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We discover unexpected connections between packing configurations and rare fluctuations in dense
systems of active particles subject to pulsation of size. Using large deviation theory, we examine
biased ensembles which select atypical realizations of the dynamics exhibiting high synchronization
in particle size. We show that the order emerging at high bias can manifest as distinct dynamical
states with either a finite or a vanishing size current. Remarkably, transitions between these states
arise from changing the system geometry at fixed bias and constant density. We rationalize such
transitions as stemming from a change in the packing configurations favored by the geometry.
Specifically, we reveal that a master curve in the unbiased dynamics, correlating polydispersity and
current, helps predict the dynamical state emerging in the biased dynamics. Finally, we demonstrate
that deformation waves can propagate under suitable geometries when biasing with local order.

Introduction.—Active matter encompasses systems
which constantly dissipate energy to sustain collective
behaviors far from equilibrium. For instance, assemblies
of self-propelled particles (SPPs) [1–3] yield nonequilib-
rium phenomena which have been extensively studied,
such as a polarized collective motion [4, 5] and a phase
separation without attractive interactions [6, 7]. Energy
dissipation can also take other forms beyond motility,
opening the door to novel physics beyond that of SPPs.
For instance, in some biological tissues (e.g., epithelial [8],
cardiac [9], and uterine [10] tissues), each cell can sus-
tain periodic changes of shape, leading to the propaga-
tion of deformation waves. A recent model of pulsating
active matter (PAM) has captured such waves in terms
of densely packed particles whose sizes constantly pul-
sate [11]. In contrast with other models of deforming
particles where waves have not been observed [12–15],
PAM relies on synchronizing nearby sizes [11, 16–19]. In
the absence of any synchronizing interaction, it is largely
unclear under which conditions deformation waves could
still potentially emerge.

Biased ensembles (BEs) offer the perfect toolbox [20]
to search for waves in non-synchronizing PAM. Build-
ing on large deviation theory [21], BEs select the rare
trajectories which (i) achieve some atypical statistics of
a chosen observable, while (ii) deviating the least from
the original, unbiased dynamics. In practice, BEs do not
presume how the system should accommodate the con-
straints (i-ii). At a sufficiently large bias, the dynamics
are given enough play to explore novel configurations,
potentially yielding dynamical phase transitions [22–24].
Rare trajectories can actually be mapped into an effective
dynamics [25–28], which constitute the optimal mecha-
nism for stabilizing the phases selected by BEs. This
connection between optimal control and large deviations
has inspired novel strategies for material design [29, 30].

In active matter, BEs have already been used to
unravel novel mechanisms for promoting collective ef-
fects [31]. For instance, in large deviations of SPPs [32–
34], BEs have revealed that alignment effectively emerges
from avoiding collisions between nearby particles, yield-

ing collective motion [35–37]. This collective motion con-
trasts with that of standard flocking models which re-
quire ad hoc aligning rules [5]. In a similar fashion, it is
tempting to examine whether BEs of non-synchronizing
PAM entail unexpected transitions, potentially uncover-
ing novel pathways towards wave formation.

In this letter, we investigate the collective dynamics
in BEs of dense assemblies of pulsating particles in a
two-dimensional box [Fig. 1]. Starting from configura-
tions without any synchronization, we reveal how bias-
ing with a global order parameter promotes transitions
towards various homogeneous states: cycles, arrest, and
intermittent behavior. Remarkably, the packing con-
straint imposed by the box geometry, whose signature
already holds in unbiased configurations, specifically se-
lects one of the three ordered states under bias. Finally,
we show that deformation waves can be stabilized for

FIG. 1. (a) Particle sizes subject to periodic cycling. In
biased ensembles at high density, changing the aspect ratio
L/ℓ results in various configurations with either (b) defects,
(c) voids, or (d) regular structures. These correspond, respec-
tively, to varying collective states as L/ℓ varies: (e,i) cycles
with periodic size change, (f,h) intermittent behavior with
aperiodic size change, and (g) arrest with frozen size. Par-
ticles are indexed per increasing position along the L-axis.
Dashed lines refer to the snapshots shown in (b)-(d).
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specific geometries when biasing with a local order pa-
rameter. Overall, our results demonstrate that, at fixed
bias and constant density, controlling the box geometry
is a novel route towards unexpected phase transitions in
BEs of PAM.

