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Stimulus-induced volumetric phase transition in gels may be potentially exploited for various
bio-engineering and mechanical engineering applications. Since the discovery of the phenomenon
in the 1970s, extensive experimental research has helped in understanding the phase transition and
related critical phenomena. Yet, little insight is available on the evolving microstructure. In this
article, we aim at unravelling certain geometric aspects of the micromechanics underlying discon-
tinuous phase transition in polyacrylamide gels. Towards this, we use geometric thermodynamics
and a Landau-Ginzburg type free energy functional involving a squared gradient, in conjunction
with Flory-Huggins theory. We specifically exploit Ruppeiner’s approach of Riemannian geometry-
enriched thermodynamic fluctuation theory that has been previously employed to investigate phase
transitions in van der Waals fluids and black holes. The framework equips us with a scalar curvature
that relates to the microstructural interactions of a gel during phase transition and at critical points.
This curvature also provides an insight into the universality class of phase transition and the nature
of polymer-polymer interactions.

I. INTRODUCTION

Stimulus-sensitive gels – a class of polymers, find ex-
tensive applications in biomedical and mechanical engi-
neering [1, 2]. Exposed to external stimuli such as tem-
perature, pH etc., they may undergo volumetric changes,
which allows one to control their volume through stim-
uli manipulations. Biomedical applications where such
volume control is crucial include drug delivery systems,
tissue engineering, implants etc. [3].
Gels may undergo both continuous and discontinuous

phase transitions [4, 5]. The discontinuous phase tran-
sition, which is of primary interest, is similar in many
ways to the phase transition in van der Waals fluids or
magnetic systems [3, 6]. Both are volumetric phase tran-
sitions in systems with disordered microstructures. The
swollen and shrunken phases in gels correspond respec-
tively to the gaseous and liquid phases in van der Waals
fluids. Transition in gels may however be triggered not
only by temperature, but several other means such as
composition of the solvent, pH and ionic changes, irra-
diation by light and electric fields [7–21]. These features
make such materials attractive for biomedical applica-
tions.
Understanding the phase behavior of gels, particularly

the processes of phase separation and spinodal decom-
position, is crucial for optimizing their performance in
diverse applications. Phase equilibrium based on Flory-
Huggins theory offers the foundational context necessary
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for an insightful understanding of phase transition [22];
but it fails to anticipate the kinetics and the evolution
of morphology with time in the separation process. To
address this, the notion of gradient energy is introduced
through the Landau-Ginzburg functional [23, 24]. The
Landau-Ginzburg theory is often applied to understand
the behavior of order parameters near critical points and
to track the transition among different phases in materi-
als [25–30].

Phase transition and the associated critical phenom-
ena are in need of a more nuanced treatment affording
an insight into the underlying molecular interactions [31].
Experiments such as dynamic light scattering, friction
measurement, calorimetry [4, 10, 31–34] have established
the existence of a critical point and led to an understand-
ing of the various response functions at the critical point.
Several observations have come to light, viz. increase and
subsequent divergence of the intensity and correlation of
scattered light, lowering and subsequent divergence of the
swelling and collapsing relaxation times, and decrease of
the bulk modulus to zero [31, 32]. Singularities in the
specific heat, osmotic compressibility have been charac-
terized using critical exponents [35] and the behaviour of
the gel at the critical point is observed to conform to a
3D Ising system.

Similar to other systems belonging to the same uni-
versality class, there are attractive and repelling driving
forces that cause the gel to vacillate between collapsed
and swollen phases. Based on the chemical composition
of gels, Tanaka surmised without sufficient evidence that
the interactions could be hydrophobic, electrostatic, ionic
or through van der Waals forces [31].

An alternative approach to an accounting of mi-
crostructural interactions is the thermodynamic fluctu-
ation theory. The classical fluctuation theory however
fails where fluctuations are of the order of the system
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size [36]; thus it cannot be directly exploited for phase
transitions. Ruppeiner proposed a geometric approach
by introducing a Riemannian structure to the thermody-
namic manifold [36], which eliminates the lack of covari-
ance associated with large fluctuations. Once equipped
with a Riemannian structure that naturally enforces a
certain class of frame indifference, the Ricci curvature
of the thermodynamic manifold may be used to gather
information on microstructural interactions.
Ruppeiner’s approach has been implemented to under-

stand the microstucture of van der Waals fluids, black
holes, magnetic substances and elastomers undergoing
strain-induced crystallization [37–45]. The sign of the
scalar curvature indicates the type of interaction among
the mesoscopic entities [38, 44]. This quantity has also
been used in [44] to establish a similarity between phase
transitions in van der Waals fluids and AdS black holes.
In this article, we analyze the volumetric phase transi-

