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Lagrangian cobordisms and K ­theory of symplectic bielliptic surfaces

ÁLVARO MUÑIZ­BREA

ABSTRACT: We consider a family of closed symplectic manifolds 4­manifolds which we call sym­

plectic bielliptic surfaces and study its Lagrangian cobordism group of weakly­exact Lagrangian

G­branes (that is, Lagrangians equipped with a grading, a Pin structure and a G­local system);

relations come from Lagrangian cobordisms satisfying a tautologically unobstructedness­type con­

dition, also equipped with G­brane structures. Our first theorem computes its subgroup generated by

tropical Lagrangians. When G is the unitary group of the Novikov field, we use homological mirror

symmetry to compute the Grothendieck group of the Fukaya category and show it agrees with our

computation for the cobordism group. This leads us to conjecture that tropical Lagrangians generate

the whole cobordism group.

1 Introduction

1.1 Lagrangian cobordisms and the Grothendieck group

One of the main goals of symplectic topology is to understand and classify the Lagrangian submanifolds

of a given symplectic manifold. In its most classical form, this problem asks for a classification of

Lagrangians up to Hamiltonian isotopy; although easy to state, this problem is remarkably hard—

barely any answers are known outside real dimension two. In an attempt to define a coarser relation

between Lagrangians that would be amenable to classification, Arnold introduced in a series of two

papers [Arn80a; Arn80b] the notion of a Lagrangian cobordism. A Lagrangian cobordism between

Lagrangians L−,L+ ⊂ X is a properly embedded Lagrangian submanifold V ⊂ C × X such that,

outside some compact set K ⊂ C , one has

V \ π−1
C (K) = L− ×R<−a−

⊔
L+ ×R>a+

for some values a± ∈ R>0 . (It is helpful to think of V via its projection to C , which is depicted in

Figure 1.) When such a cobordism exists, one says that the Lagrangians L− and L+ are Lagrangian

cobordant. This definition extends straightforwardly to Lagrangian cobordisms between Lagrangian

tuples, where the cobordism must now fiber over several horizontal rays outside some compact set.

Remark 1.1 There is a different but related notion of Lagrangian cobordism between Legendrian

submanifolds, where one instead tries to classify Legendrian submanifolds in a contact manifold up

to Lagrangian cobordism in the symplectisation (see e.g. [Cha10]). While both definitions attempt to

classify objects within a given manifold by looking at Lagrangian cobordisms in a bigger space, the

invariants obtained are very different.

There are several algebraic structures that can be obtained from the notion of Lagrangian cobordism,

and many of them have been connected to the Fukaya category. For instance, Biran­Cornea work in

the compact, monotone setting and use Lagrangian cobordisms to construct a ‘Lagrangian cobordism

category’ [BC13, Section 7]. In [BC14] they show that Lagrangian cobordisms provide a functorial way

to decompose one end of a cobordism as an iterated mapping cone of the other ends, and using this they

show there is a natural functor from their Lagrangian cobordism category to a category which encodes

triangle decompositions in the derived Fukaya category. With a different set­up, Nadler­Tanaka [NT20]

http://arxiv.org/abs/2403.17098v1
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L− ×R<−a− L+ ×R>a+πC(V)

K

Figure 1: The shaded region (including the two horizontal lines) depicts a typical projection of a two­

ended Lagrangian cobordism V ⊂ X × C to C . We have included (in dashed lines) an example of a

compact region K ⊂ C outside which V is product type: in C\K the projection looks like two straight

lines, and living over them in X ×C we have the cylidrical Lagrangians L−×R<−a− and L+×R>a+ .

work in the non­compact, exact case and construct a stable ∞­category whose higher morphisms are

‘cobordisms between cobordisms’, and they conjecture it to be equivalent to the (partially) wrapped

Fukaya category. Further work of Tanaka [Tan16a] shows that there is indeed a functor from this stable

∞­category to (modules over) the wrapped Fukaya category, and that this functor is exact [Tan16b] (in

particular, exactness of the functor recovers the above­mentioned result of Biran­Cornea).

In this paper, we focus on a linear algebra invariant going back to Arnold, the Lagrangian cobordism

group. In its most naive form, it is an abelian group freely generated by Lagrangians and whose relations

come from Lagrangian cobordisms:

Definition 1.2 Let L be a collection of Lagrangians in X and Lcob a collection of cobordisms in X×C

whose ends are in L . We define the Lagrangian cobordism group as the quotient

Cob(X) ≡ Cob(X;L,Lcob) := ZL/ ∼,

where ∼ is the equivalence relation on ZL generated by expressions of the form

L+
1 + · · ·+ L+

k ∼ L−
1 + · · ·+ L−

s

whenever there exists a cobordism in Lcob between tuples (L+
1 , . . . ,L

+
k ) and (L−

1 , . . . ,L
−
s ).

Remark 1.3 Often the Lagrangians L under consideration are not plain Lagrangians but come

equipped with some extra structure (for instance, one can take L to be the collection of orientable

Lagrangians plus a choice of orientation, or impose conditions such as exactness or monotonicity).

In this case, it makes sense to ask the cobordisms in Lcob to carry the same extra structure, and this

data should be compatible with restriction (whenever restriction of data makes sense). A Lagrangian

cobordism V equipped with some extra data D will then induce a relation

(L+
1 ,D|

L
+

1
) + · · · + (L+

k ,D|
L
+

k
) ∼ (L−

1 ,D|
L
−

1
) + · · ·+ (L−

s ,D|
L
−
s

)

in the cobordism group.
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Arnold himself performed the first computations of these groups, showing that in X = R2 oriented

immersed Lagrangians are classified up to oriented cobordism by the Maslov index and the area they

enclose. He also computed the cobordism group of T∗S1 , where Lagrangians are classified essentially

by the same data (their homology class and the area they enclose). Soon after Eliashberg [Eli84] argued

that immersed, exact Lagrangian cobordism groups are isomorphic to homotopy groups of certain Thom

spaces, and Audin [Aud85] used this to show that these Lagrangian cobordism groups are topological.

Nonetheless, in recent years it has been discovered that this flexibility for Lagrangian cobordism

groups of immersed exact Lagrangians disappears when one equips the Lagrangians and/or cobordism

with various decorations. In a series of two papers [BC13; BC14] Biran­Cornea brought Lagrangian

cobordisms back to the attention of the symplectic topology community by exhibiting a relation between

Lagrangian cobordisms and cone decompositions in the Fukaya category. Whereas Eliashberg and

Audin had shown that the most naive notion of a Lagrangian cobordism reduces to algebraic topology,

Biran­Cornea showed that if the Lagrangians in L and Lcob are required to be monotone (with a fixed

monotonicity constant) and satisfy a Gromov­Witten type condition, then Lagrangian cobordism is no

longer a flexible notion. One of their main results is the following: if V is a monotone Lagrangian

cobordism between a tuple (L1, . . . ,Lk) and L0 , then L0 is generated by L1, . . . ,Lk in the derived

Fukaya category DbFuk(X) (cf. [BC14, Theorem A]). It follows that the Lagrangian cobordism group

admits a map

(1) Cob(X) → K0(DbFuk(X))

to the Grothendieck group of the triangulated envelope of the Fukaya category (cf. [BC14, Corollary

1.2.1]).1 In further work, Biran­Cornea­Shelukhin [BCS21] take L to be weakly­exact Lagrangians

(meaning ω(π2(X,L)) = 0) and Lcob to be quasi­exact cobordisms (meaning there exists a compatible

almost complex structure such that they bound no holomorphic disks). Under these assumptions, they

extend the results in [BC14] and construct a map Cob(X) → K0(DbFuk(X)). In this paper, we analyze

a particular instance of the following question:

“is the map Cob(X) → K0(DbFuk(X)) an isomorphism?”

Remark 1.4 By construction, the map (1) is always surjective, hence the question is whether it is

injective. The main result in [BC14] shows that cobordisms induce cone decompositions in the Fukaya

category. Injectivity would mean that every triangle relation in the Fukaya category can be obtained

from Lagrangian cobordisms.

