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Abstract

We investigate the applicability of the well-known multilevel Monte Carlo (MLMC) method to the class
of density-driven flow problems, in particular the problem of salinisation of coastal aquifers. As a test case,
we solve the uncertain Henry saltwater intrusion problem. Unknown porosity, permeability and recharge
parameters are modelled by using random fields. The classical deterministic Henry problem is non-linear
and time-dependent, and can easily take several hours of computing time. Uncertain settings require the
solution of multiple realisations of the deterministic problem, and the total computational cost increases
drastically. Instead of computing of hundreds random realisations, typically the mean value and the vari-
ance are computed. The standard methods such as the Monte Carlo or surrogate-based methods is a good
choice, but they compute all stochastic realisations on the same, often, very fine mesh. They also do not
balance the stochastic and discretisation errors. These facts motivated us to apply the MLMC method. We
demonstrate that by solving the Henry problem on multi-level spatial and temporal meshes, the MLMC
method reduces the overall computational and storage costs. To reduce the computing cost further, paral-
lelization is performed in both physical and stochastic spaces. To solve each deterministic scenario, we run
the parallel multigrid solver ug4 in a black-box fashion.

Keywords: uncertainty quantification, ug4, multigrid, density-driven flow, reservoir, groundwater, salt for-
mations

1 Introduction
We investigate the applicability of the well-known multilevel Monte Carlo (MLMC) method to density-driven
flow problems, in particular the problem of salinisation of coastal aquifers. As a numerical test case, we consider
the well-known Henry problem in a stochastic setting. The novelty here is that parameters such as porosity,
permeability and recharge are not deterministic but stochastic (uncertain). The reason for the presence of
uncertainties is the lack of knowledge, inaccurate measurements, and the inability to measure parameters at
each spatial or temporal location. Although the deterministic Henry problem is well-known, the difficulties here
are that it is not clear how input uncertainties propagate through the non-linear, time-dependent problem. The
solution to be found is then the mean value and the variance of the salt mass fraction, both are functions of
space and time. An accurate estimate of the output uncertainties can facilitate a better understanding of the
problem, better decisions, and improved control and design of the experiment. From an implementation point
of view, we test how easy it is to couple multigrid and multilevel Monte Carlo solvers.

Salinisation of coastal aquifers. The intrusion of salt water occurs when the sea level rises and the
salt water moves onto the land [71]. This usually happens during storms, floods, droughts or when saltwater
intrudes into freshwater aquifers and raises the water table. As groundwater is an essential resource for food and
irrigation, its salinisation can be disastrous. Many hectares of farmland could be lost because it becomes too
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wet or too salty to grow crops. Therefore, accurate modelling of different saline flow scenarios is essential [1, 71]
to help farmers and researchers develop strategies to improve soil quality and reduce the impact of saltwater
intrusion.

Modeling. The saltwater flow is density driven and described by a system of time-dependent nonlinear
partial differential equations (PDEs). It is characterised by convection dominance and can exhibit very com-
plicated behaviour [81]. Uncertain parameters can have a strong influence on the flow and transport of salt.
Random fields are used to model these parameters.

There are a number of studies where authors have modelled uncertainties in reservoirs (see [12, 79]). The
link between stochastic methods and hydrogeological applications was made in [8], where the authors analysed a
collaboration between academics and water suppliers in Germany and made recommendations for optimisation
and risk assessment. The basics of stochastic hydrogeology and an overview of stochastic tools and uncertainty
management are described in [68].

The review [77] deals with hydrogeological applications of recent advances in uncertainty quantification,
probabilistic risk assessment and decision making under uncertainty. The author reviews probabilistic risk
assessment methods in hydrogeology under parametric, geological and model uncertainties. Density-driven
vertical transport of saltwater through the freshwater lens on the island of Baltrum (Germany) is modelled in
[62].

In [41], the authors examined the implications of transgression for a range of seawater intrusion scenarios
based on simplified coastal freshwater aquifer settings. They stated that vertical intrusion during transgressions
could involve density-driven convective processes, causing substantially greater amounts of seawater to enter the
aquifer and create more extensive intrusion than horizontal seawater intrusion in the absence of transgression.

History and preliminary results. This work is an extension and continuation of our preliminary works
[44, 43]. The original Henry saltwater intrusion problem was introduced by H.R. Henry in the 1960s (see [36])
and became a benchmark for numerical solvers for groundwater flow (see [81, 73, 72, 20]. In [66], the authors use
the generalised polynomial chaos expansion approximation to investigate how incomplete knowledge of system
properties affects the assessment of global quantities. In particular, they estimated the propagation of input
uncertainties into a few dimensionless scalar parameters.

Hydrogeological formations typically have complex and heterogeneous structures. These formations may
consist of several layers of porous media with different porosity and permeability coefficients (cf. [64, 70]).
Measurements of the layer positions and their thicknesses are only possible with a certain degree of error, and
average parameters are typically assumed for the materials within the layers. These layers are therefore excellent
candidates for random field modelling. Furthermore, due to the non-linearities in the problem, computing with
the averaged parameters does not necessarily lead to the mathematical expectation of the solution that can be
obtained by averaging over all scenarios.

Methods. Many techniques can be used to quantify uncertainties. One classical method is Monte Carlo
(MC) sampling. Although it is dimension independent, it converges very slowly, with a convergence rate of
O( 1√

N
). This method may not be affordable for time-consuming simulations. However, even modern techniques

such as surrogate models and stochastic collocation require a few hundred to a few thousand time-consuming
simulations and assume a certain smoothness of the quantity of interest (QoI).

Another class of methods is the class of perturbation methods [19]. The idea is to decompose the QoI
with respect to (w.r.t.) random parameters in a Taylor series. The higher order terms can be neglected for
small perturbations, simplifying the analysis and numerical tests. These methods assume that the random
perturbations are small. For larger perturbations, these methods usually do not work.

Other methods to compute the desired statistics of the QoI are direct integration methods, such as the
quasi-MC (QMC) [11], collocation methods and surrogate-based (generalized polynomial chaos approximation
[83, 46, 45, 76, 51] and stochastic Galerkin [3, 30, 23]) methods. Direct methods compute statistics directly by
sampling uncertain input coefficients and solving the corresponding PDEs, whereas the surrogate-based method
computes a cheap functional (polynomial, exponential, or trigonometrical) approximation of the QoI. Examples
of the surrogate-based methods are radial basis functions [49, 9, 50, 31], sparse polynomials [14, 7, 21], and
polynomial chaos expansion [54, 17, 82]. Surrogate methods are using some well-known functions such as the
multivariate Legendre, Hermite, Chebyshev or Laguerre functions [58, 83]. Advantages of surrogate methods
are: Once the model is constructed, it is easy to sample, and all the samples are almost free (much cheaper than
sampling the original stochastic PDE). The non-trivial part of surrogate models is to define which polynomial
order is needed and how accurately all coefficients should be computed. Another difficulty is that not every
function can be well approximated by a polynomial.

