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We investigate the moiré band structures and possible even denominator fractional quantum Hall
state in small angle twisted bilayer MoTe2, using combined large-scale local basis density functional
theory calculation and continuum model exact diagonalization. Via large-scale first principles cal-
culations at θ = 1.89◦, we find a sequence of C = 1 moiré Chern bands, in analogy to Landau levels.
Constructing the continuum model with multiple Chern bands and uniform Berry curvature in the
second moiré band, we undertake band-projected exact diagonalization using unscreened Coulomb
repulsion to pinpoint possible ν = −3/2 non-Abelian states across a wide range of twist angles below
θ = 2.5◦.

Moiré materials based on transition metal dichalco-
genides (TMDs) have emerged as a promising domain
for exploring novel quantum phenomena [1, 2]. Owning
to the substantial effective mass inherent to TMDs va-
lence bands and the persistence of narrow moiré bands
across various twist angles, these materials showcase a
diverse array of correlated electron states, character-
ized by pronounced interaction effects, including Mott
and charge-transfer insulators[3–10], generalized Wigner
crystals [5, 11–17], and quantum anomalous Hall (QAH)
effect [18]. Remarkably, recent transport experiments on
twisted MoTe2 have provided unambiguous evidences of
both integer and odd-denominator fractional quantum
anomalous Hall (QAH and FQAH) effects[19, 20], and
the signature for fractional quantum spin Hall effect at
hole filling factor ν = −3 [21]. The observations of FQAH
were made within a range of fairly large twist angles,
specifically θ ∼ 2.7◦ − 3.9◦, evidenced through both op-
tical [22] and compressibility [23] measurements, within
the first moiré valence band. While the recent experi-
ment on fractional quantum spin Hall (FQSH) effect [21]
at small angle θ ∼ 2.1◦ revealed the remarkable triple
quantum spin Hall effects, driving the interest to higher
filling factors and small twisted angles.

The realization of fractional quantum anomalous Hall
effect not only fundamentally broadens the spectrum of
topological phases of matter but also holds promising
prospects for harnessing the power of anyons in topologi-
cal quantum computations at zero magnetic field [24–28].
On the theory side, the fractional Chern insulator (FCI)
phases in topological flat band systems has been pro-
posed for over a decade [29–32]. In recent years, within
the graphene [33–36] and TMD [37, 38]-based moiré sys-
tem, theoretical predictions have pointed to such an ex-
otic state at partial filling of the topological moiré flat
band at long moiré wavelength. Non-Abelian quantum
Hall states such as the possible Moore-Read state [39]
at even-denominator filling factor ν = 5/2 has been dis-
cussed in Landau level [40]. Under particle-hole symme-
try breaking [41, 42] (e.g. Landau level mixing or local

three-body interaction), several numerical studies [43–46]
have shown that the Moore-Read Pfaffian (anti-Pfaffian)
state with six-fold ground state degeneracies may be fa-
vored. Early numerical studies proposed that topologi-
cal flat band models may host a fermionic non-Abelian
Moore-Read state under synthetic three-body interac-
tion [47] or long range dipolar interaction [48]. How-
ever, a realistic simulation of such a non-Abelian state
in a microscopic lattice model remains challenging. Re-
cent experiment on fractional quantum spin Hall effect
[21] indicates the possibility of a time-reversal pair of
the even-denominator 3/2 FQAH states, reveals a strong
candidate for the emergence of a non-Abelian state of
topological moiré minibands in twisted MoTe2. Moti-
vated by these developments, we theoretically analyze
and propose the realistic conditions for the emergence.

In this work, we start from the local basis first-principle
calculations and continuum model at θ = 1.89◦, and
study the possible non-Abelian state at ν = −3/2, filled
to the second moiré valence band. From local basis den-
sity functional calculations (DFT), we find the number
of C = 1 Chern bands increases from 2 [49, 50] to 5 when
twist angle changes from θ = 5.08◦ to θ = 1.89◦. The
Chern number of DFT bands are directly calculated from
Berry curvature and Wilson loop from DFT wave func-
tions. Moreover, we confirm the multiple C = 1 bands
from edge states calculations.