To date, answers to the above question (in the compact case) have only appeared for dim X = 2:

[Hau15] computes the Lagrangian cobordism group of T2 , and shows the map (1) is an isomorphism

in this case; and [Per19; RF23] extend the result to higher genus surfaces. In this paper, we study

the question for a closed symplectic 4­manifold. We work with a similar set­up to that in [BCS21]:

the collection of Lagrangians L will consist of weakly­exact Lagrangians equipped a grading, a

Pin structure and a local system, and the collection Lcob will consist of Lagrangian cobordisms

carrying the same decorations and satisfying a quasi­exactness type condition (see Definition 4.15

for the precise definition of the cobordism group, and Section 3.3 for an exposition of the extra

data that we put on our Lagrangians). A minor adaptation of the results in [BCS21] (together with

[Hau15], who works out the inclusion of the above decorations) ensures there is a well­defined map

1Recall the Grothendieck group of a triangulated category is the free abelian group on its objects modulo

relations Z1 − Z2 + Z3 = 0 whenever there is a distinguished triangle Z1 → Z2 → Z3 → Z1[1].
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Cob(X) → K0(DbFuk(X)). We will take X = K to be a symplectic bielliptic surface as in Section 4.1

and we will consider the subgroup Cobtrop(K) ⊂ Cob(X) generated by Lagrangian sections and fibers.

We present an explicit computation of Cobtrop(K) in Theorem 4.26, and show that the composition

Cobtrop(K) →֒ Cob(K) → K0(DbFuk(X)) is an isomorphism in Theorem 4.29.

Remark 1.5 With a slightly different set­up, Lagrangian cobordism between non­compact Lagrangians

in exact symplectic manifolds—where the definition of a cobordism is suitably modified—have also

been considered in the literature [NT20; Bos21]. As far as cobordism groups in this setting, [Bos21]

defines a corresponding version of the Lagrangian cobordism group and constructs an analog of the

map (1) (where the Fukaya category is replaced by the wrapped Fukaya category). He also shows that

such a map is an isomorphism for punctured Riemann surfaces. In later work, he extends his results

to arbitrary Weinstein sectors, showing the Lagrangian cobordism group is isomorphic to the middle

relative homology of the Weinstein sector [Bos23]. A consequence of his computation is that the map

(1) is not an isomorphism for flexible Weinstein manifolds. We remark however that his definition of a

Lagrangian cobordism is different from ours (due to the non­compact nature of Lagrangians in wrapped

Fukaya categories).

1.2 Main results

Consider the symplectic manifold T∗R2 with coordinates (x1, y1, x2, y2) and the standard symplectic

structure dx1 ∧ dy1 + dx2 ∧ dy2 . Let K be the quotient of T∗R2 by the action of Z4 as well as the

relation

(x1, y1, x2, y2) ∼ (x1 + 1/2, y1,−x2,−y2).

Note that all actions commute with the symplectic form, hence K inherits a symplectic structure from

T∗R2 . We call K a symplectic bielliptic surface (cf. Definition 4.2).

The projection to the (x1, x2) coordinates gives a Lagrangian torus fibration π : K → K over a

tropical Klein bottle K . Let detZ K = ∧2TZK be the integral orientation bundle of K , and denote by

ξ := π∗ detZ K its pullback to K . Given an abelian group G , we consider a cobordism group Cob(K)

whose generators are weakly­exact Lagrangian G­branes and whose relations come from tautologically

unobstructed Lagrangian cobordisms equipped a G­brane structure (see Section 3.3 and Definition 4.15

for precise definitions). Our first result is the following:

Theorem A (=Theorem 4.26) Let K be a symplectic bielliptic surface and π : K → K its Lagrangian

torus fibration over a tropical Klein bottle. Let Cobtrop(K) ⊂ Cob(K) be the subgroup generated by

Lagrangian fibers and Lagrangian sections. Then there is an isomorphism

Cobtrop(K) ∼= H2(K; ξ) ⊕ G(2) ⊕ (S1 ⊕ G) ⊕ (S1 ⊕ G)

for G(2) ⊂ G the subgroup of 2­torsion elements.

Theorem A shows that Cobtrop(K) is finite­dimensional in the sense of Definition D.2—in fact, one

can see directly from the definition that it is a 2­dimensional cobordism group (roughly speaking, this

means that 2 is the minimum d such that Cobtrop(K) can be parametrized by a d­dimensional family

of Lagrangians). We compare this with the work of Sheridan­Smith, who show that a symplectic

4­manifold admitting a Lagrangian of genus at least 1 has an infinite­dimensional cobordism group

[SS20, Lemma 7.9]. In fact, we are able to extend the result of Sheridan­Smith to arbitrary dimension

and prove the following (see Appendix D):
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Proposition 1.6 Let X be a closed symplectic manifold of dimension at least 4 with trivial canonical

bundle. If X contains a Lagrangian torus of Maslov index zero, then the cobordism group of graded

Lagrangians Cob(X) is infinite­dimensional.

The crucial difference in Theorem A is that both Sheridan­Smith and Proposition 1.6 work in the Calabi­

Yau case (i.e. the canonical bundle is trivial), whereas symplectic bielliptic surfaces have torsion but

non­trivial canonical bundle. Given a nowhere vanishing quadratic volume form η2 ∈ H0((Ωn)⊗2), a

graded Lagragian with respect to η2 is naturally oriented with respect to the local system where ±η
takes real values (see [Sei08, Remark 11.18]). When the canonical bundle is trivial the quadratic form

η2 admits a square root, hence the local system is trivial and graded Lagrangians are naturally oriented in

the usual sense—this is the setting of [SS20] and Proposition 1.6. However, in this paper the canonical

bundle is non­trivial, hence Lagrangians are only oriented with respect to some non­trivial local system

(this is the local system ξ of Theorem A). Obviously, the result of Sheridan­Smith and Proposition 1.6

still holds for the oriented version of the cobordism group of a bielliptic surface. The remarkable

fact is that introducing these new graded Lagrangian cobordisms—despite eliminating some too, as not

every oriented Lagrangian is graded—creates sufficiently many new relations to get a finite­dimensional

cobordism group.

As remarked above, the result in Theorem A is, to the best of the author’s knowledge, the first

computation of a Lagrangian cobordism group in dimension greater than two. Although Theorem A

only gives a computation of a subgroup of Cob(K) (the subgroup Cobtrop(K) generated by tropical

Lagrangians), our second main result shows that this subgroup is indeed an interesting subgroup:

Theorem B (=Theorem 4.29) Fix G = UΛ to be the unitary group of the Novikov field. Then the

composition

Cobtrop(K) →֒ Cob(K) → K0(DbFuk(X))

is an isomorphism.

Remark 1.7 To prove Theorem B we use Abouzaid’s homological mirror symmetry result [Abo21]

to show that symplectic bielliptic surfaces are mirror to algebraic bielliptic surfaces as defined in

Section 4.1. We then show that the composition

Cobtrop(K) → K0(DbFuk(K)) →֒ K0(DπFuk(K))
∼
−→ K0(DbCoh(Y))

is an isomorphism, which yields the result. Here, we denoted by DπFuk(K) the split­closure of the

Fukaya category. In general, this is larger than DbFuk(K), but it follows from our argument that the

inclusion K0(DbFuk(K)) →֒ K0(DπFuk(K)) is an isomorphism. It is a theorem of Thomason [Tho97]

that this isomorphism of Grothendieck groups is enough to conclude DbFuk(K) ≃ DπFuk(K). In

particular, for bielliptic surfaces there is no need to take the split­closure of the Fukaya category to

obtain a homological mirror symmetry equivalence.

Theorem B on its own—together with mirror symmetry considerations and the analogous statement for

Chow groups—lead us to the following conjecture:

Conjecture 1.8 The inclusion Cobtrop(K) →֒ Cob(K) is an isomorphism.

