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Politically divided societies are also often divided emotionally: people like

and trust those with similar political views (in-group favoritism) while dis-

liking and distrusting those with different views (out-group animosity). This

phenomenon, called affective polarization, influences individual decisions, in-

cluding seemingly apolitical choices such as whether to wear a mask or what

car to buy. We present a dynamical model of decision-making in an affec-

tively polarized society, identifying three potential global outcomes separated

by a sharp boundary in the parameter space: consensus, partisan polariza-

tion, and non-partisan polarization. Analysis reveals that larger out-group

animosity compared to in-group favoritism, i.e. more hate than love, is suffi-

cient for polarization, while larger in-group favoritism compared to out-group

animosity, i.e., more love than hate, is necessary for consensus. We also show

that, counter-intuitively, increasing cross-party connections facilitates polar-

ization, and that by emphasizing partisan differences, mass media creates self-
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fulfilling prophecies that lead to polarization. Affective polarization also cre-

ates tipping points in the opinion landscape where one group suddenly reverses

their trends. Our findings aid in understanding and addressing the cascad-

ing effects of affective polarization, offering insights for strategies to mitigate

polarization.

1 Introduction

American society has grown more ideologically divided, with Democrats and Republicans not

only disagreeing on policy issues but also making dramatically different choices about where to

live and work, what products to buy, leisure activities to pursue (1) or sports teams to support (2).

Surveys also reveal a growing emotional divide, with members of each party increasingly dislik-

ing and distrusting the opposing party (3, 4). This phenomenon, called affective polarization, is

manifested in people expressing warm feelings, i.e., in-group love, towards their ideological al-

lies but negative feelings and animosity, i.e., out-group hate, to members of the opposing party.

Over the last decade, cross-party antipathy has grown and now exceeds in-group love (5, 6).

The escalating partisan animosity poses a challenge to effective governing and the well-being

of society. For example, during the COVID-19 pandemic individuals’ trust and adherence to

public health recommendations, like wearing a mask or getting vaccinated, were shaped by

whether their own political party supported or opposed those recommendations (7), hindering

an effective response to the pandemic.

Research has shown that demographics alone cannot account for the partisan divide in be-

liefs and behaviors (8, 9, 10). Instead, these phenomena arise from collective social dynamics.

The tendency to associate with others who are similar, a process known as homophily, amplifies

chance correlations between individual preferences and ideology, giving rise to a unified behav-

ior within a group over time. This effect was used to explain the emergence of stereotypes
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like “latte-drinking liberals” and “bird-hunting conservatives” (1). The rise of online media has

further amplified social cleavages by enabling people to align their information environments

with their ideology. Similar to the mechanisms described above, these preferences tend to seg-

regate people within ideologically-homogeneous communities, i.e., echo chambers (11, 12),

which insulate them from opposing views and promote polarization. However, recent research

has challenged this understanding (13), pointing to studies that show instead how increasing

polarization can arise from exposure to opposing views.

This paper presents a model of information cascades in an affectively polarized social net-

work composed of two groups (e.g., red and blue), where individuals within each group like and

trust members of their own group (in-group love) and dislike and distrust members of the other

group (out-group hate). When choosing between two possible choices (e.g., wear a mask or not,

get vaccinated or not, which team to support in the Superbowl), individuals observe their social

connections and attempt to conform to the choices of their in-group and oppose choices made

by members of their out-group. Depending on the size of the minority and majority groups,

homophily (preference of individuals to connect to others of the same group), and the lev-

els of in-group conformity and out-group opposition, several different long-term outcomes can

emerge, marked by a sharp boundary: global consensus (all individuals adopt the same choice),

polarization (party-line division of choices) and non-partisan polarization in which each group’s

choices are uniformly divided. We theoretically characterize the conditions under which such

outcomes occur and provide numerical experiments that yield further insights.

Despite its simplicity, the model exhibits remarkably complex behaviors and reconciles

seemingly contradictory findings from literature. The model explains how rapid collective tran-

sitions, or tipping points in the opinion landscape (14), can emerge in social systems. It shows

that opposition to the choices by members of the other party, driven by out-group hate, is a

potent driver of polarization. When out-group hate is stronger than in-group love, no consensus
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is feasible. This may explain why disagreement on issues between Democrats and Republicans

accelerated since 2012, when out-group hate exceeded in-group love in the U.S. (6). The model

also explains why conventional wisdom-based approaches aimed at reducing polarization, such

as connecting people from opposite parties, often backfire (15, 13). Specifically, our results

corroborate the findings in (16) showing that consensus between two antagonistic communities

can be achieved only when they are loosely connected. Beyond this, our analysis provides a

comprehensive explanation for role of out-group hate, in-group love, cross-party connections

and the initial beliefs in shaping opinions. Our work suggests that emphasizing partisan differ-

ences, even when they are small or non-existent, can fuel polarization through a self-fulfilling

prophecy. To counteract this, news media and social platforms could instead strive to diminish

the perception of party-line differences to impede actual polarization. For example, fostering

connections between similar individuals from opposing parties may be one of the few effective

methods to facilitate consensus.

Our model is useful to understand the forms of divisions that emerge collectively from af-

fective polarization, homophily and imbalanced party sizes and leads to new insights into polar-

ization as well as methods to mitigate it. The theoretical tractability of the model, which yields

closed-form expressions for its dynamics, reduces the need to rely on large scale simulations to

obtain such insights and may lead to new solutions to control polarization.

2 A Model of Information Cascades with Affective Polariza-
tion

We present a dynamical model of how people make choices in a social network (e.g., to mask

or support a sports team) by viewing the past choices of their in-group (e.g., members of their

own party), which they approve of, as well as the choices of their out-group (e.g., cross-party

members), which they oppose. The choice dynamics lead to an information cascade which
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reaches a steady state of partisan polarization or consensus depending on group sizes and the

levels of in-group love and out-group hate.

Consider an undirected social network G = (V,E) with N = |V | individuals. Each in-

dividual (node) v ∈ V has two binary attributes: a static binary attribute R(v) ∈ {0, 1} and

a dynamic binary attribute Hk(v) ∈ {0, 1} where k denotes discrete-time. The static attribute

represents the group (e.g., political) affiliation: v is red (v ∈ R) if R(v) = 1; otherwise, v is

blue (v ∈ B). Let NB = |B| and NR = |R| denote the sizes of the two groups and r = NR/N

denote the fraction of red nodes. The dynamic attribute Hk(v) ∈ {0, 1} represents v’s choice at

time k (e.g., wearing a mask vs not wearing a mask).