For the fitting the continuum model at θ = 1.89◦, we
constrain the parameter space via fixing the Chern num-
ber of top five valence bands and increasing the weight
of second moiré bands. With the small angle contin-
uum model, we find strong evidences for the Moore-
Read states through momentum-space exact diagonaliza-
tion spectrum in several different lattice geometries. The
ground state degeneracy and momentum locations fulfill
the generalized Pauli principle[51, 52] for Moore-Read
state [39] for even and odd number of electrons, simi-
lar to those in the half-filled first excited Landau level.
Our study provides a detailed study of multiple topolog-
ical bands in twisted MoTe2 and the continuum model
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FIG. 1. (a) Band structures for homobilayer MoTe2 with twist
angle 1.89◦, where the five flat bands near the Fermi level
possess a Chern number of C = 1. (b) Angle dependent band
width and number of C = 1 bands 1.89◦ to 5.08◦, calculated
by local-basis DFT. The black, green, and red dotted lines
denote for the band width of the first, second, and third band.
The blue dotted line represent for the number of C = 1 bands.
The evolution of Wannier charge center for the (c) first band
and (d) second band, indicating that C = 1.

for realizing non-Abelian states, paving the way for its
materials realizations.

DFT results for twist angle θ = 1.89◦. Here we
employ the local-basis OpenMX package, utilizing Pro-
jected Atomic Orbitals (PAOs) specified asMo7.0-s3p2d1
and Te7.0-s3p2d2 [53, 54]. The real-space Hamiltonian
is determined by the hopping strength between different
sites, while the overlap parameters are calculated using
the PAOs as follows:

Hiα,jβ =
∑
n

〈
ϕiα (r− τi) |Ĥ|ϕjβ (r− τj −Rn)

〉
Siα,jβ =

∑
n

⟨ϕiα (r− τi) | ϕjβ (r− τj −Rn)⟩
(1)

where i, j, α, and β represent atom and orbital indices,
τj and Rn denote for the atomic and lattice position.
Then, the eigenvalues Enγ and eigen-vectors vnγ,jβ can
be determined by the generalized eigenvalue problem:∑

jβ

(Hiα,jβ − EnγSiα,jβ) vnγ,jβ = 0 (2)

For simplicity, we rewrite the eigen-vectors vnγ,jβ as
|vn(k)⟩. The PBE exchange-correlation functional and
the norm-conserving pseudopotential [55] are employed
in the calculation with single Γ k-sampling, and we set
the convergence criterion as 6 × 10−5 Hartree. For the
twist angle of 1.89◦, there are 1838 Mo atoms and 3676
Te atoms, forming a Hamiltonian with 191152 dimensions

[56]. Since full diagonalization of such a Hamiltonian is
unrealistic in present hardware platform, we apply the
shift-and-invert trick, recasting the generalized eigenval-
ues problem to the eigenvalues problem, and then ap-
ply the Lanczos algorithm to get part of the eigenval-
ues near Fermi level as commonly used in linear-scaling
DFT [57, 58].
In twisted MoTe2, the twist angle emerges as a degree

of freedom for manipulating the electronic structures. As
shown in Fig. 1, our DFT calculations demonstrate a
clear trend: a decrease in the twist angle leads to a re-
duction in the bandwidth near the Fermi level. For a rel-
atively large twist angle of 5.08◦, the smallest bandwidth
is 29 meV for the second band, consistent with plane-
wave DFT [50, 56]. However, at the small twist angle of
1.89◦, five nearly flat bands emerge near the Fermi level,
with a small bandwidth of 2.9, 2.2, 5.3, 3.7, and 4.6 meV,
respectively. As a result of C2y symmetries, bands along
the ΓK lines are doubly degenerate, while a clear split-
ting is observed along the ΓM line as shown in Fig. 1(a).
Furthermore, our results show multiple band inversions
near a twist angle of 1.89◦, leading to the formation of
topological flat bands. These bands are distinctively sep-
arated from others by a band gap ranging from 1.9 meV
to 3.9 meV. The band separation hints at the possibility
of various QSH states [21], including single, double, triple
QSH states, with increased hole doping in the system.
With twisted Hamiltonian, we then proceed to study