The main difficulty to address this question is our lack of understanding of what are all the weakly­exact

Lagrangians in K .
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1.3 Organization of the paper

The paper is organized as follows. In Section 2 we review the necessary background on tropical

geometry, including the main definitions (Section 2.1), the construction of the Albanese variety and

the Albanese morphism (Section 2.2) and the relationship between tropical and symplectic geometry

(Section 2.3). The tropical manifold we study is a tropical Klein bottle, and this is introduced in

Section 2.4. Section 3 deals with the main object of this paper, Lagrangian cobordisms. We present

the main constructions of cobordisms in Section 3.1 and use them to compute the cobordism group

of T2 Section 3.2—this will be useful for the main computations in Section 4. In the last part of

this section, Section 3.3, we explain the extra data we consider on Lagrangians and cobordisms. The

main results of the paper are in Section 4. In Sections 4.1 and 4.2 we introduce symplectic and

algebraic bielliptic surfaces and explain how they fit into Abouzaid’s homological mirror symmetry

result [Abo21] to conclude they are homologically mirror. We then build up the necessary results to

prove the main theorems in Sections 4.3, 4.4 and 4.6. The main theorems are in the next two sections:

we compute the subgroup of the Lagrangian cobordism group generated by tropical Lagrangians in

Section 4.7 (see Theorem 4.26) and show it is isomorphic to the Grothendieck group of the Fukaya

category in Section 4.8 (see Theorem 4.29). In the last part, Section 4.9, we prove some compatibility

results involving the brane structure we put on our Lagrangians and cobordisms—it is essential for our

computations but can safely be skipped by the reader on a first read. We also include four appendices at

the end. The first three prove (technical) results claimed in several parts of the paper, whose proofs we

decided to separate from the main text to improve the readability of the paper and whose content might

be of independent interest to the reader. The last appendix contains the proof of Proposition 1.6: the

content of this Proposition ties directly to the main results of the paper, but its proof is a simple linear

algebra result and does not provide any additional insights.

Acknowledgments I would like to thank my advisor Nick Sheridan for his guidance on this project.

He has been extremely generous with his time, very patient and has provided invaluable insights. The

idea to use multivalued perturbations as in Appendix C is entirely due to him. I would also like to

thank Jeff Hicks for many helpful discussions. I owe to him much of my understanding of Lagrangian

surgery. I also thank Arend Bayer for a useful conversation that motivated the results in Appendix B.

This work was supported by an ERC Starting Grant (award number 850713­HMS).

2 Tropical geometry

In this section we give a review of the tropical geometry background that will be needed to understand

some of the constructions in this paper. The symplectic manifold we consider in this paper comes with

a Lagrangian torus fibration over a tropical affine manifold. Moreover, all the Lagrangians we consider

are tropical Lagrangians: Lagrangians living over tropical subvarieties of the base. Understanding the

tropical geometry of the base is hence essential for our computations.

2.1 Tropical affine manifolds

Let Aff(Rn) := Rn ⋊ GL(n,Z) denote the group of affine transformations of Rn whose linear part is

integral. A tropical affine manifold of dimension n is a smooth manifold together with an atlas of charts

whose transition functions belong to Aff(Rn).
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Example 2.1 A choice of basis on a real vector space gives it the structure of a tropical affine manifold.

In particular, Rn has a natural tropical affine structure.

Let B1,B2 be tropical affine manifolds of dimension n1, n2 . A smooth map f : B1 → B2 is said to be

integral affine if, locally in some charts, it is an affine map Rn1 → Rn2 with integer slope. We say it is

a tropical map if, locally in some charts, it is a piecewise affine map with integer slope.

Example 2.2 Let B be a tropical affine manifold and G be a group acting freely and properly on B by

integral affine transformations. Then B/G has a natural tropical affine structure making the projection

a tropical submersion.

Let B be a tropical affine manifold. We say a smooth function f : B → R is tropical affine if it is an

integral affine map B → R , where we view R as a tropical affine manifold by equipping it with its

vector space tropical affine structure as in Example 2.1. Similarly, a continuous function f : B → R is

said to be tropical if it is piecewise integral affine. We denote by AffB ⊂ C∞
B the subsheaf of affine

functions. It naturally gives a lattice bundle of integer covectors

T∗
ZB := d(AffB) ⊂ T∗B,

where d : Ω0(B) → Ω1(B) is the usual differential. Dually, we get a lattice of vectors TZB ⊂ TB

defined as

TZB := {v ∈ TB |α(v) ∈ Z for all α ∈ T∗
ZB} .

Both TZB and T∗
ZB form local systems of lattices over B . Global sections α ∈ H0(T∗

ZB) are called

tropical 1­forms.

Remark 2.3 A tropical affine manifold determines a Zn ­lattice TZB ⊂ TB . However, not every

Zn ­lattice Λ ⊂ TB equips B with a tropical affine structure—the lattice must be integrable. Sometimes

we will refer to a tropical affine manifold as the data (B,Λ) of a smooth manifold together with a

Zn ­lattice Λ ⊂ TB: it will always be implicit that Λ is integrable.

Given a tropical affine manifold B , a tropical affine submanifold is a submanifold V ⊂ B such that

TV = L ⊗ R for some sublattice L ⊂ TZB|V . We remark that L is not part of the data.

Example 2.4 Tropical affine submanifolds of (Rn,Zn) are precisely linear subspaces whose defining

equations have integral coefficients.

2.2 The Albanese variety

Associated to any tropical affine manifold B there is a tropical Albanese variety Alb(B) constructed as

follows. Given an integral 1­form α ∈ H0(T∗
ZB) and a singular 1­chain γ ∈ C1(B), we can regard α

as a usual differential form and integrate α over γ . Since integral forms are closed (they are locally

exact), the integration pairing
∫

: H0(T∗
ZB) ⊗ C1(B) → R descends to a map∫
: H0(T∗

ZB) ⊗ H1(B;Z) → R

over classes in the first homology of B . In particular, there is a map H1(B;Z) → Hom(H0(T∗
ZB),R),

and we define the tropical Albanese variety of B to be the quotient

(2) Alb(B) :=
Hom(H0(T∗

ZB),R)

H1(B;Z)
.
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Remark 2.5 Associated to any smooth algebraic variety there is an (algebraic) Albanese variety, which

is an abelian variety satisfying a universal property. Whereas this algebraic object is always smooth, the

tropical Albanese variety associated to a tropical affine manifold need not even be a manifold. However,

in all the examples we will consider in this paper it will not just be a manifold but moreover it will come

equipped with a natural structure of a tropical affine torus.

Denote by Z0(B) the homologically trivial (i.e. degree zero) 0­cycles on B . There is a natural map

alb : Z0(B) → Alb(B)

alb(b+ − b−) =

∫

γ
− : H0(T∗

ZB) → R,
(3)

where γ ∈ C1(B) is any 1­chain with ∂γ = b+ − b− (the quotient in Equation (2) makes the map

independent of the choice of γ ). In particular, after choosing a base­point b0 ∈ B , composition of the

above map with the inclusion b ∈ B 7→ b − b0 ∈ Z0(B) gives an albanese map (still denoted by alb)

alb : B → Alb(B)

It is an isomorphism whenever B is a tropical affine torus (see Definition 2.8).

2.3 From tropical to symplectic geometry

Recall that there is a map from smooth manifolds to symplectic manifolds that assigns to each smooth

manifold B its cotangent bundle T∗B . Moreover, the canonical projection T∗B → B is a Lagrangian

fibration (i.e. the fibers are Lagrangian). Note that T∗B is never compact.

When B has the structure of a compact tropical affine manifold, we can refine this construction to give

a compact symplectic manifold: the quotient

X(B) := T∗B/T∗
ZB

inherits a symplectic structure from T∗B . The projection X(B) → B is now a Lagrangian torus fibration.

There is a rich duality between the tropical geometry of B and the symplectic geometry of X(B), which

we now briefly recall.

First of all, X(B) possesses a broader source of Lagrangian sections. In the cotangent bundle T∗B

one can obtain Lagrangians as graphs of closed 1­forms—that is, sections of the sheaf Ω1
c . In X(B),

the sheaf Ω1
c
∼= C∞/R is replaced by C∞/Aff , as affine functions have vanishing differential in the

quotient X(B) = T∗B/T∗
ZB .

Example 2.6 The function f : R → R, f (x) = 1
2
x2 does not descend to a section of C∞

R/Z/R , but it

does give a section of C∞
R/Z/Aff . The corresponding Lagrangian in X(R/Z) = T2 is a geodesic of

homology class (1, 1).