At each time k (where k = 0, 1, 2, . . . ), a node Xk ∈ V chosen uniformly at random updates

its choice by observing the choices of its neighbors.Let

din,0k (Xk) =
∑

(Xk,u)∈E

1(R(u) = R(Xk) ∧Hk(u) = 0)/d(Xk)

din,1k (Xk) =
∑

(Xk,u)∈E

1(R(u) = R(Xk) ∧Hk(u) = 1)/d(Xk)

dout,0k (Xk) =
∑

(Xk,u)∈E

1(R(u) ̸= R(Xk) ∧Hk(u) = 0)/d(Xk)

dout,1k (Xk) =
∑

(Xk,u)∈E

1(R(u) ̸= R(Xk) ∧Hk(u) = 1)/d(Xk)

(1)

denote the number of in-group and out-group neighbors with choice-0 and choice-1 at time

k normalized by the total number of neighbors d(Xk). Node Xk updates its choice at k + 1

according to:

Hk+1(Xk) =


0 if α

(
din,1k (Xk)− din,0k (Xk)

)
− β

(
dout,1k (Xk)− dout,0k (Xk)

)
< −δ

1 if α
(
din,1k (Xk)− din,0k (Xk)

)
− β

(
dout,1k (Xk)− dout,0k (Xk)

)
> δ

Hk(Xk) otherwise,
(2)

where α, β, δ ∈ [0, 1] are constant model parameters. Choices of all other nodes except Xk ∈ V

remain unchanged: for all u ̸= Xk, Hk+1(u) = Hk(u).
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The above stylized model aims to capture the dynamics of choices in an affectively polarized

society. Consider a red node v deciding whether to wear a mask during the pandemic. The

red neighbors (in-group) that wear masks push v towards masking, whereas the red neighbors

who do not wear masks push v towards not-masking. The out-group (blue) neighbors have

the opposite effect: blue masking neighbors push node v towards not-masking, whereas blue

non-masking neighbors push the node towards masking. The relative strengths of these effects,

in-group love and out-group hate, are quantified by α and β, respectively. If the combined effect

of out-group hate and in-group love exceeds δ in favor of a certain choice (1 or 0), then v adopts

it. If not, it keeps it current choice. Thus, δ quantifies the level of inertia of a person, or the

degree of social proof, including from the out-group, required to change the choice. Also note

from Eq. 2 that, among the neighbors of v belonging to each group, only the difference between

how many chose choice-0 and choice-1 matters and not the ratio. Even with the normalization

in Eq. 1, 50 out of a total of 100 masking blue neighbors will create a greater out-group effect

for a red node than when one out of two blue neighbors masks.

To analyze the dynamics, we examine the fraction of nodes in each group that have adopted

choice-1 at time k. Formally, we define the state of the system at time k as the column vector

θk = [θBk , θ
R
k ]

′ where,

θBk =

∑
v∈V 1(R(v) = 0 ∧Hk(v) = 1)∑

v∈V 1(R(v) = 0)
, θRk =

∑
v∈V 1(R(v) = 1 ∧Hk(v) = 1)∑

v∈V 1(R(v) = 1)
. (3)

Since the node Xk is chosen randomly at time k to update its choice, the trajectory of the

system θk = [θBk , θ
R
k ]

′, k = 0, 1, 2, . . . is also a random process. We show that the discrete-

time stochastic trajectory θk, k = 0, 1, 2, . . . can be approximated using the continuous-time

deterministic trajectory of a differential equation under a few assumptions. This differential

equation representation of the stochastic model, called the limit mean differential equation can

thus be used to analyze the emergence of various patterns in the social network over sufficiently
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large time horizons. We will focus on two cases of practical interest: a fully connected network

and a stochastic block model.

2.1 Dynamics of the Model in a Fully Connected Network

We first consider a fully connected social network G = (V,E), where each node v ∈ V can

observe the state of the system θk = [θBk , θ
R
k ]

′ at any time k. This occurs, for example, when

people are informed about the prevalence of masking within each political party via daily news

broadcasts and make their decisions to mask accordingly.

In such a graph, the piece-wise interpolation1 of the discrete-time trajectory θk = [θBk , θ
R
k ]

′, k =

0, 1, 2, . . . can be approximated using the continuous-time trajectory θ(t) = [θB(t), θR(t)]′, t ≥

0 of the following differential equation as the number of nodes in the graph N is large:[
θ̇B

θ̇R

]
=

[ (
1− θB

)
pBθ (0 → 1)− θBpBθ (1 → 0)(

1− θR
)
pRθ (0 → 1)− θRpRθ (1 → 0)

]
, (4)

where,

pBθ (0 → 1) = 1
(
α(1− r)

(
2θB − 1

)
− βr

(
2θR − 1

)
> δ

)
,

pBθ (1 → 0) = 1
(
α(1− r)

(
2θB − 1

)
− βr

(
2θR − 1

)
< −δ

)
,

pRθ (0 → 1) = 1
(
αr

(
2θR − 1

)
− β(1− r)

(
2θB − 1

)
> δ

)
,

pRθ (1 → 0) = 1
(
αr

(
2θR − 1

)
− β(1− r)

(
2θB − 1

)
< −δ

)
.

The intuition behind the differential equation in Eq. 4 is as follows. In a fully connected

network, each node is a neighbor of all other nodes. Thus, the node-level statistics in Eq. 1

can be written using the population statistics in Eq. 3. For a blue node Xk, we can write

din,1k (Xk) = θBk , d
in,0
k (Xk) = 1−θBk , d

out,1
k (Xk) = θRk , d

out,0
k (Xk) = 1−θRk . According to Eq. 2,

a blue node Xk picks choice-1 when α(1 − r)
(
2θBk − 1

)
− βr

(
2θRk − 1

)
> δ, i.e., positive

1The piece-wise interpolation of θk, k = 0, 1, 2, . . . refers to the continuous time trajectory θ
1
N (t) = θk for

t ∈
[
k
N , k+1

N

)
for discrete time k = 0, 1, 2, . . .
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influence from the presence of choice-1 among in-group neighbors is larger than the negative

influence from the presence of choice-1 among out-group neighbors by a margin of at least δ.

Similarly, a blue node picks choice-0 when α(1 − r)
(
2θBk − 1

)
− βr

(
2θRk − 1

)
< −δ. Since

a fraction 1 − θBk of blue nodes have choice-0 and a fraction θBk of blue nodes have choice-

1, the expected rate of change of blue nodes with choice-1 θBk can thus be written as θ̇B in

Eq. 4, and similarly for θ̇R. When the network is large, the stochastic dynamics converge to the

deterministic differential equation in Eq. 4 according to stochastic averaging theory. The formal

proof of convergence is given in Supplementary Information (SI) A. Thus, for any initial state

θ(0) = [θB(0), θR(0)]′, the continuous-time trajectory θ(t) = θ(0) +
∫ t

0
θ̇(s)ds, t ≥ 0 obtained

using Eq. 4 approximates the stochastic model dynamics θk = [θBk , θ
R
k ]

′, k = 0, 1, 2, . . . .