the topological properties of narrow bandwidth moiré va-
lence band. We note the previous C3 symmetry indicator
at C3z symmetric momenta can not accurately determine
the Chern numbers with modulo three [37]. The precise
calculation requires the momentum space integration of
Berry curvature or Berry connection. Despite Kramer
pairs have a Chern number of zero due to time-reversal
symmetry, a significant Berry curvature can still mani-
fest within a single valley. To separate the single valley
from the Hamiltonian, we construct the valley operator
ŝz based on the atomic positions and orbital elements,
and separate the single-valley eigen-vectors |um(k)⟩ from
the entire eigen-vectors |vm(k)⟩ based on the expectation
value of ŝz:

Sz
mn(k) = ⟨um(k)|ŝz|un(k)⟩ (3)

Across the two-dimensional Brillouin zone, most of
the lines—excluding the ΓK and MK lines—are non-
degenerate, with their expectation values of ŝz approach-
ing either +1 or −1. For those lines that are degenerate,
a basis transformation is implemented to construct the
disentangled wavefunctions, characterized by expectation
values of +1 or−1. This allows us to feasibly separate the
single-valley eigenvectors from the valley-mixed eigenvec-
tors.

Therefore, the valley Chern number can be calculated
by the integral of the Berry curvature for the single-valley
eigen-vectors. Due to the large number of atomic or-
bitals, the Kubo formula approach requiring full diag-
onalization is inapplicable here. Therefore, we calculate
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the Berry curvature distribution F (k) through the Fukui-
Hatsugai-Suzuki method [59]:

U∆k(k) = det ⟨un(k) | um(k+∆k)⟩
F (k) = Im logU∆k1

(k)U∆k2
(k+∆k1)×

U−1
∆k1

(k+∆k2)U
−1
∆k2

(k),

(4)

where U∆k1
(k) is the overlap matrix between two neigh-

boring wave vectors, and un(k) denote for the single-
valley wave function for the nth band. By integrating
the Berry curvature over the entire Brillouin zone, the
Chern number for a single band can be determined by
the formula: Cn = 1

2π

∫
F (k)dk2. As shown in Fig. 2(a),

the distribution of Berry curvature is not uniform across
the Brillouin zone, highlighting significant topological in-
terest. To further verify the nontrivial characteristics,
we also examine the evolution of Wannier charge cen-
ters [60, 61]:

νn(ky) =

∫
⟨un(k) |∂kx

|un(k)⟩ dkx (5)

As illustrated in Fig. 1(c) and 1(d), the number of cross-
ings between the WCC and any horizontal lines is 1, in-
dicating the Chern number of 1. Furthermore, C = 1 for
top five moiré bands will lead to the presence of multi-
ple pairs of gapless edge states inside bulk gap. This is
clearly illustrated in Fig. S1(b), thereby confirming the
topological properties of the flat Chern bands.

