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Abstract—Our goal in this paper is the robust design of
filters acting on signals observed over graphs subject to small
perturbations of their edges. The focus is on developing a method
to identify spectral and polynomial graph filters that can adapt
to the perturbations in the underlying graph structure while en-
suring the filters adhere to the desired spectral mask. To address
this, we propose a novel approach that leverages approximate
closed-form expressions for the perturbed eigendecomposition
of the Laplacian matrix associated with the nominal topology.
Furthermore, when dealing with noisy input signals for graph
filters, we propose a strategy for designing FIR filters that jointly
minimize the approximation error with respect to the ideal filter
and the estimation error of the output, ensuring robustness
against both graph perturbations and noise. Numerical results
validate the effectiveness of our proposed strategies, highlighting
their capability to efficiently manage perturbations and noise.

Index Terms—Graph perturbation, robust graph filters, graph
signal processing.

I. INTRODUCTION

Graph Signal Processing (GSP) [1], [2] has recently
emerged as a powerful framework providing tools for the
analysis and processing of data defined over graphs. Graph-
based representations are pivotal tools for extracting informa-
tion from data across various fields, ranging from finance,
communication and social networks to biological sciences.
While in certain contexts, such as physical networks, the
graph topology might be perfectly known, in many others,
the topology is completely unknown and has to be inferred
from the observed data. Furthermore, there are situations
where our knowledge of the graph topology is not perfect
but affected by random uncertainties. For instance, in wireless
communication networks, the topology is known, but some
links may inadvertently drop due to random blocking or fading
[3]. In such cases, we may only assume to know a nominal
graph, whose topology may be perturbed by some random
edge dropping. Similarly, in brain networks, the interaction
among different regions of the brain changes over time [4], [5],
and in biological networks, temporal variations of the network
topology describing protein–protein and protein–DNA interac-
tions are observed [6]. In data-driven networks, the topology
is inferred from the data, and the learning accuracy depends
on the inference algorithm as well as on the observed data that
may be corrupted by noise or outliers. Therefore, it becomes
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interesting to analyze uncertain graphs, i.e., graphs wherein
some edges may be altered with a certain probability.

Assuming that only a small percentage of edges remains
uncertain, this paper aims to study the impact of small per-
turbations on the design of robust spectral and finite impulse
response (FIR) filters acting on signals defined over graphs.
Graph Filters (GFs) have been extensively studied in the
literature [7], [8], [9]. Similarly, the stability of graph filters
to perturbations has been thoroughly investigated in previous
works [7], [10], [9] , [11], [12]. A preliminary study on the
impact of perturbations of graphs and simplicial complexes on
the robustness of filters acting on signals observed over such
domains is discussed in [13].
Recently, in [12] the authors introduced a novel approach
that jointly addresses robust graph filter identification and
graph denoising. In [14] the authors studied the stability of
spectral GFs when a small number of edge were rewired. In
[15] structural equation models are combined with total least
squares to jointly infer signals and perturbations. Recently,
the stability of Graph Convolutional Neural Networks (GCNs)
has attracted increasing interest and has been the subject of
extensive investigation in various works, e.g. [16], [17], [18],
[19].
Our focus in this work is to design robust graph filters acting
on signals defined over graphs that closely approximate the
desired filter on the nominal graph, despite minor edge alter-
ations. The proposed approach leverages the small perturbation
analysis of the graph Laplacian eigenpairs developed in [20].
We use first-order closed form expressions for the perturbed
Laplacian matrix eigenvalues/eigenvectors pairs to design
graph filters that are robust against topology uncertainties.
Then, we express robust filters in closed form, which depends
only on the known probabilities of edge perturbations. Finally,
in case where the filer input signals are affected by random
noise, we introduce an optimization strategy aimed at finding
a FIR filter that exhibits robustness both to graph perturbations
and to noise interference. Specifically, the optimal FIR filter is
designed to minimize, jointly, the approximation error respect
to the desired (unperturbed) filter and the estimation error in
the filter output. The effectiveness of the proposed strategies
is substantiated through numerical results, demonstrating their
good performance in handling both perturbations and noise.