In the remainder of the paper, we rely on the differential equation in Eq. 4 and its general-

izations to explore how polarized information cascades emerge in affectively polarized popula-

tions.

2.2 Dynamics of the Model on a Social Network with Communities

Next, we consider the case where the network G = (V,E) is sampled from a stochastic block

model with two communities. Specifically, each node is connected to a node in the same party

with probability ρ and a node in the other party with probability 1 − ρ, where ρ ∈ (0, 1) is

a constant model parameter. Thus, ρ quantifies the level of homophily (17) of the individuals

in the population: ρ > 0.5 implies that individuals are more likely to connect with others of

the same party (homophily), whereas ρ < 0.5 implies that individuals tend to mostly connect

with members of the other party (heterophily). When ρ = 0.5, the graph can be viewed as an

Erdős-Rényi random graph with each edge being formed with a probability of 0.5.

Alternatively, ρ can be interpreted in the following way: each individual looks at a fraction ρ

of their in-group members and a fraction 1−ρ of their out-group members and makes a decision
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based on their choices. Thus, ρ might also be used to represent the balance of information an

individual receives from the news media in terms of how well they represent the two parties: ρ >

0.5 means the news consumed by an individual over-represents views of the in-group (relative to

its size), while ρ < 0.5 means that the news over-represents the views of the out-group (relative

to its size). When ρ = 0.5, each group is represented in the news proportionate to its group size.

The dynamics of the system θk = [θBk , θ
R
k ]

′, k = 0, 1, 2, . . . in a stochastic block model

network can be approximated using the continuous-time trajectory of Eq. 4 with α replaced

by αρ and β replaced by β(1 − ρ). In other words, the homophily ρ amplifies the effects of

in-group love while reducing the effects of out-group hate. The exact differential equation for

the stochastic block model is stated in SI B.

3 Results

We analyze dynamics of the model and obtain insights about information cascades in an affec-

tively polarized society. We first focus on a fully connected population with no inertia (i.e., δ =

0) that starts from an initial state with no party-dependency (θB(0) = θR(0)). The case δ = 0

describes a highly reactive population where individuals choices are driven by the direction

of the net effect of in-group neighbors and out-group animosity and not the amount. Then,

we extend the results to more general settings with homophily, and party-dependent initial

states (θB(0) ̸= θR(0)).

3.1 Emergence of Polarization in a Fully Connected Network

Consider the case where choice-1 is initially equally popular in both groups (θB(0) = θR(0)).

This describes the early COVID-19 pandemic, when Democrats and Republicans were equally

cautious about the disease and chose to mask. Remarkably, the long-term outcomes that emerge

from a symmetric initial state can be characterized by just two quantities: the ratio of in-group
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love to out-group hate α/β and the ratio of group sizes r/(1− r).

Theorem 1 (Information Cascades in a Fully Connected Network with Affective Polariza-

tion). Consider Eq. 4 which represents the dynamics of the state of the population θ(t) =

[θB(t), θR(t)]′ under the proposed model in a fully connected graph. Let δ = 0 (i.e., no inertia)

and θB(0) = θR(0) (i.e., initial state is party independent). Then, the following statements char-

acterize the asymptotic state of the system for various different values of α (level of in-group

love), β (level of out-group hate) and r (fraction of red nodes in the network):

• Case 1: Let β
α
< r

1−r
< α

β
. If θB(0) = θR(0) > 0.5, then limt−→∞ θ(t) = [θB∗ , θ

R
∗ ]

′ =

[1, 1]′. If θB(0) = θR(0) < 0.5, then limt−→∞ θ(t) = [θB∗ , θ
R
∗ ]

′ = [0, 0]′ i.e., there is no

polarization and both groups fully adopt the choice that was initially more popular.

• Case 2: Let r
1−r

> α
β

and r
1−r

> β
α

. If θB(0) = θR(0) > 0.5, then limt−→∞ θR(t) =

[θB∗ , θ
R
∗ ]

′ = [1, 0]′. If θB(0) = θR(0) < 0.5, then limt−→∞ θ(t) = [θB∗ , θ
R
∗ ]

′ = [0, 1]′ i.e., there

is party-line polarization and the red-group (which is the majority) fully adopt the choice

that was initially popular while the blue-group fully adopt the other choice.

• Case 3: Let r
1−r

< α
β

and r
1−r

< β
α

. If θB(0) = θR(0) > 0.5, then limt−→∞ θR(t) =

[θB∗ , θ
R
∗ ]

′ = [0, 1]′. If θB(0) = θR(0) < 0.5, then limt−→∞ θ(t) = [θB∗ , θ
R
∗ ]

′ = [1, 0]′ i.e., there

is party-line polarization and the blue-group (which is the majority) fully adopt the choice

that was initially popular while the red-group fully adopt the other choice.

• Case 4: Let β
α
> r

1−r
> α

β
. If θB(0) = θR(0) > 0.5, then limt−→∞ θ(t) = [θB∗ , θ

R
∗ ]

′ =

[0.5, 0.5]′. i.e., there is non-partisan polarization with half of each group adopting choice-

1 and the remaining half adopting choice-0.

The limiting states in Cases 1-3 (consensus and polarization along party lines) are locally

asymptotically stable stationary states of the system in Eq. (4) whereas the limiting state in
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Figure 1: Phase diagram of the model (top) and four example trajectories. The four different
regions of the phase diagram (defined by the ratio of in-group love to out-group hate and the
ratio of group sizes) lead to different long-term outcomes in a fully connected network when
both groups start from the same initial state (θB(0) = θR(0)). The long-term outcomes are:
(Case 1, yellow) No Polarization, (Case 2, red / Case 3, blue) Partisan Polarization, (Case 4,
green) Non-Partisan Polarization. Example trajectories in both time-domain and state space are
shown below the phase diagram. The blue and red color areas in state space indicate regions
where θB(t), θR(t) increase (i.e., regions where pBθ (0 → 1) = 1 and pRθ (0 → 1) = 1 according
to Eq. 4). The black arrows in state space plots indicate the path of the differential equation
Eq. 4. The purple arrows map the time domain trajectory to the state space.
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Case 4 is an unstable stationary state of Eq. (4).

3.1.1 Insights from Theorem 1

The four cases in Theorem 1 shed light on the forms of polarization that can emerge in an

emotionally divided population starting from a state with no group-level differences: (case 1)

global consensus, where all nodes ultimately adopt the same choice, (case 2 and 3) party-line

polarization, where the choices are split along party lines, and (case 4) non-partisan polarization,

where each group is split evenly between the two choices. Below we consider additional insights

from Theorem 1.