tion in polyacrylamide gels using Ruppeiner’s approach,
the aim being to understand the underlying interactions.
We start with a brief description of the Riemannian ge-
ometry, defining the relevant quantities in Sec. II, fol-
lowed by an analysis in Sec. III of phase transition us-
ing an approach that combines the classical mean field
theory with Landau-Ginzburg. We then determine the
curvature for the thermodynamic manifold of present in-
terest in Sec. IV. Variations of curvature with tempera-
ture and polymer volume fraction are discussed and some
predictions drawn on the microstructure and the nature
of interactions during phase transition. We also analyze
the divergence of curvature in the vicinity of the critical
point to ascertain the universality class of phase transi-
tion. Finally, we conclude the article in Sec. V with a
summary of observations.

II. RIEMANNIAN THERMODYNAMIC

MANIFOLD

The thermodynamic fluctuation theory states that the
probability (P ) of fluctuations of independent variables
(x1, x2, ...xn) in a thermodynamic system is proportional
to the number of microstates that is in turn related to
the distance (∆l) among neighbouring fluctuation states
in the thermodynamic configuration space [36] as shown
in Eq. (1). Thus, the closer the two states, the higher
the probability of fluctuation between them.

P (x1, x2, ....xn) ∝ exp−
(1

2
∆l2

)

(1)

∆l has a positive definite quadratic form given by,

(∆l)2 =− 1

kBT

(

∂2Ψ

∂T 2

)

(∆T )2

+
1

kBT

n
∑

i,j=2

(

∂2Ψ

∂xi∂xj

)

∆xi∆xj

(2)

where Ψ is the free energy density of the thermodynamic
system, kB the Boltzmann constant and x1 = T the tem-
perature of the system.
Let us consider a Riemannian manifold with metric g

(written as a matrix [g] = gij) and consisting of points
representing the thermodynamic states. The distance ∆l
may then be written in terms of g as follows,

∆l2 =

n
∑

i,j=1

gij∆xi∆xj (3)

Combining Eqs. (2) and (3), g may be extracted in terms
of Ψ as follows.

g =
1

kBT
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(4)
We further define an affine connection with the

Christoffel symbols Γk
ij given by,

Γk
ij = gkm

1

2

(

∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)

(5)

where gij are components of the inverse of [g]. Γk
ij may

then be used to determine the components of the fourth
order Riemannian curvature tensor R̃,

R̃l
ijk =

∂

∂X i
Γl
jk − ∂

∂Xj
Γl
ik + Γl

imΓm
jk − Γl

jmΓm
ik (6)

R̃ may be contracted to obtain the following expressions
for the second order symmetric Ricci tensor R̂ and the
Ricci scalar curvature R respectively:

R̂ij = R̃k
ikj (7)

R = gijR̃k
ikj (8)

Recall that gij , being components of [g]−1, constitute the
contravariant form of the metric tensor g.
Specifically, for a thermodynamic system with two fluc-

tuating variables, x1 and x2, the Ricci scalar curvature
R may be determined as:

R =
1√
g

[

∂

∂x1

(

1√
g

∂g22
∂x1

)

+
∂

∂x2

(

1√
g

∂g11
∂x2

)]

(9)

where g ≡ g11g22 is the determinant of [g].



3

III. THERMODYNAMICS AND PHASE

DIAGRAMS OF GELS

A. Free energy

The total free energy density Ψ of a gel has a form as
in [4] and is hypothesized to comprise of three parts as
shown below.

Ψ = Ψm +Ψel +Ψsurr (10)

The first term Ψm corresponds to the free energy of mix-
ing while the second term Ψel denotes the elastic free en-
ergy due to the expansion of the network structure. The
last term Ψsurr is the thermal energy exchanged with the
reservoir.
A modified form of Flory’s formula [22] is used to ex-

press Ψm,

Ψm = kBT

(

Θ

2T
n1v2 + n1 ln (1− v2)

)

(11)

where n1 is the number of solvent molecules per unit
reference volume, v1 is the volume fraction of the sol-
vent, v2 is the volume fraction of the polymer (solute)
and the latter is related to v1 through v2 = 1− v1. Also,
Θ