Sparse grid methods to integrate high-dimensional integrals are considered in [74, 10, 32, 40, 56, 27, 57,
17, 61]. An idea to generate goal-oriented adaptive spatial grids and use them in the multilevel MC (MLMC)
framework was presented in [22, 6].

The quantification of uncertainties in stochastic PDEs could be a significant challenge due to a) the large
possible number of involved random variables and b) the high cost of each deterministic solution of the governed
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PDE. The MC quadrature and its variance-reduced variants have a dimension-independent error convergence
rate O(N− 1

2 ), and the QMC has the worst-case rate O(logM (N)N−1), where N is the number of samples, and
M indicates the dimension of the stochastic space [52]. The MC method is not affected by the dimension of
the integration domain, such as collocations on sparse or full grid methods [2, 55]. A numerical comparison of
other QMC sequences is presented in [63].

This work has the following structure. Section 2 describes the Henry problem and numerical methods to solve
it. The well-known MLMC method is reviewed in Section 3. Next, Section 4 details the numerical results, which
include the numerical analysis of the Henry problem, the computation of different statistics, the performance
of the MLMC method, and the practical performance of the parallel ug4 solver for the Henry problem [36, 73]
with uncertain coefficients. Finally, we conclude this work with a discussion in section 5.

Our contribution and main results: We coupled the MLMC method with the multigrid method to
estimate the propagation of uncertainties in the Henry problem. We used random fields to model unknown
porosity, permeability and recharge. In our model, porosity and permeability are spatially dependent, random,
multi-scale and have two layers. The recharge is time dependent and uncertain. We have not simplified
our equations with the Boussinesq approximation, i.e. we have considered a more general case. We used
MLMC to compute the mean and variance of the mass fraction. In addition, several other quantities of interest
were computed, such as the total freshwater integral, the salt integral, the mass fraction computed at a point
and integrated over a small subdomain. We investigated which of these QoIs were more appropriate to be
computed by the MLMC method. To further speed up the computational process, we run all the MLMC
random simulations and each individual simulation in parallel. This work is not only of theoretical interest, but
also of practical interest; our modelling and solution allow us to answer the following questions:

1. How long can a particular drinking water well be used (i.e. when will the mass fraction of salt exceed a
critical threshold)?

2. Which part of the aquifer has particularly high uncertainty?

3. What is the probability that the salt concentration at a given location and time will exceed a threshold
value?

4. What is the mean scenario (and its variations)?

5. What are the extreme scenarios for the concentration of the salt?

6. How do the uncertainties change with time?

To the best of our knowledge, we are not aware of any other studies where Henry’s problem [36, 73] has
been solved in parallel using MLMC methods with uncertain porosity, permeability and recharge parameters.

2 Henry Problem with Uncertain Parameters

2.1 Problem setting
In coastal aquifers, saline seawater intruding into the formation from one side (the sea side) displaces pure
water from the other side due to water recharge from land sources and precipitation. Because of its higher
density, seawater tends to infiltrate along the bottom of the aquifer. This process can reach a steady state,
but may be time-dependent due to the periodicity of the recharge or the control of the pumping rate from the
wells. Accurate simulation of salinisation is essential for predicting the availability of water resources. However,
the accuracy of such predictions strongly depends on the hydrogeological parameters of the formation and the
geometry of the computational domain, denoted by D.

The aquifer D ⊂ Rd, d ∈ {2, 3}, can be modelled as an immobile porous matrix filled with liquid phase —
a solution of salt in water. Due to the inhomogeneous density distribution, gravity induces the motion of the
liquid phase. This motion transports the salt, which would otherwise be subject to molecular diffusion.

A simple but very illustrative model of coastal aquifers is the so-called Henry problem, first considered in
[36]. In this two-dimensional setting, the aquifer is represented by a rectangular domain D = [0, 2]× [−1, 0] [m2]
completely saturated with the liquid phase (Fig. 1). The salty seawater intrudes from the right and the pure
water recharges from the left. The top and bottom are assumed to be impermeable. Analogous settings with
partially saturated domains are considered in [75].

The mass conservation laws for the whole liquid phase and the salt give the following equations

∂t(ϕρ) + ∇ · (ρq) = 0, (1)
∂t(ϕρc) + ∇ · (ρcq− ρD∇c) = 0, (2)
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q̂in = 6.6 · 10−2kg/s

c = 0 c = 1

p = −ρ1gy

0
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Figure 1: (left) Computational domain D := [0, 2]×[−1, 0]; (right) the mass fraction c ∈ [0, 1] and the streamlines
of the velocity field q for the undisturbed Henry problem at t = 6016 s. The dark red colour corresponds to
c = 1 and the blue colour to c = 0.

where ϕ : D → R denotes the porosity, K : D → Rd×d represents the permeability of the porous matrix,
c(t,x) : [0,+∞)×D → [0, 1] is the mass fraction of the salt (or of the brine) in the solution, ρ = ρ(c) indicates
the density of the liquid phase, and D(t,x,q) : [0,+∞) × D×Rd → Rd×d denotes the molecular diffusion and
mechanical dispersion tensor. For the velocity q(t,x) : [0,+∞)×D → Rd, we assume Darcy’s law:

q = −K

µ
(∇p− ρg), (3)

where p = p(t,x) : [0,+∞) × D → R is the hydrostatic pressure, µ = µ(c) denotes the viscosity of the liquid
phase, and g = (0, . . . , 0,−9.8)T ∈ Rd represents the gravity vector. Inserting (3) into (1–2) results in a system
of two time-dependent PDEs in the unknowns c and p. This system should be closed with boundary conditions
for c and p and an initial condition for c.

Following the classical setting in [81], for this variant of the Henry problem (see also [72, 73]), we set

ρ(c) = ρ0 + (ρ1 − ρ0)c, µ = const (4)

and

D = ϕDI, with a scalar D ∈ R, and I ∈ Rd×d the identity matrix. (5)

Furthermore, we assume the isotropic permeability

K = KI, K ∈ R.

This setting is consistent with the problem setting in [81]. However, we do not assume the Boussinesq approxi-
mation and keep the density variable for all terms.