Pulsating active matter: The role of box geometry.—
We consider a two-dimensional system of pulsating par-
ticles [Fig. 1] whose sizes change as

σi =
σ0
2

1 + λ sin θi
1 + λ

, (1)

where σ0 = 1 is the base size, θi the internal phase of
particle i, and λ = 0.05 the pulsation amplitude. The
particles follow overdamped Langevin dynamics:

ṙi = −µr∂riV +
√

2Drξi, (2)

θ̇i = ω − µθ∂θiV +
√

2Dθηi. (3)

The potential V =
∑
i,j<i U(aij) depends on the scaled

distance aij = |rj−ri|/(σi+σj), and (ξi, ηi) are uncorre-
lated Gaussian white noises with unit correlations. The
diffusion coefficients Dr/θ and mobilities µr/θ are set to
unity, and the phase drift to ω = 10. Interactions follow
volume exclusion via a Weeks-Chandler-Anderson poten-
tial U(a) = U0(a−12 − 2a−6) with U0 = 1 and cut-off set
at a = 1. In contrast with [11], we do not consider here
any synchronizing interaction between phases. In what
follows, we run simulations with periodic boundary con-
ditions for N = 32 particles at density ρ = 1.6 (unless
stated otherwise), and we examine how the box aspect
ratio L/ℓ [Fig. 1] impacts the emerging dynamics.

We start by evaluating the global order parameter:

ϕgb =
1

N

(
N∑

i,j=1

cos(θi − θj)

)1/2

. (4)

Configurations with a nearly uniform size distribution
have ϕgb ≃ 1, whereas those with high polydispersity
have ϕgb ≃ 0. Despite the absence of any synchroniz-
ing interaction, our simulations exhibit a moderate or-
dering of particle sizes. Indeed, the repulsion term in
Eq. (3) constrains the sizes to fluctuate around a pre-
ferred value. This effect is captured at mean-field level
by approximating ∂θiV ≈ (∂φV )(∂θiφ) [11]. The coef-
ficient ∂φV increases with ρ, and the packing fraction
φ = (πρ/N)

∑
i σ

2
i admits the same local minimum for

each θi ∈ [0, 2π], thus favoring order at high ρ.
Interestingly, we observe that ⟨ϕgb⟩ (where ⟨·⟩ indi-

cates average over realizations) strongly varies with the
aspect ratio L/ℓ, with a maximum at L/ℓ ≃ 5 [Fig. 2(a)],
showing that one can actually enhance order by appro-
priately tuning the box geometry. This enhancement is
accompanied by a dynamical slowdown, as indicated by
the reduction of the average phase current [Fig. 2(b)]:

ν =
1

Nωt

N∑

i=1

∫ t

0

dt′θ̇i(t
′). (5)

FIG. 2. (a-b) Global order ⟨ϕgb⟩ and phase current ⟨ν⟩ as
functions of the aspect ratio L/ℓ. Lines are guides to the
eye. (c) Correlation between global order ⟨ϕgb⟩ and phase
current ⟨ν⟩ for various densities ρ = N/(Lℓ), changing both
L/ℓ and the particle number N . (d-e) Radial distribution g
as a function of the interparticle distance r. Arrows indicate
increasing values of L/ℓ.

Similar results hold for other box ratios and particle num-
bers, see Fig. S4 in [38]. In fact, plotting ⟨ϕgb⟩ against ⟨ν⟩
for different values of N , L/ℓ, and ρ results in a master
curve, where increasing order systematically correlates
with decreasing current [Fig. 2(c)]. Interestingly, some
of the curves, shown in Fig. 2(c) for different ρ, overlap.
Indeed, for some combinations of N and L/ℓ, systems at
various ρ can experience an equivalent average repulsion,
yielding a similar set of values for ⟨ϕgb⟩ and ⟨ν⟩.

We can rationalize these results from a packing per-
spective. To this end, we evaluate the radial distribution
function g(r) = (1/N)

∑
i,j ̸=i⟨δ(r− |ri− rj |)⟩ for various

L/ℓ. The first peak of g, whose position measures the
averaged interparticle distance, progressively shifts, first
to the left [Fig. 2(d)] and then to the right [Fig. 2(e)], as
L/ℓ goes past the maximum of ⟨ϕgb⟩ [Fig. 2(a)] and the
minimum of ⟨ν⟩ [Fig. 2(b)]. This result shows that parti-
cles are on average closer, experiencing higher repulsion,
when the system orders and the dynamics slows down.
Interestingly, one can actually identify a crystalline-like
structure for the highest (lowest) value of ⟨ϕgb⟩ (⟨ν⟩),
see Fig. S1 in [38]: the box geometry here favors a more
regular packing associated with higher order, lower poly-
dispersity, and lower current. A similar effect takes place
in passive, monodisperse systems where box geometry
alters crystalline packing [39–41].