2T is a dimensionless quantity characterizing the interac-
tion between polymer and solvent molecules. Here, Θ is
the Flory temperature at which no interactions between
polymer chains and solvent molecules exist.
Further, if v̄ denotes the volume of an individual sol-

vent molecule, then v1 = n1v̄
1+n1v̄

and v2 = 1

1+n1v̄
. Thus

Ψm can be expressed in terms of n1 and v̄ as follows,

Ψm = kBT

[

Θ

2T

(

n1

1 + n1v̄

)

+ n1 ln

(

n1v̄

1 + n1v̄

)]

(12)

We also assume that the gel is not completely devoid
of the solvent in its reference configuration. If the volume
fraction of polymer in the reference configuration is v20
with the number of solvent molecules being n10 , we can
express the elastic free energy density Ψel in terms of the
volumetric deformation v2/v20 as follows,

Ψel =
kBTνe

2

[

3

(

v2
v20

)−2/3

− 3 + ln

(

v2
v20

)

]

(13)

where νe is the number of freely-moving chains between
successive entanglements or cross-links. Substituting the
expressions for v2 and v20 in Eq. (13), we obtain,

Ψel =
3

2
kBT

S

v̄(1 + n10 v̄)
2

[

(

1 + n10 v̄

1 + n1v̄

)−2/3

− 1

+ ln

(

1 + n10 v̄

1 + n1v̄

)1/3
] (14)

where S = νev̄(1 + n10 v̄)
2.

To determine Ψsurr, we first adopt the experimentally
obtained expression for the specific heat capacity Cv, re-
produced below from [35].

Cv(T ) = A|t|−απ

[

1 +D|t|∆
]

+B + C(T − Tc) (15)

where |t| = |T−Tc|
Tc

and Tc is the critical temperature.
Also, απ is the specific heat critical exponent with a
value of −0.05 and ∆ is the correction-to-scaling expo-
nent with a value of 0.5. A,B,C and D are constants
determined through curve fitting [35]. Their values are
−241.581, 182,−1.193 and −1.115 respectively. The sur-
rounding free energy Ψsurr is obtained as follows,

Ψsurr = Ψc +BT (1− lnT )− 1

2
CT (T + 2Tc − 2Tc lnT )

(16)

so as not to violate Cv = −T
∂2Ψ

∂T 2
. Specifically, we have

Cv = −T
∂2Ψsurr

∂T 2
as Ψ = Ψsurr +Ψm + Ψel and

∂2Ψm

∂T 2

and
∂2Ψel

∂T 2
are both identically 0.

Characteristic to any discontinuous phase transition,
Cv(T ) must diverge at the critical point. From Eq. (15),
it is noted that Cv(T ) has a point of discontinuity at
T = Tc. Consequently, the expression of Ψsurr obtained
through an integration of Cv is decomposed into two
cases. The first case is when T < Tc and the second
case arises when T > Tc.

Specifically, for T < Tc, Ψc in Eq. (16) is given by,

Ψc =AT × 10−4{(29.98 + 8.42D)T̃ 5 + (5.69 + 18.31D)T̃ 4

+ (12.86 + 49.84D)T̃ 3 + (39.58 + 206.25D)T̃ 2

+ 104[(0.025 + 0.275D)T̃ + (1 +D)− (1 +D) lnT ]}
(17)

where T̃ = T/Tc is the reduced temperature. For T > Tc,
Ψc assumes the form,

Ψc =AT

{

26.83× 10−4

T̃ 2.95
+

1.68× 10−2D

T̃ 2.45
+

1.28× 10−2

T̃ 1.95

+
0.19D

T̃ 1.45
− 1.05

T̃ 0.95
− 2.22D

T̃ 0.45
− 19.05T̃ 0.05 − 1.17DT̃ 0.55

}

(18)

Combining Eqs. (12), (13) and (16), we obtain the
complete expression for Ψ as,
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Ψ(T, n1) = kBT

[

Θ

2T

(

n1

1 + n1v̄

)

+ n1 ln

(

n1v̄

1 + n1v̄

)]

+
3

2
kBT

S

v̄(1 + n10 v̄)
2

[

(

1 + n10 v̄

1 + n1v̄

)−2/3

− 1− ln

(

1 + n10 v̄

1 + n1v̄

)−1/3
]

+Ψc +BT (1− lnT )− 1

2
CT (T + 2Tc − 2Tc lnT )

(19)
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T = 296K

T = 298K

T = 303K

FIG. 1: Plot of pressure (Π) vs. volume fraction (v2) at
various temperatures. The black dot represents the

critical point.

