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Relativistic exponential−type spinor orbitals

and their use in many−electron Dirac equation solution

A. Bağcı∗

Department of Physics, Faculty of Sciences, Pamukkale University, Çamlaraltı, Kınıklı Campus, Denizli, Turkey

Dirac−Coulomb type differential equation and its solution relativistic exponential−type spinor or-
bitals are introduced. They provide a revised form for operator invariants, namely Dirac invariants,
simplifying the treatment of the angular components in calculation of many−electron systems. The
relativistic Coulomb energy is determined by employing a spectral solution to Poisson’s equation
for the one−electron potential, which is expressed in terms of radial functions involving incomplete
gamma functions. The computation for incomplete gamma functions posses challenges due to slow
convergence rate associated with their series representation. Such difficulties are eliminated through
use of the bi−directional method along with hyper−radial functions. A new formulation for rela-
tivistic auxiliary functions that improve the efficiency in Coulomb energy calculations is presented.
These formulations also contribute to inquiring into orthogonal expansions for solutions to Pois-
son’s equation using complete orthonormal sets of exponential orbitals with non−integer principal
quantum numbers. They may provide a meaningful alternative series representations.
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I. INTRODUCTION

The hydrogenic Dirac equation [1, 2] solutions
[3–6] reveal that basis functions used in studying
many−electron systems with the linear combination of
atomic spinors method (LCAS) [7–11] are expected to
possess non−integer quantum numbers. The Dirac equa-
tion for quantum mechanical characterization of an elec-
tron moving through the Coulomb potential around a
fixed−point−like nucleus of charge Ze, where e is the
proton charge and Z is the atomic number, is given as,

ĤDΨ = EΨ, (1)

where,

ĤD = c(~α.~̂p) +m0c
2β − Ze2

r
(2)

is the one-electron Dirac operator (in atomic units (a.u.);
ℏ = 1, m0 = 1 and e2/4πǫ0 = 1).
Following the standard terminology for positive en-
ergy solutions, the two−component form of the
four−component electron spinor wave function can be
expressed as: [12],

Ψp∗ (~r) =

(

ψL
p∗

1

(~r)

ψS
p∗

2

(~r)

)

. (3)

with labels L, S, used to denote the terms large and
small, respectively. p, pi are used to represent sets of
quantum numbers. In two−component form of solution
to the Dirac equation p, pi are defined as, p = p1 =
{n∗, κ,m}, p2 = {n∗,−κ,m}. Here, n∗, n∗ ∈ R/N are

∗ abagci@pau.edu.tr

the principal quantum numbers, κ. κ = {±1,±2, ...} are
the secondary total angular momentum quantum num-
bers and m are the magnetic quantum numbers.
In the non−relativistic limit, the lower components of
Eq. (3) go to zero, while the upper components become
a solution to the corresponding non−relativistic equa-
tion, namely the Schrödinger equation [13]. A recent de-
velopment has seen the derivation of complete and or-
thonormal wave−functions with non−integer quantum
numbers, applicable to solving Schrödinger−like equa-
tions [14].

• This study primarly focus on spinor
wave−functions as solutions to Dirac−type
equations. Their non−relativistic limit directly
corresponds these newly derived wave−functions.

In terms of many−electron systems, aforemen-
tioned generalization for one−electron Hamiltonian
eigen−functions also requires revisiting the application
of the Poisson equation to the quantum mechanical
Coulomb problem.
One can express the Coulomb energy related with charge
density ρ (~r) as [15],

E [ρ] =

∫ ∫

ρ (~r1) ρ (~r2)

|~r1 − ~r2|
d~r1d~r2 (4)

Applying Poisson’s equation transforms the Eq. (3) into
one−electron kinetic energy−type integral:

E [ρ] = − 1

4π

∫

V (~r)∆2
~rV

∗ (~r) d~r

=

∫

V (~r) ρ (~r) d~r (5)

Eq. (5) is obtained by applying Green’s theorem, taking
into account both the Laplacian’s Green’s function and
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the charge density as described by the Poisson equation.
Here, V is the one−center potential and V ∗ is the com-
plex conjugate of V .
Within the relativistic framework, calculating the
Coulomb energy through one−center potential expansion
using spectral forms [16, 17] demands employing a new
set of basis functions characterized by non−integer prin-
cipal quantum numbers [18],

V (~r) =
∑

n∗lm

Fn∗lm (ζ, ~r) Cn∗lm (6)

The spectral forms are separated in spherical coordinates
as,

Fn∗lm (ζ, ~r) = Nn∗ (ζ) fn∗l (ζr) Ylm (θ, ϕ) (7)

Ylm are complex or real spherical harmonics [19]. The
radial functions are given as,

fn∗l (x) = Γ (n∗ + l + 1)
1

xl+1

{

P [n∗ + l + 1, x]

+
x2l+1

(n∗ − l)
Q [n∗ − l, x] .

}

(8)

P [a, x], Q [a, x] are regularized gamma functions with,

P [a, x] =
γ [a, x]

Γ (a)
, Q [a, x] =

Γ [a, x]

Γ (a)
, (9)

γ [a, x], Γ [a, x] are incomplete and complementary in-
complete gamma function, respectively [20]. The expres-
sion for the radial functions remain consistent with that
in [16]. However, the gamma functions now involve pa-
rameters with non−integer values, which complicates the
computation of both the radial functions and the associ-
ated integrals.
The atomic and molecular two−electron Coulomb en-
ergy have recently been expressed by the authors in
terms of new hyper−radial functions [21] and relativis-
tic molecular auxiliary functions [18, 22–25]. These func-
tions have been obtained through bi−directional method
[21] and revisiting procedure of solving Poisson’s equa-
tion for two−center case using spectral forms, respec-
tively. Symmetry features of the Coulomb energy, as de-
fined in [22] by a criterion, are used to obviate the
need for immediate expansion of incomplete gamma
functions. Direct computation of the Eq. (8) however,
depends on accurate calculation of incomplete gamma
functions. Additionally, these functions are encountered
when addressing the quantum electrodynamics effects by
Dirac−Coulomb−Breit equation [26, 27] (see also refer-
ences therein). The incomplete gamma functions were in-
vestigated by numerous authors from the mathematical
point of view [28–31]. They are yet, still subject to some
research because various domains of convergence, contin-
gent upon parameters, can be constructed for any repre-
sentation (recurrence relationships, continued fractions,
infinite series expansion formulas, or asymptotic meth-
ods) of them [32–35].