Continuum model with high harmonic term. To
perform the many-body calculation, we start with the
continuum model for twisted MoTe2 [62]. Here we incor-
porate the higher-order harmonic terms for both inter-
layer and intra-layer coupling, extending up to the sec-
ond harmonics. Considering the significant momentum
difference between the two valleys (1/a ≫ 1/am), we ig-
nore the inter-valley coupling, focusing solely on the K
valley. Additionally, we limit our model to single-spin,
owning to the large Ising spin-orbit coupling in MoTe2.
As a result, we arrive at the following continuum model
for the K valley:

Ĥs =

[
− (k̂−Kt)

2

2m∗ +∆t(r) ∆T (r)

∆†
T (r) − (k̂−Kb)

2

2m∗ +∆b(r)

]
(6)

with:

∆l(r) = 2V1
∑

i=1,3,5

cos(g1
i · r + lϕ1) + 2V2

∑
i=1,3,5

cos(g2
i · r)

∆T = w1

∑
i=1,2,3

e−iq1
i ·r + w2

∑
i=1,2,3

e−iq2
i ·r

(7)

where k̂ is the momentum, Kt(Kb) is high symmetry
momentum K of the top(bottom) layer, ∆t(r)(∆b(r))
is the layer dependent moiré potential, l = +1 for top
layer and l = −1 for bottom layer; ∆T (r) is the inter-
layer tunneling, Gi is moiré reciprocal vector, g1

i and g2
i

FIG. 2. The Berry curvature distributions across the two-
dimensional Brillouin zone for the second band, calculated by
(a) first-principles calculations and (b) continuum model. We
note the distribution is similarly positive and uniform, and
sums to a Chern number of 1.

represent the momentum differences between the near-
est and second-nearest plane wave bases within the same
layer. Similarly, q1

i and q2
i denote the momentum differ-

ences between the nearest and second-nearest plane wave
bases across different layers.

To derive the parameters of continuum model, we
adopt two guiding principles in the fitting of DFT band
structures. Firstly, we ensure that the Chern numbers
for top five valence bands are equal to 1, close related
to Landau levels [63]. Subsequently, particular focus is
placed on the second band, for which we minimize the
error of band dispersion and Berry curvature distribu-
tion as much as possible. From our DFT calculation at
θ = 1.89◦, we obtain the parameters as:

ϕ1 = −90.0◦, V1 = 2.4 meV, V2 = 1.0 meV

w1 = −5.8 meV,w2 = 2.8 meV
(8)

The fitting results are shown in Fig. S1(a), where the
major topological features are captured in the contin-
uum model. Figure 2(b) displays the distributions of
Berry curvature, where both the shape and magnitude
closely resemble those obtained from DFT calculations.
Additionally, the new parameters effectively capture the
variation in the Chern number with the twist angle, as
demonstrated in Fig 4.(b), where the top three bands
consistently exhibit C = 1 within the range of 1◦ to 3◦. It
is found that the potential terms are significantly smaller
than those derived from the DFT bands at larger twist
angle θ > 2.89◦ [50, 56, 64, 65]. This difference indicates
that the parameters previously employed do not effec-
tively describe the higher moiré valence bands at small
twist angles (≤ 2.5◦).

Exact Diagonalization at ν = −3/2. With the con-
tinuum model tailored for θ = 1.89◦ and multiple Chern
bands, we project the interaction on the second moiré
bands, and start with the spontaneous spin polarized as-
sumption to reduce the Hilbert space dimension, which is
consistent with large anomalous Hall resistance at small
angle devices for filling factor 1 ≤ ν ≤ 2 [21]. The com-
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FIG. 3. Exact diagonalization spectrum. (a)/(b) The many-
body spectrum from the ED calculation on the 30(28) sites
cluster at filling factor ν = − 3

2
with the continuum model of

MoTe2 at θ = 2.0◦ and we use the dielectric constant ϵ = 5.
(c)/(d) The same calculation on the 1st Landau Level, which
agrees well with our results from continuum model.

plete many-body Hamiltonian is then expressed as:

H = Hs + V,

V =
∑
s,s′

1

2

∫ ∫
dr1dr2V (r1 − r2)ĉ

†
s(r1)ĉ

†
s′(r2)cs′(r2)cs(r1)

(9)
Here, Hs is the single particle continuum model Hamilto-
nian of hole and V is the Coulomb interaction, c†s(r) is the
creation operator of hole in real space ,s is the spin index
and we use long range Coulomb interaction:V (r1−r2) =

e2

ϵ|r1−r2| and choose the realistic dielectric constant ϵ = 5.