B. Pressure and phase diagrams

To characterize the phase transition and the critical
phenomenon, we must obtain the relevant phase diagram.
The phase diagram is a graphical representation of the
variations of pressure, temperature, and volume fraction.
The relation among the three quantities is mathemati-
cally represented by the equation of state for the osmotic
pressure. The osmotic pressure is the thermodynamic
force conjugate to the volume fraction v1 of the solvent
related [4]. The equation of state relating osmotic pres-
sure Π with the volume fraction v2 and temperature T is
given by the following constitutive relation,

Π = −NA

(

∂Ψ

∂n1

)

(20)

where Ψ is the total free energy. Using (19) in (20), we
obtain the equation of state as,

Π = −RT

{

Θ

2T

1

(1 + n1v̄)2
+

1

1 + n1v̄
+ ln

(

n1v̄

1 + n1v̄

)

+
S

(1 + n10 v̄)
3

[

(

1 + n10 v̄

1 + n1v̄

)1/3

− 1

2

(

1 + n10 v̄

1 + n1v̄

)

]}

(21)

where NA is Avogadro’s number and R is the gas con- stant. Eq. (21) may also be written in terms of the
volume fraction v2,

Π = −RT

{

Θ

2T
(v2)

2 + v2 + ln (1− v2) + S(v20)
3

[

(

v2
v20

)1/3

− 1

2

(

v2
v20

)

]}

(22)

Fig. 1 shows the Π − v2 projection of the phase dia-
gram for a polyacrylamide gel which is obtained using
Eq. (22) (the material constants for which are available
in [5]): kB = 1.38 × 10−23 J K−1, Θ = 400 K, S = 600,
v20 = 0.01, R = 8.3145 J K−1 mol−1. The volume of the
individual solvent molecule, v̄ = 3.7×10−28 m3, and this
value is adopted from [46].

Fig. 1 shows the isotherms at temperatures T =
292 K, 294 K, 295 K, 296 K, 298 K and 303 K. In Fig. 1,
we observe all the salient features typical of a P-V di-
agram in a discontinuous phase transition. Of all the
isotherms, one is the critical isotherm on which lies the

critical point, a point of inflection which can be char-
acterized by the critical osmotic pressure Πc, the criti-
cal volume fraction v2c and the critical temperature Tc.
To determine Πc, v2c and Tc, we simultaneously solve
∂Π
∂v2

= 0 and ∂2
Π

∂v2

2

= 0. Due to the equations being

strongly nonlinear, they need to be solved numerically.
For polyacrylamide gels, we use the values of constants
as mentioned earlier and obtain Πc, v2c and Tc as 0.82
Pa, 0.1344 and 296 K respectively, which is shown by the
black dot in Fig. 1.

Above the temperature corresponding to the critical
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isotherm, i.e. for T > Tc, distinct swollen or shrunken
phases do not exist. Hence, no phase transition takes
place and a single stable homogeneous ”supercritical gel”
phase exists. Below the critical temperature T < Tc,
there is always a certain zone of instability, marked by
negative compressibility during which phase transition
from a swollen to a shrunken phase takes place. Thus,
the critical point serves as the boundary line. Below it,
there is a chance of phase transition taking place; but
above it, no phase transition occurs.
Resuming our analysis on the stability of different

phases, all isotherms below Tc contain a zone of negative
compressibility. The zone begins with a local maximum
and ends with a local minimum. The locus of these ex-
trema is the spinodal curve. It is important to note that
negative compressibility is thermodynamically infeasible
and is a theoretical artifact that arises from the form of
the equation of state. In fact, this is also present in the
P-V diagram for van der Waals fluids [5, 47]. Physically
no such state of negative compressibility exists. The gel
abruptly transitions from a swollen to a shrunken phase
at constant pressure. This unphysical outcome might be
attributed to the absence of gradient dependent terms in
the expression for free energy, thereby accounting for the
heterogeneity occurring during phase transition. Exper-
imental evidence [48–51] indicates that pressure is con-
stant in this region even though it is in non-equilibrium.
Nonetheless, the point is that, due to a thermodynami-
cally non-equilibrium nature in this region, the conven-
tional definition of pressure is called into question and
requires further research.