• The second aspect of this study is to demonstrate
how the symmetry properties arising in physical
systems can be utilized to provide insights into a
longstanding problem in mathematics. We consider
the bi−directional method, allows benefit form the
symmetry features of Coulomb energy to calculate
the most basic higher transcendental functions, in-
complete beta and gamma functions.

Consider the following expansion for a function xn
∗

eζr

[36],

xn
∗

eζr = (1− ζ)
−n′∗

−n∗
−1 Γ (n′∗ + n∗ + 1)

Γ (n′∗ + 1)

×
∞
∑

k=0

2F1

[

−k, n′∗ + n∗ + 1;n′∗ + 1;
1

1− ζ

]

× Ln′∗

k (x) (10)

n∗ ∈ R/N, Re (n∗ + n′∗) > −1, ζ ∈ (−∞, 1/2).

2F1 [a, b; c;x] are Gauss hyper−geometric functions
[37]. Lp

q−p (x) are Laguerre polynomials. Γ (n∗) is the
gamma function. Eq. (10) plays an essential role in un-
derstanding the one-center exponential−type electron
wave−function expansion. xn

∗

eζr is however, analytic at
the origin only if n∗ = n, n ∈ N. When ζ = 0, the series
simplifies to a single, closed−form expression due to its
termination [36].
In case that n∗ ∈ R/N, the Eq. (10) simplifies to,

xn
∗

=
Γ (n∗ + n′∗ + 1)

Γ (n′∗)

∞
∑

k=0

(−n∗)k
(n′∗ + 1)k

Ln′∗

k (x) , (11)

(n∗)k = Γ (n∗ + k) /Γ (n∗) is the Pochhammer symbol.
After substituting the explicit expression of generalized
Laguerre polynomials into the equation and rearrang-
ing order of summation, the expression is found to in-
volve generalized 1F0 [k − n∗; ;x] hyper−geometric func-
tions with x = 1, converging only if |x| < 1.

• The third aspect of this study is analysis of
non−existence of expansions in terms of orthog-
onal polynomials for general power functions, a
nontrivial research area. This analysis is conducted
through the aforementioned approximations pre-
sented by the authors.

II. RELATIVISTIC EXPONENTIAL−TYPE

SPINORS ORBITALS

Newtonian generalization for radial parts of
non−relativistic exponential−type orbitals to
non−integer quantum numbers are given as [14],

Ψαε
n∗lm (~r, ζ) = Rαǫ

n∗l (r, ζ) Ylm (θ, ϕ) , (12)

Here, the radial parts Rαǫ
n∗l are dedined as,

Rαǫ
n∗l (r, ζ) = Nαε

n∗l (ζ) (2ζr)
l+ε−1

L2l+2ε−α
n∗−l−ε (2ζr) (13)
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where, ε 6= 0, ε ≤ 1, ζ > 0 and α > −3. Nn∗l are nor-
malization constants,

Nαε
n∗l (ζ)

[

(2ζ)
3
Γ (n∗ − ε− l + 1)

(2n∗)
α
Γ (n+ ε+ l+ 1− α)

]1/2

(14)

The Eq. (13) was established via following orthogonality
relationship for the generalized Laguerre polynomials,

∫

∞

0

(2ζr)
p∗

e−2ζrLp∗

q∗−p∗ (2ζr)L
p∗

q′∗−p′∗ (2ζr) dr

=
Γ (q∗ + 1)

Γ (q∗ − p∗ + 1)
δq∗−p∗,q′∗−p′∗ , (15)

and methodology of fractional calculus. For a compre-
hensive treatment of fractional calculus refer to [38–40].
Recently postulated variants of quantum numbers, based
on the definition of Laguerre polynomials for fractional
values, are first generalized to the relativistic case.
This is achieved by considering the non−relativistic
limit of the Dirac−Coulomb equation, where the solu-
tions should satisfy the generalized Coulomb−Sturmians
(α = 1 in the Eq. (13)). Here, generalized refers to
Coulomb−Sturmians with quantum numbers that can
take non−integer values.
We start by definition of the radial quantum numbers
that caunt the number of nodes or zeros in large compo-
nents [13, 41]

nr = n∗ − |κ∗| (16)

Power series solution of hydrogenic the Dirac equation
leading two more terms [42],

γ∗ =

√

κ∗2 − Z2

c2
, N∗

n
r
,κ∗ =

√

nr
2 + 2nrγ

∗ + κ∗2

(17)

In the non−relativistic limit (c→ ∞), from Eq. (13)
we can write,
For κ∗ < 0,

κ∗ = − (l + ε) , nr = n∗ − (l + ε) , γ∗ = |κ∗|,
N∗

n
r
,κ∗ = |nr + κ∗| = n∗ − (l + ε) + l + ε = n∗. (18)

Thus,

N∗

n
r
,κ∗ − κ∗

nr + 2γ∗
= 1 (19)