We then project the model Hamiltonian into the second
moiré valence bands:

Hs =
∑
nks

ϵnksa
†
nksanks,

V =
1

2

∑
nsk

V s1s2s3s4
n1k1n2k2n3k3n4k4

â†n1k1s1
â†n2k2s2

ân3k3s3 ân4k4s4 ,

V s1s2s3s4
n1k1n2k2n3k3n4k4

=

∫ ∫
dr1dr2V (r1 − r2)×

ψ∗
n1k1s1(r1)ψ

∗
n2k2s2(r2)ψn3k3s3(r2)ψn4k4s4(r1)

(10)

where n is the band index, a†nks is the creation operator
of Bloch states, ψnks is the eigen-vector of continuum

model, ĉ†s(r) =
∑

nks ψ
∗
nks(r)â

†
nks,

∑
n =

∑
n1n2n3n4

and
so on.

Our calculations focus on the filling ν = −3/2 of single
valley for twist angles within the range θ ∈ [1.5◦, 2.5◦],
which encompasses experimental twist angles [21]. Our
primary findings are depicted in Fig. 3, revealing several
quasi-degenerate ground states. Specifically, we identify
two-fold quasi-degenerate states for the 30-site cluster
(15 electrons),and six-fold degenerate states for the 28-
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FIG. 4. (a) The red dot denotes the band gap from the ED
spectrum, which is defined as the energy difference between
the quasi-degenerate states and the excited states. Besides,
the blue dot is used to represent the energy spread between
the quasi-degenerate ground states. Both data are derived
from our ED calculation performed on the 28 sites cluster.
(b) The number of bands which have chern number C = 1 in
the top five moiré bands from the continuum model, it agrees
well with the local basis DFT results as we show in Fig.1(b)
between 1◦ ∼ 3◦. (c) The fluctuation of Berry curvature of
the top two band in the continuum model. (d) The bandwidth
of top three moiré bands from the continuum model.

site cluster (14 electrons). Both the momentum loca-
tion and ground state degeneracy agree well with the
requirement of the generalized Pauli principle, where
no more than two particles in four consecutive orbitals,
called (2,2)-admissible “root” configuration[51, 52] . In
short, for an odd number of electrons, the possible (2,2)-
admissible“root” configuration [66] requires that only the
occupation partition “1010 · · · 101010” and its transla-
tional invariant partner“0101 · · · 010101” are allowed, ex-
plaining the two-fold degeneracy. But for even number of
electrons, there are six possible configurations, which ex-
plain the six-fold degeneracy as demonstrated in the Sup-
plemental Material. The different degeneracies observed
for odd and even number of electrons provide compelling
evidence suggesting that the ground states may be the
Non-Abelian Moore-Read states.
We then perform the twist angle dependent exact diag-

onalizations. Our analysis reveals that the energy spread
between degenerate states reaches a minimum around 2◦,
while the global gap peaks around 2.2◦, as depicted in
Figure 4(a). This observation suggests that the system
may offer optimal conditions for potential Non-Abelian
states at approximately 2◦. Moreover, we perform a com-
parative examination of the states within twisted MoTe2
and the 1st Landau Level (1st LL), uncovering notable
parallels, as depicted in Fig. 3. Additionally, we extend
our calculations to clusters of varying sizes, with de-
tailed methodologies outlined in the Supplemental Mate-
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rial. Together, these findings underscore the remarkable
similarity to the 1st LL across different system configu-
rations.

Given the preservation of particle-hole symmetry in
dispersionless Landau levels, the ground states are ex-
pected to be symmetrized Moore-Read states, comprising
superpositions of Pfaffian and anti-Pfaffian states, ow-
ing to potential finite size effects [43, 67, 68]. However,
the missing of particle-hole symmetry in our moiré band-
projected Hamiltonian would restrict the non-Abelian
nature of the ground states at ν = −3/2. Consequently,
further investigation is warranted to elucidate the precise
nature of the topological order in this context.