In short, our findings show that changing the box ge-
ometry alters the packing structure assumed by pulsating
particles, which in turn provides a route to controlling
order and current at fixed density in non-synchronizing
PAM.

Ensembles biased by global order: Cycles and arrest.—
We study the large deviations of the dynamics with re-
spect to ϕgb [Eq. (4)]. In particular, we seek trajectories
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for which the time average

ϕ̄gb =
1

to

∫ to

0

ϕgb(t)dt (6)

displays atypically large values at large observation time
to. To this end, we use a BE selecting for such trajectories
through rare realizations of the noise terms in Eqs. (2)
and (3). Chiefly, we denote averages with respect to this
BE as

⟨·⟩gb =
⟨· e−sNtoϕ̄gb⟩
⟨e−sNtoϕ̄gb⟩

. (7)

The bias strength s effectively controls the statistics of
ϕ̄gb. At vanishing bias, s = 0, one recovers the ensem-
ble of the original dynamics: ⟨·⟩gb = ⟨·⟩. In this work,
we implement the trajectory selection via a cloning al-
gorithm using population dynamics [42]. It consists in
simulating nc identical (though distinctly seeded) paral-
lel runs, which are regularly replicated/pruned through
a sampling procedure parametrized by s. In the limit of
large nc and large to, this procedure converges to a BE
whose trajectories represent the least unlikely dynamics
to stabilize the desired atypical statistics of ϕ̄gb.

For large N , numerical convergence becomes increas-
ingly challenging [20]. Generally, a useful method con-
sists in adding some terms in the dynamics which ef-
fectively approximate trajectory selection and improves
convergence [20, 35, 36, 43, 44]. Here, we consider fully-
connected synchronizing interactions:

θ̇i = ω − µθ∂θiV + ε
N∑

j=1

sin(θj − θi) +
√

2Dθηi. (8)

We adapt our numerical selection of trajectories [38] to
ensure that, while using the dynamics in Eq. (8), we still
sample the proper BE [Eq. (7)] defined independently
of synchronizing interactions. Besides, for each run, we
heuristically adjust the amplitude ε throughout the tra-
jectory [38], which converges at large t0 to a value de-
termined by s. In what follows, we are interested in the
regime of bias which promotes order, namely atypically
large ϕ̄gb, corresponding here to s < 0 and ε > 0.

Starting from the unbiased configuration with highest
⟨ϕgb⟩ and lowest ⟨ν⟩, namely for L/ℓ ≃ 5 [Figs. 2(a)
and 2(b)], increasing |s| yields a highly ordered state
without phase current: ⟨ϕgb⟩gb ≃ 1 and ⟨ν⟩gb ≃ 0
[Figs. 3(a) and 3(b)]. Such a configuration is analo-
gous to the arrested state previously reported in syn-
chronizing PAM [11, 17]. Remarkably, considering an
unbiased configuration at the tail of the curve ⟨ν⟩ vs L/ℓ
[Fig. 2(b)], increasing |s| now yields an ordered state with
non-vanishing averaged current [Figs. 3(a) and 3(b)],
which is reminiscent of the cycling state in synchronizing
PAM [11, 17]. Therefore, the box geometry not only im-
pacts the unbiased dynamics of non-synchronizing PAM,

FIG. 3. Phase diagram in ensembles biased by global order
[Eq. (7)] in terms of the bias strength s and the aspect ratio
L/ℓ: (a) global order ⟨ϕgb⟩gb, and (b) phase current ⟨ν⟩gb.
Boundary lines are for ⟨ϕgb⟩gb = 0.65 (solid) and ⟨ν⟩gb = 0.1
(dashed). Markers refer to various trajectories at s = −6, as
shown in Fig. 1.

it also strongly influences its rare fluctuations, yielding
two different types of ordered states.