For κ∗ > 0,

κ∗ = l + ε− 1, nr = n∗ − l − ε+ 1, γ∗ = |κ∗|,
N∗

n
r
,κ∗ = |nr + κ∗| = n∗ − (l + ε− 1) + l+ ε− 1 = n∗,

(20)

and

N∗

n
r
,κ∗ − κ∗

nr + 2γ∗
=

nr

nr + 2l+ 2ε− 2
. (21)

In line with the established theory of L−spinors [3, 4,
42], the non−relativistic limit of the large components in
relativistic exponential−type spinors manifests a specific
form, represented by:
For κ∗ < 0,

lim
c→∞

f εL
n
r
l∗ (2ζr) = const. (2ζr)

l+ǫ
e−ζr

×
{

−L2l+2ε
n
r
−1 (2ζr) + L2l+2ε

n
r

(2ζr)
}

(22)

Applying the following relationship for Laguerre polyno-
mials [37],

Lp∗
−1

q∗−p∗ (x) = Lp∗

q∗−p∗ (x)− Lp∗

q∗−p∗
−1 (x) (23)

We have,

lim
c→∞

f εL
n
r
l∗ (2ζr) = const.Rαǫ

n∗l (r, ζ)

= const. (2ζr)
l+ǫ

e−ζrL2l+2ε−1
n
r

(2ζr) (24)

For κ∗ > 0,

lim
c→∞

f εL
n
r
l∗ (2ζr) = const. (2ζr)l+ε−1 e−ζr

×
{

−L2l+2ε−2
n
r
−1 (2ζr)

+
nr

nr + 2l+ 2ε− 2
L2l+2ε−2
n
r

(2ζr)

}

. (25)

With regard to a distinct form of Laguerre polynomials
[37],

(q∗ + 1)Lp∗

q∗−p∗ (x)− (q∗ − p∗ + 1)Lp∗

q∗−p∗+1 (x)

× = xLp∗+1
q∗−p∗ (x) , (26)

we obtain an expression identical to Eq. (24).
The given definitions for quantum numbers, provide ac-
curate description for solution in the non−relativistic
limit, prompt us to seek for a solution such that it fulfills
the following criteria:

{

f εL
n
r
l∗ (2ζr) + f εS

n
r
l∗ (2ζr)

}

= − (2ζr)
γ∗

e−ζrL2γ∗

n
r
−1 (2ζr) (27)

{

f εL
n
r
l∗ (2ζr)− f εS

n
r
l∗ (2ζr)

}

=
N∗

n
r

− κ∗

nr + 2γ∗
(2ζr)

γ∗

e−ζrL2γ∗

n
r

(2ζr) . (28)

The radial parts relativistic exponential−type spinor or-
bitals are extracted as,

f εβ
n
r
l∗ (2ζr) = (2ζr)γ

∗

e−ζr

{

−
(

1− δn∗

r
0

)

2
L2γ∗

n
r
−1 (2ζr)

+β
N∗

n
r

− κ∗

2 (nr + 2γ∗)
L2γ∗

n
r

(2ζr)

}

. (29)
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Here β ∓ 1 is used to represent large− and
small−component of the spinor orbitals, respectively.
Through application of Eq. (26) within the standard
derivation for Laguerre polynomials in the form,

x
d

dx
Lp∗

q∗−p∗ (x) = (q∗ − p∗)Lp∗

q∗−p∗ (x)

+ (q∗)Lp∗

q∗−p∗−1 (x) (30)

and

x
d

dx
Lp∗

q∗−p∗ (x) = (q∗ − p∗ + 1)Lp∗

q∗−p∗+1 (x)

− (q∗ + 1− x)Lp∗

q∗−p∗ (x) (31)

we obtain the differential equation corresponding to the
solution in Eq. (29) as,

d

dr
f εβ

n
r
l∗ (2ζr) = −βκ

∗

r
f εβ

n
r
l∗ (2ζr)

+

(

βN∗

n
r

− γ∗ − n∗

r
+ ζ

)

f ε−β
n
r
l∗ (2ζr) , (32)

with,

l =

{

−κ∗ − ε if κ < 0

κ∗ − ε+ 1 if κ > 0

l∗ =

{

−κ∗ if κ < 0

κ∗ + 1 if κ > 0

(33)

The description of integrable systems involves a set of
independent commuting operators, given by:

H =
{

Ĥ1, Ĥ2, Ĥ3, ..., Ĥk

}

, (34)

k represents the number of degrees of freedom, while the
set H comprises the Hamiltonian and operators of the
integrals of motion, namely, invariants. Integrability of
Dirac Hamiltonian for an electron in the Coulomb po-
tential is provided by the following sets of operators [43],

H =
{

ĤD, Ĵ
2, ĵz, K̂

}

, (35)

ĤD the Dirac−Hamiltonian given in the Eq. (2), Ĵ is the
total angular momentum operator with,

Ĵ = L̂Î +
1

2
Σ̂ (36)

and ĵz is projection of Ĵ . K̂ is the Dirac invariant:

K̂ = Π̂.L̂+ β̂ (37)

α̂ =

(

0 σ̂
σ̂ 0

)

, β̂ =

(

Î 0

0 −Î

)

, Σ̂ =

(

σ̂ 0
0 σ̂

)

, (38)

Π̂ = β̂Σ̂ =

(

σ̂ 0
0 −σ̂

)

, (39)

I is 2×2 identy matrix. In accordance with Eq. (33), the
connection between the eigenvalues of the total angular
momentum operator Ĵ and the operator K̂ is determined
by,

κ∗ =

{

−
(

j + ε− 1
2

)

if κ∗ < 0

+
(

j + ε− 1
2

)

if κ∗ > 0
. (40)