For the initial conditions, we set
c|t=0 = 0. (6)

The boundary conditions are presented in Fig. 1 (left). On the right side of the domain, we impose Dirichlet
conditions for c and p variables that represent the adjacent seawater aquifer:

c|x=2 = 1, p|x=2 = −ρ1gy. (7)

Parameter Values and Units Description
ϕ̂ := E [ϕ] 0.35 [-] mean value of porosity
D 18.8571 · 10−6 [m2 · s−1] diffusion coefficient in the medium
K̂ 1.020408 · 10−9 [m2] reference value of permeability
ρ0 1000 [kg ·m−3] density of pure water
ρ1 1024.99 [kg ·m−3] density of brine
µ 10−3 [kg ·m−1 · s−1] viscosity
κKC 2.088415 · 10−8 [m2] scaling in the Kozeny-Carman

Table 1: Parameters of the considered density-driven flow problem
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Figure 2: Positions of the 15 pre-selected points with small subdomains around them. The size of the subdomain
around point (xi, yi) is [xi − 0.1, xi + 0.1]× [yi − 0.1, yi + 0.1].

On the left side, we prescribe the inflow of fresh water:

c|x=0 = 0, ρq · ex|x=0 = q̂in, (8)

where ex = (1, 0)⊤, and q̂in is a constant. For the classical formulation of the Henry problem, this value was
set to q̂in = 6.6 · 10−2 kg/s in [81] or q̂in = 3.3 · 10−2 kg/s in [73, 72]. The Neumann zero boundary conditions
are imposed on the upper and lower sides of D.

An example of c(t,x) and the flow for the parameters from Table 1 (i.e. ϕ = ϕ̂ and K = K̂) is shown in
Fig. 1(right). The dark red colour corresponds to c = 1 (salt water) and the dark blue colour corresponds to
c = 0 (pure water). Due to its higher density, the saltwater intrudes into the aquifer at the bottom right. It
is pushed back by the lighter pure water coming from the left. This process creates a vortex in the flow at the
bottom right of the domain. The salt water enters at the lower part of the right boundary and diverts upwards
and to the right, back to the sea, forming a salt triangle. This flow does not transport the salt to the left
part of the domain. The salt moves further to the left by diffusion and dispersion and is washed out by the
recharge. In the classical formulation, this salt triangle initially grows with time but reaches a steady state (see
[81, 73, 72]). However, the initial non-stationary phase can take considerable time. Investigation of this phase is
particularly important to understand the behaviour of the system when the intensity of recharge varies, as may
occur, for example, due to climate change. We consider integrals over the whole domain D, which describes the
total amount of pure water and the total amount of salt (as in equations (35)–(36)). We also compute local
integrals over 15 small rectangular subdomains ∆1, . . . ,∆15, ∆i := [xi−0.1, xi+0.1]× [yi−0.1, yi+0.1] around
preselected points defined below. The list of selected points follows:

{xi := (xi, yi)i=1,...,15} = {(0.90,−0.95), (1.15,−0.95), (1.40,−0.95), (1.65,−0.95), (1.90,−0.95), (9)
(0.90,−0.75), (1.15,−0.75), (1.40,−0.75), (1.65,−0.75), (1.90,−0.75),

(0.90,−0.50), (1.15,−0.50), (1.40,−0.50), (1.65,−0.50), (1.90,−0.50)}

(see Fig. 2.) The reason we consider 15 points (and 15 small subdomains) is that not all points are “interesting”,
i.e., not all points have significant variation in c. MLMC reduces the variance, but if the initial variance is
smaller according to the prescribed tolerance, there is no point in using MLMC.

The knowledge of c at these spatial points may help track salinity changes over time in groundwater wells
and understand which areas in the aquifer are most vulnerable.

2.2 Modeling porosity, permeability, and recharge
The primary sources of uncertainty are the hydrogeological properties of the porous medium — porosity (ϕ)
and permeability (K) fields of the solid phase — and the freshwater recharge flux q̂x through the left boundary.
The QoIs are related to the mass fraction c, a function of ϕ, K, and the recharge. We model the uncertain ϕ
using a random field and assume K to be isotropic and dependent on ϕ:

K = KI, K = K(ϕ) ∈ R. (10)

The distribution of ϕ(x, ξ), x ∈ D, is determined by a set of stochastic parameters ξ = (ξ1, . . . , ξM ). Each
component ξi is a random variable depending on a random event ω. For concision, we skip ω and write
ξ := ξ(ω).
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The dependence in (10) is specific for every material. We refer to [59, 60, 18] for a detailed discussion. In
the proposed model, we use a Kozeny–Carman-like dependence

K(ϕ) = κKC · ϕ3

1− ϕ2
, (11)

where κKC is a constant scaling factor. The inflow flux is kept constant across the left boundary but depends
on the stochastic variable qin. We also assume that the inflow flux is independent of ϕ and K.

Remark 1 Equation (5) is a simplification typically adopted when the Henry problem is used as a benchmark,
see [81, 72, 73]. It is then assumed that D is not only the molecular diffusion coefficient but also includes
some dispersivity. In a more accurate model, the dispersion tensor should depend on the Darcy velocity q, for
example using the Bear-Scheidegger law (see [69, 5]). However, we note that the parameters of mechanical
dispersion depend on the configuration of the porous matrix (e.g. grain size) and therefore cannot be considered
independent of porosity and permeability in stochastic modelling. The influence of dispersion on the propagation
of uncertainties is therefore a non-trivial issue even from a modelling point of view. However, it should be
addressed in the future.

2.3 Numerical methods for the deterministic problem
The system (1–2) is numerically solved in the domain D × [0, T ], where × denotes the Cartesian product. D
is covered with a grid Dh of quadrilaterals with mesh size h. Equations (1–2) are discretized on Dh using a
vertex-centered finite-volume scheme as presented in [24, 25, 26]. The number of degrees of freedom associated
with Dh is denoted by n. There are two degrees of freedom per grid vertex in Dh: one for the mass fraction c
and another for the pressure p. Note that h = O(n−1/d), d = 2. We use the implicit Euler method with a time
step τ for time discretization. The number of the computed time steps is r = T/τ . Solution of the discretized
system yields the approximation ch,τ for c on this grid.

We use partial upwind for the convective terms (cf. [24]). Therefore, the discretization error is of the second
order w.r.t. the spatial mesh size h. However, Equation (2) is essentially convection dominated. For the grids in
the numerical experiments, the observed reduction of the discretization error after grid refinement corresponds
to the first order. Furthermore, the Euler method provides the first-order discretization error w.r.t. τ . Thus,
we assume the first-order dependence of the discretization error w.r.t. h and τ , i.e., as d = 2,

∥c− ch,τ∥2 = O(h+ τ) = O(n−1/2 + r−1), (12)

which is consistent with our numerical experiments.
The implicit time-stepping scheme provides unconditional stability but requires the solution of an extensive

nonlinear algebraic system of the discretized equations with n unknowns in every time step. The Newton
method is used to solve this system. Linear systems inside the Newton iteration are solved using the BiCGStab
method (cf. [4]) preconditioned with the geometric multigrid method (V-cycle, cf. [33]). In the multigrid cycle,
the ILUβ-smoothers [34] and Gaussian elimination are used as the coarse grid solver.