Varying L/ℓ at constant |s| > 4.5, the transition be-
tween cycling and arrest [Fig. 3(b)] mirrors the slow-
down of the unbiased dynamics [Fig. 2(b)]. Again, this
result can be rationalized from a packing perspective.
Specifically, arrest is associated with a regular packing
[Fig. 1(d)] which impedes the periodic expansion and con-
traction of particles [Fig. 1(g)], whereas cycles have a de-
fective packing [Fig. 1(d)] which facilitates global changes
in particle sizes [Figs. 1(e) and 1(i)]. Note that ⟨ϕgb⟩gb is
slightly higher for arrest compared with cycles [Fig. 3(a)],
so that regular packing is associated with a reduced poly-
dispersity, as in the unbiased case [Fig. 2]. Interestingly,
we also observe an intermittent dynamics with aperiodic
size changes [Figs. 1(f) and 1(h)] whose packing con-
tains motile voids [Fig. 1(c)]. Moreover, measurements
of the radial distribution for each state dynamic state
indeed further supports a clear structural difference be-
tween them, see Fig. S3 in [38].

Overall, our results for (N, ρ) = (32, 1.6) show that
packing configurations, imposed by the box geometry,
impact both unbiased and biased dynamics. Importantly,
we reveal that the unbiased statistics actually allows one
to anticipate how the system orders as a function of L/ℓ
in our BE. We find a similar effect is generically observed
for other values of (N, ρ); for instance, see the phase di-
agram for (N, ρ) = (26, 1.6) in Fig. S4 of [38].
Ensembles biased by local order: Deformation waves.—

In synchronizing PAM [11, 17], deformation waves
emerge as a competition between arrest and cycling.
Given that in non-synchronizing PAM the BE promot-
ing global order [Eq. (7)] yields arrest and cycles [Fig. 3],
it is intriguing to understand what class of BE may also
induce deformation waves. To this end, we introduce the
local order parameter

ϕlc =
1

N

N∑

i=1

ni∑

j=1

cos (θj − θi)

ni
, (9)

where ni is the number of neighbors in contact with par-
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ticle i, and the corresponding biased average

⟨·⟩lc =
⟨· e−sNtoϕ̄lc⟩
⟨e−sNtoϕ̄lc⟩ , ϕ̄lc =

1

to

∫ to

0

ϕlc(t)dt. (10)

To improve sampling, we now consider locally synchro-
nizing interactions:

θ̇i = ω − µθ∂θiV + ε

ni∑

j=1

sin(θj − θi) +
√

2Dθηi. (11)

In practice, Eq. (11) enhances convergence for the BE in
Eq. (10) at moderate |s|, while Eq. (8) actually works
better for the same BE at large |s|. At each s, we sys-
tematically compare results obtained by employing either
type of interaction (i.e., with local or global synchroniza-
tion), and select the ones with optimal convergence [38].

Interestingly, for values of L/ℓ coincident with the
minimum of ⟨ν⟩ [Fig. 2(b)], we observe again the emer-
gence of an arrested state with local and global order
[Figs. 4(a) and 4(b)] comparable to the results from the
previous BE [Eq. (3)]. In contrast, for L/ℓ sufficiently
far away from the minimum of ⟨ν⟩, phase ordering now
occurs through two distinct states. As |s| increases, local
order increases with negligible change in global order,
i.e. ⟨ϕlc⟩lc > ⟨ϕlc⟩ and ⟨ϕgb⟩lc ≃ ⟨ϕgb⟩. In this state,
particle sizes cycle periodically in a locally coordinated
way, yielding the spontaneous emergence of deformation
waves [Figs. 4(d) and 4(e)] not present in the unbiased
dynamics [Fig. 4(c)]. For higher |s|, the range of par-
ticle coordination increases, which increases global order
(⟨ϕgb⟩lc > ⟨ϕgb⟩) and ultimately results in a cycling state
[Figs. 4(f)] similar to that of the previous BE [Fig. 1(e)].

In this manner, the BE promoting local order [Eq. (10)]
reproduces all the states of synchronizing PAM [11, 17]:
disorder, arrest, cycles, and waves. Furthermore, waves
only arise for box sizes L accommodating at least one
wavelength. As the wavelength increases with |s|, waves
are only stable over a finite range of s. As such, waves can
be seen as precursory to cycles. In contrast, arrest does
not display such a gradual ordering from local to global,
but rather directly emerges from disorder at compara-
tively low bias. Moreover, the critical s for this transi-
tion is almost unchanged when biasing with either global
[Fig. 3(a)] or local [Fig. 4(b)] order.

In short, our results demonstrate that waves sponta-
neously emerge as a strategy to promote high local order,
while maintaining only moderate global order. Again, the
box geometry plays a crucial role here. Specifically, for
values of L/ℓ promoting regular packing configurations,
local deformations are strongly hampered, so that arrest
is more stable than waves for any s < 0.