Out-group hate is necessary for polarization: Note from Fig. 1, that if β is approximately

zero, then the network will always be in Case 1 which achieves consensus from any party-

independent initial state θB(0) = θR(0) ̸= 0.5.

Larger out-group hate relative to in-group love is sufficient for polarization: When indi-

vidual choices are driven more by a desire to oppose the out-group than a desire to conform to

the in-group, some form of polarization is unavoidable regardless of group sizes. As a result, in

the region to the left of the vertical line at α/β = 1 in Fig. 1, consensus is not possible. If out-

group hate is very high compared to in-group love (α/β ≈ 0 corresponding to case 4), then each

group will be evenly split between the two choices. When the disparity between α and β is not

too large compared to group size disparity (i.e., β/α < r/(1−r) or α/β > r/(1−r)), polariza-

tion will emerge with the majority adopting the initially more popular choice and the minority

adopting the other choice (Case 2 and Case 3 in Theorem 1). Further, party-line polarization

is stable: a small deviation will push the system back to the polarized state as indicated by the

arrows pointing to the polarized state in the state space plots of Fig. 1. Additional examples

trajectories in the cases where polarization emerge are given in SI Fig. S2.
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Larger in-group love relative to out-group hate leads to consensus as long as the group

imbalance is not too large: When the two groups have the same size (i.e., r = 0.5), Case 1 of

Theorem 1 shows that even a slightly larger in-group love compared to the out-group hate (i.e., α >

β) is sufficient for the network to adopt the initially popular choice, leading to consensus (see

row i of SI Fig. S3 for an example). Even with unequal group sizes, consensus can be achieved

with larger in-group love as long as the group imbalance is not large enough to push the system

into Case 2 or Case 3. In other words, when α is sufficiently large compared to β , consensus

can be achieved even when group sizes are not highly unequal (see row ii of SI Fig. S3 for an

example). Further, note that when β is negligible compared to α, consensus is always achieved

when both groups start from the same initial state (grey diagonal line in state space plots). This

highlights our claim that out-group hate is crucial for any form of polarization to occur from a

party independent initial state θB(0) = θR(0). However, even with high in-group love α > β, a

large enough group imbalance (r/(1− r) > α/β or r/(1− r) < β/α) can lead to polarization

(as shown in row iii of SI Fig. S3). This observation emphasizes that more love than hate is

necessary but not sufficient for consensus.

Majority cannot fully adopt the initially unpopular choice: When r > 0.5 (region above

y = 1 line in Fig. 1) and θB(0) = θR(0) > 0.5 (i.e., choice-1 is initially more popular), there

cannot be a case where all of the red-group adopts choice-0. In general, starting from a state

θB(0) = θR(0) in a fully connected network, the majority cannot adopt the initially less popular

choice.

Small perturbations from non-partisan polarization (case 4) can lead to party-line po-

larization but not to consensus: Consider Case 4 in Theorem 1 where the population is

evenly split between the two choices, regardless of group membership. This stationary state

θB(t) = θR(t) = 0.5 is unstable, and a small change in θB(t) or θR(t) can lead the population
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to polarize along party lines. This can be seen from state space plot corresponding to Case 4 in

Fig. 1: a small deviation from θB(t) = θR(t) = 0.5 caused by a change of either θB(t) or θR(t)

will lead to party-line polarization. For example, if just a few red nodes switch to choice-1 from

choice-0, θB(t) will converge to 1 and θR(t) to 0.

Thus, even on a fully mixed population containing a majority and a minority that are not

initially polarized, out-group hate and in-group love alone can lead to the emergence of a wide

array of cascading choices.

3.2 Implications for Networks with Echo Chambers

Next, we consider the case where the network G = (V,E) is sampled from a stochastic block

model with two communities, where each node is connected to ρ fraction of their in-group

members and 1 − ρ fraction of their out-group members, and ρ gives the homophily of the

network. Recall from Sec. 2.2 that the dynamics of the model with homophily can be obtained

by replacing α and β in Eq. (4) with αρ and β(1− ρ), respectively. Consequently, replacing α

and β in Theorem 1 and Fig. 1 with αρ and β(1 − ρ) leads to a characterization of the forms

of polarization that can emerge in the presence of in-group love, out-group hate, homophily as

well as a minority/majority division of the population. This is illustrated in SI Fig. S1. We now

discuss some insights on how these factors can collectively affect the emergence of polarization.

Neutral homophily is indistinguishable from the fully-connected graph: When people are

neither homophilic nor heterophilic (ρ = 0.5), the continuous-time trajectory in a stochastic

block model is the same as the continuous-time trajectory in a fully connected graph given

in Eq. (4) (since both sides of the inequalities inside indicator functions in Eq. (4) would be

multiplied by 0.5). Thus, Theorem 1 as well as insights discussed in Sec. 3.1 are applicable not

only to fully connected graphs but also to Erdős-Rényi random graphs where edges are formed
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in an independent and identically distributed manner.

Highlighting the choices of the out-group in social networks may lead to polarization:

A typical approach to reducing partisan divisions calls for increasing the number of cross-

party links. For example, consider the case where the two parties are approximately equal in

size (r ≈ 0.5) and α > β, which corresponds to Case 1 of Fig. 1 where β
α
< r

1−r
< α

β
. Thus,

when an individual looks at the entire population (i.e., a fully connected graph) or an unbiased

sample of the population (i.e., an Erdős-Rényi random graph), universal consensus is achieved.

Then, consider the case where the individual observes others in a biased manner, where each

in-group member is observed with probability ρ and each out-group member with probability

1 − ρ. If ρ < 0.5, the out-group will be over-represented compared to its size, amplifying

the effect of out-group hate while reducing the effect of in-group love. Thus, the population

could move to the red (Case 2) or blue regions (Case 3) of Fig. 1 where αρ
β(1−ρ)

, β(1−ρ)
αρ

> r
1−r

or

αρ
β(1−ρ)

, β(1−ρ)
αρ

< r
1−r

i.e., partisan polarization can emerge starting from a uniform initial state

where the choice is equally popular in both groups. Even a small increase in the number of

cross-party links is likely to give rise to polarization (Case 2 or Case 3) from a non-polarized

state (Case 1) when αρ
β(1−ρ)

≈ r
1−r

or β(1−ρ)
αρ

≈ r
1−r

(i.e., near the boundaries of Case 1 in the

phase diagram of Fig. 1 with x-axis re-scaled as αρ
β(1−ρ)

). Thus, merely increasing the number

of cross-party connections among the two groups may in fact facilitate polarization instead of

consensus by amplifying the effect of out-group hate. Figure 2 shows two different trajectories

of θ(t) where the two groups start from the same initial state. Consensus is achieved for a

homophilic network (ρ = 0.7), where individuals get more information about the in-group,

while polarization emerges in an unbiased network (ρ = 0.5). This is because decreasing ρ

from 0.7 to 0.5, pushes the network to Case 2 in Fig. 1 (with x-axis re-scaled as αρ
β(1−ρ)

).