To construct the spatial grid hierarchy D0,D1, . . . ,DL, we start with a coarse grid D0 consisting of 512 grid
elements (quadrilaterals) and n0 = 1122 degrees of freedom. (nℓ denotes the number of degrees of freedom in
Dℓ.) Grid Dℓ of freedom is regularly refined twice to obtain grid Dℓ+1. We treat this as one spatial refinement
step. After every spatial grid refinement step, the number of grid elements is multiplied by 16, i.e., nℓ ≈ n0 ·16ℓ,
see Table 2). We also construct the temporal grid hierarchy T0, T1, . . . , TL. The time step on each temporal
grid is denoted by τℓ with τℓ+1 = 1

4τℓ. The number of time steps on the ℓth grid (level) is rℓ+1 = 4rℓ, so that
rℓ = r04

ℓ, where r0 is the number of time steps in T0. On the ℓth level, the MLMC uses the grid Dℓ × Tℓ.
According to (12), for the numerical solution cℓ = ch,τ on Dℓ × Tℓ, we have:

∥c− cℓ∥2 = O(4−ℓ). (13)

Up to four grid levels ℓ were used in the numerical experiments.
In the context of this work, it is critical to estimate the numerical complexity of the deterministic solver with

respect to the grid level ℓ. The most time consuming part of the simulation is the solution of the discretised
nonlinear system. It is usually difficult to predict the number of Newton iterations in each time step. But in our
numerical experiments, two Newton iterations were sufficient to achieve the required accuracy independently
on the grid level. Accordingly, the linear solver was called at most twice per time step. Furthermore, the
convergence rate of the geometric multigrid method does not depend on the mesh size (cf. [34]). Thus the
computational complexity of a time step is O(nℓ), where nℓ is the number of degrees of freedom at grid level ℓ.
Therefore, the total numerical cost of computing a scenario at grid level ℓ for rℓ time steps is

sℓ = O(nℓrℓ), sℓ ∝ sℓ−1 · 42 · 41 = 43 · sℓ−1. (14)
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3 Multilevel Monte Carlo
To reduce the total computing cost, we apply the MLMC method, which is a natural idea because the determin-
istic solver uses a multigrid method (see Section 2.3). The MLMC method efficiently combines samples from
various levels. A more in-depth description of these techniques is found in [15, 16, 28, 29, 35, 78, 48].

We let ξ(ω) and g(ξ) = g(ξ(ω)) represent a vector of random variables and the QoI, respectively, where ω
is a random event. In this work, g is an integral over some of ∆i’s or D with the integrand depending on c, s.
Section 4. The MLMC method aims to approximate the expected value E [g] with an optimal computational
cost. It constructs a telescoping sum, defined over a sequence of spatial and temporal meshes, ℓ = 0, . . . , L, as
described next, to achieve this goal. The QoI g, numerically evaluated on level ℓ, is denoted by ghℓ,τℓ,ℓ or, for
simplicity, by just gℓ, where hℓ and τℓ are the discretization steps in space and time on level ℓ. Furthermore,
we assume that E [gh,τ ] → E [g] as h → 0 and τ → 0.

Remark 2 Since the problem described in Subsection 2.1 is non-stationary, the quantities related to its solution
c below depend on time, too. Examples of time-dependent quantities are g, gℓ, E [gℓ], V [gℓ]. To keep our notation
simple, we do not explicitly specify the time argument for them. We shall only indicate it where it is essential.

Let s0 be the computing cost to evaluate one realization of g0 (the most expensive one from all computed
realizations on 0th mesh). Similarly, sℓ denotes the computing cost of evaluating gℓ − gℓ−1. For simplicity, we
assume that sℓ for gℓ − gℓ−1 is almost the same as sℓ for gℓ. The number of iterations is variable; thus, the cost
of computing a sample of gℓ − gℓ−1 may fluctuate for various realizations.

The MLMC method calculates E [gL] ≈ E [g] using the following telescopic sum:

E [gL] = E [g0] +

L∑
ℓ=1

E [gℓ − gℓ−1] (15)

≈ m−1
0

m0∑
i=1

g
(0,i)
0 +

L∑
ℓ=1

(
m−1

ℓ

mℓ∑
i=1

(g
(ℓ,i)
ℓ − g

(ℓ,i)
ℓ−1 )

)
. (16)

In the above equation, level ℓ in the superscript (ℓ, i) indicates that independent samples are used at each
correction level. As ℓ increases, the variance of gℓ − gℓ−1 decreases. Thus, the total computational cost can be
reduced by taking fewer samples on finer meshes.

In our numerical experiments nℓ = 16nℓ−1 = . . . = 16ℓn0 = 4dℓn0, d = 2, and rℓ = 4rℓ−1 = . . . = 4ℓr0. In
the case of uniform, equidistant mesh, we could also write similar formulas for step sizes: hℓ = hℓ−1 · 4−1 =
hℓ−2 · 4−2 = . . . = h0 · 4−ℓ and τℓ = τ0 · 4−ℓ.

We assume that the average cost of generating one sample of gℓ (the cost of one deterministic simulation for
one random realization) is

sℓ = O(nℓrℓ) = O(16ℓn0 · 4ℓr0) = O(42ℓn0 · 4ℓr0) = O(4(2+1)ℓγn0r0) = O(4d̂ℓγn0r0), (17)

where d̂ = d+ 1 = 3 and γ = 1.

Definition 3 Let Yℓ := m−1
ℓ

∑mℓ

i=1(g
(ℓ,i)
ℓ − g

(ℓ,i)
ℓ−1 ), where g−1 ≡ 0, so that

E [Yℓ] :=

{
E [g0] , ℓ = 0

E [gℓ − gℓ−1] , ℓ > 0
. (18)

Denote by Y :=
∑L

ℓ=0 Yℓ the multilevel estimator of E [g] based on L+ 1 levels and mℓ independent samples on
level ℓ, where ℓ = 0, . . . , L.

Furthermore, we denote V0 = V [g0] and for ℓ ≥ 1, let Vℓ be the variance of gℓ − gℓ−1: Vℓ := V [gℓ − gℓ−1].