Discussion.—We reveal some unexpected connections
between packing configurations and rare fluctuations in
dense systems of pulsating particles. The box geome-
try is a proxy to controlling the packing structure, with

FIG. 4. Phase diagram in ensembles biased by local order
[Eq. (10)] in terms of the bias strength s and the aspect ra-
tio L/ℓ: (a) local order ⟨ϕlc⟩lc, and (b) global order ⟨ϕgb⟩lc.
Boundary lines are for ⟨ϕlc⟩lc = 0.65 (solid) and ⟨ϕgb⟩lc = 0.45
(dashed). Markers refer to various trajectories at L/ℓ = 4.53:
(c) disorder, (d,e) waves, and (f) cycles.

dramatic consequences on collective effects. Specifically,
we show that one can induce transitions between two
types of ordered states in BEs, either with or without
current, simply by changing the box geometry. Arrest
is associated with regular packing configurations where
the particle repulsion exactly counteracts their pulsation.
Instead, when the box geometry induces a defective pack-
ing, it generates regions of inhomogeneous repulsion that
ultimately lead to cycling.

Our transitions bring interesting parallels with the
emergence of arrest in other dense systems. In densely
packed SPPs, structural defects destabilize arrest [45],
alter the glass transition [46], and induce intermittent
plastic yielding [47]. The mechanical properties of such
systems can actually be related to those of sheared gran-
ular systems [48]. Moreover, local growth of deforming
particles also results in dynamical heterogeneities resem-
bling sheared glasses [49]. These examples suggest that
a generic mechanism may explain how activity controls
the transitions between arrested and fluidized states. Re-
markably, even in the absence of shear, allowing size
fluctuations shifts the glass transition to lower temper-
atures [50, 51], illustrating how local deformation helps
relax the dynamics near arrest [52].

Our approach could also motivate further studies in
other active models where synchronization yields pat-
terns [53–55]. For instance, considering BEs with local
or global order could help delineate minimal conditions
to stabilize patterns, similarly to how waves only emerge
for specific box geometries in our case. To improve sam-
pling, one could rely on more complex interactions be-
yond the synchronization considered here. To this end,
recent methods inspired by machine learning provide a
rich toolbox [56–58] which could prove quite useful.
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[23] N. Tizón-Escamilla, C. Pérez-Espigares, P. L. Garrido,
and P. I. Hurtado, Order and symmetry breaking in the
fluctuations of driven systems, Phys. Rev. Lett. 119,
090602 (2017).

[24] C. P. Royall, F. Turci, and T. Speck, Dynamical phase
transitions and their relation to structural and thermo-
dynamic aspects of glass physics, J. Chem. Phys. 153,
090901 (2020).

[25] R. Chetrite and H. Touchette, Nonequilibrium markov
processes conditioned on large deviations, Annales Henri
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Supplemental material: Biased ensembles of pulsating active matter
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I. UNBIASED DYNAMICS

To highlight the effect of box geometry in constraining the unbiased dynamics, we illustrate in Fig. S1 the corre-
sponding snapshots of the system at zero bias for values of L/ℓ which, under bias, induce cycles (L/ℓ = 4.13) and
arrest (L/ℓ = 5). As seen, the system with L/ℓ = 5 at s = 0 already features the regular structure of the corresponding
packing observed upon bias, see also movies online. To further illustrate the relation between particle packing and
box geometry, we compute the averaged overlap distance:

⟨σov⟩ =
1

Np

∑

i

∑

j>i

⟨(σj + σi − rij)H(σj + σi − rij)⟩, (S1)

where rij is the interparticle distance, σi/j the respective particle radii, Np ≡ N(N −1)/2 the number of unique pairs,
and H(·) the Heaviside function. We compare ⟨σov⟩ with the value σovx for a perfect hexagonal lattice, for which
particle sizes minimize the repulsion but induce dynamic arrest, see Appendix A. Simulations are carried out for 100
independent runs, and averaged over a trajectory length of t = 200 with time step dt = 0.0005. In Fig. S1, we show
the resulting plot of ⟨σov⟩/σovx against the aspect ratio L/ℓ and identify the following two results: 1) the maximum
overlap falls closely within the same L/ℓ range that results in maximum order parameter and dynamic slowdown, as
discussed in the main text [Fig. 2]; and 2) ⟨σov⟩/σovx is closer to unity near the maximum showing that some box
ratios can result in effective system repulsion approaching that of the arrested hexagonal packing limit. Therefore the
overall effect of box geometry may be understood as a constraint on packing configurations with some values of L/ℓ
inducing tighter, more repulsive particle arrangements than others.