Conclusion and outlook. In this study, we inves-
tigate the single-particle electronic structures of small-
angle moiré MoTe2 with local basis DFT, exploring its
topological properties through Berry curvature and Wil-
son loop calculations. Specifically, we concentrate on
the second moiré band, constructing a continuum model
comprising up to five C = 1 Chern bands. This model
offers insight into various charge fractionalization phe-
nomena reminiscent of those observed in Landau level
systems.

Drawing an analogy to the first excited Landau level,
our exact diagonalization reveals a remarkably similar
many-body spectrum for ν = −3/2 in both even and odd
electron systems, providing compelling evidences for the
existence of non-Abelian states. We note that in realistic
situations, breaking the particle-hole symmetry will lead
to the favored Moore-Read Pfaffian. Numerically, the

Pfaffian or antiPfaffian nature of the ground states may
be distinguished by adding opposite three body inter-
actions, or density-matrix renormalization group calcu-
lation of their entanglement spectrum, originating from
the different edge structures.
The discovery of integer and fractional quantum Hall

effects in the moiré MoTe2 [19, 20] and pentalayer
graphene [69] at zero magnetic field provides ideal mate-
rial platforms for the realization of charge fractionaliza-
tion beyond the conventional two-dimensional electron
gas at high magnetic field. Similar to a partially filled
Landau level, a partially filled topological band can ex-
hibit a symphony of distinct phases as a function of fill-
ing factor, each bringing its own novelty as an impetus to
extend the frontier of condensed matter physics. While
earlier investigations primarily centered on first Chern
bands, our study broadens this focus to higher moiré
bands, uncovering a series of C = 1 bands, laying the
foundation for the study of higher filling factor fractional
states [21].
Note: Near the completion of this work, we became

aware of a related work [70], which studied the non-
Abelian state using Skyrmion model and its application
in twisted semiconductor bilayers.
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FIG. S1. (a) The comparative analysis of the band structures for twist angle 1.89◦. Blue points/lines illustrated the results from
OpenMX calculations, while the black line represents the fitting results from continuum model. (b) Band structure of twisted
MoTe2 nanoribbon, calculated from OpenMX hamiltonian. The trivial bulk states are shown in gray, while spin-up/-down edge
states are in red/blue.

s

FIG. S2. The DFT Berry curvature distributions of θ = 1.89◦ for the (a) top valence band and (b) second valece band.

Appendix

A. Lattice relaxation for homobilayer MoTe2 with twist angle 1.89◦

To relax the structure, we utilize the ab initio deep potential (DP) molecular dynamics method. Our methodology
begin with constructing 3×3×1 MM, MX, and XM configurations and 28 distinct intermediate transition states [71].
Each configurations are relaxed at a fixed volume and then subjected to 200 random perturbations. We then gather
initial data sets through 20 fs ab initio molecular dynamics simulations, calculating energies, forces, and virial tensors
using VASP. This data set is used to train the DP model, utilizing a descriptor (DeepPot-SE) for both angular
and radial atomic configurations and embedding layers mapping descriptors to atomic energies. Following initial
training, the model undergoes molecular dynamics simulations across various pressures and temperatures, generating
trajectories categorized based on model deviation. Selected configurations undergo self-consistent density functional
theory calculations for further training iterations. Furthermore, we expanded our training data with large-angle
twisted structures and applied transfer learning principles. By freezing embedding layer parameters and focusing
on the hidden and output layers, we construct the transform learning neural network that can be used to relax the
homobilayer MoTe2 with twist angle 1.89◦.
Details about openMX calculations. Our openMX basis are Projected Atomic Orbitals (PAOs) specified as

Mo7.0-s3p2d1 and Te7.0-s3p2d2 [53, 54]. The notation 7.0 indicates a cutoff radius of 7.0 Bohr. For Mo7.0-s3p2d1,
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(a) (b) (d)(c)

FIG. S3. The Finite-sized clusters we used in the ED calculations.

s3p2d1 denotes the inclusion of 3 sets of s-orbitals, 2 sets of p-orbitals, and 1 set of d-orbitals, totaling 14 atomic
orbitals. Similarly, Te7.0-s3p2d2 includes 3 sets of s-orbitals, 2 sets of p-orbitals, and 2 sets of d-orbitals, amounting
to 19 atomic orbitals. These configurations are used to perform the self-consistent calculations.