Second, in the cotangent bundle one can produce Lagrangians from submanifolds V ⊂ B by taking the

conormal bundle N∗V ⊂ T∗B . On the other hand, some form of rigidity appears in X(B) due to the

compactness of the fibers. Without further assumptions, the projection to X(B) of the conormal lift of

an arbitrary submanifold need not be a (compact) embedded Lagrangian. Instead, under the assumption

that V ⊂ B is a tropical submanifold (see Section 2.1), the quotient

LV := N∗V/N∗
ZV

is a compact Lagrangian submanifold of X(B). We call LV a tropical Lagrangian and say it is a tropical

lift of V .
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Remark 2.7 The setting in which one can obtain a Lagrangian from a subset (not even a submanifold)

of the base is an active topic of research. Lagrangian lifts of subsets with much greater generality

than what is presented here—so­called tropical subvarieties—have been constructed; see e.g. [Mik19;

Hic20; MR20; Mat21; SS21].

2.4 Tropical Klein bottles

Let us now introduce the tropical affine manifold that we will study in this paper. Consider (R2,Z2)

with the standard tropical affine structure, and let Λ ⊂ R2 be a lattice. Recall that the quotient of a

tropical affine manifold by a group of tropical automorphisms inherits a tropical affine structure (see

Example 2.2).

Definition 2.8 We call the quotient

(4) T2
Λ := R2/Λ

a tropical affine torus.

Definition 2.9 Let T2
Λ be a tropical affine torus and ψ ∈ Aff(T2

Λ) an orientation reversing, affine

involution without fixed points. We call the quotient

(5) KΛ,ψ := T2
Λ/〈ψ〉

a tropical Klein bottle.

Remark 2.10 There exist tropical affine manifolds with the topology of a torus which do not arise as a

quotient of the form in Definition 2.8 (see [Mis96, Section 4, Theorem A]). Our definition only covers

those tropical affine tori whose associated symplectic manifold X(T2
Λ) = T∗T2

Λ/T∗
ZT2

Λ , as defined in

Section 2.3, is a symplectic 4­torus. It follows from this that there exist tropical affine manifolds with

the topology of a Klein bottle that are not of the form (5). Again, our definition covers those tropical

affine Klein bottles whose associated symplectic manifold is a quotient of a 4­torus

Tropical Klein bottles have been classified by Sepe [Sep10]. In fact, they classify tropical affine

structures on all types of Klein bottles, not just the restricted types we consider in this paper (cf.

Remark 2.10). Let us recall the part of their result that relates to those Klein bottles in Definition 2.9,

which we phrase in an equivalent way that is more convenient for our purposes:

Lemma 2.11 ([Sep10]) Let L ⊂ R2 be a lattice and denote by (R2,L) the smooth manifold R2

together with the tropical affine structure defined by L . Every tropical Klein bottle is isomorphic to a

unique ‘standard’ Klein bottle, i.e. one of the form KL := ((R2,L)/Z2)/Z2 , where Z2 acts as above

with

(6) A =

(
1 0

0 −1

)
, c = (1/2, 0).

Remark 2.12 Only those integral affine structures L that are preserved by this standard A give

well­defined tropical Klein bottles (cf. Example 2.2). In other words, the map
{

isomorphism classes of

tropical Klein bottles

}
→ {L ⊂ R2 lattice}
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is an injection but not a surjection, and its image is precisely those lattices that are symmetric with

respect to the involution (x, y) 7→ (x,−y). These lattices are easily classified: choosing l1, l2 ∈ L

primitive lattice points lying in both axis, one can easily check using the A­invariance of L that it has

to be of the form L1 = Z〈l1, l2〉 or L2 = Z〈l1, 1/2(l1 + l2)〉. The corresponding Klein bottles will be

denoted by K1 and K2 , and correspond to the families in equations (2) and (4) in [Sep10, Theorem 3.1].

Remark 2.13 The two types of Klein bottles obtained in the above remark give rise to complex surfaces

TKi/TZKi corresponding to bielliptic surfaces of type I and II in the classification of complex bielliptic

surfaces (see for instance [Bea96, List VI.20] for such classification, originally due to Bagnera­de

Franchis). Although such classification contains a total of seven types, only the first two admit maximal

degenerations and thus are relevant from the point of view of mirror symmetry.

Remark 2.14 It follows from Lemma 2.11 and Remark 2.12 that tori T2
Λ admitting a free Z2 orientation

reversing integral affine action are ‘rational’, in the sense that there is a basis of Λ with rational slope

(although not necessarily rational coordinates).

3 Lagrangian cobordisms

Recall from Section 1.1 that a (planar) Lagrangian cobordism from (L+
1 , . . . ,L

+
k ) to (L−

1 , . . . ,L
−
s ) is a

properly embedded Lagrangian submanifold V ⊂ X × C such that

V \ π−1
C (K) =

(
k⊔

i=1

L+
i × γ+i

)
⊔



s⊔

j=1

L−
j × γ−j


 ,

for some compact region K ⊂ C and horizontal curves γ±j (t) = (±t, j),±t > a±j . Given collections L
and Lcob of Lagrangians in X and Lagrangian cobordisms in X × C (all of whose ends are in L), one

defines the Lagrangian cobordism group as the free abelian group on L modulo the relations generated

by Lcob (see Definition 1.2). More generally, the collection of Lagrangians and cobordisms can be

equipped with various extra decorations (e.g. orientations) or required to satisfy some property (e.g.

monotonicity), and in this case the cobordism group is defined as the free abelian group on the decorated

Lagrangians with the desired property modulo the relations generated by the decorated cobordisms,

where the decorations must restrict appropriately (cf. Remark 1.3).

In this section we review the main constructions of Lagrangian cobordisms and detail the decorations

we will put on our Lagrangians and cobordisms. In Section 3.1 we present the Lagrangian cobordism

associated to a Hamiltonian isotopy (so­called suspension cobordism) and several types of surgeries.

We use these to compute the Lagrangian cobordism group of T2 in Section 3.2, whose cobordism

relations will be used in Section 4. Section 3.3 recalls the definition of a Pin structure, a grading and a

local system—these form the decorations that we will put on our Lagrangians in Section 4.

3.1 Cobordism constructions

There are essentially two main sources of Lagrangian cobordisms: Hamiltonian isotopies and La­

grangian surgery.2 We briefly recall these.

2A third construction due to Sheridan­Smith constructs cobordisms from tropical curves [SS21]. However,

this construction produces cylindrical cobordisms— Lagrangian submanifolds in X × C∗ that fiber over rays
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Lemma 3.1 ([ALP94]) If L0 and L1 are Hamiltonian isotopic, then there is a Lagrangian cobordism

between L0 and L1 .

The second main cobordism source is that of Lagrangian surgery. Lagrangian surgery produces, from

two (embedded) Lagrangians L0,L1 intersecting transversely at some point p, a third (embedded)

Lagrangian L0#L1 which agrees with L0 and L1 outside an arbitrarily small neighborhood of p. The

Lagrangians L0,L1 and L0#L1 are furthermore related by a Lagrangian cobordism. We now recall the

construction of L0#L1 , which is classical and goes back to Lalonde­Sikorav [LS91] in the 2­dimensional

case and to Polterovich [Pol91] in arbitrary dimension.

Choose a Darboux chart ϕ : U → Cn around p ∈ U such that ϕ(L0) = Rn and ϕ(L1) = (iR)n .

Consider a curve γ : R → C such that

• γ(t) = t for t ∈ (−∞,−1];

• γ(t) = it for t ∈ [1,∞);

• γ′(t) ∈ R+ × iR+ ⊂ C for t ∈ (−1, 1).

We define the surgery neck N to be

N := γ · Sn−1
= {(γ(t)x1, . . . , γ(t)xn) ∈ Cn |

n∑

i=1

x2
i = 1}

and the surgery of L0 and L1 to be L1#L2 := [(L1 ∪ L2) \ U] ∪ ϕ−1(N). Biran­Cornea show that the

Lagrangians Li and their surgery are related by a Lagrangian cobordism:

Proposition 3.2 Let L0,L1 ⊂ X be Lagrangians intersecting transversely at a single point p. There is

a cobordism with ends L0,L1 and L0#L1 .

Proof See [BC13, Lemma 6.1.1].

Since the surgery construction is local, one immediately gets:

Corollary 3.3 Let L0 and L1 be Lagrangians intersecting transversely at a finite collection of points.