Based on Eqs. (36, 40) and the methodology used to de-
rive the general space−time [44–47] formulations for the
Dirac and Schrödinger equations, it becomes evident that
a re−definition of the kinetic energy operator is required.
Such revision calls for altering the expression for the mo-
mentum operator. Derivation of a Hermitian momentum
operator in atomic units (a.u.), grounded in the connec-
tion between the Dirac−Landau identy and the explicit
matrix form expression for the total angular momentum
operator,

(

σ̂.Â
)(

σ̂.B̂
)

=
(

Â.B̂
)

+ i.σ̂.Â× B̂, (41)

Ĵ2 =





(

L̂2 + 3
4

)

Î + σ̂L̂ 0

0
(

L̂2 + 3
4

)

Î + σ̂L̂



 , (42)

respectively. Building upon the analysis and the consis-
tency criteria established in Eqs. (32, 33, 35, 36, 37),
and Eq. (40), we postulate the following form for the
kinetic energy operator. A comprehensive exploration of
its properties and ramifications is beyond the scope of
this study and is reserved for next investigation.

The
(

~σ.~̂p
)

is replaced by,

(

~σ.~̂pε

)

=
1

r2

(

σ̂.r̂
)(

σ̂.r̂
)(

σ̂ × ~̂pε

)

=
1

r2

(

σ̂.r̂
)[

r̂.~̂pε + i
(

σ̂.L̂ε

) ]

, (43)

[

r̂.~̂pε + i
(

σ̂.L̂ε

) ]

= −ig (r, ε) ∂
∂r

+ i
(

σ̂.L̂ε

)

(44)

Eq. (32) provides an assumption for g (r, ε) as g (r, ε) =
r. Rewriting Eq. (42) in accordance with Eqs. (43, 44),

Ĵ2
ε

=





(

L̂2
ε +

3
4

)

Î + σ̂.L̂ε 0

0
(

L̂2
ε +

3
4

)

Î + σ̂.L̂ε



 (45)

allows to deduce an eigenvalue equation of σ̂L̂ε,

(

σ̂.L̂ε

)

Ωβ
j∗m∗ =

[

(j − βε+ β) (j − βε+ β + 1)

−
(

j − βε+
β

2

)(

j − βε+
β

2
+ 1

)

− 3

4

]

. (46)



5

Eq. (37) takes form that,

K̂ε = Π̂.L̂+ εβ̂. (47)

The relationship between Dirac invariant and its new
fractional form obtained as,

K̂ = K̂ε − (1− ε) β̂. (48)

Thus, eigenvalues of total Ĵ2
ε and orbital angular momen-

tum L̂2
ε operators are given as,

{

j∗ (j∗ + 1) for Ĵ2
ε

l∗ (l∗ + 1) for L̂2
ε

, (49)

here, j∗ = (j − βε+ β), l∗ =
(

j − βε+ β
2

)

= j∗ − β
2 ,

respectively. Finally, Eq. (46) simplifies to,

(

σ̂.L̂ε

)

Ωβ
j∗m∗ (θ, ϕ)

=

[

j∗ (j∗ + 1)− l∗ (l∗ + 1)− 3

4

]

Ωβ
j∗m∗ (θ, ϕ) . (50)

The angular parts Ωβ
j∗m∗ (θ, ϕ) of exponential−type

spinor orbitals are thefore expressed in terms of general-
ized spherical harmonics defined by Infeld and Hull [48],

d2

dθ2
Yl∗m∗ (θ, ϕ)− (m∗ + ε′) (m∗ + ε′ − 1)

sin2θ
Yl∗m∗ (θ, ϕ)

+
(

λ+ ε′
2
)

Yl∗m∗ (θ, ϕ) = 0, (51)

with, 2ε′ = 2 − ε, 0 ≤ ε ≤ 1. For ε = 1, the solution
of the Eq. (51) reduces to standard spherical harmonics
Ylm (θ, ϕ).

III. APPLICATION OF THE BI−DIRECTIONAL

METHOD TO COMPUTE HIGHER

TRANSCENDENTAL FUNCTIONS IN THE

DIRAC EQUATION SOLUTION

This section is devoted to establish necessary math-
ematical foundation for solving the Dirac or Dirac−like
equation, aiming to provide a comprehensive understand-
ing of the mathematical framework required for solution
of such equations.

A. Revisiting the Bi−directional Hyper−radial

functions

Radial parts of one−center two−electron Coulomb en-
ergy [49] in a set of Slater−type orbitals [50–53],

χn∗lm (~r, ζ) = rn
∗
−1e−ζrYlm (θ, ϕ) , (52)

RL
n∗

1
,n′∗

1
,n∗

2
,n′∗

2

(ζ1, ζ
′

1, ζ2, ζ
′

2)

=

∫

∞

0

∫

∞

0

r
n∗

1
+n′∗

1

1 e−(ζ1+ζ′

1)r1
(

rL<
rL+1
>

)

× r
n∗

2
+n′∗

2

2 e−(ζ2+ζ′

2)r2dr1dr2, (53)

are represented in terms of Gauss hyper−geometric func-
tions through the Laplace expansion for Coulomb inter-
action [21, 54] as,

RL
n∗,n′∗ (ζ, ζ′) =

Γ
(

n∗ + n′∗ + 1
)

(ζ + ζ′)
n∗+n′∗+1

{

1

n∗ + L+ 1

×2F1

[

1, n∗ + n′∗ + 1, n∗ + L+ 2;
ζ

ζ + ζ′

]

+
1

n′∗ + L+ 1

× 2F1

[

1, n∗ + n′∗ + 1, n′∗ + L+ 2;
ζ′

ζ + ζ′

]

}

, (54)

here, n∗

1 + n′∗

1 and n∗

2 + n′∗

2 is replaced by n∗ and n′∗,
similarly ζ1 + ζ′1 and ζ2 + ζ′2 by ζ and ζ′, respectively.