II. SMALL PERTURBATION ANALYSIS OF GRAPH
LAPLACIAN

In this section, first we quickly review some of the key
tools for processing signals defined over graphs. Thereafter,
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we briefly recall the theory of small perturbation analysis of
the graph Laplacian eigendecomposition developed in [20].
Let us consider an undirected graph G = {V, E} composed
of a set V = {1, . . . , N} of N nodes and a set E of edges,
with cardinality |E| = E. The connectivity of the graph can be
described through the incidence matrix B1 ∈ N× E, whose
columns {bm}Em=1 establish which nodes are incident to each
edge m. Specifically, given an arbitrary orientation of the
edges, the entries of the column vector bm are all zero except
the entries bm(is) = 1 and bm(it) = −1 corresponding to
the indices is and it of the endpoints of edge m. The graph
Laplacian L ∈ RN×N , is a symmetric, semidefinite positive
matrix that captures the connectivity property of the graph and
is defined as L = B1B

T
1 =

∑
i∈E bib

T
i . We assume, w.l.o.g.,

that the graph is connected and we denote with L = UΛUT

the Laplacian eigendecomposition, where U is the matrix
whose columns are the eigenvectors ui, i = 1, . . . , N and Λ
is the diagonal matrix with entries the associated eiegenvalues
λi, i = 1, . . . , N . We assume that the eigenvalues are listed
in increasing order.
A signal s on a graph G is defined as a mapping from the vertex
set to the set of real numbers, i.e. s : V → R. For undirected
graphs, the GFT ŝ of a graph signal s is defined as the
projection of s onto the subspace spanned by the eigenvectors
U = {ui}Ni=1 of the Laplacian matrix, see e.g. [2], [21], i.e.
ŝ = UT s.
Graph Small Perturbation Analysis. A small perturbation
of the graph G corresponds to add or remove a few edges,
thus resulting in the perturbed graph G̃. Let us denote with
Ep ⊂ E the set of edges of the nominal graph that are altered.
The perturbed graph is described by the perturbed Laplacian
matrix L̃ = L + ∆L, where ∆L ∈ RN×N is a perturbation
matrix that can be expressed as

∆L =
∑
m∈Ep

σmbmbT
m, (1)

where σm = 1 if edge m is added and σm = −1, if edge m
is removed. Clearly, the perturbation of the nominal Laplacian
L induces a perturbation of its eigenvalues decomposition
denoted by

L̃ = L+∆L = ŨΛ̃Ũ
T

(2)

where Ũ := U + ∆U and Λ̃ := Λ + ∆Λ denote the
eigenvector and the eigenvalues matrices of L̃. In the case
where all eigenvalues are distinct and the perturbation affects
a few percentage of edges, the perturbed eigenvectors {ũi}Ni=1

and eigenvalues {λ̃i}Ni=1 of L̃ are related to the unperturbed
eigenvectors {ui}Ni=1 and eigenvalues {λi}Ni=1 of L, by the
following approximations [20]:

λ̃i ≈ λi + δλi = λi + uT
i ∆Lui (3)

ũi ≈ ui + δui = ui +
∑
j ̸=i

uT
j ∆Lui

λi − λj
uj . (4)

Therefore, from (II) and (4), the perturbations δλi and δui

of the i-th eigenvalue and eigenvector, respectively, can be
written as [20]:

δλi =
∑
m∈Ep

σmuT
i bmbT

mui (5)

δui =
∑
m∈Ep

σmδuim (6)

with δuim =
∑

j ̸=i

uT
j bmbT

mui

λi−λj
uj . The above formulas come

from a first-order perturbation analysis [20] which effectively
captures the impact of the perturbation on the graph topology.
In particular, the term uT

i bmbT
mui = (ui(vs,m)− ui(vt,m))2

in (6) is a measure of the variation of the eigenvector ui

at the vertices vs,m and vt,m of edge m. Then, the largest
perturbations occur over the edges that exhibit the highest
eigenvectors variation. For example, in graphs characterized
by dense clusters, the edges with most significant perturbations
are the inter-cluster edges. Additionally, we can observe that
the eigenvector corresponding to the null eigenvalue does
not affect any other eigenvalue/eigenvector, and eigenvectors
associated with eigenvalues very close to each other typically
experience large perturbations.