II. BIASED DYNAMICS

A. Control interactions for bias with global order

Adding control interactions in the dynamics is a generic strategy to improve the sampling of biased ensembles
(BEs). We discuss in this section how to adapt the trajectory selection accordingly. For the unbiased dynamics

ṙi = −µr∂riV +
√

2Drξi, θ̇i = ω − µθ∂θiV +
√

2Dθηi, (S2)

(b)

(c)

(a)

(d)

(e)

FIG. S1. (a,b) Trajectory of unbiased dynamics and (c,d) corresponding snapshots at the time denoted by the vertical dashed
line: the case L/ℓ = 5 displays a regular packing configuration. (e) Average particle overlap ⟨σov⟩ as a function of the aspect
ratio L/ℓ, where σovx is the overlap for a perfect hexagonal lattice at the same density. Solid line is a cubic spline fit between
data points. Parameters: N = 32, ρ = 1.6.
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the probability to observe a trajectory for {ri, θi} within a time interval [0, to] is given in terms of the path weight
P
[
{ri, θi}to0

]
∼ e−Ar−Aθ , where

Ar =
1

4Dr

∫ to

0

dt
N∑

i=1

(ṙi + µr∂riV )2 − µr
2

∫ to

0

dt
N∑

i=1

∂2riV,

Aθ =
1

4Dθ

∫ to

0

dt
N∑

i=1

(θ̇i − ω + µθ∂θiV )2 − µθ
2

∫ to

0

dt
N∑

i=1

∂2θiV.

(S3)

For the dynamics with the fully-connected synchronizing interaction

θ̇i = ω − µθ∂θiV + ε

N∑

j=1

sin(θj − θi) +
√

2Dθηi, (S4)

the probability to observe a trajectory for {ri, θi} within a time interval [0, to] is given in terms of the path weight
Pgb

[
{ri, θi}to0

]
∼ e−Ar−Aθ,gb , where

Aθ,gb =
1

4Dθ

∫ to

0

dt

N∑

i=1

[
θ̇i − ω + µθ∂θiV − ε

N∑

j=1

sin(θj − θi)

]2
− 1

2

∫ to

0

dt

N∑

i=1

∂θi

[
µθ∂θiV − ε

N∑

j=1

sin(θj − θi)

]
. (S5)

To ensure that we sample the same BE with and without control interaction, the biasing observable must be modified
with respect to the control interaction. For example, for the ensemble biased with global order [Eq. (7) in main text],

we define the biasing observable ϕ̂gb by ensuring that the biased path weight is the same with and without control:

P
[
{ri, θi}to0

]
e−sNtoϕ̄gb = Pgb

[
{ri, θi}to0

]
e−sNtoϕ̂gb . (S6)

Combining Eqs. (S3), (S5) and (S6) provides an explicit expression for ϕ̂gb. Note that this procedure holds for any
value of ε, including ε = 0. This grants us an additional degree of freedom with which to improve BE convergence.
Here, we adopt a strategy that relates the level of chosen bias s to the strength of the control force ε via a relation
in the observable ϕ̄gb. In particular for a given s we choose ε such that

⟨ϕ̄gb(s)⟩gb = ⟨ϕ̄gb(ε)⟩con , (S7)

where ⟨·⟩gb denote the biased, controlled ensemble average and ⟨·⟩con the unbiased, controlled ensemble respectively.
In practice, we evaluate ⟨ϕ̄gb(ε)⟩con numerically over a range of values and use the resulting function as a calibration
curve with which to invert for the optimal ε given a value of s. In the population dynamics algorithm, the update
of ε is implemented throughout the trajectory, until ε converges to a stationary value. A similar strategy has been
employed successfully in other BE studies [S1, S2].

As a demonstration, we test our expression for ϕ̂gb by comparing two numerical evaluations, with and without
control, of the scaled cumulant generating function (SCGF):

ψgb =
1

Nto
ln
〈
e−sNtoϕ̄gb

〉
. (S8)

To this end, we consider a smaller, less dense system of N = 11 particles at density ρ = 1.2 than the one studied in
the main text. This choice allows us to ensure convergence even without control forces, thus serving as a comparison
with the results obtained with control forces. It also illustrates how control interactions accelerate sampling by
reducing computational effort, here estimated by the number of clones nc used to arrive at converged solutions. As
reported in Figs. S2(a-b), values of ψ sampled either with or without show excellent agreement, but almost by an order
of magnitude in reduced computational effort (nc,noncon/nc,con = 1/8) with control. For all our numerical results,
presented here and in the main text, we therefore use control interaction with nc = 10000.