In fact, increased exposure to the out-group (i.e., decreasing ρ) can bring divisions to a
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Figure 2: An illustration of how decreasing homophily can cause a party-line polarization.
Both figures correspond to α = 0.8, β = 0.7 (larger in-group favoritism compared to out-
group animosity) and r = 0.65 (a majority red group). First row corresponds to a homophilic
network (inter-group links are more likely to form than intra-group links) with ρ = 0.7 whereas
second row corresponds to an unbiased network (all links are equally likely to form). Note
that decreasing ρ from 0.7 (homophily) to 0.5 (unbiased) increases the effect of out-group hate
and decreases the effect of in-group love on the choices, and pushes the social network from
Case 1 (consensus) to Case 3 (party-line polarization) in Fig. 1 (with x-axis re-scaled as αρ

β(1−ρ)
).
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society already at global consensus. See SI Fig. S4 for an example. Note that global consensus

remains at higher homophily (Case 1 in Fig. 1), and decreasing ρ to 0.5 makes the network

unbiased but amplifies out-group hate, pushing it to Case 3, where the majority stays in the

initial state but the minority adopts the choice that no one had chosen at the beginning. Further

decreasing homophily makes the network highly heterophilic, where both groups focus largely

on the out-group, pushing it to Case 4. As this state is unstable, a small deviation causes

polarization with one group adopting choice-1 and the other adopting choice-0. Thus, in a

society with multiple ideologies, choices being driven by what the “opposition does” more

than what “our own group does” can lead to divisive (Case 2 and Case 3 in Fig. 1) and even

unpredictable (Case 4 in Fig. 1) division of choices for a society that was initially united. In

practice, such situations occur when partisan information sources (e.g., news organizations)

emphasize the choices, decisions and actions of the out-group more than those of the in-group.

Relatedly, recall from Eq. 4 that when the two groups are approximately equal in size (i.e., r ≈

0.5) and ρ = 0.5 (unbiased network), people’s choices are driven by θ(t) = [θB(t), θR(t)]′ i.e., the

prevalences of choice-1 in the in-group and out-group. If the popularity of choices is misrepre-

sented in the information they receive at some time instant, that itself could lead to polarization.

For example, consider latte drinking as the choice and assume that it is equally prevalent among

liberals and conservatives. However, if conservatives are selectively exposed to latte-drinking

liberals, giving the perception that latte drinking is highly prevalent among them, that may cause

them to give up lattes due to the out-group hate effect, and that in turn would lead liberals to

further embrace it. Once this divergence takes off, it will be further amplified by the in-group

love, leading to the eventual polarization of a seemingly non-partisan choice (1). Thus, even

if a choice is not initially polarized, making it appear to be so in the news or on social media

by selectively emphasizing the out-group, can eventually lead to polarization in the form of

a self-fulfilling prophecy. This serves as one possible explanation of why even traits that are
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historically non-partisan, such as the preferred choice of beverage, leisure activity, vocabulary,

etc., can start to diverge along party lines when the prevalence of that trait in the opposite party

is emphasized in the digital news (13).

3.3 Group-dependent Initial States

When choices are not initially identically distributed in the two groups, several interesting phe-

nomena can emerge. The differential equation in Eq. 4 (and its generalization to stochastic

block models) can be used to study such phenomena as well. We begin by stating a result which

characterizes conditions that lead to consensus from a party-dependent initial state.

Theorem 2 (Consensus from Party-Dependent Initial States). Consider dynamics of the model

on a fully connected graph given in Eq. 4 with δ = 0 (i.e., no inertia). Consensus emerges from

a group-dependent initial state θB(0) ̸= θR(0) if and only if,

1. β
α
< r

1−r
< α

β
, and,

2. the initial state satisfies βr
α(1−r)

< 2θB(0)−1
2θR(0)−1

< αr
β(1−r)

.

The first condition of Theorem 2 states that the system has to be in Case 1 of Fig. 1, which

ensures that consensus is a stable steady state of the system. The second condition of Theorem 2

states that initial distribution of the choices within the groups cannot be too different from each

other. The two conditions collectively ensure that consensus is reachable from the initial state.

Any parameter configuration (α, β, r) or an initial state that does not satisfy the two conditions

will give rise to polarization. The result further highlights the difficulties that lie in the path to-

wards consensus in an affectively polarized society: even with high in-group love and balanced

group sizes, the initial differences between the two parties can lead to polarized choices. In or-

der to avoid this, social and news media through which people estimate the choice distributions

must avoid emphasizing the differences between groups of different political ideologies.
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Figure 3: An illustration of three cases where the two groups start at different initial
states i.e., θB(0) ̸= θR(0), and one group reverses its direction. In cases i and ii, the minor-
ity blue group reverses its direction. In case iii, the majority red group reverses its direction.
The blue and red lines in state space indicate the tipping points in opinion landscape where
the respective group reverses its trend when the trajectory reaches it. The proposed model can
demonstrate a variety of such phenomena when the initial states are different for the two groups.
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A group can flip: When the groups start from different initial states, their trajectories can

change direction. For example, consider the three cases in Fig. 3. In case i of Fig. 3, in-

group love is higher than out-group hate (i.e., α > β) and choice-1 is initially more prevalent

within each group but to a different degree. Due to higher in-group love, each group initially

begins to embrace the choice-1 that is more popular within it. However, as this choice becomes

more popular in the majority red group, the opposition intensifies in the minority blue group,

which starts to adopt choice-0, leading to the eventual polarization. Interestingly, the flip occurs

when the population is very closer to consensus. This represents how political negotiations in

an affectively polarized society can very unexpectedly break down even when they are on the

verge of reaching bi-partisan agreements: the high presence of the same choice in both groups

amplifies the effect of out-group hate. More precisely, in-group love is high enough to get closer

to consensus (due to the satisfied second condition of Theorem 2), but it is not high enough to

make consensus a stable stationary state (due to violated first condition). More in-group love

would drive both groups to consensus by focusing on unity within their own party rather than on

hate towards the other party. Case ii and case iii of Fig. 3 show scenarios with higher out-group

hate where both conditions of Theorem 2 are violated. In case ii, choice-1 is initially more

prevalent in both groups but they both initially start adopting choice-0 due to higher out-group

hate. However, as choice-0 becomes the more prevalent among the majority, the minority blue

group starts adopting choice-1. Eventually, the trajectories converge in the opposite direction.