III. ROBUST SPECTRAL FILTERING OVER PERTURBED
GRAPHS

Our goal in this section is to design robust spectral filters
for graphs that undergo small perturbation of their edges. In
general, a spectral filter operating over a graph signal s0 can
be modelled as

y0 = Hs0 (7)

where H = UDUT and D is a diagonal matrix with entries
the spectral mask coefficients {h(λi)}Ni=1 that we wish to
implement over the eigenvalues of L. Let us now assume that
the graph topology is altered by either the addition or removal
of a few edges. Then, using the closed-form expression in (4),
we introduce the matrix Ũ whose columns are the eigenvectors
ũi of the perturbed Laplacian L̃.
Our objective is to design a filter, denoted as H̃D̃ = ŨD̃Ũ

T
,

approximating with minimum averaged error the desired spec-
tral mask D, while being robust against small perturbation
in the graph topology, such as the addition or removal of
edges. Assuming that the perturbation of an edge m, is a
random event characterized by a certain probability pm, we
describe this perturbation as a binary r.v. Zm equal to 1, with
probability pm, if edge m is perturbed, and 0 otherwise. Then,
let us consider the filter estimation error averaged with respect
to random edge perturbations, i.e.

E
[∥∥∥UDUT − ŨD̃ŨT

∥∥∥2
F

]
= E

[∥∥∥R̃− D̃
∥∥∥2
F

]
(8)

where R̃ = ŨTUDUT Ũ and the last equality follows from
the unitary property of ŨT .



Our goal is to derive the optimal spectral coefficients as
solution of the following optimization problem

min
D̃∈RN×N

f(D̃) := E
[∥∥∥R̃− D̃

∥∥∥2
F

]
s.t. d̃ij = 0, ∀i ̸= j

(9)

where the constraints force the matrix D̃ to be diagonal.
Problem in (9) is convex and its optimal solution D̃⋆ can
be easily derived in closed-form by averaging with respect to
the random edge perturbations. Specifically, the optimal D̃⋆ is
derived by taking the expectation of the diagonal elements of
R̃, i.e.

D̃⋆
ii = E[R̃ii], i = 1, . . . , N. (10)

To derive closed-form expressions for these optimal diagonal
entries, let us recall that R̃ = ŨTUDUT Ũ. Then, using the
equality H = UDUT , we get R̃ = ŨHŨT and it holds

D̃⋆
ii = E[ũT

i Hũi]. (11)

Assuming the random variables Zm and Zn, i.i.d. for m ̸= n,
we get E[ZmZn] = E[Z2

m] = pm, if m = n and E[ZmZn] =
pmpn if m ̸= n. Then, using (4) and taking in (11) the
expectation values with respect to the random variables Zm,
we easily derive the optimal solution

D̃⋆
ii = uT

i Hui +

N∑
k,l=1

Hk,l

∑
m∈Ep

pmδui,m(k)δui,m(l)

+
∑
m∈Ep

∑
n∈Ep

pmpnσmσnδui,m(k)δui,n(l)


+ 2uT

i H

∑
m∈Ep

pmσmδui,m

 .

(12)
Note that the optimal spectral mask consists of a first term that
represents the optimal solution for an unperturbed graph while
the other terms take into account the perturbation statistics,
enabling the mask to be adapted to random changes in the
graph’s topology.

IV. ROBUST LOCALIZED FILTERS

A desired graph filter H may be efficiently parameterized
using a polynomial FIR filter of order L based on the graph
Laplacian as [7], [8]

H =

L∑
k=0

hkL
k. (13)

This is a local operator that combines graph signals from
neighbors of each node, at a k-hop distance, through the
coefficients {hk}Lk=0. Assuming that the graph undergoes
random edge perturbations, our goal in this section is to design
a robust FIR filter approximating with minimum averaged
error the desired FIR filter H while being robust to small
perturbations of the graph topology. Then, our aim is to derive

the optimal filter H̃ =
∑L

k=0 h̃kL̃
k

with minimum average
distance from the nominal filter H in (13). Hence, we may
formulate the following optimization problem

min
h̃∈RL+1

g(h̃) := E

∥∥∥∥∥
L∑

k=0

h̃kL̃
k −

L∑
n=0

hnL
n

∥∥∥∥∥
2

F

 (14)

where the expectation is taken with respect to the random edge
perturbations. Note that the objective function can be easily
written as