2F1 (a, b; c;x) are defined as the series for |x| < 1 [20, 37],

2F1 [a, b; c;x] =

∞
∑

k=0

(a)k (b)k
(c)k

1

k!
xk. (55)

Computing Gauss hyper−geometric functions is chal-
lenging due to the slow or non−convergent nature of
their series representations, numerical instability for val-
ues near the boundaries of feasibility, and the need for
specialized algorithms to ensure precision and efficiency.
The functions diverse special cases also demand tailored
treatment and computational methodologies, contribut-
ing to the complexity of its computation [55]. One of the
authors has recently chosen to depart from purely math-
ematical methods for computing the hyper−geometric
functions, opting instead to leverage the symmetry of
Coulomb energy. This approach not only emancipates
the Coulomb energy from these functions but also ex-
presses them in terms of Coulomb energy. This approxi-
mation referred to as bi−directional, has resulted in iden-
tification of novel hyper−radial functions [21]

+1
R

L
n∗,n′∗ (ζ, ζ′)

=
RL

n∗,n′∗ (ζ, ζ′) + +1mL
n′∗n∗ (ζ′, ζ)

eLn∗n′∗
+1hLn′∗n∗ (ζ′, ζ)

. (56)

2F1

[

1, n∗ + n′∗ + 1, n∗ + L+ 2;
ζ

ζ + ζ′

]

=
RL

n∗,n′∗ (ζ, ζ′) + +1mL
n′∗n∗ (ζ′, ζ)

eLn∗n′∗
+1hLn′∗n∗ (ζ′, ζ)

, (57)

2F1

[

1, n∗ + n′∗ + 1, n′∗ + L+ 2;
ζ′

ζ + ζ′

]

=
RL

n′∗,n∗ (ζ′, ζ) + +1mL
n∗n′∗ (ζ, ζ′)

eLn′∗n∗

+1hLn∗n′∗ (ζ, ζ′)
, (58)
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+1
R

L
n∗,n′∗ are the hyper−radial functions. The auxiliary

functions eLn∗n′∗ , +1hLn′∗n∗ arising in Eq. (56) are given
as,

eLn∗n′∗ =
Γ
(

n∗ + n′∗ + 1
)

(ζ + ζ′)n
∗+n′∗+1

1

n∗ + L+ 1
, (59)

+1hLn∗n′∗ (ζ, ζ′) =
n′∗ + L+ 1

n∗ + L+ 1

(n∗ − L)2L+1

(−n′∗ − L− 1)2L+1

×
(

−ζ
′

ζ

)2L+1

fL
n∗n′∗ + 1, (60)

with,

fL
n∗n′∗ =

πcsc
[(

−n′∗ + L
)

π
]

Γ (−n′∗ + L+ 1)

(n∗ + L+ 1)

Γ (n′∗ − L+ 1)
. (61)

The +1mL
n′∗,n∗ auxiliary functions are determined by,

+1mL
n∗n′∗ (ζ, ζ′)

= eLn∗n′∗

{

gLn∗n′∗ (ζ, ζ′) + +1lLn∗n′∗ (ζ, ζ′)
}

, (62)

with,

gLn∗n′∗ (ζ, ζ′) = fn∗n′∗

Γ
(

n′∗ − L+ 1
)

Γ (n∗ + L+ 1)

Γ (n∗ + n′∗ + 1)

×
(

ζ

ζ + ζ′

)

−n∗
−L−1(

ζ′

ζ + ζ′

)

−n′∗+L

, (63)

and,

+1lLn∗n′∗ (ζ, ζ′) =
πcsc

[(

−n′∗ + L
)

π
]

Γ (−n′∗ + L+ 1)

(n∗ + L+ 1)

Γ (n′∗ − L+ 1)

×
(

−ζ
′

ζ

)2L+1 (
ζ + ζ′

ζ′

)

×
2L+1
∑

k=1

(n∗ − L+ k)2L+1−k

(−n′∗ − L− 1 + k)2L+1−k

(

− ζ

ζ′

)k−1

. (64)

Notice that, explicit computation of the hyper−radial
functions via Eq. (56) offers no essential advantage in
calculation of Coulomb energy. It can readily be obtained
using the provided recurrence relations in [21]:

+1
R

L+2
n∗,n′∗ (ζ, ζ

′) =
(n∗ + L+ 3)

ζ (n∗ + L+ 2) (−n′∗ + L+ 2)

×
{

ζ′ (n∗ + L+ 2)+1
R

L
n∗,n′∗ (ζ, ζ′)

+
[

ζ
(

−n′∗ + L+ 1
)

− ζ′ (n∗ + L+ 2)
]

× +1
R

L+1
n∗,n′∗ (ζ, ζ

′)

}

, (65)

here, for L = 0,

+1
R

0
n∗,n′∗ (ζ, ζ′) =

R0
n∗,n′∗ (ζ, ζ′) + +1m0

n′∗n∗ (ζ′, ζ)

e0n∗n′∗
+1h0n′∗n∗ (ζ′, ζ)

= (n∗ + 1)

(

ζ

ζ + ζ′

)

−n∗
−1 (

ζ′

ζ + ζ′

)

−n′∗

×
{

Γ (n∗ + 1)Γ
(

n′∗
)

Γ (n∗ + n′∗ + 1)
−Bn′∗,n∗+1

(

ζ′

ζ + ζ′

)

}

, (66)

with Bn∗n′∗ are the incomplete beta functions [20]. For
L = 1,

+1
R

1
n∗,n′∗ (ζ, ζ′)

=

(

n∗ + 2

n′ − 1

)[(

ζ′

ζ

)

+1
R

0
n′∗,n∗ (ζ, ζ′)−

(

ζ + ζ′

ζ

)]

.

