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Active nematics exhibit spontaneous flows through a well-known linear instability of the uniformly-
aligned quiescent state. Here we show that even a linearly stable uniform state can experience a
nonlinear instability, resulting in a discontinuous transition to spontaneous flows. In this case,
quiescent and flowing states may coexist. Through a weakly nonlinear analysis and a numerical
study, we trace the bifurcation diagram of striped patterns and show that the underlying pitchfork
bifurcation switches from supercritical (continuous) to subcritical (discontinuous) by varying the
flow-alignment parameter. We predict that the discontinuous spontaneous flow transition occurs
for a wide range of parameters, including systems of contractile flow-aligning rods. Our predictions
are relevant to active nematic turbulence and can potentially be tested in experiments on either cell
layers or active cytoskeletal suspensions.

Active fluids are made by components that use energy
to generate stresses. Examples include cytoskeletal fil-
aments interacting with molecular motors [1–11], bacte-
rial suspensions [12–20], sperm [21], epithelial and tumor
cells [22–25], and artificial self-propelled particles [26–29].
All of these systems exhibit spontaneous flows that can
become turbulent-like even at vanishing Reynolds num-
bers [30]. In nematic systems, these flows are well known
to arise from the so-called spontaneous-flow instability
[31–33]. The uniformly-aligned quiescent state is linearly
unstable because distortions of the nematic orientation
generate active forces. These forces then drive flows that
feed back and amplify the initial distortions, thus pro-
ducing spontaneous flows. This instability was predicted
in the early 2000s [31, 32] and it was recently verified ex-
perimentally in confined cell layers [34] and microtubule-
kinesin suspensions [35].

In the terminology of dynamical systems, the linear
spontaneous-flow instability emerges at a pitchfork bi-
furcation. In the conventional scenario, this bifurca-
tion is supercritical; steady spontaneous-flow solutions
bifurcate continuously from the quiescent state. Here,
we show that the spontaneous-flow bifurcation can be-
come subcritical; perturbations of a large enough ampli-
tude may trigger self-sustained flows below the threshold
of the linear instability. We predict that the switch to
this nonlinear instability takes place within the regime
νζ > 0, where ν is the flow-alignment parameter and ζ is
the active stress coefficient. This regime can be realized
with active nematics made of contractile rods (ζ < 0,
ν < 0), for example with either fibroblast cell layers or
crosslinked actomyosin layers. We find a regime of bista-
bility between flowing and quiescent states that could
potentially be observed in experiments.

Equations of motion.—We analyze the hydrodynamic
theory of incompressible one-component active nematics
[36]. We consider a two-dimensional system deep in the
nematic phase with director field n = (cos θ, sin θ) and
velocity field v. Distortions of the nematic director are
penalized by the Frank elastic free energy

Fn =

∫ (
K

2
(∂αnβ)(∂αnβ)−

1

2
h0∥nαnα

)
d2r, (1)

which drives changes in the director through the orien-
tational field hα = −δFn/δnα. Here, we used the same
Frank constant K for both splay and bend distortions,
and h0∥ is a Lagrange multiplier ensuring n2 = 1 [37].

This constraint prohibits the formation of topological de-
fects, so that we study a defect-free nematic [38].

The director dynamics are given by

∂tnα + vβ∂βnα + ωαβnβ =
hα
γ

− νvαβnβ , (2)

where ωαβ = 1/2 (∂αvβ − ∂βvα) is the vorticity tensor,
vαβ = 1/2 (∂αvβ+∂βvα) is the symmetric strain-rate ten-
sor, γ the rotational viscosity, and ν the flow-alignment
parameter (negative for rod-like objects). The projection
of Eq. (2) parallel to n defines the longitudinal orienta-
tional field h0∥ and the projection on the perpendicular di-

rection prescribes the dynamical evolution of the director
angle θ with a transverse orientational field h⊥ = K∇2θ
(see [39] for details).

