
5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2023),  
7-9 June 2023, Tenerife (Canary Islands), Spain 

Type of Presentation: Topic: AI Algorithms 
 Oral:          ☐

Poster:       ☒ 
The same:  ☐ 

In-person: ☒ 
Virtual in Zoom: ☐ 

 
 

Enhancing Graph Representation Learning with Attention-Driven Spiking 
Neural Networks 

 
Huifeng Yin 1, Mingkun Xu 1, Jing Pei 1 and Lei Deng 1 

1 Center for Brain-Inspired Computing Research (CBICR), Department of Precision Instrument, 
Tsinghua University, Beijing, China 

E-mail: {peij,leideng}@mail.tsinghua.edu.cn 
 

 
Abstract: Graph representation learning has become a crucial task in machine learning and data mining due to its potential 
for modeling complex structures such as social networks, chemical compounds, and biological systems. Spiking neural 
networks (SNNs) have recently emerged as a promising alternative to traditional neural networks for graph learning tasks, 
benefiting from their ability to efficiently encode and process temporal and spatial information. In this paper, we propose a 
novel approach that integrates attention mechanisms with SNNs to improve graph representation learning. Specifically, we 
introduce an attention mechanism for SNN that can selectively focus on important nodes and corresponding features in a graph 
during the learning process. We evaluate our proposed method on several benchmark datasets and show that it achieves 
comparable performance compared to existing graph learning techniques. 
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1. Introduction 

 
Graphs are ubiquitous data structures that can 

represent a wide range of complex systems, from social 
networks to biological networks. Graph representation 
learning seeks to create effective embeddings that 
encapsulate a graph's structural and semantic 
information, facilitating tasks like node classification, 
edge classification, and graph classification. Recently, 
spiking neural networks (SNNs) have been proposed 
as a powerful approach to graph representation 
learning due to their ability to encode and process 
spatiotemporal information in a more biologically 
plausible and energy-efficient way than traditional 
neural networks [1]. 

Recently, various approaches have been proposed 
for graph representation learning, including spectral 
methods, random walk-based methods, and neural 
network-based methods [2]. Among these, neural 
network-based methods, such as graph convolutional 
networks (GCNs) [3] and graph attention networks 
(GATs), have gained significant attention due to their 
capacity to capture complex nonlinear relationships in 
graph structures. However, traditional neural networks 
have limitations in processing spatiotemporal 
information, which is essential for numerous graph 
learning tasks due to the human brain's constant 
interaction with dynamic stimuli and evolving 
environments. SNNs, inspired by the way neurons 
communicate in the brain through spikes, are capable 
of encoding and processing spatiotemporal 
information more efficiently and in a biologically 
plausible manner, making them an attractive 
alternative for graph representation learning. But they 

still face challenges in processing large-scale graphs 
efficiently. 

To address this issue, attention mechanisms have 
been introduced to selectively focus on relevant parts 
of the node features, allowing the network to 
selectively attend to important nodes and 
corresponding features in the graph [4]. In this paper, 
we propose an attention-driven SNN model that 
combines the benefits of attention mechanisms with 
the efficiency and interpretability of SNNs for graph 
representation learning. We demonstrate the 
effectiveness of our proposed model through several 
experiments on various benchmark datasets, showing 
comparable performance and better biological 
plausibility compared to existing graph representation 
learning methods. 

 
2. Methods 

 
Our proposed Spiking Graph Attention Network 

(SpikingGAT) model combines attention mechanisms 
with Graph Spiking Neural Network (Graph-SNN) to 
enable efficient graph representation learning [1]. 
Specifically, we introduce a graph attention 
mechanism that computes attention coefficients for 
each pair of nodes, allowing the model to weigh the 
contributions of neighboring nodes appropriately. This 
mechanism enables the SNN to focus selectively on 
relevant nodes and their corresponding features and 
effectively capture the underlying graph structure, 
during the learning process, as shown in Fig.1. By 
integrating attention mechanisms into the Graph-SNN 
architecture, our SpikingGAT model achieves superior 
graph representation learning outcomes. 
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Specifically, in our SpikingGAT model, we first 
compute the attention coefficients for each node pair 
by applying a compatibility function that takes into 
account the nodes' features and their relative positions 
in the graph. The attention coefficient between node 
𝑖	and node 𝑗 for the 𝑘!" head is computed as follows: 

 
𝑒#$
(&) = LeakyReLU	.𝐚(&)(0𝐖(&)𝐡# ∥ 𝐖(&)𝐡$45 (1) 

 
where 𝐖(&) is a learnable weight matrix for the 𝑘!" 