(67)

The above relationships obtained for Coulomb energy in-
volve hypergeometric functions with a parameter c =
n + L + 2. The formulas presented in [21] allow for
an alternative representation of hyper−radial functions,
where the Coulomb energy this time involves hyperge-
ometric functions with a parameter c = n∗ − L + 1.
Given these conditions, the hyper-radial functions would
be more appropriately formulated as follows,

R
L
n∗,n′∗ (ζ, ζ′) =

[

+1
R

L
n∗,n′∗ (ζ, ζ′)

−1
R

L
n∗,n′∗ (ζ, ζ′)

]

, (68)

β
R

L
n∗,n′∗ (ζ, ζ′) =

RL
n∗,n′∗ (ζ, ζ′) + βmL

n′∗n∗ (ζ′, ζ)

eLn∗n′∗
βhLn′∗n∗ (ζ′, ζ)

. (69)

βmL
n∗n′∗ (ζ, ζ′)

= eLn∗n′∗

{

gLn∗n′∗ (ζ, ζ′) + β βlLn∗n′∗ (ζ, ζ′)
}

. (70)

For the specific expressions of βlLn∗n′∗ and βhLn′∗n∗ with
β = −1, please see [21]. The following connections be-
tween two form of hyper−radial functions are obtained,

eLn∗n′∗

+1hLn′∗n∗ (ζ′, ζ) +1
R

L
n∗,n′∗ (ζ, ζ′)

+ eLn∗n′∗

−1hLn′∗n∗ (ζ′, ζ) −1
R

L
n∗,n′∗ (ζ, ζ′)

= +1mL
n∗n′∗ (ζ, ζ′) + −1mL

n∗n′∗ (ζ, ζ′) , (71)

+1
R

L
n∗,n′∗ (ζ, ζ′) = −1

R
L
n∗+2L+1,n′∗

−(2L+1) (ζ, ζ
′) . (72)

The recurrence relationships for −1
R

L
n∗,n′∗ are derived as,

−1
R

−(L+2)
n∗,n′∗ (ζ, ζ′) =

(n∗ − L+ 2)

ζ (n∗ − L+ 1) (−n′∗ − L+ 1)

×
{

ζ′ (n∗ − L+ 1)−1
R

−L
n∗,n′∗ (ζ, ζ

′)

+
[

ζ
(

−n′∗ − L
)

− ζ′ (n∗ − L+ 1)
]

× −1
R

−(L+1)
n∗,n′∗ (ζ, ζ′)

}

, (73)
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−1
R

0
n∗,n′∗ (ζ, ζ′) =

R0
n∗,n′∗ (ζ, ζ′) + −1m0

n′∗n∗ (ζ′, ζ)

e0n∗n′∗
−1h0n′∗n∗ (ζ′, ζ)

= n

(

ζ

ζ + ζ′

)

−n∗
(

ζ′

ζ + ζ′

)

−n′∗
−2

×
{

Γ (n∗) Γ
(

n′∗ + 2
)

Γ (n∗ + n′∗ + 2)
−Bn′∗+2,n∗

(

ζ′

ζ + ζ′

)

}

, (74)

−1
R

−1
n∗,n′∗ (ζ, ζ

′) =

(

n∗

n′∗ + 1

)

×
[(

ζ′

ζ

)

−1
R

0
n′∗,n∗ (ζ, ζ′)−

(

ζ + ζ′

ζ

)]

. (75)

B. Computational Aspect for ∓1
R

0

n,n′

The hyper−radial functions resulting from the afore-
mentioned manipulations are a direct consequence of
the Laplace expansion of the Coulomb potential. It is
an example of two−range addition theorem defined in
three−dimensional Taylor expansion [36, 56], exhibiting
point−wise convergence. The Laplace expansion has a
two−range form, depending on the relative length of r1
and r2. Despite its purely mathematical nature, the ac-
curate computation of right−hand side of Eq. (69) is in-
tricately linked to the formulation of the Coulomb in-
teraction. Conversely, the hyper-radial functions deter-
mines the accuracy of the Coulomb energy. Eqs. (66) and
(75) provide further examples for minimum value of L,
L = 0, as they involve incomplete beta functions. New
series representations for these functions can be obtained
through the expansion of the Coulomb interaction using
various methods relying on diverse single−center expan-
sions converging this time in the mean.
Building upon the radial integral derived in Eq. (53) and
ensuring subsequent analysis adheres rigorously to the
principles of the Laplace expansion: the relative depen-
dence on r1 and r2 may be removed as [57],

rL<
rL+1
>

= (2L+ 1)

∞
∑

k=L

′
rk1r

k
2 (2k + 1)!!

(k + L+ 1)!! (k − L)!!r2k+1
, (76)

here, the prime notation in the summation denotes a
step−wise increment of 2, and (a)!! represents double
factorial of a. r =

√
r1 + r2. Setting L = 0, after a bit

of manipulations, using Eq. (76) in Eq. (53) results in a
convergent series representation for incomplete beta func-
tions.
If we consider to start from the inter−electronic separa-
tion of ~r12,

(~r12)
2 = (~r1 + ~r2)

2 − 2~r1~r2 (1 + cosθ) , (77)

using the binomial theorem and Laplace integral trans-
form, the Coulomb interaction is given as [58],

1

|~r1 − ~r2|
=

∞
∑

k=0

(1 + cosθ)k

2k (k!)
2 (r1r2)

k

×
∫

∞

0

u2ke−ur1−ur2du. (78)

Substituting Eq. (78) into the Coulomb energy expres-
sion yields a radial integral that is represented by an
infinite series deviates from Eq. (53) only by angular co-
efficients,

RL
n∗

1
,n′∗

1
,n∗

2
,n′∗

2

(ζ1, ζ
′

1, ζ2, ζ
′

2)

= V L
l1m1,l′1m

′

1
;l2m2,l′2m

′

2

oRn∗

1
,n′∗

1
,n∗

2
,n′∗

2
(ζ1, ζ

′

1, ζ2, ζ
′

2) .

