
Electron localization in disordered quantum systems at finite temperatures

Chong Sun1

1Department of Chemistry, Rice University, Houston, TX 77005-1892∗

(Dated: March 26, 2024)

We study electron localization in disordered quantum systems, focusing on both individual eigen-
states and thermal states. We employ complex polarization as a numerical indicator to characterize
the system’s localization length. Furthermore, we assess the efficacy of mean-field approximation in
providing a quantitative analysis of such systems. Through this study, we seek to provide insight
into the following aspects: the behavior of electron localization as a function of interaction, disor-
der, and temperature, whether thermal states and highly excited states exhibit similar properties in
many-body localized systems, and the reliability of the mean-field approximation in low-interaction
scenarios.

Introduction: Many-body localization (MBL) in dis-
ordered quantum systems with interactions [1–5] has
drawn much attention with the potential of preserving
symmetry-broken orders and deferring quantum decoher-
ence [6, 7]. In such systems, disorder reduces crosstalk-
ing between subsystems, and thus hinders quantum state
thermalization [8–10]. Theoretical characterizations of
MBL include a Poissonian distribution in the ratio of ad-
jacent energy gaps [11], area-law and logarithm-growth
of the entanglement entropy [12–14], presence of quasi-
local integrals of motion (LIOMs) [15], etc. Notably,
MBL emerges not only in the ground state but across
all eigenstates. This suggests that MBL can be viewed
as a form of localization in the Fock space, where transi-
tions to proximate eigenstates are impeded.

Conflicting conclusions have been made in studies of
the dc conductivity of disordered systems with interac-
tions at finite temperatures [16, 17], where a nonzero
conductivity persists at high temperatures regardless of
the disorder strength. However, these results are not
necessarily at odds with established understandings of
MBL for two primary reasons. First, traditional MBL
arguments typically consider an isolated system, where
thermalization follows microcanonical statistics, in con-
trast to the canonical or grand canonical frameworks of-
ten applied in finite-temperature simulations. Second,
because MBL entails localization within the Fock space,
it is expected that individual eigenstates exhibit local-
ization characteristics, which may not be reflected in
the thermal average across multiple eigenstates. Nev-
ertheless, the exploration of disordered quantum systems
at finite temperatures remains a valuable pursuit, given
the practical challenges of achieving complete isolation
in real-world systems.

In this study, we investigate real-space electron local-
ization within disordered quantum systems, employing
the complex polarization operator, a concept introduced
in a series of works by Resta and Sorella in 1990s [18–
22]. The recently proposed ”imaginary vector poten-
tial” adopted a similar concept [23]. We provide for-
mulations for evaluating the expectation values of the
complex polarization for both individual eigenstates and

thermal states. We demonstrate that full electron local-
ization persists in any given eigenstate of the system un-
der strong disorder. At high temperatures, however, elec-
trons exhibit a large spread length even with strong disor-
der, aligning with previous findings on finite-temperature
conductivity [16, 17]. We also assess the efficacy of mean-
field simulations for such systems under weak interac-
tions. Utilizing the Hartree-Fock (HF) method as our
mean-field framework, we demonstrate that the HF ap-
proach provides reliable quantitative descriptions of elec-
tron localization in conditions of strong disorder.
Electron localization: The electron localization

length λ in a one-dimensional system can be described
by the electron quadratic spread

λ2 = ⟨x2⟩ − ⟨x⟩2, (1)

where x is the position operator of an electron. The local-
ization length λ has a finite value for a localized state and
diverges for a delocalized state. This divergence presents
practical challenges for numerical simulations. In addi-
tion, the electron localization length in a system with pe-
riodic boundary conditions (PBC) becomes ambiguous.
To address this, Resta and Sorella introduced the com-
plex polarization operator Z, which relates to the electron
quadratic spread by [20, 21]

λ2 = − L2

2π2
log |Z|, (2)

where the magnitude of Z satisfies 0 ≤ |Z| ≤ 1. The
electrons are fully diffused when |Z| = 0 and fully local-
ized when |Z| = 1. This relation is still valid at finite
temperatures.
Herein, we introduce the complex polarization opera-

tor for a one-dimensional lattice with PBC as

Z = exp

(
i
2πX

L

)
, X =

N∑
j=1

xj , (3)

where xj is the position operator of the jth electron, L is
the lattice length, and N is the total number of electrons.
The expectation value of Z, denoted as ⟨Z⟩ = |Z|eiγ , is
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FIG. 1: Connection between electron localization length
and the magnitude of the complex polarization |Z|. The
position of an electron on the one-dimensional lattice is

mapped to an angle ϕ ranging from 0 to 2π.

a complex number, where γ is related to the single-point
Berry phase [24]. Note that while X is a one-body op-
erator, Z serves as an N -body operator, capturing the
collective behavior of all electrons. Fig. 1 qualitatively
illustrates the relationship between |Z| and the electron
localization length, where the position of an electron on
the one-dimensional lattice is mapped to an angle ranging
from 0 to 2π. When an electron can occupy all possible
positions, ⟨Z⟩ = 0 due to the phase cancellation. Con-
versely, complete confinement of the electron results in
⟨Z⟩ = eiγ0 and |Z| = 1. Generalization to the multi-
dimensional formulation of Eq. (3) is simply the direct
product of Z in each dimension.