Case iii of Fig. 3 shows a similar scenario where the majority red group reverses the trend. The

theoretical tractability of the model Eq. 4 helps identify the exact trajectories for any initial state

as seen from Fig. 3.

The majority can eventually fully adopt the initially less popular choice: Unlike the set-

ting where both groups start in the same initial state, the majority can fully adopt the initially
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less popular choice when the two groups start in different initial states. For example, SI Fig. S5

shows an example of a case where choice-1 is initially more popular among both groups:

θB(0) = 0.9 and θR(0) = 0.6. Also, 60% of the nodes in the network are red, making it

the majority. However, the red group eventually abandons choice-1 due to the out-group hate

effect resulting from the high popularity of choice-1 among the blue group (despite a smaller

β). In other words, due to high initial unity of the minority blue group, the majority red group

is driven more by a desire to oppose the blue party than to unite within their party. The minority

blue group fully adopts choice-1 due to the higher in-group love effect created collectively by

larger α and the high initial popularity of choice-1 within their group.

4 Conclusion

This paper introduced a dynamical model of decision making in a society where people trust the

choices of those with same political views while distrusting the choices of those with opposing

political views. The model is theoretically tractable and reveals the conditions for the emergence

of consensus and partisan divisions from the initial state where there are no divisions. Our

analysis highlights the importance of inter-group animosity in driving partisan division. Not

only does out-group hate enable party-line polarization, but when it is larger than in-group

love, consensus is no longer achievable. In particular, more hate than love is sufficient for

partisan divisions while more love than hate is necessary for consensus. When partisan mass

media emphasize the choices of the out-group more than in-group (i.e., focusing on the other

more than own group), it amplifies the effects of out-group hate and facilitates the emergence

of polarization. This may create self-fulfilling prophesies where the perceptions of polarization

actually give rise to polarization and explains why, counter to our intuition, cross-party exposure

facilitates polarization rather than deterring it. High out-group hate can shatter consensus even

when both parties are on the brink of agreement, a trend that is becoming increasingly common
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within emotionally polarized societies.

The model and its theoretical tractability will also be useful to computational social scien-

tists and network scientists to model the implications of affective polarization in future research

and to gain insights on how to avoid its adverse implications on society.

References

1. D. DellaPosta, Y. Shi, M. Macy, Why do liberals drink lattes? American Journal of Sociol-

ogy 120, 1473–1511 (2015).

2. J. Wick, Taylor swift has driven some far-right pundits to do the unthinkable: Cheer for san

francisco. Los Angeles Times (2024).

3. S. Iyengar, G. Sood, Y. Lelkes, Affect, not ideology: A social identity perspective on po-

larization. Public opinion quarterly 76, 405–431 (2012).

4. S. Iyengar, S. J. Westwood, Fear and loathing across party lines: New evidence on group

polarization. American journal of political science 59, 690–707 (2015).

5. J. N. Druckman, J. Levy, 18. affective polarization in the american public. Handbook on

politics and public opinion p. 257 (2022).

6. E. J. Finkel, C. A. Bail, M. Cikara, P. H. Ditto, S. Iyengar, S. Klar, L. Mason, M. C.

McGrath, B. Nyhan, D. G. Rand, et al., Political sectarianism in america. Science 370,

533–536 (2020).

7. G. Grossman, S. Kim, J. M. Rexer, H. Thirumurthy, Political partisanship influences be-

havioral responses to governors’ recommendations for covid-19 prevention in the united

states. Proceedings of the National Academy of Sciences 117, 24144–24153 (2020).

22



8. S. Iyengar, Y. Lelkes, M. Levendusky, N. Malhotra, S. J. Westwood, The origins and con-

sequences of affective polarization in the united states. Annual review of political science

22, 129–146 (2019).

9. S. W. Webster, A. I. Abramowitz, The ideological foundations of affective polarization in

the us electorate. American Politics Research 45, 621–647 (2017).

10. S. Whitt, A. B. Yanus, B. McDonald, J. Graeber, M. Setzler, G. Ballingrud, M. Kifer,

Tribalism in america: behavioral experiments on affective polarization in the trump era.

Journal of Experimental Political Science 8, 247–259 (2021).

11. D. Nikolov, D. F. Oliveira, A. Flammini, F. Menczer, Measuring online social bubbles.

PeerJ computer science 1, e38 (2015).

12. W. Chen, D. Pacheco, K.-C. Yang, F. Menczer, Neutral bots probe political bias on social

media. Nature communications 12, 5580 (2021).

13. P. Törnberg, How digital media drive affective polarization through partisan sorting. Pro-

ceedings of the National Academy of Sciences 119, e2207159119 (2022).

14. S. Thurner, New forms of collaboration between the social and natural sciences could be-

come necessary for understanding rapid collective transitions in social systems. Perspec-

tives on Psychological Science p. 17456916231201135 (2023).

15. C. A. Bail, L. P. Argyle, T. W. Brown, J. P. Bumpus, H. Chen, M. F. Hunzaker, J. Lee,

M. Mann, F. Merhout, A. Volfovsky, Exposure to opposing views on social media can in-

crease political polarization. Proceedings of the National Academy of Sciences 115, 9216–

9221 (2018).

23
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Supplementary Information

A Proof of Convergence and Uniqueness

A.1 Outline of the Proof and Preliminaries

High-level idea of the proof: The proof relies on the fact that the dynamics of θk, k = 0, 1, . . .

are Markovian and the expected value of the next state given the previous state Ek {θk+1} =

E{θk+1|θk}, k = 0, 1, . . . can be written as,[
Ek

{
θBk +1

}
Ek

{
θRk +1

}] =

[
θBk
θRk

]
+

1

N
×
[ (

1− θBk
)
pBθ (0 → 1)− θBk p

B
θ (1 → 0)(

1− θRk
)
pRθ (0 → 1)− θRk p

R
θ (1 → 0)

]
, (5)

where pBθ (0 → 1), pBθ (1 → 0), pRθ (0 → 1), pRθ (1 → 0) were defined in Eq. 4. Therefore, the

Markovian dynamics of the proposed model can be expressed as,

θk+1 = θk +
1

N
(g(θk) +Mk+1) (6)

where

g(θk) =

[
gB(θk)
gR(θk)

]
=

[ (
1− θBk

)
pBθ (0 → 1)− θBk p

B
θ (1 → 0)(

1− θRk
)
pRθ (0 → 1)− θRk p

R
θ (1 → 0)

]
,
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and Mk is a martingale difference noise sequence. Eq. 6 can be viewed as a stochastic ap-

proximation with constant step size 1/N . Thus, for large N , the discrete time trajectory