C. Modified free energy and pressure

The gel in the zone of so-called negative compressibility
undergoes spontaneous phase separation by the process
of spinodal decomposition [27, 30, 52]. This is inade-
quately represented in the free energy expression in Eq.
(19). To address this limitation, one way would be to use
a gradient-enhanced term in the Landau-Ginzburg func-
tional [23–25, 28, 29]. This functional leads to a gener-
alized chemical potential that drives the diffusion in the
system. Specifically, we consider a free energy function
that includes a squared gradient term, which should be
meaningful under the nonequilibrium conditions under-
lying phase transition.
Let Ψgrad, the free energy term that incorporates gra-

dient dependence, be given by,

Ψgrad =
ηkBT

2

(

1 + n1v̄

1 + n10 v̄

)

(∇n1)
2 (23)

where, η = η1T̃
2 + η2T̃ + η3 is the scaling parameter

of the gradient term. We also have η1 = 5.8484 × 104,
η2 = −12.3426× 104 and η3 = 6.4762× 104.
Now, the final form of the free energy (Ψmod) of the

system after incorporating the gradient-dependent term

is given by,

Ψmod = (1− κ)Ψ + κΨgrad (24)

where κ is the gradient energy parameter which plays a
crucial role in the region of phase-separation and weighs
the contribution of Ψ against Ψgrad [23–25, 28–30]. It is
evaluated as,

κ = {ϕ(1− ϕ1) + ϕ1}ϕ2 (25)

where ϕ = (γ1 + γ2), ϕ1 = H

(

−∂2Ψ

∂n2
1

)

, ϕ2 =

H

(

− ∂Ψ

∂n1

)

with γ1 = tanh (ω1) and γ2 = 0.5 +

0.5 tanh 100(tanhω2 − 0.1). γ1 and γ2 are the parame-
ters corresponding to the local maximum and local mini-
mum of the spinodal region respectively. The constituent
parameters are given as,

ω1 = −2× 105[0.5 + 0.5 tanh (−ζ)]ϑζ1 (26)

ω2 = 14[0.5 + 0.5 tanh (ζ)]ϑζ2 (27)

where, ζ = tanh

(

− 1

(90h)2
∂3Ψ

∂n3
1

)

, ϑ =

tanh

(

− 1

(90h)0.75
∂3Ψ

∂n3
1

)

, ζ1 = exp

{

− 1

hφ1

(

∂2Ψ

∂n2
1

)2
}

and ζ2 = exp

{

− 1

hφ2

(

∂2Ψ

∂n2
1

)2
}

with hφ1 and hφ2 being

the length scales associated with the local maximum and
the local minimum of the spinodal region respectively.
Currently adopted expressions for φ1 and φ2 are given by

φ1 = exp
{

−841.6669+ 838.1726T̃
}

+ 0.9955(T̃)−0.0008,

φ2 = exp
{

−427.4063+ 424.0418T̃
}

+ 0.9758(T̃)−0.0043,

We also use h = 0.1× 10−14k4B and ∇n1 = 1012.
Consequently, via Eq. (24), the modified pressure

(Πmod) may be expressed as,

Πmod = −NA

(

∂Ψmod

∂n1

)

(28)

The above modification is consistent with experimen-
tal observations [48–51] and the Maxwell tie-line con-
struction [53] which gives the pressure and the region
where the transition from swollen to shrunken phase
takes place. In other words, both phases co-exist in this
region. In line with [53], a Maxwell tie-line is drawn
subtending equal areas between the local maximum and
minimum and the tie-line. At any point on the tie-line,
both swollen and shrunken phases co-exist in a phase-
separated microstructure and the relative volume frac-
tion of each phase may be determined through the lever-
arm rule. The locus of intersection of the tie-lines with
the isotherms is known as the coexistence curve. Be-
tween the coexistence curve and the spinodal curve, the
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-1

-0.5
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0.5
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1.5

2

2.5

Critical Point

Critical Isotherm  

Coexistence Curve 

Spinodal Curve 

SW

SH

MSW MSH

Unstable SW + SH

Supercritical Gel

FIG. 2: Π̃-ṽ2 phase diagram denoting the various
phases and containing the various isotherms. The black

dot denotes the critical point and the black dashed
curve represents the coexistence curve. The spinodal
curve is represented by the black dash-dotted curve.

phases are metastable. At lower volume fractions, the
metastable phase is predominantly swollen (MSW) and
at higher volume fractions, it is predominantly shrunken
(MSH). At volume fractions lower than any point on
the swollen limb of the coexistence curve, a homoge-
neously swollen (SW) phase exists, while at volume frac-
tions above the shrunken limb of the coexistence curve,
a homogeneously shrunken phase (SH) exists. The coex-
istence and spinodal curves meet at the critical point.
It is important to characterize the critical point and de-

termine Πc, v2c and Tc so that all three projections of the
phase diagram may be represented in terms of reduced
dimensionless quantities. One direct advantage of such
a representation is that the critical exponents [4] associ-
ated with the phase transition may be readily calculated.
Another significant advantage is the clear identification
of the stable, unstable, and metastable phase boundaries,
i.e. the spinodal and coexistence curves.
The phase diagram projection Π - v2 is redrawn us-