The flow velocity v solves momentum balance in the
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absence of inertia:

0 =∂β

(
2ηvαβ − Pδαβ + σd

αβ +
1

2
(hαnβ − nαhβ)

+
ν

2
(nαhβ + hαnβ − nγhγδαβ)− ζqαβ

)
, (3)

where η is the shear viscosity, P the pressure, and
σd
αβ = − δFn

δ(∂βnγ)
∂αnγ the symmetric part of the elas-

tic Ericksen stress tensor. The fourth term is the an-
tisymmetric elastic stress, the fifth term accounts for the
stresses arising from flow alignment, and the last term
is the active stress, proportional to the nematic orienta-
tion tensor qαβ = nαnβ − 1

2δαβ . The active stresses are
extensile for ζ > 0 and contractile for ζ < 0.
The incompressiblity condition ∂αvα = 0 allows us to

describe the flow via the scalar stream function ψ such
that vx = ∂yψ and vy = −∂xψ. Taking the curl of Eq.
(3), we obtain an equation for ψ. The coupled dimen-
sionless equations for the fields θ and ψ are given in Eqs.
(S.6, S.7) [39]. We scale length with the system size L,
time with the active time τa = η/|ζ|, and stress with |ζ|.
The problem then depends on the sign of the active stress,
S = ζ/|ζ|, and three dimensionless parameters: the vis-
cosity ratio R = γ/η, the flow-alignment parameter ν,

and the activity number A = RL2/l2a, with la =
√
K/|ζ|

denoting the active length. In this study we fix R = 1 in
all figures.

Linear spontaneous-flow instability.—The uniformly-
aligned quiescent state, defined by n0 = (cos θ0, sin θ0)
and v0 = 0, becomes unstable above a threshold of
the activity number A. We consider a small orienta-
tional perturbation of amplitude ϵ and wave vector k:
δθ = ϵ cos (k · r) eΩt. This modulation forms an an-
gle ϕ with respect to the director field n0, such that
k · n0 = k cosϕ. At first order in the amplitude ϵ ≪ π,
the perturbation evolves exponentially with growth rate
[30, 39]

Ω(k, ϕ) =
1

4 + ν2R sin2 2ϕ

(
2S cos 2ϕ (1− ν cos 2ϕ)

− k2

A

(
4 +R+ ν2R− 2νR cos 2ϕ

))
. (4)

This result captures the full linear behavior of wet active
nematics about the uniform state. As the instability is
long-wavelength, the most unstable mode is for a wave-
length given by the system size, i.e. λ = 1 in dimension-
less variables, corresponding to k = 2π. We mark the re-
gions of linear instability in Figure 1. Extending previous
analyses [32, 33, 40], we indicate whether the underlying
pitchfork bifurcation is supercritical (solid borders) or
subcritical (dashed borders). This aspect does not follow
from Eq. (4); we derive it later via a weakly non-linear
analysis.

Fig. 1(a) shows the stability diagram for pure bend
(ϕ = 0, cyan) and pure splay (ϕ = π/2, magenta) per-
turbations in the plane of the signed activity number

SA and the flow-alignment parameter ν. Note that the
stability diagram is unaffected by changing the sign of
both S and ν while also exchanging splay and bend dis-
tortions. This symmetry reflects that the equations of
motion are invariant under the alignment-activity trans-
formation (ζ, ν, θ) → (−ζ,−ν, θ± π/2), previously noted
in [33, 40] and illustrated in Fig. S.1 [39]. The paramet-
ric region bordered by the subcritical bifurcation (dashed
lines in Fig. 1(a)) and the open circles corresponds to
a bistable phase where both the quiescent state and a
strongly flowing state are linearly stable. This phase is
further clarified later on.
Fig. 1(b) shows stability diagrams in the plane of the

perturbation angle ϕ and the flow-alignment parameter
ν at four different activity values. The contractile (ex-
tensile) case is colored in red (blue), and pure bend and
splay distortions lay at the two extremes of the ϕ axis.
Following Eq. (4), the critical activity number marking
the onset of instability is Ac = 8π2. Under extensile (con-
tractile) stress, the initial instability occurs for a bend
(splay) perturbation at ν = −1 (ν = 1) and a splay
(bend) perturbation at ν = −3 (ν = 3) (see Fig. 1(b),
top left). The unstable regions expand with increasing
activity. Still for finite A, angles that are linearly sta-
ble for a given ν can be nonlinearly unstable if the bi-
furcation is subcritical (dashed borders). In the limit
A→ ∞ (Fig. 1(b), bottom right), stability is determined
by the sign of S cos 2ϕ (1− ν cos 2ϕ). This means that
both ϕ = π/4 and the Leslie angle ϕ = θL, defined by
cos 2θL = 1/ν, constitute asymptotic bounds of the in-
stability (black lines).
Weakly nonlinear analysis.—We now consider the

weakly nonlinear response to the same periodic perturba-
tion, δθ = ϵ cos(k · r). The nonlinear terms in the equa-
tions of motion generate higher harmonics ∼ cos(mk · r).
Expanding up to order ϵ3, the amplitude of the first har-
monic m = 1 evolves as