Although Z is a complex N -body operator, its applica-
tion to a Slater determinant produces another Slater de-
terminant, as a result of Thouless theorem [25–27]. This
property facilitates the evaluation of ⟨Z⟩ when the state
is represented by a Slater determinant |Φ⟩, reducing the
problem to calculating the overlap between two Slater
determinants

⟨Φ|Z|Φ⟩ = ⟨Φ|Φ′⟩ = det
[
C†

occC
′
occ

]
, (4)

where |Φ′⟩ = Z|Φ⟩, and the columns of Cocc and C′
occ

denote the occupied orbital coefficients on which |Φ⟩ and
|Φ′⟩ are constructed, respectively. We have assumed that
|Φ⟩ is normalized. We write the matrix representations
of operators in the position/site basis.

We now turn to the finite-temperature formulations for
non-interacting systems, derived using the thermofield
theory [28]. The thermal average of the complex polar-
ization Z is given by[29]

Z(β) =
det [Zρ(β) + I]

det [ρ(β) + I]
,

ρ(β) = exp[−β(h− µ)]

(5)

where β = 1/kBT is the inverse temperature, Z is the
matrix form of Z, ρ(β) is the density matrix, h is the
effective one-body Hamiltonian (or Fock) matrix, and µ
is the chemical potential. The inclusion of µ ensures the
correct thermal average of the electron number. This
derivation is within the grand canonical framework.
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FIG. 2: Comparison between Hartree-Fock (HF) and
full configuration interaction (FCI) solutions for the

disordered system at various disorder strengths W . (a)
Ground-state energy discrepancy ∆E = EHF − EFCI as

a function of W . (b) The complex polarization
discrepancy ∆Z = ZHF − ZFCI as a function of W . (c)
∆Z as a function of the two-body interaction strength
V at W = 5. (d) The maximum overlap between a FCI
eigenstate and HF eigenstates. ”Ground” refers to the
FCI ground state, and ”Middle” indicates the eigenstate

at the center of the FCI energy spectrum.

Extending Eq. (4) and Eq. (5) to account for a corre-
lated state is straightforward. Such a state, denoted as
|Ψ⟩, can be expressed as a linear combination of Slater de-
terminants. Consequently, ⟨Ψ|Z|Ψ⟩ becomes a weighted
sum of overlaps between various Slater determinants.
In this study, our focus is on the magnitude of Z, i.e.,

|Z|. For simplicity, we will use Z to refer to |Z| in the fol-
lowing discussions. We choose the origin of the position
at x0 = 0 and limit the lattice to contain 4n + 2 sites.
This choice avoids dealing with a zero band gap associ-
ated with a half-filled lattice of 4n sites. Additionally, in
the finite-temperature simulations, we set the Boltzmann
constant kB = 1. The simulations are performed with a
homemade Python package[30] based on PySCF[31, 32].
Model: We investigate a spinless fermionic lattice

system characterized by disordered on-site potential, a
setup previously explored in the context of many-body
localization (MBL). We employ periodic boundary con-
ditions (PBC) throughout the analysis. The Hamiltonian
is given by

H =
∑
⟨i,j⟩

[
−t

(
a†iaj + h.c.

)
+ V ninj

]
− t′

∑
⟨⟨i,j⟩⟩

(
a†iaj + h.c.

)
+

∑
i

wini,
(6)

where ⟨i, j⟩ and ⟨⟨i, j⟩⟩ denote nearest and next-nearest
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FIG. 3: Complex polarization evaluated by the
Hartree-Fock method. (a) Ground-state (G) and the
middle-state (M) result as a function of disorder

strength W . Numbers in parentheses indicate t′ values.
(b) Visualization of occupied orbitals for the ground

state and the middle state, respectively. (c)
Finite-temperature results of Z values as a function of
disorder strength W . (d) Z values as a function of

temperature T .

neighbor sites, respectively, and ni = a†iai is the number
operator. The hopping amplitudes t and t′ promote elec-
tron movement among nearest and next-nearest neigh-
bors, respectively, while the two-body interaction term
with strength V > 0 discourages adjacent occupations.
Random on-site potentials wi are uniformly distributed
between −W and W , introducing a disordered chemical
potential to the lattice, with W signifying the disorder
strength. This disorder inhibits electron mobility and in-
duces MBL. By convention, we set t = 1. We confine
our studies to the half-filled regime, where the number of
electrons equals half the number of sites.

