηw‖φ‖∞
(1− γ)2

, (15)

|J∗
rt − J∗

rt+1 | ≤ 2ηw‖φ‖∞
(1− γ)2

. (16)

Proof. Inequality (15) holds since

|Jπ
rt − Jπ

rt+1 | (i)=
∣
∣
∣
∣
∣
Eπ

[
+∞∑

t=0

γt
(
r1(st, at)−✭

✭
✭
✭
✭
✭

τ log π(at|st) − rt+1(st, at) +✭
✭
✭
✭
✭
✭

τ log π(at|st)
)

]∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
Eπ

[
+∞∑

t=0

γt
(
rt(st, at)− rt+1(st, at)

)

]∣
∣
∣
∣
∣

≤
[

+∞∑

t=0

γt
∥
∥rt − rt+1

∥
∥
∞

]

15



(ii)
= ηw

+∞∑

t=0

γt
∥
∥∇̂wL(π,w

t)
∥
∥
∞

(iii)

≤ 2ηw‖φ‖∞
(1− γ)2

,

where (i) holds by the definition of Jπ
r , (ii) holds by plugging reward updating form and non-

expansiveness of projection and (iii) holds by Lemma A.1.

Inequality (16) holds since

|J∗
rt − J∗

rt+1 | ≤ max
π∈Π
|Jπ

rt − Jπ
rt+1 |

(i)

≤ 2ηw‖φ‖∞
(1− γ)2

,

where (i) holds by inequality (15).

Lemma B.6 (Lipschitz continuity of occupancy measure in policy). Let µπ denote the occupancy
measure corresponding to the policy π ∈ ∆S

A. Then, for any π1, π2 ∈ ∆S
A we have

‖µπ1 − µπ2‖1 ≤
1

1− γ
max

s
‖π1(·|s)− π2(·|s)‖1 .

Proof. We can upper bound ‖µπ1 − µπ2‖1 as follows

‖µπ1 − µπ2‖1 ≤
∑

s,a

|νπ1(s)(π1(a|s)− π2(a|s))|+
∑

s,a

|(νπ1(s)− νπ2(s))π2(a|s)|

≤ max
s
‖π1(·|s)− π2(·|s)‖1 + ‖νπ1 − νπ2‖1 ,

where we used the triangle and Hölder’s inequality. From the Bellman flow constraints [14]

νπ(s) = γ
∑

s′,a′

P (s|s′, a′)µπ(s′, a′) + (1− γ)ν0(s),

it follows that

‖νπ1 − νπ2‖1 = γ
∑

s

∣
∣
∣
∣
∣
∣

∑

s′,a′

P (s|s′, a′)(µπ1(s′, a′)− µπ2(s′, a′))

∣
∣
∣
∣
∣
∣

≤ γ
∑

s′,a′

∑

s

P (s|s′, a′)
︸ ︷︷ ︸

=1

|µπ1(s′, a′)− µπ2(s′, a′)|

= γ ‖µπ1 − µπ2‖1 ,
where we again used the triangle inequality. Hence, it follows that

max
s
‖π1(·|s)− π2(·|s)‖1 ≥ ‖µπ1 − µπ2‖1 − ‖νπ1 − νπ2‖1 ≥ (1 − γ) ‖µπ1 − µπ2‖1 .

Lemma B.7. For any two policies π1, π2 ∈ ∆S
A, we have

‖σπ1 − σπ2‖∞ ≤
2‖φ‖∞
(1 − γ)2

max
s
‖π1(·|s)− π2(·|s)‖TV.

Proof. The proof follows from Hölder’s inequality and Lemma B.6 above:

‖σπ1 − σπ2‖∞ = max
1≤i≤k

max
s,a

∣
∣
∣
∣

1

1− γ
〈φi, µ

π1 − µπ2〉
∣
∣
∣
∣

≤ 1

1− γ
max
1≤i≤k

‖φi‖∞ ‖µπ1 − µπ2‖1

≤ ‖φ‖∞
(1 − γ)2

max
s
‖π1(·|s)− π2(·|s)‖1

≤ 2 ‖φ‖∞
(1 − γ)2

max
s
‖π1(·|s)− π2(·|s)‖TV .
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