θk, k = 0, 1, 2, . . . evolves without jumps and it converges to the trajectory of the limit mean

differential in Eq. 4. For such constant step-size stochastic approximation algorithms, typical

proof approach is to invoke a form of law of large-numbers and establish that the interpo-

lated trajectory of Eq. 6 converges weakly (in distribution) to a differential equation of the

form θ̇(t) = g(θ(t)) as the step size 1/N tends to 0. However, since g(·) is a discontinuous

function, this typical approach that establishes (weak) convergence to an ordinary differen-

tial equation does not work. We establish the weak convergence of the interpolated stochastic

trajectory of the model to a (deterministic) differential inclusion of the form ẋ(t) ∈ h(x(t))

where h(·) is a set-valued map constructed using the discontinuous g(·). Any trajectory of

the form x(t) = x(0) +
∫ t

0
y(s)ds satisfying y(t) ∈ h(x(t)) for all t is called a solution to

the differential inclusion ẋ(t) ∈ h(x(t)). Such solutions are called Filippov solutions to the

discontinuous dynamical system θ̇(t) = g(θ(t)) (or Caratheodory solution of the differential

inclusion ẋ(t) ∈ h(x(t))) 2 We then show that due to the piece-wise continuous form of g(θk),

the solution is unique in all cases Except Case 4 of Theorem 1.

Required results from literature: The proof relies on two results from literature related to

discontinuous dynamical systems that we state below. Let the distance between a continuous

trajectory z(·) and the solution set ST of a differential inclusion ẋ(t) ∈ h(x(t)) be defined as,

l(z(·),ST )
def
= inf

y(·)∈ST

sup
t∈[0,T ]

||z(t)− y(t)||. (7)

The following result from (19) is used to establish the weak-convergence of the sample

paths.

2See (18) for a detailed introduction to discontinuous dynamical systems and their solution concepts.
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Lemma 3 ( (19)[Adapted from Theorem 9.4). ] Consider the stochastic approximation,

xk+1 = xk + a (g(xk) +Mk+1) , k ≥ 0 (8)

where g(·) is measurable and satisfies ||g(x)|| ≤ C(1 + ||x||) for some C > 0. Let

h(x) =
⋂
ϵ>0

c̄o (g(y) : ||y − x|| < ϵ) . (9)

where c̄o denotes the convex closure. Then,

l(xa(·)|[t′,t′+T ],ST )
a↓0−→ 0 (10)

uniformly in t′ where xa(t) is the interpolated trajectory of the stochastic approximation algo-

rithm and ST is the solution set of the differential inclusion

ẋ(t) ∈ h(x(t)). (11)

We will also use (18)[Proposition 5] to establish the uniqueness of the solutions to the

differential inclusion. At a high-level, (18)[Proposition 5] states that the Filippov solution of

a piece-wise continuous differential equation with a discontinuous right-hand side (i.e., the

solutions to the differential inclusion constructed using that differential equation as in 9) is

unique if the trajectories that approach the boundary of a continuous region either slides along

the boundary or cross into the next region.

A.2 Proof of Convergence

Consider the model proposed in Sec. 2. Note that the value of θBk+1− θBk can take three different

values under three events:

Event 1: θBk+1 − θBk = 1
NB in the event that Xk+1 is a blue node that takes action-0 at time k and

switches to action-1 at time k + 1

Event 2: θBk+1 − θBk = − 1
NB in the event that Xk+1 is a blue node that takes action-1 at time k
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and switches to action-0 at time k + 1

Event 3: θBk+1 − θBk = 0 in any event other than Event 1 and Event 3.

Let Pk{·},Ek{·} denote the probability measure and expected value conditional on all

events that have occurred till time k. Consider the Event 1 first. Note that the probability that

Xk is a blue node with choice-0 at time k is Pk {R(Xk+1) = 0 ∧Hk(Xk+1) = 0} =
NB(1−θBk )

N
.

For a fully connected graph, note that the probability that a random blue node with choice-0 at

time k switches to the action choice-1 at time k + 1 can be written as:

Pk {Hk+1(Xk+1) = 1|R(Xk+1) = 0 ∧Hk(Xk+1) = 0} (12)

= Pk

{
α
(
din,0k (Xk)− din,1k (Xk)

)
− β

(
dout,0k (Xk)− dout,1k (Xk)

)
> 0|R(Xk) = 0 ∧Hk(Xk) = 0

}
(13)

= 1
(
α(1− r)

(
2θBk − 1

)
− βr

(
2θRk − 1

)
> 0

)
(14)

= pBθ (0 → 1) (15)

Similarly, we also obtain,

pBθ (1 → 0) = 1
(
α(1− r)

(
2θBk − 1

)
− βr

(
2θRk − 1

)
< 0

)
. (16)

Therefore, conditional on all events that have occurred till time k, the expected value of θBk+1

can be written as:

Ek

{
θBk +1

}
= θBk +

1

NB ×
NB (1− θBk

)
N

× pBθ (0 → 1)− 1

NB × NBθBk
N

× pBθ (1 → 0) (17)

Following similar arguments for the red-group yields similar expressions for Ek

{
θRk +1

}
,

which yields[
Ek

{
θBk +1

}
Ek

{
θRk +1

}] =

[
θBk
θRk

]
+

1

N
×
[ (

1− θBk
)
pBθ (0 → 1)− θBk p

B
θ (1 → 0)(

1− θRk
)
pRθ (0 → 1)− θRk p

R
θ (1 → 0)

]
, (18)

where,

pBθ (0 → 1) = 1
(
α(1− r)

(
2θB − 1

)
− βr

(
2θR − 1

)
> 0

)
, pBθ (1 → 0) = 1− pBθ (0 → 1)

pRθ (0 → 1) = 1
(
αr

(
2θR − 1

)
− β(1− r)

(
2θB − 1

)
> 0

)
, pRθ (1 → 0) = 1− pRθ (0 → 1).
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Thus, the evolution of the state can be expressed as Eq. (6). Note g(·) in Eq. (6) satisfies the

linear growth condition since it is a piece-wise linear function taking values in [−1, 1]2. The set

of discontinuities are defined by the states θ(t) = [θB(t), θR(t)]′ that satisfy

α(1− r)
(
2θB − 1

)
− βr

(
2θR − 1

)
= 0 (19)

or

αr
(
2θR − 1

)
− β(1− r)

(
2θB − 1

)
= 0. (20)

Thus, Lemma 3 implies that the stochastic trajectory of the proposed model converges to

the solution set of the differential inclusion

θ̇(t) ∈ h(θ(t)) = [hB(θ(t)), hR(θ(t))]′ (21)

where

hB(θ(t)) =

{
[−θB(t), 1− θB(t)] if α(1− r)

(
2θB − 1

)
− βr

(
2θR − 1

)
= 0

{gB(θ)} otherwise,
(22)

hR(θ(t)) =

{
[−θR(t), 1− θR(t)] if αr

(
2θR − 1

)
− β(1− r)

(
2θB − 1

)
= 0

{gR(θ)} otherwise,
(23)

which is the Filippov solution set of the discontinuous differential equation Eq. 4.