head, 𝐡#and 𝐡$are the feature vectors of nodes 𝑖	and 𝑗, 
respectively, 𝐚(&)  is a learnable attention vector, and 
LeakyReLU is the activation function. These 
coefficients are then normalized using a softmax 
function to ensure that they sum to one, promoting a 
smooth distribution of attention weights among 
neighboring nodes: 

 

𝛼#$
(&) =

exp.𝑒#$
(&)5

∑  &∈𝒩! exp	.𝑒#&
(&)5

																			(2) 

 
where 𝒩# 	is the set of neighboring nodes of node 𝑖, 

and 𝛼#$
(&) is the normalized attention coefficient for the 

𝑘!" head. 
Once we have computed the attention coefficients 

for each node pair, we apply the multi-head attention 
mechanism to the input features of each node by 
multiplying them with the corresponding coefficients. 
This operation is carried out at each layer of the 
SpikingGATs, updating the node representations with 
attention-weighted information from their neighbors. 
For each head 𝑘, the output feature matrix is given by: 

𝐇(+,-,&) = 𝜎.∑  /
$0- 𝛼$

(&)𝐖(+,&)𝐇(+)5         (3) 

 
where 𝜎 is a nonlinear activation function, such as 

the ReLU function. Then, the output feature matrices 
from all 𝑘  heads are concatenated to form the final 
output feature matrix: 

 
𝐇(+,-) = concat.𝐇(+,-,-), 𝐇(+,-,1), … , 𝐇(+,-,2)5  (4) 
 
To account for the spiking behavior in SNNs, we 

employ a Leaky Integrate-and-Fire(LIF) [5] neuron 
model, which integrates the input features weighted by 
attention over time. The membrane potential is 
described by the following differential equation:  

 

𝜏
𝑑𝑢
𝑑𝑡 = −[𝑢(𝑡) − 𝑢3456] + 𝑅𝐼(𝑡)												(5) 

  
where 𝜏  is the membrane time constant, 𝑢789!  is the 
resting membrane potential, 𝑅  is the membrane 
resistance, and 𝐼(𝑡) represents the input current. When 
the membrane potential exceeds a certain threshold 
value 𝑢!" , the neuron generates a spike and the 
membrane potential is reset to the resting potential 
𝑢789! This process can be formulated as: 
 

R𝑜
! = 1, 𝑢! = 𝑢789!				 if 𝑢! ≥ 𝑢!"
𝑜! = 0				  if 𝑢! < 𝑢!"

           (6) 

 
where 𝑜!  represents the output spike at the time 

step 𝑡. 
The SpikingGAT model architecture consists of 

multiple layers of LIF neurons, with each layer 
responsible for aggregating and transforming the 
attention-weighted features of the neighboring nodes. 

Fig. 1. The schematic diagram of SpikingGAT, showcasing the integration of multi-head attention and temporal 
domain within SNNs. Various arrow styles and colors signify distinct attention heads being performed independently 

with K = 3 heads. 
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The output of the final layer is a set of effective 
embeddings that capture both the graph structure and 
node features.  

We trained our SpikingGAT model using the 
iterative spiking message passing [1, 6] method of 
SNN that adjusts the connection weights between 
neurons based on the spike propagation and attention 
mechanism. This learning rule enables the network to 
adapt its connection strengths in response to both the 
graph structure and node features.  Additionally, 
incorporating attention mechanisms enhances the 
model's ability to learn graph representations, focusing 
on the most informative connections in the graph. 

 
3. Experiments 
 
3.1. Basic experiments 
 

To evaluate the performance of our proposed 
SpikingGAT model, we first conducted experiments 
on three standard citation datasets, Cora, Citeseer, and 
Pubmed, where nodes represent paper documents and 
edges are undirected citation links. We provide a 
summary of the dataset statistics in Table 1, which is 
utilized to assess the model's ability to learn 
meaningful node representations within an single 
graph. [3].  
 

 
Table 1. Overview of citation datasets 

 
Dataset Cora Citeseer Pubmed 
Nodes 2708 3327 19717 
Edges 5429 4732 44338 

Node feat. 1433 3703 500 
classes 7 6 3 

Training/Validation/
Testing 

140/500
/1000 

120/500
/1000 

60/500/ 
1000 

 
The Cora dataset contains 2708 nodes, 5429 edges, 7 
classes, and 1433 features per node. The Pubmed 
dataset contains 19717 nodes, 44338 edges, 3 classes, 
and 500 features per node. The Citeseer dataset 
contains 3327 nodes, 4732 edges, 6 classes, and 3703 
features per node. Each document node has a class 
label. We only use 20 labels per class during training 
with all feature vectors. 

