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We study the localization dynamics of a SU(2) fermionic wavepacket launched in a (pseudo)random potential.
We show that in the limit of strong inter-component repulsions, the total wavepacket exhibits a boomerang-like
dynamics, returning near its initial position as expected for non-interacting particles, while separately each spin-
component does not. This spin-charge separation effect occurs both in the infinite repulsive limit and at finite
interactions. At infinite interactions, the system is integrable and thermalization cannot occur: the two spin-
components push each other during the dynamics and their centers of mass stop further from each other than
their initial position. At finite interactions, integrability is broken, the two spin-components oscillate and mix,
with their center-of-mass positions converging very slowly to the center of mass of the whole system. This is a
signature that the final localized state is a fully spin-mixed thermalized state.

I. INTRODUCTION

In disordered quantum systems it has been shown that a
wavepacket launched with some initial velocity may return to
its initial position and stop there. This phenomenon, known
as the quantum boomerang effect (QBE) [1–3], occurs in the
Anderson localization (AL) limit when interactions are com-
pletely negligible and disorder completely freezes the dynam-
ics of the wavepacket [4, 5]. The QBE is found not only in
real space, but also in momentum space. In this latter case, the
(pseudo)-disorder in momentum space is introduced by kick-
ing periodically the wavepacket. Indeed, the first experimental
evidence of the QBE was obtained in a quantum kicked-rotor
experiment [3]. These measurements have confirmed the the-
oretical predictions [1, 2] and elucidated the crucial role of
the time-reversal symmetry in determining the presence or ab-
sence of the QBE. In fact, the occurrence of the QBE requires
not only the system to be in the AL regime, but also that some
symmetries of the Hamiltonian and of the initial state of the
wavepacket are fulfilled [6–8]. When localization takes place
in momentum space, as in the case of the kicked rotor, it is the
time-reversal symmetry that is crucial for the wavepacket to
come back to its initial position. On the other hand, for sys-
tems that localize in real space, like the Anderson model, it
is the space-time reversal symmetry that regulates the dynam-
ics of the quantum boomerang [6, 8]. When this symmetry
is broken, the wavepacket –after having been launched– stops
somewhere but not necessarily in its initial position.

Like Anderson localization, QBE is a phenomenon that
is expected for non-interacting systems, both bosonic and
fermionic. It has been shown that weak interactions between
particles partially destroy QBE: the center of mass of the
wavepacket makes a U-turn, but without coming back to its
initial position [9]. This also happens for a one-dimensional
(1D) strongly interacting Bose gas, which can be mapped to
a weakly interacting Fermi gas [10]: interactions partially de-

FIG. 1: Schematic representation of the system studied in this work:
a spatially spin-demixed initial state is realised with an initial non-
vanishing momentum in a disorder potential.

stroy interference effects and thus the QBE. However, in the
limit where the interactions are infinitely repulsive, namely in
the Tonks-Girardeau regime, the QBE holds since the system
can be mapped onto free fermions [10].

In this paper, we investigate the quantum boomerang dy-
namics of a strongly repulsive two-component Fermi gas (see
Fig. 1). The underlying idea is to explore a system where dif-
ferent spin configurations are available and study if the QBE,
or its failure, can bring information about the thermalization
of the system and, possibly, whether its final state is many-
body localized [11–13].

A two-component Fermi gas with strong, repulsive inter-
component contact interactions can be mapped onto an ef-
fective spin-chain Hamiltonian where the spins exchange
when particles of different spin-components collide [14].
The dynamics of such a system starting from an initially
spin-demixed configuration have been studied in the absence
of disorder [15–17], highlighting the short-time superdiffu-
sive dynamics of the magnetization interface for two spin-
components happens in a similar way in spin chains [18–21].
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It has also been shown that such a system relaxes towards the
microcanonical ensemble during a time interval that increases
with the number of particles, integrability being broken by the
presence of an external potential at finite interactions [17].