A.3 Proof of Uniqueness

To establish the uniqueness of the Filippov solution, we note that any solution to the Eq. 21

which approaches a point of discontinuity except (0.5, 0.5) crosses the boundary and move to

the next region. The only setting in which a trajectory approaches (0.5, 0.5) is the Case 4 of

Theorem 1 with θB(0) = θR(0). Thus, according to (18)[Proposition 5], all trajectories except

Case 4 with θB(0) = θR(0) are unique.

Uniqueness of trajectories can also be seen from state space plots for the four cases in Fig. 1

as well. Note that the only form of trajectory that approaches the boundary but does not cross
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in to the other region is the trajectory starting with θB(0) = θR(0) in Case 4. All other initial

states therefore have unique trajectories.

B Dynamics of the Model on a Network with Communities

When the graph G = (V,E) is a stochastic block model with in-group link probability ρ and

out-group link probability of 1 − ρ, the piece-wise interpolation of the discrete-time trajectory

θk = [θBk , θ
R
k ]

′, k = 0, 1, 2, . . . can be approximated using the continuous-time trajectory θ(t) =

[θB(t), θR(t)]′, t ≥ 0 of the following differential equation as the number of nodes in the graph

N is large: [
θ̇B

θ̇R

]
=

[ (
1− θB

)
pBθ (0 → 1)− θBpBθ (1 → 0)(

1− θR
)
pRθ (0 → 1)− θRpRθ (1 → 0)

]
, (24)

where,

pBθ (0 → 1) = 1
(
αρ(1− r)

(
2θB − 1

)
− β(1− ρ)r

(
2θR − 1

)
> δ

)
pBθ (1 → 0) = 1

(
αρ(1− r)

(
2θB − 1

)
− β(1− ρ)r

(
2θR − 1

)
< −δ

)
pRθ (0 → 1) = 1

(
αρr

(
2θR − 1

)
− β(1− ρ)(1− r)

(
2θB − 1

)
> δ

)
,

pRθ (1 → 0) = 1
(
αρr

(
2θR − 1

)
− β(1− ρ)(1− r)

(
2θB − 1

)
< −δ

)
Consequently, the analogous version of the Fig. 1 for stochastic block models is shown in

Fig. S1.

C Additional Results
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Case 2: Partisan Polarization 
 (Red adopts initially popular choice)

Case 3: Partisan Polarization 
 (Blue adopts initially popular choice)

Case 1: No Polarization 
 (all nodes adopt the initially popular choice)

Case 4: 
 Non-partisan
polarization

Phase Diagram of the Model with Homophily

y1 = x
y2 = 1/x
y < y1, y2
y1 < y < y2
y2 < y < y1
y > y1, y2

Figure S1: The four different regions of the model parameters (in-group conformity α, out-
group dissent β, homophily ρ and fraction of red-nodes r) that lead to different asymptotic
behaviors in a stochastic block model type graph starting from an initial state where the distri-
bution of choices is the same for both parties i.e., i.e., θB(0) = θR(0)). This figure is similar to
the analogous figure for the fully connected graph (Fig. 1) except that the in-group effect is am-
plified by ρ (probability observing each in-group member) and the out-group effect is amplified
by 1− ρ (probability of observing each out-group member).
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Figure S2: Example trajectories of the state when the out-group hate β is larger than in-group
love α. The trajectories [θB(t), θR(t)] over time (left column) and in the state space (middle
column) show the evolution of θ(t) = [θB(t), θR(t)]. The blue and red colors in middle col-
umn indicate regions where θB(t), θR(t) increase (i.e., regions where pBθ (0 → 1) = 1 and
pRθ (0 → 1) = 1 according to Eq. 4). The black arrows in state space plots (middle column)
indicate the path of the differential equation Eq. 4. The yellow arrows corresponds to the time
domain trajectory (in left column). The figure shows how either uniform (row i) or party-line
polarization (row ii and row-iii) can emerge when people are driven largely by their opposi-
tion to the out-group than their adherence to the in-group. Further, uniform polarization that
emerges in the presence of very high out-group hate is unstable since some black arrows point
away from [0.5, 0.5] as seen from the state space plots (middle column) of row-i. In this case,
small deviations from non-partisan polarization can lead to partisan polarization .
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Figure S3: Example trajectories of the state when out-group hate β is less than in-group love
α. The trajectories over time (left column) and in the state space (middle column) show the
evolution of θ(t) = [θB(t), θR(t)]. The blue and red regions in middle column indicate regions
where θB(t), θR(t) increase (i.e., areas where pBθ (0 → 1) = 1 and pRθ (0 → 1) = 1 according
to Eq. 4). The black arrows in the middle column indicate the path of the differential equation
Eq. 4. The yellow arrows correspond to the time domain trajectory (left column). The figure
shows how larger in-group love is necessary but not sufficient for the emergence of consensus.
In particular, when the disparity between the sizes of the two groups is not too large compared
to the disparity between α and β, consensus emerges.
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Figure S4: An illustration of how decreasing homophily can cause a party-line polarization
from an initial state of global consensus. Figures correspond to α = 0.8, β = 0.7 (larger
in-group favoritism compared to out-group animosity) and r = 0.65 (a majority red group).
Decreasing ρ from 0.7 (homophily) to 0.5 pushes the social network from Case-1 (consensus)
to Case-3 (party-line polarization) in Fig. S1. Further decreasing ρ to 0.3 pushes the network
to Case-4 which corresponds to an unstable state, where a small deviation leads to party-line
polarization.
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Figure S5: An illustration of a case where the two groups start with different popularity levels
of the choices within them i.e., θB(0) ̸= θR(0), and the majority group adopts the choice that
was initially less popular within it. The choice-1 is initially more popular within both groups
with θB(0) = 0.8, θR(0) = 0.6. However, the majority red-group eventually adopts the choice
that was initially less popular (i.e., choice-0 which had a 40% popularity) within it.

33


	Introduction
	A Model of Information Cascades with Affective Polarization
	Dynamics of the Model in a Fully Connected Network
	Dynamics of the Model on a Social Network with Communities

	Results
	Emergence of Polarization in a Fully Connected Network
	Insights from Theorem 1

	Implications for Networks with Echo Chambers
	Group-dependent Initial States

	Conclusion
	Proof of Convergence and Uniqueness
	Outline of the Proof and Preliminaries
	Proof of Convergence
	Proof of Uniqueness

	Dynamics of the Model on a Network with Communities
	Additional Results