In these experiments, we maintain consistent 
settings for models across each dataset to ensure 
fairness. We employ the Adam [7] optimizer, setting 
an initial learning rate of 0.01 for GCN, and 0.005 for 
GAT and our SpikingGAT. All models are executed 
for 200 epochs, and we conduct 10 trials with varying 
random seeds. In each trial, the models are initialized 
using a uniform initialization method and trained by 
minimizing the cross-entropy loss on the training 
nodes. From the perspective of SNN, we set the time 

Fig. 2. (a)(b)(c)Visualization of the last hidden layer features of the SpikingGAT on the Cora, Citeseer, and Pubmed 
datasets produced by t-SNE. (d)(e)(f)Visualization of the last hidden layer features of the GAT on the Cora, Citeseer, and 
Pubmed datasets produced by t-SNE. (g)(h)(i) Visualization of the last hidden layer features of the GCN on the Cora, 
Citeseer, and Pubmed datasets produced by t-SNE. 
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window (𝑇) to 8 and establish a threshold (𝑢!") of 0.25 
for basic performance evaluation. Specially, we set the 
leakage factor of 1, which does not exhibit decay in 
historical membrane potential as the time step 
progresses. For GATs and SpikingGATs, we adopt an 
MLP structure [Input-64-Output] with 8 attention 
heads. For GCNs, we adopt an MLP structure [Input-
400-16-Output]. We implemented these models using 
the PyTorch deep learning framework and the Deep 
Graph Library(DGL). We trained the model on GPU-
enabled hardware for efficient parallel processing of 
the spiking neurons and attention mechanisms. 

Our results from 10 trials are presented in Table 2. 
The results indicate that, despite employing binary 
spiking communication, our SpikingGAT models 
achieve performance comparable to the state-of-the-art 
results with a slight gap. This demonstrates the 
feasibility and capability of the spiking mechanism and 
spatiotemporal dynamics in handling diverse features 
from different nodes, as well as their effectiveness in 
graph scenarios with few labels. 
 

Table 2. Performance comparison on citation datasets 
 

Method Cora 
(ACC.±s.d.) 

Citeseer 
(ACC.±s.d.) 

Pubmed 
(ACC.±s.d.) 

GCN [4] 81.4±0.5 70.9±0.5 79.0±0.3 
GAT [4] 83.0±0.7 72.5±0.7 79.0±0.3 

SpikingGAT 79.9±0.9 68.4±0.5 78.0±0.5 
 
Furthermore, we employed t-SNE [8] to visualize 

the feature representation capabilities of our 
SpikingGAT model compared to GCN and GAT in 
their last hidden layer features, as shown in Fig.2. 
Specifically, on the Cora, Citeseer, and Pubmed 
datasets, our SNN model demonstrated superior 
performance in distinguishing between different 
classes and convergence within the same class, thereby 

demonstrate more effective representation learning 
capabilities compared to GCN and GAT. 

 
 3.2. Extended experiments 
 
In addition to the basic experiments on single graph 

datasets, we conducted extended experiments on 
multi-graph datasets to further validate the 
effectiveness and versatility of our SpikingGAT model 
in various graph learning tasks. By evaluating our 
model on tasks such as node classification, edge 
classification, and graph classification, we aimed to 
demonstrate the model's capability to generalize and 
adapt to different types of graph tasks. We summarize 
these dataset statistics used in extended experiments in 
Table 3. 
 

Table 3. Overview of multi-graph datasets [9]  

 

Dataset SBM 
CLUSTER TSP MNIST 

Graphs 12000 12000 70000 
Avg. Nodes 117.20 275.76 70.57 
Avg. Edges 4301.72 6894.04 564.53 

Node feat. Node 
Attr(7) Coord(2) Pixel+ 

Coord(3) 
classes 6 2 10 

Training/ 
Validation/ 

Testing 

10000/ 
1000/ 
1000 

10000/ 
1000/ 
1000 

55000/ 
5000/ 
10000 

Task Type Node 
Classification 

Edge 
Classification 

Graph 
Classification 

 
Specifically, for node classification tasks, we used 

the SBM CLUSTER datasets, which are generated 
with the Stochastic Block Model(SBM). SBM is a 
traditional graph generation model in which each node 
belongs to a different community, and each 

Fig. 3. (a)(c)(e) Accuracy variation of SpikingGAT and SpikingGCN with respect to the epoch on training and test 
dataset. (b)(d)(f) Loss variation of SpikingGAT and SpikingGCN with respect to the epoch on training and test dataset. 
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community is connected with different probabilities 
[9]. 