g(h̃) =E

∥∥∥∥∥
L∑

k=0

h̃kŨΛ̃kŨT −
L∑

n=0

hnUΛnUT

∥∥∥∥∥
2

F


=E

∥∥∥∥∥
L∑

k=0

h̃kΛ̃
k −M

∥∥∥∥∥
2

F

 ,

(15)

where M = ŨTU
(∑L

n=0 hnΛ
n
)
UT Ũ. Then, defining the

vector m = diag(M), whose entries are the diagonal elements
of M, the problem in (14) is equivalent to the following one

min
h̃∈RL+1

E[∥m− Φ̃h̃∥2F ] (16)

with Φ̃ = [1, λ̃, . . . , λ̃
L
], λ̃

k
= {λ̃k

i }Ni=1, k = 1, . . . , L.
It can be easily shown that the optimal solution h̃⋆ of the

problem in (16) is given by

h̃⋆ = E[Φ̃T Φ̃]−1E[Φ̃Tm]. (17)

Let us now derive a closed form expression for h̃⋆ by taking
the expectation with respect to the random edge perturbations.
Note that it holds:

Φ̃T Φ̃ =


N

∑N
i=1 λ̃i · · ·

∑N
i=1 λ̃

L
i

...
. . .

...∑N
i=1 λ̃i

L ∑N
i=1 λ̃i

L+1
· · ·

∑N
i=1 λ̃

2L
i

 .

(18)
From (5) we have δλi =

∑
m∈Ep

Zmqi,m with qi,m =

uT
i bmbT

mui. Then, we get the following expectation values

E

[
N∑
i=1

λ̃i

]
=

N∑
i=1

(λi +
∑
m∈Ep

pmδλi,m)

E

[
N∑
i=1

λ̃k
i

]
=

N∑
i=1

k∑
j=0

(
k

j

)
λk−j
i E

[
(δλi)

j
] (19)

where the term E
[
(δλi)

j
]

= E
[
(
∑

m∈Ep
Zmqi,m)j

]
can

be easily calculated under the assumption of i.i.d. variables
by using the equalities E[Zj

m] = pjm, ∀m ∈ Ep and
E[ZrZs . . . Zj ] = prps . . . pj for any set of distinct indexes



r, s, . . . , j within Ep. Finally, let us consider the vector
E[Φ̃Tm] whose entries can be expressed as:

E[(Φ̃Tm)i] =

(
L∑

n=0

hnλ
n
i

)(
N∑

p=1

ui(p)
4E[(λi + δλi)

L]

+ ui(p)
2E[δui(p)

2(λi + δλi)
L]

+ 2ui(p)
3E[δui(p)(λi + δλi)

L]
)
.

(20)
The first term of this sum can be simplified

as in (19), the second term can be written as
E[δui(p)

2]E[(λi + δλi)
L], where E[δu2

i (p)] =∑
m∈Ep

∑
n∈Ep

σmσnδui,m(k)δui,n(l)pmpn. Finally, we
can write the third term as 2ui(p)

3E[δui(p)]E[(λi + δλi)
L],

with E[δui(p)] =
∑

m∈Ep
pmσmδui,m(p).

V. ROBUST FILTERING FOR NOISY SIGNALS AND GRAPH
PERTURBATIONS

In this section we focus on the robust filtering of noisy
graph signals. Our goal is to find the optimal FIR filter which
is robust against both graph perturbations and signal noise.
Let us assume that the filter’s input graph signal x is affected
by random noise n and define y = x + n as the noisy
signal we aim to filter. Then, in the case where the graph
is perturbed and the signal is affected by noise, the filtered
signal is given by z̃ = H̃y. Then, we are interested in finding
optimal coefficients that minimize jointly the approximation
error respect to the desired (unperturbed) filter H, i.e. g(h̃) in
(14), and the estimation error in the perturbed filter output with
respect to the ideal output Hx. Hence, we may formulated the
following optimization problem:

min
h̃∈RL+1

E

∥∥∥∥∥
L∑

k=0

h̃kL̃
k −

L∑
n=0

hnL
n

∥∥∥∥∥
2

F


+ γ E

∥∥∥∥∥
L∑

k=0

h̃kL̃
ky −

L∑
n=0

hnL
nx

∥∥∥∥∥
2

F

 (21)