B. Control interactions for bias with local order

When biasing with local order [Eq. (10) in main text], we also consider control interaction promoting local synchro-
nization:

θ̇i = ω − µθ∂θiV + ε

ni∑

j=1

sin(θj − θi) +
√

2Dθηi, (S9)
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FIG. S2. Ensemble biased by global order [Eq. (7) in main text]: (a) global order ⟨ϕgb⟩gb and (b) scaled cumulative generating
function ψlc as functions of the bias strength s. Blue dotted line is without control interaction and with nc = 40000 clones.
Orange squares and green triangles denote data control interaction fc and with nc = 5000 and nc = 10000, respectively.
Parameters: N = 11, ρ = 1.2, to = 16000. Ensemble biased by local order [Eq. (10) in main text]: (c) scaled cumulative
generating function ψlc as a function of the bias strength s, sampled with either global or local control interactions in orange
and blue lines, respectively. Best estimate of ψlc is shown in the dashed line. Parameters: N = 32, ρ = 1.6 and L/ℓ = 1.9

where ni is the number of neighbors in contact with particle i, and for which the probability to observe a trajectory
for {ri, θi} within a time interval [0, to] is given in terms of the path weight Plc

[
{ri, θi}to0

]
∼ e−Ar−Aθ,lc , where

Aθ,lc =
1

4Dθ

∫ to

0

dt
N∑

i=1

[
θ̇i − ω + µθ∂θiV − ε

ni∑

j=1

sin(θj − θi)

]2
− 1

2

∫ to

0

dt
N∑

i=1

∂θi

[
µθ∂θiV − ε

ni∑

j=1

sin(θj − θi)

]
. (S10)

As before, for either the fully-connected [Eq. (S4)] or locally [Eq. (S9)] synchronizing interactions, we define the

biasing observable ϕ̂x, where x ∈ {lc, gb} respectively for each force, by ensuring that the biased path weight is the
same with and without control:

P
[
{ri, θi}to0

]
e−sNtoϕ̄lc = Px

[
{ri, θi}to0

]
e−sNtoϕ̂x . (S11)

We compare the convergence for either one of the control interactions by considering the SCGF with respect to local
order and the respective choice of control force:

ψlc,x =
1

Nto
ln
〈
e−sNtoϕ̄lc

〉
x
. (S12)

The SCGF ψlc,x may display non-convex behavior near a dynamical phase transition, which is challenging to detail

numerically. Given that ⟨ϕ̄lc(s)⟩ = −dψ(s)
ds , we may also recast the expression of the SCGF as

ψlc,x = −
∫ s

0

⟨ϕ̄lc(s′)⟩xds′, (S13)

which is known to provide a smoother estimate of the SCGF from calculation of ⟨ϕ̄lc(s)⟩x in the algorithm [S3].
While in principle either type of interaction (i.e., local or global) provides similar results in the limit of large to and

large nc, a particular choice may nonetheless best approximate the large deviation mechanism for the same amount
of computational effort. This latter property is equivalent to choosing the sampling method that maximizes the value
of ψ for any given value of s. We show in Fig. S2(c) that local interaction provides better estimates (namely larger
values) of ψlc at small s, while global interaction works best at high s. In the main text, Fig. 4 thus reflects the best
estimate of the phase diagram given the optimal choice of the control force for a given s and L/ℓ.

C. Packing structure under bias

To further illustrate the packing conditions of the pulsating particle system of the main text at high bias, we
calculate its radial distribution function.

g(d) = (1/N)
∑

i,j ̸=i
⟨δ(d− |di − dj |)⟩ , (S14)
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d

(b)

(a)

FIG. S3. (a) Snapshot of the biased system (N = 32, ρ = 1.6) in the main text at high bias (s = −6). Here d denotes the vector
connecting the center-of-mass distance to that of its closest-neighbors particle face. (b) Corresponding radial distribution of
d = |d| for the three biased systems L/ℓ = {5, 4.54, 4.13} represented in Figs. 1(b-d) of the main text. The dashed arrow
corresponds to the particles with dashed boundaries in panel (a), which represent the second-nearest neighbors of that packing
configuration (L/ℓ = 5).