The presence of the disorder localizes the whole
wavepacket as well as the two spin components. The size of
the wavepacket for each spin-component is initially half of
the total size, but very rapidly the two spin-components mix
so that their size quickly reaches that of the total wavepacket.
Simultaneously, the center of mass of the whole system does
a U-turn and stops at its initial position, as if the system were
non-interacting. Instead, the center-of-mass of each spin-
component does not return to its initial position but, in the
presence of finite interactions, converges towards the position
of the center-of-mass of the whole system, with a damped os-
cillating dynamics much slower than that of the whole den-
sity. This separation of time scales is due to the fact that the
spin dynamics is governed by the inverse of the interaction
strength, which is very large in our model. We therefore ob-
serve a charge-spin separation in the QBE.

Moreover, at finite interactions, where spin mixing occurs,
we find that the final localized spin densities are those ex-
pected in the microcanonical ensemble. Whereas, in the limit
of infinite interaction strength, where the center of mass of
two spin-component stop further apart from their initial posi-
tions, the final localized state is very different from that ex-
pected in the microcanonical ensemble because integrability
prevents thermalization.

The manuscript is organized as follows. The physical
model is introduced in Sec. II, where we remind how the sys-
tem can be mapped onto a spin-chain model and the dynamics
can be exactly solved in the strong-interacting limit. Then,
the boomerang experiment is described in Sec. III, where we
detail a proposal for an experimental protocol and analyze the
results, discussing the role of the interactions and of the sym-
metries. The thermalization issue is discussed in Sec. IV.
Concluding remarks are given in Sec. V.

II. THE MODEL

We consider a SU(2) fermionic mixture with N↑(N↓) =
N/2 fermions in the spin-up (spin-down) component. Each
fermion is subject to an external potential V (x) and interacts
with fermions of the other spin component via a repulsive con-
tact potential of strength g. Thus, the many-body Hamiltonian
reads

H =H0+

N↑

∑
i=1

N

∑
j=N↑+1

gδ (xi − x j) (1)

with

H0=
N

∑
i=1

[
− h̄2

2m
∂ 2

∂x2
i
+V (xi)

]
. (2)

Close to the fermionized regime, where interactions are so
large that they play the role of a Pauli principle between

fermions belonging to different spin components, the many-
body wavefunction can be written as [22]

Ψ(X) = ∑
P∈SN

aPθP(X)ΨA(X) (3)

where the summation is performed over all P permutations
of N elements, SN . The vector X = (x1,σ1 , ...,xN,σN ) includes
particle coordinates xi and spin indices σi, ΨA(X ; t) is the
zero-temperature solution for spinless fermions obeying the
non-interacting Hamiltonian H0, and θP(X) is the general-
ized Heaviside function, which is equal to 1 in the coordinate
sector xP(1),σP(1)

< · · · < xP(N),σP(N)
and zero otherwise. The

coefficients aP are determined by minimizing the energy [22]:

E = E∞ +
1
g

(
∂E

∂g−1

)
1/g→0

= E∞ − C
g
, (4)

with C = −(∂E/∂g−1)1/g→0 being the Tan’s contact up to a
dimensional constant. This is equivalent to solving the eigen-
value problem of the effective Hamiltonian

Heff = H |1/g≪1 = E∞1̂+HS (5)

obtained by expanding H on the {φn} snippet basis, namely
the basis of all particle sectors obtained by global permuta-
tions modulo the permutations of identical fermions with the
same spin [23]. Furthermore, it has been shown that HS is
equivalent to a spin chain Hamiltonian in position particle
space [14]

HS =
N−1

∑
j=1

(
−J j1̂+ J jP̂j, j+1

)
(6)

where P̂j, j′ =(σ⃗ ( j)σ⃗ ( j′)+1)/2 is the permutation operator and

σ⃗ ( j) = (σ
( j)
x ,σ

( j)
y ,σ

( j)
z ) are the Pauli matrices. The hopping

terms Ji in Eq. (6) can be written as

Ji =
N!
g

∫
∞

−∞

dX δ (xi − xi+1)θid(X)
∣∣∣∂ΨA

∂xi

∣∣∣2. (7)

A. The dynamics close to the fermionized regime

In an out-of-equilibrium situation, when the free-fermion
part of the wavefunction ΨA is time-dependent, the J j
terms (7) change in time. Therefore, to obtain Ψ(X , t̄ + dt)
starting from Ψ(X , t̄) we proceed as follows [24]. We start
by finding Ji(t̄) to determine the spin-chain Hamiltonian at
a time t̄. By diagonalizing HS(t̄) we obtain the eigenvectors
a( j)