The standard theory states the following facts for the mean and for the variance:

E [Y ] = E [gL] , V [Y ] =
∑L

ℓ=0 m
−1
ℓ Vℓ. (19)

The cost of the multilevel estimator Y is
S :=

∑L
ℓ=0 mℓsℓ. (20)

In the following, we repeat the well-known [29] results on the computation of the sequence m0, . . . ,mL. For
a fixed variance V [Y ] =: ε2/2, the cost S is minimized by choosing as mℓ the solution of the optimization
problem

minm0,...,mL
F (m0, . . . ,mL), (21)
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where F (m0, . . . ,mL) :=
∑L

ℓ=0

(
mℓsℓ + µ2 Vℓ

mℓ

)
, µ2 is a Lagrange multiplier. Thus, at the desired set of mℓ, the

derivatives of F w.r.t. mℓ are equal to zero:

∂F (m0, . . . ,mL)

∂mℓ
:= sℓ − µ2 Vℓ

m2
ℓ

= 0. (22)

Solving the system (22), we obtain

m2
ℓ = µ2Vℓ

sℓ
, i.e. mℓ = µ

√
Vℓ

sℓ
. (23)

Taking into account that the variation V [Y ] is fixed and substituting (23) into (19), i.e.
∑L

ℓ=0 Vℓ/mℓ = ε2/2,
we obtain an equation for µ:

L∑
ℓ=0

Vℓ

µ
√

Vℓ

sℓ

= 1
2ε

2.

From this equation, we get µ = 2ε−2
∑L

ℓ=0

√
Vℓsℓ, and therefore

mℓ = 2ε−2 ·
√

Vℓ

sℓ
·

L∑
i=0

√
Visi. (24)

For this set of mℓ, the total computational cost of Y is

S = 2ε−2

(
L∑

ℓ=0

√
Vℓsℓ

)2

. (25)

For further analysis of this sum, see [29], p.4.
The mean squared error (MSE) is used to measure the quality of the multilevel estimator:

MSE := E
[
(Y − E [g])2

]
= V [Y ] + (E [Y ]− E [g])

2
, (26)

where Y is what we computed via MLMC, and E [g] what actually should be computed. To achieve

MSE ≤ ε2

for some prescribed tolerance ε, we ensure that

(E [Y ]− E [g])
2
= (E [gL − g])2 ≤ 1

2ε
2 (27)

and
V [Y ] ≤ 1

2ε
2. (28)

The bias error (27) corresponds to the discretization error (13) discussed in Subsection 2.3. Later, in the
numerical Section we will see that E [Y ] − E [g] = O(4−αL) with α ≈ 1. The bias error can be made smaller
than ε2/2 by choosing a sufficiently large L. Then, for this L, we can compute optimal m0, . . . ,mL by formula
in (24) to provide (28).

Combining this idea with a sequence of levels of the simulation grids in which the cost increases exponentially
with ℓ while the weak error E [gL − g] and multilevel correction variance Vℓ decrease exponentially leads to the
following theorem (cf. Theorem 1, p. 6 in [29]):

Theorem 4 Consider a fixed t = t∗. Suppose positive constants α, β, γ > 0 exist such that α ≥ 1
2min(β, γd̂),

and

|E [gℓ − g] | ≤ c14
−αℓ (29a)

Vℓ ≤ c24
−βℓ (29b)

sℓ ≤ c34
d̂γℓ. (29c)

Then, for any accuracy ε < e−1, a constant c4 > 0 and a sequence of realizations {mℓ}Lℓ=0 exist, such that
MSE < ε2, where MSE is defined in (26), and the computational cost is

S =


c4ε

−2, β > d̂γ

c4ε
−2 (log(ε))

2
, β = d̂γ

c4ε
−
(
2+ d̂γ−β

α

)
, β < d̂γ.

(30)
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This theorem (see also [39, 38, 13, 15, 28]) indicates that, even in the worst-case scenario, the MLMC
algorithm has a lower computational cost than that of the traditional (single-level) MC method, which scales
as O(ε−2−d̂γ/α).

Remark 5 In Theorem 4, the factors c1, c2, c3, c4 as well as the exponents α, β and γ may generally depend
on the time point t∗. This makes L and mℓ time-dependent, too. In this work, we assume that there exist upper
bounds ĉi for the factors: ci ≤ ĉi, i = 1, . . . , 4, as well as the bounds for the exponents: α ≥ α̂, β ≥ β̂, γ ≤ γ̂
over the whole time interval [0, T ] (later, we will see that this assumption is confirmed by our numerical tests).
Then the corresponding L and mℓ computed from (27) and (24) are constant in time, too. For simplicity, in
what follows, we omit the hats and refer to these bounds.

Remark 6 In (27) and (28), ε is supposed to have the units of QoI g and to have the corresponding meaning.
For example, if g is the mass of the salt in a subdomain, measured in kg, then ε bounds the error of this mass.
This raises the question of appropriate scaling of ε.

Let E0 := |Et [E [g0]] |, where Et [·] is expectation w.r.t. time. In this work, it makes sense to consider the
error relatively to g. For this, in (27) and (28), we replace ε by ε · E0. Equivalently, we can divide (rescale)
E [gL − g] by E0 and Vi by E2

0 . Therefore, we get:

|E [gL − g] |
E0

≤ c14
−αL. (31)

Now, to satisfy (27), we want |E [gL − g] | ≤ 1√
2
ε · E0. From this inequality, we can estimate L:

c14
−αL =

ε · E0√
2

L = − 1
α log4

ε · E0√
2c1

. (32)

Equations (24) and (25) attain the form

mℓ =
2ε−2

E0
2 ·
√

Vℓ

sℓ
·

L∑
i=0

√
Visi, S =

2ε−2

E2
0

(
L∑

ℓ=0

√
Vℓsℓ

)2

. (33)

Note that although E0 is an inaccurate approximation of E [g], it is sufficient to be used in (32)–(33) for scaling
purposes. In contrast to E [gℓ] with ℓ > 0, E0 can be better estimated by the MLMC method as a large number
of samples are computed on the grid level 0.

Using preliminary numerical tests (see Fig. 10), we can estimate the convergence rates α for the mean (the
so-called weak convergence) and β for the variance (the so-called strong convergence), as well as the constants
c1 and c2. In addition, α is strongly connected to the order of the discretization error (see Section 2.3), which
equals 1. Note that precise estimates of parameters α and β are crucial to distribute the computational effort
optimally.