ing the reduced pressure Π̃ = Πmod/Πc, reduced volume

fraction ṽ2 = v2/v2c and reduced temperature T̃ = T/Tc

and shown in Fig. 2. The critical point is more distinctly
illustrated in Fig. 2 and so are the stable and unstable
zones. For isotherms T̃ < 1, the part of the isotherm
where it is parallel to the horizontal axis, is the region
where transition from swollen to shrunken phase takes
place. In Fig. 2, the coexistence curve is represented by
the black dashed curve while the spinodal curve is repre-
sented by the black dash-dotted curve.
Fig. 3 shows the T̃ − ṽ2 projection of the phase dia-

gram. The solid black curve denotes the isobar Π/Πc =

0. Coexistence and spinodal curves may be seen in Π̃− ṽ2
projection as well. The swollen limb of the coexistence
curve where predominately swollen phase exists is rep-

0 0.5 1 1.5 2 2.5

0.94

0.96

0.98

1

1.02

Critical Point

 Coexistence SW Curve

 Coexistence SH Curve

 Spinodal Curve

Supercritical Gel

MSHMSW

SHSW

Unstable SW + SH

FIG. 3: T̃ − ṽ2 phase diagram denoting the various
phases. The red and blue solid curves represent the
swollen and shrunken limbs of the coexistence curve
respectively. The black dot denotes the critical point

and the black solid curve represents the isobar at Π̃ = 0.
The dotted horizontal line at T̃ = 0.976 corresponds to

the phase transition temperature and the black
dash-dotted curve represents the spinodal curve.

resented by the solid red curve while the shrunken limb
of the coexistence curve is represented by the solid blue
curve in Fig. 3.

Finally, the Π̃−T̃ projection is shown in Fig. 4. In this
figure, the entire coexistence or the phase transition re-
gion described in the earlier diagrams (Fig. 2 and Fig. 3)
appears as the solid red line. The shrunken and swollen
phases outside the phase transition region are also shown
in the figure. Also shown is the critical point and the su-
percritical gel region. The spinodal curve has also been
depicted by the black dash-dotted curve in Fig. 3 and
Fig. 4.

For further analysis of phase transition mechanism, we
formulate a method for approaching equilibrium in a sys-
tem where surface effects, as characterized by a gradient
energy given by Eq. (23), play a significant role. In line
with the work of [30], the continuity equation correspond-
ing to the free energy of the system as in Eq. (24) may
be written as,

∂v2
∂t

= ∇ · {Dv2(1− v2)∇µmod} (29)

where D is the diffusion coefficient, v2 is the volume frac-
tion of polymer which is the order parameter of the sys-
tem and µmod is the chemical potential associated with it.
In nonequilibrium systems, the chemical potential µmod

varies across distinct points, serving as the driving force
for the process of diffusion. The chemical potential µmod
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FIG. 4: Π̃− T̃ phase diagram denoting the various
phases. The red solid curve represents the coexistence
curve. The black dash-dotted curve is the spinodal
curve. The black dot represents the critical point.

in Eq.(29) is calculated as,

µmod =Ψmod + (1 − v2)
δΨmod

δv2

=Ψmod + (1 − v2)

[

∂Ψmod

∂v2
−∇ ∂Ψmod

∂(∇v2)

] (30)

where,

∂Ψmod

∂v2
=

[

(1− κ)
∂Ψ

∂n1

+ κ
∂Ψgrad

∂n1

+ (Ψgrad −Ψ)
∂κ

∂n1

]

∂n1

∂v2
(31)

∂Ψmod

∂(∇v2)
= κ

∂Ψgrad

∂(∇n1)

∂(∇n1)

∂(∇v2)
(32)

Eq. (29) is analogous to Cahn-Hilliard equation [23]
with the difference that the term Dv2(1− v2) substitutes
for the mobilityM . Eq. (29) can be used to gain substan-
tial insight into the dynamical aspects of phase change

using, say, numerical schemes such as finite difference or
Euler’s method, among others.