∂tϵ = Ω1,1(k, ϕ)ϵ+Ω3,1(k, ϕ)ϵ
3 +O(ϵ5), (5)

where the first and second indices of the coefficients Ω
correspond to the power of ϵ and the harmonic num-
ber m, respectively. Thus, Ω1,1 is the linear growth rate
given by Eq. (4). The explicit form of Ω3,1 is given in [39]
along with the nonlinear couplings to other harmonics.
From Eq. (5) it is clear that the bifurcation occurring at
Ω1,1 = 0 is supercritical if Ω3,1 is negative (solid borders
in Fig. 1) and subcritical if Ω3,1 is positive (dashed bor-
ders in Fig. 1). The subcritical bifurcation gives rise to a
nonlinear instability whereby solutions with large ampli-
tudes bifurcate discontinuously from ϵ = 0. The point in
parameter space at which both Ω1,1 = 0 and Ω3,1 = 0 is

denoted the tricitical point
(
ν∗ϕ, A

∗
ϕ

)
. In [39], we derive

this point explicitly for a bend distortion (ν∗0 , A
∗
0) in the

extensile case (S = 1) and a splay distortion
(
ν∗π/2, A

∗
π/2

)
in the contractile case (S = −1) (see filled circles in Fig.
1(a)). We find numerically that the tricritical point ini-
tially emerges for an oblique angle different from ϕ = 0
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FIG. 1. Stability diagrams of active nematics. (a) Stability diagram on the activity-alignment plane. The quiescent
state is unstable to a bend (splay) perturbation in the filled cyan (magenta) regions. The bifurcation is either supercritical
(solid lines) or subcritical (dashed lines), transitioning at the tricritical point (filled circles). A bistable phase lies between the
subcritical line and the open circles that mark a saddle-node bifurcation (see Fig. 2(c,d)). (b) For increasing values of extensile
(contractile) activity, the blue (red) regions mark the linearly unstable regimes on the ϕ–ν plane. Here we also specify whether
the bifurcation is supercritical or subcritical. Black lines mark the asymptotic bounds, ϕ = π/4 and ϕ = θL, where θL is the
Leslie angle. The top left plot is for the critical activity Ac at which the linear instability first takes place. The top right plot
is for the tricritical activity A∗

0 at which the nonlinear instability sets in for either pure bend (ϕ = 0) or pure splay (ϕ = π/2)
distortions, corresponding to the filled circles in panel (a).

or ϕ = π/2 (see Fig. 1(b), top right panel).
Stripe patterns.—We now examine the steady solutions

that bifurcate from the quiescent state. Right past the
threshold of the spontaneous-flow instability, the system
forms stripes of almost uniform nematic orientation con-
nected by domain walls in which θ varies more sharply.
As orientation gradients drive flow, the flow concentrates
in the domain walls (Fig. 2(a,b)). In these stripe pat-
terns, the velocity and the orientation only depend on
the coordinate y. Eqs. (S.6, S.7) [39] then reduce to a
single ordinary differential equation

d2θ

dy2
=
AS(1 + ν cos 2θ)(sin 2θ − sin 2θ0)

4 +R+Rν2 + 2Rν cos 2θ
. (6)

where θ0 is the orientation of the reference quiescent
state [39]. We impose periodic boundary conditions,
θ(1) = θ(0) and θ′(1) = θ′(0), and focus on bend and
splay solutions with the longest wavelength (k = 2π). We
utilize a dedicated shooting method [39] to numerically
solve Eq. (6), yielding the director angle profiles θ(y), as
depicted in Fig. 2(a,b), along with their saturation angle
θsat. In Fig. 2(c,d), we map out the branches of both sta-
ble and unstable steady states by plotting θsat against the
flow alignement parameter ν. Each thin line corresponds
to a different activity number, increased from A = Ac+ε
(smallest θsat) up to A = 1000 (thick lines).