where γ is a non-negative coefficient to control the trade-off
between the two estimation errors. Note that the optimization
problem in (21) can be written in the following equivalent
form

min
h̃∈RL+1

L(h̃) := E[∥m− Φ̃h̃∥2F ] + γ E[∥w −DyΦ̃h̃∥2F ]
(22)

where w = Ũ
T
U(
∑L

n=0 hnΛ
n)UTx and Dy = diag(ŷ) with

ŷ = ŨTy. The objective function L(h̃) of the problem in (22)
can be expressed as

L(h̃) = E
[
tr
{
mTm+ h̃T Φ̃T Φ̃h̃− 2h̃T Φ̃Tm

}]
+

γE
[
tr
{
wTw + h̃T Φ̃TD2

yΦ̃h̃− 2h̃T Φ̃TDyw
}] (23)

from which the optimal solution h̃ can be derived in closed
form as

h̃ = E
[
Φ̃T Φ̃+ γΦ̃TD2

yΦ̃
]−1

E
[
Φ̃T (m+ γDyw)

]
. (24)
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Fig. 1. Average squared errors vs the percentage of perturbed edges.

Following similar derivations as in (19) and (20), closed form
solutions can be obtained, which we omit here due to space
constraints.

VI. NUMERICAL RESULTS

In this section, we validate the effectiveness of the proposed
filtering designs through comprehensive numerical experi-
ments.
To evaluate the robustness of both spectral and FIR filters
against perturbed graphs, we generated 100 random realiza-
tions of graphs, each consisting of two clusters. These graphs
have an intra-cluster and inter-cluster connection probability
equal to 0.7 and 0.08, respectively. We randomly perturbed
a varying percentage of the total edges, from 1% to 20%,
ensuring that after perturbations the graph remains connected.
Using the closed-form formulas in (12), (19) and (20), we
derived, respectively, the optimal mask D̃⋆ and the optimal
FIR coefficients h̃⋆. Then, we calculated for both filters the
associated average distances between the desired and estimated
filters, i.e. f(D̃

⋆
) and g(h̃⋆), respectively. In Fig. 1, we report

these average distances versus the percentage of perturbed
edges. Furthermore, to assess the robustness of our proposed
optimal filters, we also report in Fig. 1 the average distance
between the ideal target filter and the non-optimized filters
(NOF) where the filter coefficients are directly derived using
the perturbed graph, for both the spectral and FIR filters. It is
evident the robustness enhancement achieved using the pro-
posed optimal filtering design. However, the spectral filtering
approach exhibits more robustness, due to the fact that the FIR
filter is a polynomial approximation of the intended one.
Let us now consider the robust filtering of noisy signals.

In order to generalize our findings, in this experiment we
employed Erdős–Rényi graphs. We generated 100 different
graphs, each containing 100 nodes, with a connection prob-
ability of p = 0.5 for each edge, ensuring that the graphs
remain connected after the perturbations. Then, by solving the
problem in (21), let us denote with D(L, L̃⋆) and Dxy(L, L̃

⋆)
the optimal (normalized) values of the first and second term of
the objective function. In Fig. 2 we report the optimal distance
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Dxy(L, L̃
⋆), representing the estimation error in the perturbed

filter output, versus the noise variance σ2
n and for various levels

of perturbation. We can observe as increasing the variance of
the noise, Dxy increases as well, albeit it maintains robustness
for small perturbation levels.
Finally, in Fig. 3 we illustrate the trade-off between the two
terms, Dxy(L, L̃

⋆) and D(L, L̃⋆), by varying the penalty coef-
ficient γ. It can be observed as the optimal filter approximation
error (respect to the desired filter) and the optimal estimation
error in the perturbed filter output exhibit robustness across
various percentages of edges perturbations.

VII. CONCLUSIONS

In this paper we consider the robust design of filters for
signals observed over graphs that may undergo random small
perturbations of their topology. Our objective is to devise a
strategy for deriving spectral and polynomial filters that can
adapt to small changes in the graph’s topology, while still
closely approximating the desired spectral mask. To this end,
we introduce an innovative approach that utilizes approximate
closed-form solutions for the perturbed eigendecomposition
of the graph Laplacian matrix. Additionally, we propose a

strategy to find optimal filters that are jointly robust against
the random graph perturbations and the signal noise.
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