4 Numerical Experiments
In this section, we perform numerical tests with the MLMC method described above. One of our aims is to
compare the theoretical predictions with the obtained numerical results. We present two types of numerical
experiments. The first type (denoted by A1 - A3) demonstrate the solution in the whole domain, in a point,
and salt and fresh water integral values:

QS(t, ω) :=

∫
x∈D

c(t,x, ω)ρ(t,x, ω)dx, (34)

QFW (t, ω) :=

∫
x∈D

I(c(t,x, ω) ≤ 0.012178)dx, (35)

where I(·) is the indicator function identifying a subdomain {x : c(t,x, ω) ≤ 0.012178}. For these integrals, we
observe numerically α ≈ 2 (see (29)) that agrees with the theoretical value. The idea of these tests is to collect
more information about the problem.

Remark 7 Our motivation for the threshold 0.012178 (in (35)) is technical: it was used in our simulations of
coastal aquifers at the North Sea [71], where 1m3 of saltwater contains 35kg of salt (corresponding to c = 1 in
the model) and has a density of 1035 kg

m3 . Then the maximum recommended salinity of drinking water 412mg
l

corresponds to the scaled mass fraction c = 0.012178. The choice of this value is not essential.
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In the second type (denoted by B1-B4), as a QoI, we consider an integral over a small sub-regions around a
point (see the list of points in (9)):

Qi(t, ω) :=

∫
x∈∆i

c(t,x, ω)ρ(t,x, ω)dx, ∆i = [xi − 0.1, xi + 0.1]× [yi − 0.1, yi + 0.1], i = 1, . . . , 15. (36)

The value of Qi is the mass of the salt in a subdomain ∆i. The size of each ∆i is small (0.22 = 0.04), compared
to D. We choose the point with index 9 (see Fig. 2) and the corresponding domain ∆9 as an example. The
numerical scheme provides only the first order of the accuracy to compute Qi(t, ω), i.e., the convergence rate α
(weak convergence) should be ≈ 1 in (29a).

Uncertain porosity and recharge: Often unknown porosity is modelled by a random field. This ran-
dom field is approximated by a truncated Karhunen-Loéve expansion (KLE). KLE requires knowledge of the
covariance matrix, which is typically assumed to be from the very large Matérn class of functions. The KLE
components are computed by solving an auxiliary eigenvalue problem and assuming a random distribution for
the random variables. This approach is difficult and requires a separate article to describe it. We have imple-
mented a simple alternative. We used L2 orthogonal functions (sin() and cos()), which mimic the orthogonal
functions used in KLE. The uniform random variables used are also very common, usually one of three options
is chosen: uniform, Gaussian or log-normal.

Additionally, we assume the presence of two horizontal layers: y ∈ (−0.8, 0] (the upper layer) and y ∈
[−1,−0.8] (the lower layer). The porosity inside each layer is uncertain and is modeled as in (37):

ϕ(x, ξ) = 0.35 · C0(ξ1) · C1(x, y, ξ1, ξ2) · C2(x, y, ξ1, ξ2), (37)

where C0(ξ1) =

{
1.2 · (1 + 0.2ξ1) if y < −0.8
1 if y ≥ −0.8,

(38)

C1(x, y, ξ1, ξ2) = 1 + 0.15(ξ2 cos(πx/2)− ξ2 sin(2πy) + ξ1 cos(2πx)), (39)
C2(x, y, ξ1, ξ2) = 1 + 0.2(ξ1 sin(64πx) + ξ2 sin(32πy)). (40)

Random fields generated in this way provide: a) periodicity of high and low porosity areas in the aquifer; b)
multi-scale behaviour; c) spatial dependence. This approach has been agreed with the developers of the UG4
software, who have many years of experience in solving very realistic problems at an industrial level. The
recharge flux is also uncertain and is equal to

q̂in(t, ξ3) = −6.6 · 10−2(1 + 0.5 · ξ3)(1 + sin πt
40 ). (41)

Here ξ1, ξ2, and ξ3 are sampled independently and uniformly in [−1, 1].
Note that there are many ways to model recharge, and we chose to model it by a function of t with one

random variable ξ3. Of course, one can use more random variables to model the recharge, but we are limited by
the available computational resources (i.e., by the number of independent random variables which we can use).
Therefore, we decided to use only one RV. Taking into account a periodic nature of precipitations, we decided
to model it by a periodic function, for example, by sin(·).

In the settings of the classical Henry problem, the flux q̂in is simply prescribed. It models the flux of the
water coming from the “land” (due to rivers, precipitation etc.) to the coast. This means in the real situation,
on the one hand, q̂in should depend on the hydrogeological parameters of the medium further on the left, behind
the left boundary. And for these parameters, the same stochastic modeling should be applied. Furthermore,
this flux should depend on the flow inside the domain, i.e. on the porosity and the permeability in the problem
setting, and not only near the left boundary. These arguments reflect the general difficulties with imposing
realistic in- and outflow boundary conditions but their discussion is beyond the scope of our paper. This is a
modeling issue that must be considered aside of the numerical methods.

Note that the porosity (37) and therefore the permeability (11) are highly oscillating functions of the geomet-
ric coordinates (x, y). Input interfaces of some codes assume precalculation of these values and storing them in
e.g. vertex- or cell-centered rasters. During assembling of the discretized algebraic systems, these quantities are
interpolated at the integration points of the finite-volume or finite-element schemes. For multilevel approaches,
these points depend on the grids in the hierarchy, and the resolution of the rasters as well as the type of the
interpolation can influence the properties of the methods. In constrast to that, our implementation does not
involve precalculation of the porosity and the permeability fields, so that the values (37) and (11) are directly
evaluated at the integration points during the assembling phase. The same holds for the recharge (41) as a
function of time.

Figure 3 depicts a random realization of the porosity random field ϕ(ξ) for some ξ (left) and the corresponding
solution c(t,x, ξ) = c(t, ϕ(ξ)) at t = T (right). Additionally, four isolines {x : |c(T, ϕ(ξ)) − c(T )| = 0.1 · i},
i = 1, 2, 3, 4, are presented on the right, T = 6016 [s]. The isolines demonstrate the absolute value of the
difference between the computed realization c(t, ϕ(ξ)) and the expected value c(t).
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Figure 3: (left and center) A realisation of porosity ϕ(ξ∗) ∈ [0.18, 0.59] and permeability K ∈ [1.77e−10, 4.35e−
9]. (right) Corresponding mass fraction c(T,x, ϕ(ξ∗)) ∈ [0, 0.35] with isolines {x : |c(T, ϕ(ξ∗))− c(T )| = 0.1 · i},
i = 1, 2, 3, t = T = 6016 s.