For edge classification tasks, we employed the TSP 
dataset, which is about the traveler’s problem, as 
follows: “Given a list of cities and the distances 
between each pair of cities, what is the shortest 
possible route that visits each city and returns to the 
origin city?”. This dataset is a collection of complete 
graphs with weighted edges representing the distances 
between cities. The goal of this task is to classify edges 
as part of the optimal tour or not [10], testing our 
model's capacity to learn edge-level representation 
effectively.  

Finally, for graph classification tasks, we convert 
each image in the popular MNIST datasets into graphs 
using super-pixels and classify these graphs. The node 
features of the graph are generated by the intensity and 
position of the super-pixels, and the edges are k nearest 
neighbor super-pixels, which is set to 8 [9]. The 
resulting graphs are of sizes 40-75 nodes. In this 
experiment, we aimed to evaluate the SpikingGAT 
model's performance in learning meaningful 
representations for entire graphs, capturing the global 
structure and relationships between nodes. 

In these extended experiments, We employ the 
Adam optimizer, setting the initial learning rate of 
0.001 and the minimum learning rate of 10:; . All 
models run up to 500 epochs, and we conduct 4 trials 
with varying random seeds. From the perspective of 
SNN, we maintained the same experimental settings as 
in the basic experiments with the time window 𝑇 = 8	, 
the firing threshold 𝑉!" = 0.25, and the leakage factor 
of 1. For GAT and SpikingGAT, we adopt 4 hidden 
layers of 19 dimension with 8 attention heads and an 
MLP layer (152 neurons) for classification. For GCN 
and SpikingGCN, 4 hidden layers of 152 dimension 
and an MLP layer of 152 neurons.  

As shown in Table 4, our SpikingGAT models 
outperform the GCN models in SBM CLUSTER and 
MNIST datasets and outperform the SpikingGCN 
models in all datasets. And in Fig.3, we plotted the 
accuracy and loss curves of SpikingGAT and 
SpikingGCN during both the training and testing 
phases. The curves illustrate that SpikingGAT 
converges faster than SpikingGCN and achieves 
higher accuracy and lower loss during both the training 
and testing phases. The results demonstrate the 
effectiveness of incorporating attention mechanisms 
into Spiking Neural Networks to enhance their 
performance in different graph learning tasks, 
highlighting their generalization capabilities. 

Besides, our SpikingGAT models can achieve 
comparable performance with the GAT models with a 
minor gap. It proves the feasibility and capability of 
spiking mechanism and spatial-temporal dynamics, 
which can work well on graph representation learning. 

In this section, we have evaluated the performance 
of our proposed SpikingGAT model on a range of 
graph learning tasks, including node classification, 
edge classification, and graph classification. Our 
experiments on both single graph datasets and multi-
graph datasets have demonstrated the SpikingGAT 

model's capability to learn effective representations 
and generalize to different types of graph tasks. 
 
Table 4. Performance comparison on multi-graph datasets  
 

Method 
SBM 

CLUSTER 
(ACC.±s.d.) 

TSP 
(F1 SCORE 

±s.d.) 
MNIST 

(ACC.±s.d.) 

GCN [9] 47.828 
±1.510 

0.643 
±0.001 

90.120 
±0.145 

GAT [9] 57.732 
±0.323 

0.671 
±0.002 

95.535 
±0.205 

Spiking
GCN 

50.181 
±1.284 

0.568 
±0.005 

92.318 
±0.005 

Spiking
GAT 

55.576 
±0.193 

0.589 
±0.005 

95.483 
±0.002 

 
4. Conclusion 
 

This paper introduces a novel Spiking Graph 
Attention Network (SpikingGAT) model that 
effectively integrates attention mechanisms with 
spiking neural networks for graph representation 
learning. SpikingGAT can effectively deal with the 
spatiotemporal information in graph structures, which 
is a limitation of traditional neural networks. In 
addition, the integration of attention mechanisms 
allows the model to selectively focus on important 
nodes and features, resulting in improved performance 
in graph representation learning tasks.  

We evaluate the performance of our SpikingGAT 
model on various benchmark datasets, including single 
graph datasets (Cora, Citeseer, and Pubmed) and 
multi-graph datasets (SBM CLUSTER, TSP, and 
MNIST). Our experiments demonstrate that 
SpikingGAT model achieves comparable performance 
to GCN and GAT models while maintaining better 
biological plausibility. Furthermore, our model 
exhibits better performance in graph representation 
learning, as evidenced by t-SNE visualizations.  

These experiments validate the effectiveness and 
versatility of our SpikingGAT model, demonstrating 
its ability to generalize and adapt to different types of 
graph tasks. By combining efficient attention 
mechanisms with interpretable SNNs, our work opens 
up new possibilities for future research and 
applications in graph representation learning. 
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