Is Hartree-Fock enough? In the weak-interaction
regime, the Hartree-Fock (HF) method typically yields
accurate solutions. In the system studied in this work,
the accuracy of HF solutions is bolstered in scenarios
of strong disorder, where the one-body Hamiltonian be-
comes predominant. This insight draws inspiration from
the work of Bera et al. [33], who posited that natural oc-
cupation numbers [34] could serve as indicators for MBL,
manifesting a step-like pattern at high disorder strengths.
However, we propose a different interpretation. We sug-
gest that the observed step-like pattern emerges primar-
ily because, at high W , the one-body Hamiltonian pre-
vails, rendering the system’s eigenstates nearly identical
to a single Slater determinant (HF solution), whose nat-
ural occupation numbers are always either 0 or 1. There-
fore, we argue that the step-like distribution of natural
occupation numbers is not clearly related to MBL.
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FIG. 4: Complex polarization evaluated by the full
configuration interaction (FCI). (a) Z as a function of
W at various temperatures, with the shade representing
the error bar due to random sampling. The Z values for
the middle state are also presented. (b) Heat map of Z

values in relation to temperature T and disorder
strength W .

In Fig. 2, we compare the HF and full configuration
interaction (FCI) solutions for a 14-site disordered chain,
fixing t′ = 0 and V = 1 in accordance with the settings
used in Ref. [33]. The displayed results are obtained from
averaging over 1, 000 random samples. Fig. 2 (a) and
(b) present the differences in energy (∆E) and complex
polarization magnitude (∆Z), respectively, between the
HF and FCI ground states. Both ∆E and ∆Z exhibit
rapid declines as the disorder strength W increases. The
small values of ∆Z at low W are attributed to the near-
zero values of Z. Fig. 2 (c) explores how the ground-state
Z varies with the two-body interaction strength V , under
the conditions of t′ = 0 and W = 5. In the domain of
weak interactions, the discrepancy between the HF and
FCI solutions is minimal[35].

To determine the accuracy of HF solutions for excited
states, we analyze the normalized FCI vector coefficients
c. Our FCI calculations are based on the molecular or-
bitals (MOs) generated by HF. Hence the elements of
c represent the overlaps between all possible HF states
(Slater determinants) and a specific FCI eigenstate, i.e.,
ci = ⟨ΦHF

i |ΨFCI⟩. A large value of max(|c|) indicates
a predominant single Slater determinant within the FCI
solution, and thus high HF accuracy. In Fig. 2 (d), we fo-
cus on the ground state and an eigenstate located in the
middle of the FCI energy spectrum (hereafter referred to
as the ”middle state”) to track the behavior of max(|c|)
as W increases. The two increasing curves affirm the pre-
cision of HF solutions for both ground and excited states
under sufficiently high disorder strength W . This result
also suggests further investigation into the potential sim-
plification of many-body localization (MBL) to Anderson
localization under strong disorder conditions, a question
that extends beyond the scope of this study.

HF and FCI results: We analyze the electron local-
ization of a 30-site chain evaluated with the HF method,
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FIG. 5: Extrapolation of the Z values at W = 5, V = 1
and t′ = 0 in relation to the number of sites L. (a) FCI
solutions. (b) HF solutions. Dashed lines indicate the

function fitting of the discrete data.

where the results are evaluated by averaging Nrep =
5, 000 random samples, shown in Fig. 3. The error bars
are indicated by the shading around the curves, calcu-
lated from the worst-case sampling error 1/

√
Nrep. Fix-

ing V = 1, we explore scenarios with (t′ = 1) and without
(t′ = 0) next-nearest-neighbor hopping. Fig. 3 (a) verifies
that full localization can be attained in both the ground
and excited states, where we picked the middle state to
showcase the excited states[36]. The occupied MOs for
the two states are shown as the orange solid lines in Fig. 3
(b), where the MOs are sorted according to their energy
levels ε. The inclusion of next-nearest-neighbor hopping
discourages electron localization.