(79)

Proceeding with the one−range addition theorem [36, 59,
60], the Coulomb interaction is expanded in terms of com-
plete and orthonormal exponential−type orbitals within
the Hilbert space

[

L2
(

R
3
)]

. Notice that extending the
formalism of one−range addition theorem to functions
do not belong to the Hilbert space may lead to diver-
gence with respect to their corresponding norm, termed
weak convergence [36]. Exponential−type orbitals with
non−integer quantum numbers given in [Eq. (12)] for
α = 0 are complete and orthonormal with respect to
L2

(

R
3
)

. Dropping the restriction of quantum number for
hydrogenic orbitals provide further advantages in expan-
sion of Coulomb interaction,

1

|~r1 − ~r2|
=

∑

n∗lm

An∗′l′m′ (~r2, ζ) Ψ
0ε
n∗lm (~r1, ζ) , (80)

where,

An∗′l′m′ (~r2, ζ)

=

∫

∞

0

1

|~r1 − ~r2|
[

Ψ0ε
n∗′l′m′ (~r1, ζ)

]∗

d~r1. (81)

Given the clear separation of variables ~r1, ~r2 and en-
sured convergence, this method is also applicable for the
computation of incomplete beta functions while L = 0.
Computing incomplete beta functions arising in Eqs.
(66, 75) through direct use of Eq. (53), without rely-
ing solely on mathematical approximations and capitaliz-
ing on the symmetry of the Coulomb interaction implies
self−consistency. This observation reinforces the notion
that the symmetries inherent in physical systems pro-
vide essential tools for overcoming potential mathemati-
cal challenges within them.
Simplification and faster convergence may be possible for
large values of parameters by expanding the power func-
tions in Eq. (53) in terms of Ψαε

n∗lm as [14],

χn∗l∗m∗ (ζ, ~r) =

n∗

∑

n′∗=l∗+ǫ

ãαǫl
∗

n∗n′∗Ψαǫ
n′∗l∗m∗ (ζ, ~r) , (82)
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here,

ãαǫl
∗

n∗n′∗ = (−1)
n′∗

−l∗−ǫ

×
[

(

2n′∗
)α

Γ (n∗ + l∗ + ǫ+ 1− α)

Γ (n∗ + l∗ + ǫ+ 1)Fn∗−l∗−ǫ (2n∗)

× Fn′∗+l∗+ǫ−α (n∗ + l∗ + ǫ− α)

× Fn′∗−l∗−ǫ (n
∗ − l∗ − ǫ)

]1/2

. (83)

C. Asymptotic Analysis for ∓1
R

L
n,n′

The integrals associated with hyper−geometric func-
tions [61] are written in a form that:

1

(µ+ ν − b)
ν

∫

∞

0

xµ−1e−bxΓ [ν, (µ+ ν − b)x] dx

=
Γ (µ+ ν)

µ (µ+ ν)
µ+ν 2F1

[

1, µ+ ν, µ+ 1,
b

µ+ ν

]

, (84)

1

aν

∫

∞

0

xµ−1e−(µ+ν−a)xγ [ν, ax] dx

=
Γ (µ+ ν)

ν (µ+ ν)µ+ν 2F1

[

1, µ+ ν, ν + 1,
a

µ+ ν

]

. (85)

The values of m and n, extracted from the Laplace ex-
pansion of the Coulomb interaction, leading to Eq. (54)
upon application to Eq. (53),

ν = n∗ − L µ = n′∗ + L+ 1, for Eq.(84)

ν = n∗ + L+ 1 µ = n′∗ − L, for Eq.(85)
. (86)

The hyper−geometric functions arising in these equa-
tions take form that,

from Eq.(84),

→ 2F1

[

1, n∗ + n′∗ + 1, n′∗ + L+ 2,
ζ′

n∗ + n′∗ + 1− ζ′

]

from Eq.(85),

→ 2F1

[

1, n∗ + n′∗ + 1, n+ L+ 2,
ζ

n∗ + n′∗ + 1− ζ

]

Using the following connections given between incom-
plete gamma and confluent hyper−geometric functions
[62],

1F1 [a, c, x] = lim
n′

→∞

2F1

[

a, b, c, b−1x
]

, (87)

and,

1F1 [1, c+ 1, x] =
γ [c, x]

c−1xce−x
(88)

The relationships between hyper−radial functions and
incomplete gamma functions are obtained as,

γ
[

n′∗ + L+ 1, ζ′
]

= lim
n∗→∞

ζ′
n′∗+L+1

e−ζ′

(n′∗ + L+ 1)

× +1
R

L
n∗,n′∗

(

ζ′, n∗ + n′∗ + 1− ζ′
)

(89)

γ [n∗ + L+ 1, ζ] = lim
n′∗

→∞

ζn
∗+L+1e−ζ

(n∗ + L+ 1)

× +1
R

L
n∗,n′∗

(

ζ, n∗ + n′∗ + 1− ζ
)

. (90)

Exchanging the values of µ and ν in Eq. (86) yields anal-
ogous formulas for −1

R
L:

γ
[

n′∗ − L, ζ′
]

= lim
n∗

→∞

ζ′
n′∗

−L
e−ζ′

(n′∗ − L)