where we define d as the center-of-mass to particle face distance [see Fig. S3(a)] and dimensionalized by σ0, the
base particle size. This measure is advantageous over the traditional center-to-center distance in that it allows us to
estimate particle coordination order beyond the radial constraint rmax = min(ℓ/2, L/2). The resulting g(d) is shown
in Fig. S3(b) for the states shown in Figs. 1(b-d) of the main text: L/ℓ = 5 (arrested state), 4.54 (intermittent state),
and 4.13 (cycling state). To compare packing configurations of approximately the same size distribution for all states,
we average over configurations whose size distribution is within one standard deviation from that of the arrested state.

The curve for L/ℓ = 5 (arrested state) has a sharp first peak, and also a correspondingly smaller second peak at
d ≈ 0.6 not present in the other two states. These peaks correspond, respectively, to the first and second nearest
neighbors, the latter of which represent only two particles (hence the smaller peak) for this particular packing order.
The curve for L/ℓ = 4.13 (cycling state) has a first peak which is significantly broader than that of the other states.
Such a broadening results from a wider distribution of average first shell distances, and hence points at a reduced
rigidity due to defective packing. For the intermittent state (L/ℓ = 4.54), the void in its structure causes neighbor
swaps that broaden the first peak somewhat relative to that of the arrested state.

D. Phase diagram with N = 26 and ρ = 1.6

To highlight the impact of the box geometry on the emergent dynamics, we obtain the phase diagram of a system
at the same density ρ = 1.6 as in the main text, yet at different particle number N = 26 (N = 32 in the main text)
and box geometries L/ℓ. First, we measure in the unbiased dynamics ⟨ϕgb⟩ and ⟨ν⟩ as functions of L/ℓ [Figs. S4(a-b)].
Increasing high order systematically comes with decreasing current, as in the main text. Yet, this effect is here a lot
sharper with distinct local maxima/minima, highlighting the highly non-monotonic effect of L/ℓ. As in the main text,
regimes of relatively high order and low current at s = 0 result in arrested states upon bias [Figs. S4(c-d)]. Moreover,
we again observe for large bias a transition between cycles and arrest, when changing L/ℓ at fixed s, which mirrors
the slowdown of the unbiased dynamics.

Appendix A: Contact distance in dense monodisperse systems

We now explain how the maximum contact distance for a monodisperse crystal system is found. The number

density ρh for hard discs of diameter l in a perfect hexagonal lattice (close packing) is ρh =
√

2√
3

1
l2 , so that for ρ > ρh
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FIG. S4. (a-b) Global order ⟨ϕgb⟩ and phase current ⟨ν⟩ as functions of the aspect ratio L/ℓ in the unbiased dynamics. (c-d)
Phase diagram in ensembles biased by global order [Eq. (7) in main text], in terms of global order ⟨ϕgb⟩gb and current ⟨ν⟩gb
as functions of the bias strength s and the aspect ratio L/ℓ. Boundary lines are for ⟨ϕgb⟩gb = 0.65 (solid) and ⟨ν⟩gb = 0.1
(dashed). Parameters: N = 26, ρ = 1.6.

particles will overlap. The minimum particle diameter possible in our system is σ0
1−λ
1+λ ≈ 0.905, for which ρh ≈ 1.41.

Densities in our study are taken as ρ ≥ 1.55, hence particles will always overlap. Minimizing the repulsion term is
equivalent to finding the maximum interparticle distance rm i.e. that with least particle overlap. Monodispersity
implies that all particles have the same phase θi = θ. For arrested states, we get ω = nnµθ∂θU(r, θ), where nn is the
number of contact neighbors: this relation defines an implicit function r = r(θ, nn). Assuming hexagonal packing,
nn = 6, and maximizing with respect to θ, we find θm = 0.562 and r(θm, nn) = 0.845. The overlap distance follows

as σovx = 2σm − rm ≈ 0.133, where σm = σ0

2
1+λ sin(θm)

1+λ is the optimal particle radius.

DATA AND CODE AVAILABILITY

Data of figures and plots in the main text are freely available in the Zenodo data repository at
https://doi.org/10.5281/zenodo.10999011
Code necessary to perform and replicate calculations of pulsating active matter in biased ensembles is available at:
https://github.com/CreditDefaultSwap/pulsating_active_matter_popdyn
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