Proceeding to the finite-temperature results depicted
in Fig. 3 (c), we observe a slower growth of Z with re-
spect to W , with full electron localization not observed
even at very high W values. This indicates that ther-
mal fluctuations diminish the impact of disorder, making
the system’s response to changes in W less pronounced.
A notable crossover at T = 0.2 between the cases with
(t′ = 1) and without (t′ = 0) next-nearest-neighbor hop-
ping suggests the influence of frustration. In Fig. 3 (d),
Z as a function of T again displays a crossover around
T = 0.25 at W = 10, underscoring the nuanced dynamics
introduced by temperature and hopping interactions.

Fig. 4 displays the FCI results for the electron local-
ization. Unlike the finite-temperature HF simulations,
where the grand-canonical statistics are used, finite-
temperature FCI adopted the canonical ensemble picture
for a lower computational cost. Compared to the HF
simulations, the system under the canonical statistics ex-
periences less thermal effect. Fig. 4 (a) profiles Z as a
function of W at various temperatures and for different
eigenstates (ground state and middle state). The simula-
tions are performed on a 14-site chain with Nrep = 1, 000
random samples, fixing V = 1 and t′ = 0. At T = 0.2,
the curve behaves like the ground state, although the
maximum Z value reached is slightly lower than the full
localization value, 1. As the temperature increases, the

curves display a linear manner, similar to the HF curves.
Contrary to the high-temperature curves, the Z value of
the middle state approaches near full localization at suf-
ficiently high W values. Fig. 4 (b) presents a heatmap
plot of Z as a function of both disorder W and tempera-
ture T . The simulations are performed on a small 10-site
chain with V = 1 and t′ = 0. The clear boundary in the
heat map further confirmed the absence of full electron
localization at high temperatures.

Thermodynamic limit: To mitigate finite-size ef-
fects, we extrapolate the above simulations to the ther-
modynamic limit (TDL), setting t′ = 0, V = 1, W = 5
and Nrep = 1, 000 across all simulations. We plot
Z against 1/L in Fig. 5. The FCI simulations follow
canonical statistics, whereas HF simulations follow grand
canonical statistics. The extrapolation reveals distinct
behaviors for ground-state and finite-temperature condi-
tions. At the ground state or very low temperatures,
Z linearly increases towards a higher value as L ap-
proaches infinity, fitting the data with Z(L) = a + b/L.
Conversely, at higher temperatures, Z trends towards a
lower value in a polynomial manner, fitting the data with
Z(L) = a+ b/L+ c/L2. Despite expectations of canoni-
cal and grand canonical solutions becoming equivalent at
TDL, slight differences are observed, especially at lower
temperatures where the system exhibits stronger correla-
tions and HF simulations are less accurate. Additionally,
the limitation to only three FCI data points may impact
the precision of extrapolation. Integrating the heatmap
from Fig. 4 (b) with the extrapolation results, we an-
ticipate a more defined boundary between localized and
delocalized states in the heatmap at TDL.

Conclusions: This study provided a comprehensive
analysis of electron localization within disordered quan-
tum systems, exploring both individual eigenstates and
thermal states, utilizing complex polarization as the the-
oretical indicator. We found that full electron localiza-
tion can be achieved in individual eigenstates, while only
partial localization is possible at high temperatures, de-
spite strong disorder. Our assessment of the Hartree-
Fock method confirmed its accuracy for the system under
study in conditions of high disorder. However, for low-
temperature states or highly excited states within the
weak to moderate disorder regime, correlated methods
or mean-field methods targeting the excited states, e.g.,
∆-SCF[37, 38], are necessary. The methodologies and in-
sights gained from this work offer valuable perspectives
for characterizing other disordered quantum systems and
could inform the discovery of disordered materials for ap-
plications like robust quantum memory.
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body localization, Annalen der Physik 529, 1700169
(2017).

[6] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal,
and S. L. Sondhi, Localization-protected quantum order,
Phys. Rev. B 88, 014206 (2013).

[7] S. A. Parameswaran and R. Vasseur, Many-body local-
ization, symmetry and topology, Reports on Progress in
Physics 81, 082501 (2018).

[8] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization
and its mechanism for generic isolated quantum systems,
Nature 452, 854 (2008).

[9] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli,
R. Schittko, P. M. Preiss, and M. Greiner, Quantum ther-
malization through entanglement in an isolated many-
body system, Science 353, 794 (2016).

[10] J. M. Deutsch, Eigenstate thermalization hypothesis, Re-
ports on Progress in Physics 81, 082001 (2018).

[11] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111
(2007).

[12] J. H. Bardarson, F. Pollmann, and J. E. Moore, Un-
bounded growth of entanglement in models of many-body
localization, Phys. Rev. Lett. 109, 017202 (2012).

[13] B. Bauer and C. Nayak, Area laws in a many-body lo-
calized state and its implications for topological order,
Journal of Statistical Mechanics: Theory and Experi-
ment 2013, P09005 (2013).
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