For contractile stresses (Fig. 2(c)), either increasing
activity A or going towards more negative ν, the pitch-
fork bifurcation switches from supercritical to subcriti-

cal. Beyond the tricritical point (filled circle), we find
a saddle-node bifurcation (open circles) where the sta-
ble and unstable branches join. Between the subcritical
pitchfork and the saddle-node, including the rod-aligning
regime (ν < −1), both the quiescent (θ = 0) and the
stripe (a1) states are stable, with an intermediate unsta-
ble (a2) state (Fig. 2(a,c)). The system therefore displays
bistability; it reaches either of the bistable states depend-
ing on initial conditions. To illustrate this behavior, we
computationally integrate the dynamical problem (via a
pseudo-spectral method detailed in [39]) to obtain the
evolution of the system from the unstable state (a2) to-
wards either stable stripe pattern (a1) (Movie 1) or the
quiescent state (Movie 2).

For extensile stresses (Fig. 2(d)), in the rod-aligning
regime (ν < −1), the quiescent state is unstable to either
bend or splay perturbations. The corresponding striped
patterns (b1, b2) are stable (Fig. 2(b,d)). Their satura-
tion angle asymptotically approaches the Leslie angle θL
(black lines) as activity increases (Fig. 2(d)). This angle
is achieved as a balance between the director rotations
due to flow alignment and vorticity under uniform shear.
At high activity, the flow between the domain walls has
indeed a nearly uniform shear (vx ∼ y, snapshots in Fig.
2(b)), and hence the saturation angle approaches θL. Us-
ing our time-integration method [39], we obtain the evo-
lution of the system from θ(t = 0) = π/2 to the (b1)
bend pattern (Movie 3), and from θ(t = 0) = 0 to the
(b2) splay pattern (Movie 4).
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FIG. 2. Examples and bifurcation diagrams of striped solutions. In all panels, solid (dashed) lines indicate stable
(unstable) solutions. The states dominated by splay (bend) distortions are shown in magenta (cyan). Black lines mark
instances of the Leslie angle. Arrows illustrate the dynamic evolution of the system, shown in Movies 1–4. (a,b) Steady stripe
patterns of wavelength λ = 1 for contractile (a) and extensile (b) stresses in the rod-aligning regime. Flat lines correspond to
uniform quiescent states. In the 2D snapshots of states (a1, a2, b1, b2), the director n is indicated by the gray line-integral-
convolution plot, the flow v is represented by the black arrows, and the splay (bend) deformation energy is proportional to
the magenta (cyan) intensity. (c,d) Bifurcation diagrams showing the saturation angle of the stripe patterns (θmax for splay,
θmin for bend) as a function of ν for increasing contractile (c) and extensile (d) activity. Each line corresponds to a different
value of the activity number, starting from A = Ac + ϵ (smallest θsat) up to A = 1000 (thick lines, matching the top panels
at ν = −2). The tricritical point (filled circles) marks the transition from a supercritical to a subcritical pitchfork bifurcation.
Open circles represent the saddle-node bifurcation found beyond the tricritical point for different values of A. These points are
also projected on the phase diagram in Fig. 1(a).

Mapping to a particle in a potential.—To better un-
derstand the steady stripe solutions, we map their spa-
tial profiles to a Hamiltonian problem of a particle in a
potential. Transforming

√
Ay → t and 2θ → ϑ, Eq. (6)

translates to

ϑ̈ =
2S(1 + ν cosϑ) sinϑ

4 +R+Rν2 + 2Rν cosϑ
. (7)

Here, we considered either pure bend or splay distortions,
for which sin 2θ0 = 0. Equation (7) can be derived from

the Hamiltonian H = 1
2 ϑ̇

2 + U(ϑ), with a potential

U = S

(
cosϑ

2R
− 4−R+Rν2

4R2ν
ln

(
1 +

2νR cosϑ

4 +R+Rν2

))
.

(8)
For ν = 0, we have U = S cosϑ

4+R , which is the potential of

a simple pendulum oscillating around ϑ = 0 (ϑ = π) for

S = −1 (S = +1) [38]. We now analyze the full potential
for ν ̸= 0, depicted in Fig. 3(a), to provide insight into
the bifurcations and stripe patterns of active nematics.