P (t̄) and their corresponding eigenvalues E j(t̄). Expanding
the coefficients aP of Eq. (3) in this basis gives the identity
aP(t̄) = ∑ j α j(t̄)a

( j)
P (t̄) and makes it possible to compute the

coefficients at a time t̄ +dt as

aP(t̄ +dt) = ∑
j

α j(t̄)e−iE j(t̄)dt/h̄a( j)
P (t̄). (8)
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Once the evolved coefficients (8) are known, the many-body
wavefunction at a time t̄ +dt can be written as

Ψ(X ; t̄ +dt) = ∑
P∈SN

aP(t̄ +dt)θP(X)ΨA(X ; t̄ +dt). (9)

For this approach to work, the time steps need to fulfil the
condition dt ≪ h̄/|J j(t̄+dt)−J j(t̄)| for any t̄ and any j. Once
the many-body wavefunction is calculated, we can compute
the spin densities at each time

ρ↑,↓(x, t) = ∑
i

δ
↑,↓
σi ∑

P∈Sn

|[aP(t)]i|2ρ
i(x, t) (10)

where

ρ
i(x, t) =

∫
x1<···<xi−1<x<xi+1···<xN

dXδ (x− xi)|ΨA(X , t)|2

is the density in the sector x1 < · · ·< xi−1 < x < xi+1 · · ·< xN ,
while the total density is ρ(x, t) = ∑

N
i=1 ρi(x, t) = ρ↑(x, t) +

ρ↓(x, t).

B. The dynamics in the presence of disorder

We now focus our attention to the case of a wavepacket
of fermions initially prepared at equilibrium in a harmonic
trap of frequency ω , which is then released with an imprinted
initial momentum h̄k0 on each fermion and propagates in the
pseudorandom potential

Vdis(x) =W sin(
√

5π(x+ icL/2))3/(aho/10)3) (11)

whereW is the potential amplitude, aho =
√

h̄/(mω) the typ-
ical harmonic potential length scale, L the size of the sys-
tem, and ic an integer index that counts the pseudo-disorder
configurations. It has already been shown that the potential
(11), defined on a lattice, induces both Anderson localisa-
tion [25] and the boomerang effect [2] as a truly random po-
tential. We choose the potential (11), rather than a truly ran-
dom one, because of its relevance to cold-atom experiments,
in which pseudo-random potentials can be realized with ap-
propriate laser configurations [26]. We would like to stress,
however, that we have verified that the results described in
this paper are still valid if the pseudo-random potential (11)
is replaced with a random potential of adequate strength [2].
The potential (11) has zero average Vdis(x) = 0 and is delta-
correlated Vdis(x)Vdis(x′) = γδ (x− x′). The values obtained
from Eq. (11) by keeping x fixed and varying ic have a uni-
form probability distribution function (PDF). Here and in the
rest of this paper, we use the symbol (· · ·) to denote the av-
erage over a sequence of pseudo-disorder configurations (we
consider different ic values in Eq. (11)).

The disorder strength γ determines the mean-free path ℓ and
the mean-free time τ for a non-interacting system. Indeed, we
remind that for a wavepacket with a momentum h̄k0 in the
Born approximation, one has [1]

ℓ=
h̄4k2

0
2m2γ

, and τ =
h̄3k0

2mγ
. (12)

Here and in the following, we have fixed γ = 0.86 ·
103h̄2

ω2aho, and k0 = 50/aho, that imply ℓ = 1.45aho and
τ = 0.029ω−1. We remark that, in order to use such expres-
sions for the case of N non-interacting fermions, (h̄k0)

2/(2m)
has to be much larger than the energy of the highest occupied
orbital [10], namely the Fermi energy of the system.