IV. THERMODYNAMIC GEOMETRY OF GELS

The phase diagrams afforded a certain measure of un-
derstanding of phase transition in our system. Now, us-
ing Ruppeiner’s approach, we attempt to track the evo-
lution of the microstructure throughout this process. In-
deed, the nonlinear nature of the manifold on which the
microstructural evolution happens should rule out the
emergence of unstable regions. Writing Eq. (2) in terms
of the fluctuating variables T and n1, we obtain the fol-
lowing expression for the squared length of an incremen-
tal line element,

(∆l)2 = − 1

kBT

(

∂2Ψmod

∂T 2

)

(∆T )2+
1

kBT

(

∂2Ψmod

∂n1
2

)

(∆n1)
2

(33)
The (matrix form of the) metric tensor in Eq. (4) is given
by

g =
1

kBT







−∂2Ψmod

∂T 2
0

0
∂2Ψmod

∂n1
2






(34)

In terms of T and n1, the Ricci scalar curvature R may
be determined using Eq. (9),

R =
1√
g

[

∂

∂T

(

1√
g

∂g22
∂T

)

+
∂

∂n1

(

1√
g

∂g11
∂n1

)]

(35)

where g = − 1

(kBT )2
∂2Ψmod

∂T 2

∂2Ψmod

∂n1
2

is the determinant

of the metric tensor.
Using the free energy density (Eq. (24)) in Eq. (35),

the expression for R is obtained as,

R =
p

q
(36)

where,

p = −kBΘn1v̄s











CvT̃ (1 + n10 v̄)(r + s) + Cv

{

T̃ s+ T̃ v̄n1r + T̃ r + v̄n1s

(

T̃ − Θ

Tc

)}

+T̃

{

T̃ r + T̃ v̄n1r + T̃ s+ v̄n1s

(

T̃ − Θ

Tc

)}

{

CTc +
0.05A(T̃ − 1)

|T̃ − 1|1.95
+

0.55AD(T̃ − 1)

|T̃ − 1|1.45

}











(37)

q = 2C2
v

[

T̃ r + T̃ v̄n1r + T̃ s+ v̄n1s

(

T̃ − Θ

Tc

)]2

(38)

r = Sv̄n1

{

−2 + 3

(

1 + n10 v̄

1 + n1v̄

)2/3
}

, s = 6(1 + n10 v̄)
2

(

1 + n10 v̄

1 + n1v̄

)2/3

.
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FIG. 5: Plots of normalized scalar curvature RN with volume fraction (ṽ2) at temperatures (a) T̃ = 0.986, (b)

T̃ = 0.993, (c) T̃ = 0.996, (d) T̃ = 1, (e) T̃ = 1.006, (f) T̃ = 1.023

where S is the constant defined in (14).

We define the normalized scalar curvature RN =
R

kB
in line with [44] and observe its variation with

reduced volume ṽ2 for reduced temperatures T̃ =

0.986, 0.993, 0.996, 1, 1.006 and 1.023; the results are
shown in Fig. 5. The curvature assumes small to moder-
ate values over a majority of the parametric space except
in the vicinity of the spinodal curve and the coexistence
region, where it diverges. For T̃ = 1, divergence of RN
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(a) Swollen phase (SW)

(b) Shrunken phase (SH)

(c) Heterogeneous state with both swollen phase and
shrunken phase (Unstable SW + SH)

(d) Gel phase at critical point

FIG. 6: Schematic representation of the microstructure
of different phases of the gel

is observed only at the critical point v2c = 1 (see Fig. 5

(d)). For T̃ > 1, divergence of RN is not observed (see
Figs. 5 (e) and (f)).

In the context of black holes, divergence of RN is spec-
ulated to have some relation with divergence of the cor-
relation length ξ [44]. We believe that the same holds
true for volumetric phase transition and divergence in
curvature is directly related to that in the fluctuations
of the order parameter ṽ2. Thus, density fluctuations
are divergent in the coexistence region and at the critical
point. Within the coexistence region, density fluctua-
tions manifest as phase segregation at the macroscopic
scale, attributed to spinodal decomposition within the
spinodal or unstable region and, nucleation and growth
in the metastable region. At the critical point, fluctu-
ations cause segregation at the microscopic scale which
manifests as critical opalescence in light scattering ex-
periments. Photon correlation spectroscopic studies on
polyacrylamide gels [4] have established the existence of a

0.98 0.985 0.99 0.995 1
-3

-2.5

-2

-1.5

-1

-0.5

0
10

4

FIG. 7: Plot showing the behavior of normalized scalar
curvature RN along the swollen limb (top red line) and
shrunken limb (bottom blue line) of the coexistence

curve.

phase segregated microstructure on the coexistence curve
which confirms our understanding. In Fig. 6, we have
shown some schematic representations of the microstruc-
ture in swollen, shrunken, critical and unstable regimes
based on our interpretation of curvature and aided by
the work in [4]. The gel appears homogeneous in the
swollen and shrunken phases and heterogeneous in the
unstable and critical regimes. Based on what is known
of the Van der Waals fluid system [44], we may expect a
homogeneous microstructure in the supercritical regime
but with large microscale density fluctuations; see Figs.
5 (e) and (f). But owing to a lack of experimental data
pertaining to Cv at higher temperatures, further insight
at this stage is not available.