For contractile stresses (S = −1), we expand the po-
tential as U = U0+aϑ

2+bϑ4+O(ϑ6), where U0 = U(ϑ =
0), and the expressions of a and b are given in [39]. We
find that b changes sign for ν = ν∗π/2, when the supercrit-

ical to subcritical transition occurs. As b turns positive
(ν < ν∗π/2), the period of the particle trajectory becomes

a non-monotonic function of the energy H (see Fig. 3(b)
left and Fig. S.3(a) in [39]). Hence, for a given period T ,
there are two possible trajectories ϑ(t). For our original
problem, this means that there are two non-trivial ori-
entation profiles θ(y) with the same wavelength λ. Par-
ticularly, the stripe patterns of wavelength λ = 1 in Fig.
2 are mapped to trajectories of period T = 1/

√
A. As



5

Contractile rod-like
ν=0, ν*, -1/2, -1, -2

Extensile rod-like
ν=0, ν*, -1/2, -1, -2

P
o
te
n
tia
l
U

(a)
H=const

-π -2θL 0 2θL π

-0.2

-0.1

0.0

0.1

0.2

H=const

0 2θL π -2θL 2π

ϑ= 2θ ϑ= 2θ

P
e
ri
o
d
T

(b)

ν*

0.0 0.1 0.2 0.3 0.4

15

20

25

0.0 0.1 0.2 0.3 0.4

Energy H-U(0) Energy H-U(π)

FIG. 3. Hamiltonian analogy. (a) Plots of the potential,
Eq. (8), as a function of ϑ for different values of ν < 0. In the
contractile (extensile) case, trajectories of constant H (solid
green lines) are centered around ϑ = 0 (ϑ = π), mapping to
a splay (bend) striped pattern in the original problem. For
ν < −1, the Leslie angle sets a local minimum (maximum)
of U . The dashed green line represents the maximal kinetic
energy for S = −1 and ν = −2. (b) Plots of the period T as
a function of the energy for the potentials shown in panel (a).

a turns negative (ν < −1), U(ϑ) becomes a double-well
potential with minima at ϑ = ±2θL. At these points, the
kinetic energy ϑ̇2/2 is maximal (see dashed green line in
Fig. 3(a) left). For the original stripe patterns θ(y), this
means that the nematic distortion energy K(∂yθ)

2/2 is
maximal at the points where θ = θL (Fig. 2(a)).

For extensile rods, instead, the Leslie angle bounds the
amplitude of the pattern at high activity, as the potential
has maxima at ϑ = ±2θL (Fig. 3(a) right and Fig. 3(b) in
[39]). In this case, T (H) is strictly monotonic for negative
ν and the additional valley that forms about ϑ = 0 ac-
commodates trajectories that map back to splay patterns
(see Fig. 2(b,d)). The manner in which the Leslie angle
features in these states provides a method to distinguish
between extensile and contractile active stresses. Given
the latter is known, measurements of this angle allow us
to deduce the flow-alignment parameter.

Discussion.—We have characterized the full bifurca-
tion diagram of the spontaneous-flow instability in active
nematics. Our most important result is that the uniform
state of contractile rod-aligning active nematics, which
was so far considered to be stable, is nonlinearly unstable.
As a consequence, these active nematics can experience a
discontinuous transition to spontaneous flows and exhibit
bistability between flowing and non-flowing states.
Our work opens the challenge to observe the discon-

tinuous spontaneous-flow instability in experiments. Our
predictions could be tested in cell layers, which can be-
have as either extensile or contractile nematics [34, 41].
Similarly, active nematics made of microtubules-kinesin
or actomyosin mixtures can display either extensile or
contractile behaviors [6, 42–48].

Our results also have implications for active nematic
turbulence [30]. For large systems (A→ ∞), the striped
states are unstable to modulations in the transverse di-
rection, leading to spatio-temporal chaos [38]. In the
chaos that emerges from a subcritical instability, sta-
ble patches of uniform nematic orientation may coex-
ist with a turbulent background, akin to spatio-temporal
intermittency [49, 50]. To explore this possibility and
understand how our findings relate to the properties of
fully-developed active turbulence, future theoretical work
could generalize our study of one-dimensional patterns to
two-dimensional and even three-dimensional ones.
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