Let L0#L1 be the Lagrangian obtained by performing the above surgery at each intersection point.3

Then there is a Lagrangian cobordism with ends L0,L1 and L0#L1 .

Remark 3.4 One can show that when performing surgery at a single point, L0#L1 is independent, up to

Hamiltonian isotopy, of the specific curve γ used to construct the surgery neck. This is no longer the case

when there are multiple intersection points. In particular, byconcatenating two cobordisms with different

surgery necks we obtain cobordant (embedded) Lagrangians that need not be Hamiltonian isotopic. This

shows that Lagrangian cobordism is a strictly coarser equivalence relation than Hamiltonian isotopy.

near 0 and ∞ . Every cobordism in X × C gives a cylindrical cobordism by quotienting C by a large enough

imaginary translation, but not every cylindrical cobordism gives a cobordism in X × C .
3When L0 and L1 intersect at a unique point, the Lagrangian L0#L1 is topologically a connect sum. This is

no longer true when the intersection consists of more than one point.
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Remark 3.5 It follows from Corollary 3.3 that (embedded) Lagrangian cobordisms, without extra

decorations, are topological. Namely, there is an h­principle for Lagrangian immersions, showing

they are governed by algebraic topology. One can then perturb the Lagrangian immersion by a

Hamiltonian isotopy to make all the intersections transverse, and applying the surgery cobordism yields

an embedded Lagrangian cobordism. However, once we equip Lagrangians and cobordisms with extra

data (see Remark 1.3) some rigidity appears. This was first noticed by Chekanov [Che97], who showed

that monotone Lagrangian cobordisms are no longer flexible. Monotone Lagrangians are precisely the

Lagrangians considered in the original work of Biran­Cornea [BC13; BC14], where they show that

monotonicity imposes enough rigidity on Lagrangian cobordisms to preserve Floer theory (meaning

that monotone Lagrangian cobordant Lagrangians are isomorphic objects in the Fukaya category).

A generalization of the above surgery cobordism to non­transverse intersections has been constructed by

Hicks [Hic19; Hic20]. He shows that if L0 and L1 are Lagrangians whose intersection can be modeled

on the intersection of the zero section and the graph of a convex function, then there exists a Lagrangian

L0#L1 agreeing with L0 and L1 outside a neighborhood of the intersection region; furthermore, there is a

cobordism between L0,L1 and L0#L1 [Hic20, Corollary 3.5]. Now assume X(B) → B comes equipped

with a Lagrangian torus fibration. Let L0 = Γ0 be the zero section and L1 = Γ(dφ) := Γ(dφ̃) be the

graph of (a smoothing of) a tropical polynomial—a piecewise linear function φ : B → R with integer

slope which is furthermore convex (φ̃ denotes a suitable smoothing, see [Hic20, Section 3.2]). Then

Hicks uses his surgery construction to show that the projection of the surgery Lagrangian Γ0#Γ(dφ)

to B lives arbitrarily close to the tropical hypersurface V(φ) (the locus of points in B where φ is not

smooth) [Hic20, Theorem 3.17].

We will use the following instance of Hicks’ construction in our computations in the next sections.

The tropical hypersurface V(φ) will be a collection of disjoint, codimension­1 tropical submanifolds

V1, . . . ,Vk ⊂ B . Each Vi comes with a ‘weight’ wi ∈ Z that records the ‘amount of bending’ of φ at

Vi . Let Li = N∗Vi/N∗
ZVi be the Lagrangian lift of Vi and write Lφ :=

∑
i wiLi . A surgery cobordism

shows that Γ0#Γ(dφ) ∼ Lφ in the cobordism group.4 Let us state the precise result we will need for

further reference:

Proposition 3.6 Consider the Lagrangian torus fibration X(B) → B , and let Γ0 be the zero section.

Let φ be a convex piecewise linear function such that V(φ) = V1 ⊔ · · · ⊔ Vk is a collection of disjoint

tropical submanifolds and let Lφ be defined as above. Then the relation

Γ0 + Lφ ∼ Γ(dφ)

holds in Cob(X(B)).

Remark 3.7 In fact, in our computations the sections Γ(dφ) will be product­type, meaning the function

φ will only depend on one of the coordinates (x, y) ∈ K . One could then pull back such a section to

T2 × T2 → K and surger it with the 0­section by considering the product V ×Γ0 ⊂ (T2 ×C)× T2 (or

Γ0 × V ⊂ T2 × (T2 × C)) of a standard surgery cobordism V ⊂ T2 × C in one of the T2 ­factors with

the 0­section Γ0 in the other factor. This cobordism is invariant under the covering group of the cover

T2 ×T2 ×C → K×C , thus descends to K×C and recovers the cobordism relation of Proposition 3.6.

4An interesting point is that a cobordism from Γ0#Γ(dφ) to Lφ does not exist; rather, there is a cobordism

between (Γ0#Γ(dφ),Γ0) and (Lφ,Γ0) .
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3.2 The Lagrangian cobordism group of T2

In this section we recall the computation of the Lagrangian cobordism group of T2 whose generators are

oriented embedded non­contractible Lagrangians and whose relations come from oriented embedded

cobordisms. This will not just exhibit the use of Hamiltonian isotopies and Lagrangian surgeries to

compute cobordism groups, but in fact will be essential in our computation of the cobordism group

of a bielliptic surface in Section 4. The computation of Cob(T2) was first done in [Hau15] using

homological mirror symmetry. We will present a computation that only requires standard symplectic

topology arguments.

Denote by Cob(T2)hom the subgroup of Cob(T2) generated by homologically trivial formal sums of

Lagrangians (this is the kernel of the cycle­class map Cob(T2) → H1(T2;Z), which exists because all

Lagrangians and cobordisms are oriented—cf. Section 4.4). The following Lemma is an application of

Stokes’ theorem.

Lemma 3.8 There is a well­defined map Φ : Cob(T2)hom → R/(Z area(T2)) ∼= S1 sending a homo­

logically trivial collection of Lagrangians L1 + · · ·+ Lk to the area ω(u) of a topological 2­chain with

∂u = L1 + · · · + Lk .

We now state the main cobordism relations in T2 , which will be used to compute Cob(T2) and will

also be useful later in Section 4.

Lemma 3.9 The following relations hold in Cob(T2):

• For any a, b, θ ∈ R/Z , we have

(7) S1 × {a} − S1 × {a + θ} ∼ {b} × S1 − {b + θ} × S1.

• For any a, θ ∈ S1 , we have

(8) S1 × {0} − S1 × {θ} ∼ S1 × {a} − S1 × {a + θ}.

Proof The first relation is equivalent to S1 × {a} + {b + θ} × S1 ∼ S1 × {a + θ} + {b} × S1 , or

using surgery to (S1 ×{a})#({b + θ}× S1) ∼ (S1 ×{a + θ})#({b} × S1). These two Lagrangians can

be easily seen to be Hamiltonian isotopic by flux considerations. The second relation is an immediate

corollary of the first: both sides are cobordant to {b} × S1 − {b + θ} × S1 for any b ∈ S1 .

With this one can then show the following:

Proposition 3.10 The map Φ of Lemma 3.8 is an isomorphism.

Proof Surjectivity is obvious: for any θ ∈ S1 , we have S1 × {0} − S1 × {θ} = ∂(S1 × [0, θ]) and

area (S1 × [0, θ]) = θ . To prove injectivity we proceed as follows. Let L1 + · · · + Lk ∈ kerΦ ⊂
Cob(T2)hom ; we must prove that L1 + · · · + Lk = 0 in Cob(T2). We first write each Li as an iterated

surgery of mi horizontal lines and ni vertical lines, where (mi, ni) = [Li] ∈ H1(T2;Z) (such surgery

yields a Lagrangian in the same homology class as Li , and by sliding one of the horizontal or vertical

Lagrangians we can arrange the surgery to be Hamiltonian isotopic to Li ). Hence we may assume that

all the Li are either horizontal or vertical straight lines. If L±
i1
, . . . ,L±

il
are vertical Lagrangians with

homology class [L±
ij

] = (0,±1), using Equation (7) we may turn each pair L±
ij

into a cobordant pair

of horizontal Lagrangians. We have now reduced to the case where we have a collection of horizontal
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Lagrangians L±
1 , . . . ,L

±
n with homology class [L±

i ] = (±1, 0). By Equation (8), for each i = 2, . . . , n
we may slide the pair L±

i so that L+
i lies over L−

i−1 , thus cancelling. Doing this for all i leads the

two Lagrangians L+
1 and L−

n , and since they bound area k area(T2) for some k ∈ Z (they are in the

kernel of Φ) they must lie on top of eachother. Thus all the Lagrangians cancel and we are left with the

zero­sum on Cob(T2), as wanted.