Curvature has also been exploited to reveal the nature
of interactions among micro-constituents during differ-
ent stages of phase transition in van der Waals fluids and
black holes. For example, the sign of curvature in the
case of van der Waals fluid [41] indicates whether the
predominant force between fluid molecules is attractive
or repulsive for a particular temperature or volume frac-
tion. We examine the variation in the sign of curvature
along the coexistence curve on lines similar to [44]. The
curvature remains negative for all temperatures leading
to the conclusion that no radical change occurs in the
nature of interaction with change in volume fraction v2
over the entire range of temperatures considered.

Finally, we would like to examine the critical behaviour
of RN near the critical point to further establish the
universality class of phase transition. We start by ex-
amining the critical exponent with which the curvature
diverges. To evaluate the exponent, we resort to a nu-
merical technique described in [45]. First we assume a
critical-temperature dependent functional form for RN
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FIG. 8: Plot of ln |RN | vs ln |1− T̃ |. Black markers denote the numerically obtained data and the solid line denotes
the fitted curve. (a) The coexistence swollen phase curve (red line)—the slope is -2.00902. (b) The coexistence

shrunken phase curve (blue line)—the slope is -1.99123.

in the vicinity of the critical point and fit the curve to
discrete points lying on the swollen and shrunken limbs
of the coexistence curve.

RN ∼ −(1− T̃ )−α (39)

or, equivalently,

ln |RN | = −α ln |1− T̃ |+ β (40)

near the critical point. Fig. 8 shows the discrete points
and the fitted curves. Along the coexistence swollen
phase curve, we get the following fitting result,

ln |RN | = −2.00902 ln |1 − T̃ | − 5.01464 (41)

The result along the coexistence shrunken phase curve is,

ln |RN | = −1.99123 ln |1− T̃ | − 4.7542 (42)

Comparing Eqs. (41) and (42), we can deduce that the

slope of ln |RN | vs. ln |1− T̃ | is -2. Thus, the critical
exponent associated with scalar curvature is 2. Also, RN

as a function of T̃ is given by,

RN ∼ −(1− T̃ )−2 (43)

Based on the mean field theory, the critical exponent
associated with the correlation length ξ is 0.5 [3]. So
one may define the following relationship between the
curvature and the correlation length,

RN ∼ −ξ4 (44)

The critical exponent of 2 and the scaling law of Eq. (44)
establish that phase transition in gels indeed belongs to
the same universality class as van der Waals fluids and
black hole systems [44, 45, 54].

V. CONCLUSION

In view of various practical applications, discontinu-
ous volumetric phase transition in gels is of interest to
both scientific and industrial communities. A substan-
tive characterization of phase transition based on an un-
derstanding of the microstructure is thus crucial. In the
present article, we have studied phase separation dynam-
ics in the light of a Landau-Ginzburg theory in order to
gain an understanding of the transformative processes
underlying phase transition. We have used Ruppeiner’s
thermodynamic approach to probe the microstructure of
a polyacrylamide gel undergoing phase transition. The
divergence points in the Ricci scalar curvature indicate
diverging correlation length and hence large density fluc-
tuations. This implies phase segregation and a hetero-
geneous microstructure during transition. Further, the
uniform negative sign of the curvature indicates no dras-
tic change in the molecular interactions for the range
of temperatures considered. Finally, we have numeri-
cally calculated the critical exponent associated with the
scalar curvature and established a scaling law between
curvature and correlation length. We have thus theo-
retically confirmed that this phase transition belongs to
the same universality class as gas-liquid phase transi-
tion in van der Waals fluids. We may also draw infer-
ences on the gel microstructure across transitions and
across critical points. While the microstructure is phase-
segregated during transition and at critical point, no such
conclusion can be reached in the supercritical regime with
no singularities in curvature post the critical point. In
the supercritical regime, from the present approach, we
may merely assume that the nature of interactions does
not change and that the microstructure is homogeneous,



11

pending a more detailed study where curvature needs to
be analyzed at even higher temperatures with more accu-
rate notions of specific heat in line with [55]. In our future

work, we would also like to exploit our observations to
design efficient supercritical systems for biomedical and
structural applications.
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