The presence of disorder significantly influences the time
evolution of the hopping terms Ji. In an experiment in which
the wavepacket is first prepared separately in a deterministic
initial condition and then left to evolve in a disordered poten-
tial, the Ji’s at time t = 0 are determined by the initial state
and their PDFs are Dirac deltas (as shown in the first panel of
Fig. 2). Because the fermions move in a (pseudo)-random po-
tential, the hopping terms become stochastic variables, with
disorder entering via the time evolution of ΨA. As a conse-
quence, at each time t, the statistical properties of the Ji terms
must be described with a PDF P(Ji). The time evolution of
the corresponding marginal PDFs is depicted in Fig. 2, which
shows that initially the PDFs broaden and drift towards higher
values of Ji, eventually reaching a stable asymptotic forms at
longer times. These qualitative features are evinced by the
time evolution of the average values of the Ji’s and of their
rescaled standard deviations

σJi

J̄i
=

√
J̄2

i − J̄i
2

J̄i
. (13)

as shown in Fig. 3.
We can estimate the dependence of the mean-free path ℓ j

and of the mean-free time τ j on J̄i and σJi for the spin dy-
namics by using the expression for the localization length for
a lattice system with random off-diagonal disorder, derived in
the Born approximation [2]. This would give

ℓ j ∝
J̄i

2

σ2
Ji

, and τ j ∝
J̄i

σ2
Ji

. (14)

Equations (14) predict that ℓ j does not depend on the strength
of the interactions g, whereas τ j increases with it (τ j ∝ g),
which is in agreement with the results presented in the next
section.

Finally, let’s discuss the stochastic properties of the Ji(t)’s.
They are ultimately shaped by the random potential Vdis(x),
but, unfortunately, the determinantal form of ΨA makes highly
non-trivial to establish a link between the randomness of the
potential Vdis(x) and the stochastic features of the Ji terms. As
shown by Eq. (7), the magnitude of the Ji’s is proportional to
the sharpness of the cusps, namely, the slope of the wavefunc-
tion ΨA(X) when two particles approach each other. There-
fore, we expect that their average values should strongly de-
pend on the specific features of the experimental protocol.

In the present case, we consider a wavepacket launched
with an initial momentum in a disordered landscape. Our
numerical analysis has shown that the marginal PDFs of the
Ji terms tend to asymptotic forms characterized by a skewed
shape and fat tails.
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FIG. 2: Evolution of PDF of the Ji terms for the case of an initial de-
terministic wavepacket of 2+2 fermions, initially prepared in a har-
monic trap of frequency ω , launched with an initial momentum h̄k0
in the presence of a pseudorandom potential (11). The different pan-
els correspond to times: 0, 0.002, 0.4, 4 in units of 1/ω .
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FIG. 3: Average hopping terms Ji, for the case g = 100h̄ωaho, (top
panel) and relative standard deviation (13) of the hopping terms Ji
(bottom panel, as functions of time, for the same experimental pro-
tocol as for Fig. 2 and described in Sec. III.

III. THE BOOMERANG DYNAMICS

We propose in this section an experimental protocol to ob-
serve QBE. We consider an initially spatial phase-separated
SU(2) fermionic mixture with N↑ = N↓ where the up spins are
on the left (L), and down spins on the right (R), both trapped
in a harmonic potential Vho = mω2x2

i /2. At t = 0 we release

the fermions in a disorder potential Vdis(xi) by kicking them
towards the right with an initial momentum h̄k0 and switching
off the harmonic potential.

We study the dynamics of the center-of-mass x̄ and the
width w of the total disordered-averaged density profile

x̄ =
∫

ρ̄(x)xdx/N, (15)

w =

(∫
ρ̄(x)(x− x̄)2dx/N

)1/2

, (16)

and we do the same for each spin component

x̄↑,↓ =
∫

ρ̄↑,↓(x)xdx/N↑,↓, (17)

w↑,↓ =
(∫

ρ̄↑,↓(x)(x− x̄↑,↓)2dx/N↑,↓

)1/2

. (18)

Remark that, to simulate such an experimental protocol in
the procedure detailed in Sec. II, the time discretization needs
to verify dt < τ .