Software and parallelization: The computations presented in this work were performed using the ug4
simulation software toolbox [37, 65, 80]. This software has been applied for subsurface flow simulations of
real-world aquifers (cf. [71]). The toolbox was parallelized using MPI, and the presented results were obtained
on the Shaheen II cluster provided by the King Abdullah University of Science and Technology. Every sample
was computed on 32 cores of a separate cluster node. Each simulation (scenario) was localized to one node to
reduce the communication time between nodes. All scenarios were concurrently computed on different nodes.
A similar approach was used in [45, 46]. Simulations times for one realization on different grid levels ℓ are
presented in Table 2.

4.1 Computation via QMC
The following calculations are performed using the QMC method with 600 samples (Halton sequence). These
numerical tests are not directly relevant to the MLMC method, but are used to better understand the uncer-
tainties in different QoIs.

Test A1. The mean and variance of the mass fraction are provided in Fig. 4 on the left and right, respectively.
The expectation takes values from [0, 1]. The value 0 corresponds to the blue colour and the value 1 to the
dark red. The variance range is [0, 0.04]. The areas with high variance (dark red) indicate regions with high
variability/uncertainty. Such regions may need additional attention from specialists (e.g., placement of sensors).
The right image displays four contour lines {x : Var[c](t,x) = 0.01 · i}, i = 1..4, t = T = 6016.

Figure 4: (left) Mean value c ∈ [0, 1] and (right) variance Var[c] ∈ [0.0, 0.04] of the mass fraction, with contour
lines {x : Var[c] = 0.01 · i}, i = 1..3, t = T = 6016 s.

We observed that the variability (uncertainty) of the mass fraction can vary from one grid point to another.
At some points (dark blue regions) the solution does not change. At other points (white-yellow regions) the
variability is low (light red regions) or high (dark red regions). In regions of high uncertainty, it is useful to
refine the mesh and apply the MLMC method.

Test A2. As a further numerical test, we want to know the range in which the mean and variance of the
QoI gℓ change. In Fig. 5 we visualise the mean E [c(t, x9, y9)] (on the left) and the variance Var[c](t, x9, y9) (on
the right) at the point (x9, y9), computed on mesh levels ℓ = 0, . . . , 3. So, we see that the mean changes in the
range ≈ [0, 30] and the variance in ≈ [0, 80]. Small oscillations (blue line) in the values E [g0] and V [g0] are due
to the oscillations in the recharge, sin() function in (41). This experiment gives us an idea of how to choose ε2

for the MSE error.
Test A3. 600 realisations of QFW (t) (left) and QS(t) (right) are shown in Fig. 6. Time is along the x axis,

t ∈ [τ, 48τ ]. In addition, five quantiles are represented by dotted curves from bottom to top and are 0.025,
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Figure 5: (left) Mean values E [c(t, x9, y9)] and (right) variances Var[c](t, x9, y9) of the mass fraction computed
on levels 0,1,2,3 vs. time t.

0.25, 0.50, 0.75 and 0.975 respectively. These plots can be used to identify worst case scenarios for freshwater
reserves.
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Figure 6: Six hundred realisations of the integral values QFW (t) (left) and QS(t) (right). The x-axis represents
the time t = 1τ, . . . , 48τ ; dotted curves denote five quantiles: 0.025, 0.25, 0.50, 0.75 and 0.975 from bottom to
top.

4.2 Numerical tests for the MLMC method
The following numerical experiments are required to demonstrate the work and efficiency of the MLMC method.
Test B1. The next QoI is the integral value as in (36). This integral can be estimates from above

|Q9(t, ω)| ≤
∫
x∈∆9

|c(t,x, ω)| · |ρ(t,x, ω)|dx ≤ 0.22 · 1000 · 1 = 40, (42)

where the density |ρ(t,x, ω)| ≤ 1000, |c(t,x, ω)| ≤ 1, and volume of ∆9 is 0.22. Figure 7 (left) shows the mean
value E [gℓ − gℓ−1] as a function of time for t ∈ [τ, 48τ ]. Figure 7 (right) shows the variance value V [gℓ − gℓ−1]
as a function of time for t ∈ [τ, 48τ ]. In both figures, as we move to finer and finer meshes, we can see that the
amplitude decreases, i.e. the accuracy increases.

Figure 8 shows 100 realisations of g1 − g0 (left), g2 − g1 (center), g3 − g2 (right). Here QoI gℓ is the integral
value as in (42) computed over a subdomain ∆9 for t ∈ [τ, 48τ ]. The amplitude of g1 − g0 (on the left) achieves
≈ 19, of g2 − g1 (in the middle) achieves ≈ 5.5, and the amplitude of g3 − g2 (on the right) achieves 1.2 (i.e. we
observe decay by factor ≈ 4).
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Figure 7: (left) The mean value E [gℓ − gℓ−1] and (right) the variance value V [gℓ − gℓ−1] as a function of time
for t ∈ [τ, 48τ ], ℓ = 1, 2, 3.
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Table 2 contains average computing times, which are necessary to estimate the number of samples mℓ at each
level ℓ. The fifth column contains the average computing time, and the sixth and seventh columns contain the
shortest and longest computing times. The computing time for each simulation varies depending on the number
of iterations, which depends on the porosity and permeability. We observed that, after ≈ 6016 s, the solution
is almost unchanging; thus, we perform the experiment only for t ∈ [0, T ], where T = 6016. For example, if the
number of time steps is rℓ = 94 (Level 0 in Table 2), then the time step τ = T

rℓ
= 6016

94 = 64 s.

Level ℓ nℓ, ( nℓ

nℓ−1
) rℓ, ( rℓ

rℓ−1
) τℓ = 6016/rℓ

Computing times (sℓ), ( sℓ
sℓ−1

)
average min. max.

0 153 94 64 0.6 0.5 0.7
1 2145 (14) 376 (4) 16 7.1 (14) 6.9 8.7
2 33153 (15.5) 1504 (4) 4 252.9 (36) 246.2 266.2
3 525825 (15.9) 6016 (4) 1 11109.8 (44) 9858.4 15506.9

Table 2: Number of degrees of freedom nℓ, number of time steps rℓ, step size in time τℓ, average, minimal, and
maximal computing times on each level ℓ.

Test B2. The QoI gℓ is the integral Q9 at t = 10τ (see (36)). In Figure 9 we compare the decay of E [gℓ]
and E [gℓ − gℓ−1] (left) and of V [gℓ] and V [gℓ − gℓ−1] (right). We can see that the decay of gℓ − gℓ−1 is much
faster.
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Figure 9: (left) Decay of E [gℓ − gℓ−1] and Vℓ in log-scale computed for levels 0,1,2,3 (horizontal axis). The QoI
is a subdomain integral Q9 at t = 10τ .