Corollary 3.11 The Lagrangian cobordism group of closed, embedded, oriented and non­contractible

Lagrangians of T2 is

Cob(T2) ∼= Z2 ⊕ S1.

Proof Consider the short exact sequence

0 → Cob(T2)hom → Cob(T2)
cyc
−−→ H1(T2;Z) → 0,

which splits after a choice of base point p ∈ T2 . Using Proposition 3.10 the result follows.

For Lagrangians equipped with G­local systems, there is an extension of Φ to a map Cobloc(T2)hom →
S1 ⊕ G that records the product of the monodromies of each of the local systems. A similar argument

to that of Proposition 3.10 shows this map is an isomorphism, thus one obtains:

Corollary 3.12 For any abelian group G , the Lagrangian cobordism group of closed, embedded,

oriented and non­contractible Lagrangians of T2 equipped with G­local systems is

Cob(T2) ∼= Z2 ⊕ (S1 ⊕ G).

3.3 Extra data

Recall from Remark 1.3 that one often equips Lagrangians and cobordisms with various decorations

(this is essential to pass from a flexible to a rigid notion). In this section we discuss the extra structure

that we will consider on all our Lagrangians: gradings, Pin structures and local systems. The first two

are necessary to define a Z­graded Fukaya category with signs (i.e. away of fields of characteristic

2) [Sei08; Fuk+09]. The third decoration is a G­local system on each Lagrangian, where G is some

abelian group. When G = UΛ is the unitary group of the Novikov field, it is expected that this data

is needed to have a homological mirror symmetry equivalence between the Fukaya category (without

taking the split closure) and the derived category of coherent sheaves of its mirror. We will refer to

Lagrangians with this extra structure—that is, a grading, a Pin structure and a G­local system—as

Lagrangian G­branes (or simply Lagrangian branes).

Remark 3.13 We work with an arbitrary G because our computation of the cobordism group works

in that generality (see Theorem 4.26). However, to compute the Grothendieck group and show that it

agrees with the cobordism group (Theorem 4.29), we need to apply homological mirror symmetry and

thus we specialize to the case G = UΛ .

We start with gradings. This is some extra data on the Lagrangians that allows us to define a Z­graded

Fukaya category (meaning the morphism spaces are Z­graded vector spaces). For a complete exposition

on gradings see [Sei08, Section (11j)] or Seidel’s original paper [Sei00].

Let X2n be a symplectic manifold such that 2c1(X) = 0. This means the complex line bundle (Ωn)⊗2

of holomorphic quadratic volume forms is trivial. Let η2 : X → (Ωn)⊗2 be a nowhere zero section
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(note this is the same data as a section of Ωn defined up to a sign ±1, which we denote by ±η ). Given

a Lagrangian submanifold L ⊂ X , there is an associated (squared) phase map αL : L → S1 given by

αL(p) =
η2

p(vol⊗2
L,p)

|η2
p(vol⊗2

L,p)|

where volL,p is a generator of ∧nTpL . The cohomology class µL ∈ H1(L;Z) determined by αL is

called the Maslov class of L . By definition, µL is the obstruction to the existence of a lift α̃L : L → R

to the universal cover R → S1, t 7→ ei2πt .

Definition 3.14 Let L ⊂ X be a Lagrangian with µL = 0. A pair (L, α̃L) is called a graded Lagrangian.

Remark 3.15 The phase map αL depends on the homotopy class of the trivialization η2 . Whether a

Lagrangian admits a grading or not will therefore also depend on such choice.

Remark 3.16 As explained in [Sei08, Remark 11.18], a graded Lagrangian is naturally oriented

with respect to the Z­local system ξ ⊂ ∧n
CTX where ±η takes integer values. Hence, every graded

Lagrangian defines a class in the homology group Hn(X; ξ).

Next we turn to (twisted) Pin structures, again following [Sei08]. These are needed to orient the

moduli­spaces that define the A∞ operations, so that one can define a Fukaya category over a field

of characteristic different from two. First recall that there is a group Pinn , constructed explicitly as

a subgroup of the Clifford algebra of Rn , that admits a 2­to­1 map Pinn → On . A Pin structure

on an n­dimensional manifold M is a principal Pinn ­bundle P → M together with an isomorphism

P×Pinn R
n ∼= TM , where Pinn acts on Rn via the composition Pinn → On →֒ GL(Rn). The obstruction

to the existence of a Pin structure is the second Stiefel­Whitney class w2(M) ∈ H2(M;Z2). More

generally, given some class w ∈ H2(M;Z2) and an oriented vector bundle E → M with w2(E) = w ,

one can define a twisted Pin structure as a Pin structure on TM ⊕ E . The obstruction to the existence

of a Pin structure is now w2(E) − w2(M).

If M = X is a symplectic manifold and E → X is an oriented vector bundle, one can define a Fukaya

category whose objects are Lagrangians equipped with a Pin structure on the bundle TL ⊕ E|L . This

structure is enough to orient the moduli­spaces defining the A∞ ­operations, and hence to define a

Fukaya category away of characteristic 2 [Sei08; Fuk+09].

Lastly, let us recall that, for an (abelian) group G , a G­local system on a manifold M is the data of a

group homomorphism

ξ : π1(M) → G.

Geometrically, one can think of a local system as a principal G­bundle with a flat connection. Namely,

the fibers of a G­principal bundle give an assignment of principal homogenous G­space ξp to each

p ∈ M . The data of a flat connection gives, via parallel transport, isomorphisms ξγ(0)
∼= ξγ(1) for every

path γ : [0, 1] → M . Furthermore, these isomorphisms depend only on the homotopy class of γ relative

to its endpoints. Considering isomorphisms associated to loops returns the map ξ : π1(M) → G .

Example 3.17 Suppose that π : X → B comes with a Lagrangian torus fibration. In this case, there are

natural choices of η2 : X → (Ωn)⊗2 and w ∈ H2(X;Z2) to define gradings and twisted Pin structures.

Namely, we choose η2 to be the complexification of a section of (∧nT∗B)⊗2 , and w = π∗(w2(B))

to be the pullback of the second Stiefel­Whitney class of B . In full generality one can consider
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E := π∗(TB ⊕ (detB)⊕3) (this choice ensures that w2(E) = π∗w2(B) while making E orientable), but

when w = 0 we will simply take E = 0 to be the trivial vector bundle. The obstruction to a twisted

Pin structure (a Pin structure on TL⊕E|L ) is then w2(L)+ (π∗w2(B))|L . Note these choices ensure that

fibers and sections admit a brane structure. Furthermore, with this choice of η2 the Z­local system ξ
of Remark 3.16 is the pullback π∗(∧nT∗

ZB) of the integral orientation bundle of the base. Hence every

graded Lagrangian is oriented with respect to π∗(∧nT∗
ZB).

Summarizing, the Lagrangians we consider will be Lagrangian G­branes—that is, they will carry the

data of a grading, a twisted Pin structure and a G­local system. A cobordism between such Lagrangians

is then a Lagrangian cobordism V ⊂ X × C carrying also a G­brane structure;5 it induces a relation

between the ends equipped with the restricted brane structure. The fact that we can restrict Pin structures

and gradings follows from the product­type structure of the cobordism and complex structure at infinity,

together with the fact that the ends are all horizontal (thus, the composition of the phase map of the

cobordism with the inclusion of one of its ends coincides with the phase map of the end).

4 The Lagrangian cobordism group of a bielliptic surface

In this section we prove the main results of this paper. The first, see Theorem 4.26, is a computation

of the subgroup Cobtrop(K) ⊂ Cob(K) generated by Lagrangian sections and fibers of the projection

π : K → K , where K is a symplectic bielliptic surface as defined in Section 4.1. Using this computation

together with Abouzaid’s homological mirror symmetry result [Abo21], we show in Theorem 4.29 that

Cobtrop(K) is naturally isomorphic to the Grothendieck group of the Fukaya category.