B. Chern number of top two band

Figure. S2(a) and S2(b) presents the distributions of Berry curvature. The Chern numbers, derived from the
integral of Berry curvature, are calculated to be 1 for both the first and second bands. Additionally, gapless edge
states are observed within the gaps between the first and second bands, as well as between the second and third
bands. This phenomenon is explicitly depicted in Fig. S1(b), thereby affirming the nature of multiple Chern numbers
within separate valleys.

C. The momentum geometry

We perform the ED calculation on the finite momentum cluster, which can be expressed with k = n1t1 +n2t2, and
n1, n2 are integers. Different geometries yield different values for t1 and t2. In this study, we utilize two unnormal
momentum cluster geometries:t1 = (Gm1 + 2Gm2)/6, t2 = (Gm1 −Gm2)/6 (Fig. S3(a))and t1 = (3Gm1 +Gm2)/14,
t2 = (−Gm1 + 2Gm2)/14 (Fig. S3(b)) and two other normal cluster geometry which we show in Fig. S3.

D. Other ED spectrum

In this part, we show the ED results on the 12-sites and 3x6 sites cluster, which displays two-fold quasi-degenerate
states for the 12-site cluster (6 electrons) and six-fold degenerate states for 3x6 cluster (9 electron). Both the
momentum and degeneracy agree with the predictions of the generalized Pauli principle. And it also reveals remarkable
similarities with the 1stLL, as illustrated in Fig. S4.

E. The momentum counting from generalize Pauli principle

With the generalized Pauli principle for Moore-Read states, which means there is no more than two electron in
four consecutive orbits, we calculate the momentum and degeneracy for the 28 sites and 30 sites cluster as we show
in Fig. S5 and Fig. S6. For 30 sites, only the occupation partition “1010 · · · 101010” and its translational invariant
partner“0101 · · · 010101” are allowed. And it also give the momentum 0 and 15 which agrees with our numerical
results. With 28 sites, there are six possibilities denoted as Ψgs1 through Ψgs6 . Additionally, the calculation of
the total momentum yields three pairs of states, each with a two-fold degeneracy, all of which match our exact
diagonalization results.
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FIG. S4. Exact diagnoalization spectrum. (a)/(b): the many-body spectrum from the ED calculation on the 18(12) cluster at
filling factor ν = − 3

2
with the continuum model of MoTe2 at θ = 2.0◦ and we use the dielectric constant ϵ = 5. And we use

periodic condition for the 18 site cluster and anti-periodic condition for 12 site cluster. (c)/(d):the same calculation on the 1st
Landau Level, which agrees well with our results from continuum model.

Momentum 28 sites

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 14

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 7 1 21

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 14

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 7 0 7

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 7 1 21

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 7 0 7

k2

k1
k1 + N1k2mod(∑ k1, N1) mod(∑ k2, N2)

ψgs1
ψgs2
ψgs3

ψgs6

ψgs5

ψgs4

FIG. S5. The counting that obeys the (2,4) admissible rule for 28 sites cluster as we show in Fig. S5.
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Momentum 28 sites

0 1 2 3 4 5

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 15

k1

k2
k1 + N1k2mod(∑ k1, N1) mod(∑ k2, N2)

ψgs1

ψgs2

FIG. S6. The counting that obeys the (2,4) admissible rule for 30 sites cluster as we show in Fig. S3(b).
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