A. Spin-charge separation in the boomerang dynamics

We observe (see Fig. 4) that, in the fermionized regime
(g → ∞), the two components never mix, and they localize
independently, repelling each other. Indeed, in this case the
hopping terms Ji vanish and

ρ
∞
↑ (x, t) = ρ

L(x, t) =
N↑

∑
i=1

ρ
i(x, t) (19)

and

ρ
∞
↓ (x, t) = ρ

R(x, t) =
N

∑
i=N↑+1

ρ
i(x, t). (20)

Moreover, the width of each component is half of the width
of the total density, and we observe that the final position of
the center-of-mass of each spin-component is x̄∞

↑,↓(t → ∞) =

±w/2.
The dynamical behavior is considerably different when in-

teractions are large but finite: in this case the two spin compo-
nents undergo mixing during the dynamics, as happens in the
absence of the disorder [17] (see Fig. 4). Each spin compo-
nent is localized by the disordered hoppings, reaching a final
width that is the same of the two components (top panel in
Fig. 4). Initially, each component moves away over a dis-
tance ℓmax, and then it comes back towards the initial posi-
tion of the center-of-mass of the whole system, performing
damped oscillations, around this position. These oscillations
are governed by the frequency spectrum of the spin-chain
Hamiltonian (6), which yields the lowest non-zero frequency

ω⋆ =
(

J1 + J2 −
√

J2
1 + J2

2

)
/h̄, where we have used that at
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long times J1 = J3. Remark that the turning point ℓmax is the
same for the cases g/(h̄ωaho)) = 100 and 200, and that the
time evolution scales with g, namely x̄↑,↓(2t)2g = x̄↑,↓(t)g, as
predicted by Eqs. (14). The localization dynamics occurs on a
much longer timescale with respect to that of the total density.
In particular, we observe that at long times one has

x̄↑,↓ =
1
2
(x̄∞

↑ + x̄∞
↓ )±

1
2
(x̄∞

↑ − x̄∞
↓ )F (t), (21)

with F (t) being a function that depends on the average of
spin weights only, |aP(t)i|2δ

↑,↓
σi . Indeed, the time scales of the

density dynamics and of the spin dynamics being very differ-
ent (the first being determined by the disorder strength γ and
the second by the hoppings Ji that are proportional to ρ3/g
[27, 28]), the average over configurations splits into two inde-
pendent parts as if the two dynamical processes were uncor-
related (see Appendix A).

The center-of-mass of the total density exhibits the
boomerang dynamics: the whole wavepacket moves away
over a distance ∼ ℓ and then comes back to its initial posi-
tion, while at the same time the wavepacket localizes. How-
ever, each spin-component individually does not come back
to its initial position, but its center-of-mass position at long
times coincides with the center-of-mass of the whole system
(bottom panel in Fig. 4).

Remark that the behaviour of the total density does not de-
pend on the value of the interaction strength in the regime we
are analysing (1/g ≪ 1), so that the black curves in Fig. 4
concern the three cases analyzed (g/(h̄ωaho) = 100,200,∞).
We thus observe a spin-charge separation with respect to the
boomerang dynamics, both for finite and infinite values of the
interaction strength. This result is in agreement with the pre-
diction of spin-charge separation in the localization dynamics
for a disordered chain of spin-1/2 fermions [12].

B. Role of the interactions and symmetries

A straightforward interpretation of our results is the follow-
ing one. In the strongly interacting mixture, the whole den-
sity is described by the spinless-fermions solution. Thus, the
whole density follows the boomerang dynamics as expected
for non-interacting fermions or Tonks-Girardeau bosons [10].
The effect of the interactions manifests itself in the inter spin-
component dynamics, but in a very different way depending
on whether the interactions are infinite or finite. When the in-
teractions are infinite, each spin component is just a system
of non-interacting particles that is not free to propagate ev-
erywhere because of the presence of the other component. It
localizes at the same time as the whole system, but largely far
away from the position of the center-of-mass of the whole sys-
tem and also largely far away from their initial position. The
center-of-mass of each component does not do the boomerang
dynamics: each component moves away but does not come
back because it is pushed by the other component.