4.1 Algebraic and symplectic bielliptic surfaces

We start by defining the algebraic varieties and symplectic manifolds that we call bielliptic surfaces.

On the algebraic side, we always work over an algebraically closed field of characteristic zero.

In the Kodaira­Enriques classification of surfaces, a bielliptic surface (also known as a hyperelliptic

surface) is a minimal surface Y characterised by

κ(Y) = 0, q(Y) = 1, pg(Y) = 0

where κ denotes the Kodaira dimension, q(Y) = h1(Y,OY ) is the irregularity and pg(Y) = h2(Y,OY )

is the geometric genus (this condition pg(Y) = 0 can be omitted in characteristic zero). Since q(Y) = 1

equals the dimension of the Albanese variety of Y , Alb(Y) is an elliptic curve; moreover, the Albanese

morphism alb : Y → Alb(Y) is an elliptic fibration and all fibers are smooth [BM77]. One can show

that there exists another elliptic fibration Y → P1 that is transverse to alb. This justifies the name

bielliptic, as these surfaces admit two (transverse) elliptic fibrations. These two fibrations can be seen

explicitly, as follows from the following structure theorem for bielliptic surfaces (see [BM77, Theorem

4, §3]):

Theorem/Definition 4.1 Let Y be a bielliptic surface. There exist elliptic curves E1,E2 and a finite

group G ⊂ E1 of translations of E1 acting also on E2 such that Y = (E1 × E2)/G . The quotient E1/G

is again an elliptic curve and E2/G ∼= P1 .

5The almost complex structure on X ×C used to define gradings is chosen to be of the form JX×C = JX × jC
at infinity, where jC is the standard complex structure on C .
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It follows from Serre duality that h0(Y,KY ) = 0, so in particular the canonical bundle KY is not trivial;

nonetheless, it can be proved using the canonical bundle formula for elliptic fibrations and the structure

theorem above that it is either two­, three­, four­ or six­torsion.

We remark that the quotient E1/G is again an elliptic curve, and the projection Y → E1/G is a fiber

bundle (all fibers being smooth elliptic curves isomorphic to E2 ). In fact, one can identify E1/G

(together with the projection π1 : Y → E1/G) with the Albanese variety of Y .6 On the other hand, the

projection π2 : Y → E2/G is an elliptic fibration over E2/G ∼= P1 . This fibration is however not smooth:

the generic fiber is isomorphic to E1 , but over the branching points of the projection E2 → E2/G we

have non­reduced fibers, their multiplicity being equal to that of the associated branching point. For

more details on the algebraic geometry of bielliptic surfaces we refer the reader to [BM77].

We now introduce symplectic bielliptic surfaces. In Section 4.2 we explain how symplectic and algebraic

bielliptic surfaces are homologically mirror as an instance of Abouzaid’s homological mirror symmetry

result [Abo14; Abo17; Abo21]. Recall Abouzaid’s result is proved using family Floer theory, whose

input is a symplectic manifold together with a Lagrangian torus fibration over some tropical affine

manifold. In our case, we take the tropical affine manifold to be a Klein bottle (see Definition 2.9) and

construct a symplectic manifold X(K) as explained in Section 2.3:

Definition 4.2 Let K be a tropical Klein bottle. The total space K := X(K) of the Lagrangian torus

fibration X(K) → K is called a symplectic bielliptic surface.

The following Lemma shows this definition agrees with the symplectic of Theorem/Definition 4.1,

hence the name symplectic bielliptic surface. Namely, we have the following:

Lemma 4.3 Every symplectic bielliptic surface is the quotient of the product of two symplectic 2­tori

by the action of a finite group of symplectomorphisms.

Proof Recall from Definition 2.9 that every tropical Klein bottle is the quotient of a tropical affine

torus T2
Λ by a finite group. The discussion of Remark 2.12 shows that there is a tropical morphism

T → T2
Λ from a product tropical torus T ≃ S1×S1 onto T2

Λ which is a diffeomorphism of the underlying

smooth manifolds (but might not be a tropical isomorphism). The composition T → T2
Λ → K is a local

diffeomorphism and also a tropical map, thus it induces a map

X(T) ≃ X(S1) × X(S1) → K

which can be seen to be a projection X(T) → X(T)/G . Hence every symplectic bielliptic surface can

be expressed as a quotient

K ≃ ((T2, ω1) × (T2, ω2))/G

of two symplectic 2­tori by a finite group of symplectomorphisms.

To be more precise, if (qi, pi) are Arnold­Liouville coordinates on the Lagrangian torus fibration

(T2, ωi) → S1
qi

, then the group G can either be:

(1) G = Z2 , acting by

(q1, p1, q2, p2) 7→ (q1 + θ, p1,−q2,−p2)

and 2θ = 0 6= θ ; or

6This property actually provides a third (equivalent) definition of bielliptic surfaces: a bielliptic surface is an

algebraic surface such that the Albanese morphism Y → Alb(Y) is an elliptic fibration.
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(2) G = Z2 ⊕ Z2 , where the first generator acts as before and the second as

(q1, p1, q2, p2) 7→ (q1, p1 + φ1, q2, p2 + φ2),

and again 2φi = 0 6= φ1φ2 .

Remark 4.4 Note that while the first action modifies the topology of the base of the Lagrangian torus

fibration T2 × T2 → S1 × S1 , the second only modifies its tropical affine structure.

Remark 4.5 As mentioned in Remark 2.13, these two symplectic bielliptic surfaces correspond to

algebraic bielliptic surfaces of type I and II in the classification of algebraic bielliptic surfaces. The

classification of complex bielliptic surfaces (see e.g. [Bea96, List VI.20]) includes seven families, with

more possible groups than G = Z2 or G = Z2 ⊕ Z2 . However, it is only in two of these families that

the complex structure can be deformed in a maximally degenerating way. Hence, these are the only

two that make sense for mirror symmetry, where to a symplectic manifold one associates a maximal

degeneration of an algebraic­geometric object.

4.2 Homological mirror symmetry for bielliptic surfaces

Let K be a symplectic bielliptic surface. Recall that, by definition, K comes equipped with a Lagrangian

torus fibration π : K → K . We observe that the fibration is smooth (i.e. there are no singular fibers)

and that π2(K) = 0. This puts us in the setting to apply the results in [Abo21], where a (rigid analytic)

mirror is constructed and homological mirror symmetry is proved for such a pair.

Denote by Ǩ the rigid analytic mirror of K . Set­wise, Ǩ is the disjoint union

(9) Ǩ :=
⊔

p∈K

H1(Fp; UΛ),

where Fp := π−1(p) ⊂ K is the Lagrangian torus fiber over p ∈ K and UΛ ⊂ Λ∗ is the unitary

subgroup of the Novikov field Λ . The space Ǩ can be endowed with the structure of a rigid analytic

space [Abo14]. Examining Equation (9) and using that a tropical Klein bottle is the quotient of a tropical

2­torus (Definition 2.9), one sees that the rigid analytic space Ǩ is the quotient of a product E1 ×E2 of

two Tate curves by the action of a finite group G , and each of these Tate curves is the analytification of

an algebraic elliptic curve Ei over the Novikov field. Hence we have that

Ǩ = (E1 × E2)/G = (Ean
1 × Ean

2 )/G = (E1 × E2/G)an

is the analytification of an algebraic variety Y := (E1 × E2)/G . Note that Y is an algebraic bielliptic

surface (see Theorem/Definition 4.1). One can then apply the rigid analytic GAGA principle to obtain

an equivalence of categories

DbCohan(Ǩ) ∼= DbCoh(Y),

so that combining this with the homological mirror symmetry statement of [Abo21] we obtain:

Proposition 4.6 Let K be a symplectic bielliptic surface and DπFuk(K) the split­closed derived

Fukaya category of K . Then there is an algebraic bielliptic surface Y over the Novikov field Λ and an

equivalence of triangulated categories

DπFuk(K) ∼= DbCoh(Y).
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Remark 4.7 Strictly speaking, [Abo21] proves there is a fully faithful embedding DπFuk(K) →֒
DbCohan(Ǩ) of the Fukaya category into the category of (twisted) coherent sheaves, with no discussion

of essential surjectivity. However, for a smooth quasi­projective variety Y we have that DbCoh(Y) ≃
Perf (Y) is idempotent­complete. In this case, essential surjectivity is equivalent to showing that the

image of the family Floer functor split­generates DbCoh(Y). It is a result of Orlov [Orl08] that

sufficiently many powers of any ample line bundle are enough to split­generate DbCoh(Y), so it suffices

to show such an ample line bundle exists in the image of the family Floer embedding. One can check

that the construction in [Abo14] of the complex of coherent sheaves mirror to a Lagrangian section

is indeed a line bundle, and that when the function defining the section is strictly convex such line

bundle is ample. As K admits a strictly convex Lagrangian section by Lemma 4.9, we indeed have an

equivalence DπFuk(K) ≃ DbCohan(Ǩ).