× −1
R

L
n∗,n′∗

(

ζ′, n∗ + n′∗ + 1− ζ′
)

, (91)

γ [n∗ − L, ζ] = lim
n′∗

→∞

ζn
∗
−Le−ζ

(n∗ − L)
−1

R
L
n∗,n′∗

(

ζ, n∗ + n′∗ + 1− ζ
)

. (92)

Convergent series expansions for the asymptotics of
hyper−radial functions are derived. These expansions
are expressed in terms of the radial part of exponential
type orbitals. The derivation utilizes the following rela-
tionships [63],

1F1

[

a, c,
x

x− 1
y

]

= (1− x)
a

∞
∑

k=0

(a)k
(c)k

Lc−1
k (y)xk, (93)

where, |x| < 1, y > 0. Substituting x with x = ζ
ζ−ζ′

,

y = 2ζ′r, using Eq. (88) for a = 1 in Eq. (93) and
re−arranging the summation as k = n − l − ε we ob-
tain,

(2l + 2ε− α)

Γ (2l+ 2ε− α+ 1)

γ [2l+ 2ε− α, 2ζr]

(2ζr)
l+ε−α+1

e−ζr
=

(

ζ′

ζ′ − ζ

)

× lim
N→∞

N+l+ε
∑

n∗=l+ε

(

ζ

ζ − ζ′

)n∗
−l−ε

Γ (n∗ − l − ε+ 1)

Γ (n∗ + l + ε− α+ 1)

× ∗Rαε
n∗l (ζ, ζ

′, r) . (94)

The derivative of Eq. (94) with respect to r yield an
expansion for generalized power functions. Using the
derivative for incomplete gamma functions,

∂γ (a, bx)

∂x
= b (bx)

a−1
e−bx, (95)
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we have,

(2l+ 2ε− α)

Γ (2l+ 2ε− α+ 1)

[

(2ζr)
l+ε−1

e−ζr
]

=

(

ζ′

ζ′ − ζ

)

× lim
N→∞

N+l+ε
∑

n∗=l+ε

(

ζ

ζ − ζ′

)n∗
−l−ε

Γ (n∗ − l − ε+ 1)

Γ (n∗ + l + ε− α+ 1)

×
{

(2ζ′r) ∗Rαε
n∗l (ζ, ζ

′, r) − (2ζr) ∗Rαε
n∗l (ζ, ζ

′, r)

}

.

(96)

Through the addition formulas for Laguerre functions,

Lp∗

q∗−p∗ (x1x2) =
Γ (q∗ + 1)

Γ (q∗ − p∗ + k + 1)Γ (p∗ + k + 1)

× xk1 (1− x1)
q∗−p∗

−k Lp∗

k (x2) , (97)

the radial−type exponential functions in Eqs. (94, 96)

are expressed as,

ζ′ =
x− 1

x
ζ,

∗Rαε
n∗l (ζ, ζ

′, r) = (2ζr)l+ε−1 e−ζrL2l+2ε−α
n∗−l−ε (2ζ′r)

=

n∗

∑

n′∗=l+ε

(

ζ′

ζ

)n′∗
−l−ε (

ζ − ζ′

ζ

)n∗
−n′∗

× Γ (n∗ + l + ε− α+ 1)

Γ (n∗ − n′∗ + 1)Γ (n′ + l+ ε− α+ 1)

× ∗Rαε
n∗l (ζ, r) , (98)

here,

Rαε
n∗l (ζ, r) = Nαε

n∗l (ζ)
∗Rαε

n∗l (ζ, r) , (99)

are the radial parts of complete orthonormal sets of
exponential−type orbitals with non−integer quantum
numbers.
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[6] Bağcı A (2020) Advantages of Slater−type spinor
orbitals in the Dirac–Hartree–Fock method. Results
for hydrogen−like atoms with super−critical nuclear
charge. Rend. Fis. Acc. Lincei 31(2): 369–385. doi:
https://doi.org/10.1007/s12210-020-00899-6

[7] Roothaan, CCJ (1951) New Developments in Molecu-
lar Orbital Theory. Rev. Mod. Phys. 23(2): 69–89. doi:
https://link.aps.org/doi/10.1103/RevModPhys.23.69

[8] Kim, Yong−Ki (1967) Relativistic
Self−Consistent−Field Theory for Closed−Shell
Atoms. Phys. Rev. 154(1): 17–39. doi:
https://link.aps.org/doi/10.1103/PhysRev.154.17

[9] Malli G and Oreg J (1975) Relativistic
self−consistent−field (RSCF) theory for closed−shell

molecules. J. Chem. Phys. 63(2): 830–841. doi:
https://doi.org/10.1063/1.431364

[10] Quiney HM, Grant IP and Wilson S (1987) The
Dirac equation in the algebraic approximation. V.
Self−consistent field studies including the Breit inter-
action. J. Phys. B: At. Mol. Phys. 20(7): 1413. doi:
https://dx.doi.org/10.1088/0022-3700/20/7/010

[11] Yanai T, Nakajima T, Ishikawa Y and Hirao
K (2001) A new computational scheme for the
Dirac–Hartree–Fock method employing an efficient
integral algorithm. J. Chem. Phys. 114(15): 6526–6538.
doi: https://doi.org/10.1063/1.1356012

[12] Foldy LL and Wouthuysen SA (1950) On the
Dirac Theory of Spin 1/2 Particles and Its
Non−Relativistic Limit. Phys. Rev. 78(1): 29–36. doi:
https://link.aps.org/doi/10.1103/PhysRev.78.29

[13] Greiner W (1997) Relativistic Quantum Mechan-
ics: Wave Equations. Springer−Verlag, Berlin. doi:
https://doi.org/10.1007/978-3-662-03425-5
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