Instead, when the interaction is large but finite, the situa-
tion is completely different. The landscape of the disorder felt
by the spins completely change. Particles with different spin

10 2 10 1 100 101

ωt

2
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6

8

w
↑,
↓
/
a

h
o

↑
↑
↑

↓ g/( ωaho) = 100

↓ g/( ωaho) = 200

↓ g→∞

10 2 10 1 100 101

ωt

4

2

0

2

4

x̄
↑,
↓
/a

h
o

FIG. 4: Disorder-averaged widths w (top panel) and center-of-
mass positions (bottom panel) x̄ of the whole system (black curve)
and of each spin component (red and blue lines) as functions of
time (in logscale), for different values of the interaction strengths:
g/(h̄ωaho) = 100 (continuous lines), g/(h̄ωaho) = 200 (dashed
lines) and g → ∞ (dot-dashed lines). Here we used the following
parameters: k0aho = 50, γ = 0.86 ·103h̄2

ω2aho, N = 4 and we aver-
aged over 512 configurations.

hop with a spatially random probability, that fluctuates as a
function of time, and is inversely proportional to the interac-
tion strength. The center-of-mass of each component reaches
a final position that is different from the initial one, as already
found for other interacting systems [10], and, coincides with
that of the whole system.

From the point of view of each component, there is an ini-
tial time when the dynamics at finite interactions coincides
with that at infinite interactions, but then the trajectories sep-
arate, one going back while the other does not. This is very
different from what happens with a single-component system
[10] where the center-of-mass for the gas of finite interactions
slightly deviates from that with infinite interactions.

As a final remark, we would like to highlight the role of
symmetries for the QBE. As pointed out in [6, 8], the QBE
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takes place in real space if the ensemble of the disordered
Hamiltonians {H } is invariant under the action of RT and
if the initial state is an eigenstate ofRT , whereR is the spa-
tial reversal operator and T the time-reversal operator. For
the system we have considered in this work, both conditions
are fulfilled. However, each spin component is not an eigen-
state ofRT . Under the action ofRT the spin-up component
on the left is transformed on the spin-down component on the
right, and viceversa. Thus, each spin-component separately
does not fulfil the condition for the QBE, but the two spin-
components system does.

IV. THE THERMALIZATION ISSUE

Given that the system we are studying is characterized by
interactions and disorder, it is natural to ask whether the fi-
nal localized state is many-body localized or if the eigenstate
thermalization hypothesis (ETH) holds. In the latter case, if
the expectation value of local operators will ultimately evolve
in time to their value predicted by the microcanonical ensem-
ble [17, 29]. Such a target state, for our system, coincides
with a state described by the diagonal ensemble where the
spin densities ρ↑,MC(x) and ρ↓,MC(x) are equally distributed.
Of course, this cannot happen at infinite interactions: in this
limit the system is integrable and the different spins, that are
initially spatially phase separated, never mix, making impos-
sible to achieve a uniform non-magnetized state. But at large
finite interactions, even if slowly, the spin mixing takes place
and continues even after the total density has localized. The
long-time position of the center-of-mass of each spin com-
ponent coincides with the position of the center-of-mass of
the whole localized cloud. This is in accordance with what
one would expect with the aforesaid fully mixed state where
ρ↑,MC(x)= ρ↓,MC(x). Furthermore, since we have verified that
the particle densities ρ i(x, t) and amplitudes |[aP(t)]i|2 enter-
ing the spin densities (cf. Eq. (10)) possess different relax-
ation times, in order to investigate the thermalization of the
spin dynamics we have evaluated the distance

R(t) = ∑
i

(
∑

P∈SN

|[aP(t)]i|2 − ∑
P∈SN

|[aP]
MC
i |2

)
(22)

where [aP]
MC
i are the coefficients obtained from the diagonal

ensemble, analogously to what has been done in [17] (see Fig.
5). R(t) collapsing to zero very rapidly, it is clear that, for
what concerns the spin density distributions, our system ver-
ifies ETH. Thermalization was also reported for spin chains
subject to off-diagonal disorder [30]. Our case displays some
differences with the above, as the effective disorder felt by the
spins is time-dependent, as it originates from the dynamics of
the orbital part. It is also interesting to mention that the dis-
order felt by the particles is diagonal, but it turns off-diagonal
as felt by the spins because it is mediated by the interaction
among particles.

In conclusion, we would like to emphasize that the center-
of-mass evolution of the spin components, namely whether
the boomerang dynamics occurs for the spin components, is

0 2 4 6 8 10 12
t

0.00

0.05

0.10

0.15

0.20

0.25

R(
t)

FIG. 5: Distance R(t) from the spin part of the time-dependent aver-
age spin density ρ̄↑(t) to the microcanonical one ρ↑,MC as function
of time t.

an experimentally accessible tool to probe ETH or lack of
thermalization.