Test B3. The QoI is a subdomain integral Q9 of c over the subdomain ∆9 - a domain around the point
(x, y)9 = (1.65,−0.75) (see Fig.1 and (9)). The slopes in (10) can be used to estimate the rates of weak
(shown on the left) and strong (shown on the right) convergences (defined in (29a)-(29b)). Both graphs are in
logarithmic scale. The points on the horizontal axis correspond to the QoI calculated at levels 0, 1, 2 and 3.
We fit the graph of log4(E [gℓ − gℓ−1]) with a linear function −α · ℓ+ ζ1. The coefficients obtained are α ≈ 0.9
and ζ1 = 3.25. Furthermore, after fitting the graph of log4(V [gℓ − gℓ−1]) by a linear function −β · ℓ + ζ2, we
obtained coefficients β ≈ 1.7 and ζ2 = 4.8 (see Theorem 4).

Remark 8 Other QoIs have other parameter values. For example, for the freshwater integral QFW the coef-
ficients are: α = 1.82, ζ1 = 1.95, β = 2.5, ζ2 = −0.67. For the salt integral QS parameters are: α = 1.92,
ζ1 = 5.9, β = 2.5, ζ2 = 8.0.

Test B4. Using (25) we can compute the total cost of MLMC S = 2 · ε−2
(∑L

ℓ=0

√
Vℓsℓ

)2
, which we

compared with the estimated cost of the standard MC method SMC = 2 ·ε−2sL ·V [g0]. It is common in MLMC
papers to perform such comparison. The results of this comparison are visible in Table 3 and in Fig. 11. We can
see that MLMC outperforms MC by a factor of ≈ 30− 3000 depending on the MSE accuracy ε2. We can also
see the estimated number of required levels L and the numbers of samples {m0,m1,m2,m3} for each accuracy
ε2. These results are also visualized in Fig. 11. Additionally, to the MLMC and MC curves, we added two
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Figure 10: (left) Weak (α = 0.9, ζ1 = 3.2) and (right) strong (β = 1.7, ζ2 = 4.8) convergences in log-scale
computed for levels 0,1,2,3 (horizontal axis). The QoI is a subdomain integral Q9 at t = 10τ .

other graphics. The first one (violet dotted line, labelled “theory”) corresponds to the curve ε−(2+ d̃·γ−β
α ) (see

(30) from Theorem 4 for β < d̃γ, with β ≈ 1.7, d̃ = 3, γ = 1, α = 0.9). The second (yellow line) corresponds
to ε−2, and we labelled it “optimal”. Thus, the MLMC slope is 2 + d̃·γ−β

α = 2 + 3·1−1.7
0.9 = 3.44, and the MC

slope ε−2−3·1/0.9) = O(ε−5.3). Here γ = 1 and d = 3 (spatial dimension 2 plus temporal dimension 1), and the
required condition 0.9 ≥ 1

2min(1.7, 3) is satisfied.

ε 0.1 0.05 0.01 0.007
ε2 0.01 0.0025 0.0001 0.000049
MC cost, SMC 2.0 · 103 2.8 · 105 3.1 · 108 6.3 · 108
MLMC cost, S 6.4 · 101 1.3 · 103 8.9 · 104 1.8 · 105
required L 2 3 4 4
{m0,m1,m2,m3} {44, 5, 0, 0} {404, 49, 3, 0} {16672, 1990, 120, 4} {34024, 4062, 245, 7}

Table 3: Comparison of MC and MLMC and the number of samples on each level vs ε.
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Figure 11: Comparison of MC and MLMC for different values of ε (x-axes).
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5 Conclusion
We investigated the applicability and efficiency of the MLMC approach to the Henry-like problem with uncertain
porosity, permeability and recharge. These uncertain parameters were modelled by random fields with three
independent random variables. Permeability is a function of porosity. Both functions are time-dependent, have
multi-scale behaviour and are defined for two layers. The numerical solution for each random realisation was
obtained using the well-known ug4 parallel multigrid solver. The number of random samples required at each
level was estimated by calculating the decay of the variances and the computational cost for each level. These
estimates depend on the minimisation function defined in (21).

The MLMC method was used to compute the expected value and variance of several QoIs, such as the solution
at a few preselected points (t,x), the solution integrated over a small subdomain, and the time evolution of the
freshwater integral. We have found that some QoIs require only 2-3 mesh levels and samples from finer meshes
would not significantly improve the result. Other QoIs require more grid levels. Note that a different type of
porosity in (37) may lead to a different conclusion.

The numerical results confirm that the computational cost of the MLMC method is lower than that of the
MC method. Therefore, sampling at different mesh levels is useful and helps to reduce the overall computational
cost.
Constraints. 1. It may happen that the QoIs calculated at different mesh levels are very similar. In this case
the default (Q)MC is sufficient. 2. The time dependence is challenging: the optimal number of MLMC samples
depends on the QoI. For example, this number may be large for the solution computed at one point (t,x) and
small for the solution computed at another time. 3. Each new QoI requires new estimates of all parameters α,
β, γ, and the resulting MLMC graphs may be very different.
Future work. 1. It would be beneficial to consider a more complicated/multiscale/realistic porosity and
permeability with more random variables. 2. A more advanced version of MLMC may give better estimates of
the number of levels L and the number of samples on each level mℓ. 3. Known experimental and measured data
of porosity, permeability, velocity or mass fraction could be used to identify unknown parameters and minimise
uncertainties [42, 47, 53, 67].
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Notation
RV random variable

QoI g quantity of interest g
(q)MC (quasi-) Monte Carlo
MLMC Multilevel Monte Carlo

L number of mesh levels
D computational spatial domain

D0,D1, . . . ,DL hierarchy of spatial meshes
T0, T1, . . . , TL hierarchy of temporal meshes

sℓ, S complexity on level ℓ, total complexity
hℓ (or h), nℓ spatial step size and number of spatial degrees of freedom on level ℓ
τℓ (or τ), rℓ time step size and number of time steps on level ℓ

mℓ number of samples (scenarios) on level ℓ
ω, ξ(ω) random event and random vector
E [·], V [·] expectation and variance w.r.t. RV ξ
Et [·] expectation w.r.t. the time t
Θ multidimensional domain of integration in parametric space

ϕ(x, ω) porosity random field
K(x, ω) permeability random field
ρ(x, ω) density random field
q(t,x, ω) volumetric velocity

D tensor field D = D(q): molecular diffusion and dispersion of salt
κ̄(x) expectation of κ(x, ω)
d physical (spatial) dimension
d̂ total dimension, d̂ = d+ 1

c = c(t,x, ω) mass fraction of salt (solution of the problem)
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