V. CONCLUDING REMARKS

In this work we have studied the dynamics of two-
component fermionic wavepacket launched in a 1D pseudo-
random potential. We have considered the case of an initially
spatially phase-separated fermions characterized by a strong
repulsive inter-species contact interactions. In such a strongly
interacting limit, the charge and the spins dynamics decou-
ple. The total density coincides with the total density of a
non-interacting spinless Fermi gas, while the spin components
obey to an effective non-homogeneous Heisenberg spin chain
Hamiltonian, whose hopping terms, that depend on the density
evolution, become random during the dynamics and fluctuate
in time. As a result, we find that the total density performs
a boomerang dynamics as predicted for non-interacting parti-
cles, while the densities of each spin components, considered
separately, do not. Their centers of mass initially move away
and then they come back, not to their respective initial po-
sition, but towards the initial position of the whole system.
They reach this position, making damped oscillations, whose
frequency is determined by averages of the effective hopping
energy. The two spin-components mixed together reach a fi-
nal spin-density distribution that is compatible with that of the
diagonal (microcanonical) ensemble. This is a signature that
interactions, in our system, do not induce many-body local-
ization, at least for the parameters that we have chosen for
our study. This result is reminiscent of previous studies [29]
that have shown that for an Heisenberg spin chain with off-
diagonal quenched disorder, many-body localization does not
occur. Finally, let us underline that the system we have studied
in this work opens up the possibility to realize, with an ultra-
cold atom experiment, a quantum simulator of a Heisenberg
spin chain with off-diagonal disorder. However, our system
differs from that analyzed in [31–34] as the spatial part is sub-
ject to a diagonal disorder and the spin components feel an
off-diagonal time-dependent disorder. This could bring un-
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expected novel phases and deserve further studies for larger
systems, correlated disorder and finite temperature.
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Appendix A: Two spin dynamics

Let us consider the case of two fermions. In this case, the
spin part of the many-body wavafunction can be written on
the snippet basis as a1(t)| ↑↓⟩+a2(t)| ↓↑⟩, with a1(t = 0) = 1
and a2(t = 0) = 0. There exists only a hopping term J and the
ai’s obey the differential coupled equations

ih̄ȧ1,2 =−Ja1,2 + Ja2,1. (A1)

Taking into account that a2
1 +a2

2 = 1, then we get

a2
1 =

1
2

(
1+ cos(2

∫ t

0
J(t ′)dt ′)

)
a2

2 =
1
2

(
1− cos(2

∫ t

0
J(t ′)dt ′)

) (A2)

The center-of-mass of each component can be written

x̄↑ = a2
1x1 +a2

2x2

x̄↓ = a2
2x1 +a2

1x2

(A3)

where x1 and x2 are the baricenters of the density distributions
ρ1 and ρ2. We observe that

x̄↑ ≃ a2
1x̄1 +a2

2x̄2

x̄↓ ≃ a2
2x̄1 +a2

1x̄2.
(A4)

Since in the two particles case x̄1 = x̄∞
↑ and x̄2 = x̄∞

↓ , we obtain

x̄↑,↓ =
1
2
(x̄∞

↑ + x̄∞
↓ )±

1
2
(x̄∞

↑ − x̄∞
↓ )cos(2

∫ t

0
J(t ′)dt ′). (A5)

The J’s distribution not being gaussian, the disorder average
of the cosine function cannot be written in simple terms, and

−3

−2

−1

0

1

2

3

0 2 4 6 8 10 12

x̄
↑,
↓/
a
h
o

ωt

FIG. 6: Spin-up (violet curves) and spin-down (green curves) center-
of-mass positions x̄↑ and x̄↓ in units of aho as functions of the time t,
for the case of a two particles systems. The exact results (thick lines)
are compared with those obtained using Eq. (A5).

we needed to compute it numerically. Indeed even if J̄ deter-
mines the spin oscillation frequency, we have verified that the
variance σ j does not allow to deduce a correct damping time.
The comparison between the center-of-mass exact evolution
and the approximated one given in Eq. (A5) is shown in Fig.
6.
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