Remark 4.8 In fact, for symplectic bielliptic surfaces we have that DFuk(K) ∼= DπFuk(K)—see

Remark 1.7. Hence we obtain a homological mirror symmetry equivalence DFuk(K) ∼= DbCoh(Y)

with no need of taking split­closure on the A­side.

4.3 Lagrangian sections in bielliptic surfaces

Let K be a symplectic bielliptic surface (recall this is the total space of a Lagrangian torus fibration over

a Klein bottle). From now on we fix K = K1 to be a tropical Klein bottle of type I (see Remark 2.12).

Hence K = T∗K1/T∗
ZK1 will always be a symplectic bielliptic surface mirror to an algebraic bielliptic

surface of type I (see Remark 2.13). In this section we classify Lagrangian sections and compute their

homology class.

Recall from Section 2.3 that Lagrangian sections in K = T∗K/T∗
ZK are in one­to­one correspondence

with elements in H0(C∞
K /AffK). Among these, global sections of H0(C∞

K ) give Lagrangian sections

that are Hamiltonian isotopic to the zero section. Thus, the group

(10) H1(Aff) ∼= H0(C∞/Aff)/H0(C∞)

parametrizes Lagrangian sections up to Hamiltonian isotopy. We now determine this group:

Lemma 4.9 Let K be a tropical Klein bottle. Then H1(Aff) ∼= Z2 ⊕ Z2 ⊕ S1 , with an element

(m, n, [l], e2πiθ ) represented by the section f nl
mθ ∈ H0(C∞

K /AffK) defined by

(11) f nl
mθ(x, y) :=

m

2
x2

+
n

2
y2

+
l

2
y + θx.

Proof Take an element in H0(C∞
K /AffK). Pulling it back to H0(C∞

R2/AffR2 ) and lifting it to a smooth

function, we are looking at functions f ∈ H0(C∞
R2) satisfying the periodicity conditions

f (x, y) − f (x + 1,−y) = g1(x, y)(12)

f (x, y) − f (x, y + 1) = g2(x, y)(13)

for some affine functions g1, g2 ∈ Aff(R2). Now note that

g1(x, y) + g2(x + 1,−y) = f (x, y) − f (x + 1,−y + 1) = g1(x + 1, y − 1) − g2(x, y − 1),

and this compatibility guarantees the existence of a quadratic function fq with the same periodicity as

f . In particular, the difference f − fq descends to a well­defined smooth function on K , hence f and

fq define the same class in H1(Aff). Thus, we may assume that the element in H0(C∞
K /AffK) is given
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by a quadratic polynomial f , and similarly that it vanishes at a preferred point 0 ∈ K . Then we want

to find quadratic polynomials

f (x, y) =

2∑

i,j=0
0<i+j≤2

aijx
iyj

that satisfy the periodicity conditions (12) and (13). These imply 2a20, 2a02, 2a01 ∈ Z and a11 = 0.

Since adding an affine function does not change the sections in H0(C∞
K /AffK), we mod out by

(a01, a20) ∈ Z2 . This proves that H1(Aff) ∼= Z2⊕Z2⊕S1 , with an element (m, n, [l], e2πiθ ) represented

by the function f nl
mθ of Equation (11).

We will now show that f
n[l]
mθ can be approximated by (a smoothing of) a piecewise­linear function

with integer slope, in the sense that they define the same class in H1(Aff). We first construct the

approximation and then prove in Lemma 4.10 that it defines the same class as f
n[l]
mθ .

Let f and fφ be the unique (up to a constant) piecewise linear functions with integer slope R → R such

that:

• if x is a smooth point of f , then f′(x + 1) = f′(x) + 1, and f′(x) = 0 for x ∈ (− 1
2
, 1

2
);

• fφ(x + 1) = fφ(x) + φ , f′φ(x) = 0 for x ∈ (0, φ) and f′φ(x) = 1 for x ∈ (1 − φ, 1).

From these we define a new piecewise linear function fnl
mθ : R2 → R by

(14) fnl
mθ(x, y) := (mf+ fθ)(x) + (nf + fl)(y).

It follows from the definition of f and fφ that fnl
mθ satisfies periodicity equations as in (12)­(13). Hence—

after a suitable smoothing as in [Hic20, Section 3.2]—it gives a well­defined element in H0(C∞
K /AffK).

Lemma 4.10 The functions f nl
mθ and fnl

mθ have the same class in H1(Aff).

Proof Recall that H1(Aff) ∼= H0(C∞/Aff)/H0(C∞), so we must show that the difference f nl
mθ − fnl

mθ

gives a well­defined smooth function on K . This is equivalent to showing that the periodicity functions

gi of f nl
mθ are the same as those of fnl

mθ . Note that f nl
mθ(x, y) = hmθ(x) + gnl(y) decomposes as a sum of

one­variable functions, and that the periodicity conditions (12)­(13) split for each summand. Therefore,

it is sufficient to prove that for fmφ := mf+ fφ and hmφ(x) := m
2

x2 + φx one has

fmφ(x) − fmφ(x + 1) = hmφ(x) − hmφ(x + 1)(15)

fmφ(x) − fmφ(−x) = hmφ(x) − hmφ(−x) (if φ = 1/2).(16)

Since the function f (resp. fφ ) satisfies Equations (15) and (16) whenever m = 1, l = 0 (resp.

m = 0, l = 1), the result follows by linearity.

Corollary 4.11 The Lagrangian sections Γ(df nl
mθ) and Γ(dfnl

mθ) are Hamiltonian isotopic.

Next we compute the homology class of an arbitrary section (recall from Remark 3.16 and Example 3.17

that we take homology with coefficients in the Z­local system ξ = π∗ detZ K , where detZ K = ∧2TZK

is the integral orientation bundle). For this we first prove an important cobordism relation, which will

also be useful later on. In the remainder of this section we work with undecorated cobordisms, as these

are enough to give homology relations. Nonetheless, we show in Section 4.9 that the cobordisms we

consider admit brane structures and work out the restriction of the brane structures to the ends. This

will be essential for the results in Proposition 4.22.
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Write fmθ := f00
mθ and f nl := fnl

00 for (smoothings of) the functions defined in Equation (14). Writing

Γ0 for the zero­section and Lfmθ
for the Lagrangian lift of the non­smooth locus of fmθ , we can use

Proposition 3.6 to obtain a cobordism relation7

(17) Γ(dfmθ) ∼ Lfmθ
+ Γ0

and similarly for Γn[l] . Now consider Γ
n[l]
mθ = Γ(df nl

mθ). We write ⊗ for the fiber­wise addition operation

defined in [Sub10] (see Section 4.9 for more details on this operation). Note that the operation ⊗ has

the property

Γ(dϕ1) ⊗ Γ(dϕ2) = Γ(d(ϕ1 + ϕ2))

for ϕi ∈ H0(C∞/Aff). In particular, writing Γmθ := Γ
0[0]
mθ and Γn[l] := Γ

n[l]
00 , we can decompose Γ

n[l]
mθ

as a product

(18) Γ
n[l]
mθ = Γmθ ⊗ Γ

n[l].

Lemma 4.12 There is a cobordism relation Γ
n[l]
mθ ∼ Lfmθ

⊗ Lf nl + Lfmθ
+ Lf nl + Γ0 .

Proof Recalling that Γmθ (resp. Γn[l] ) is Hamiltonian isotopic to Γ(dfmθ) (resp. Γ(df nl)), we can

combine Equation (18) with Equation (17) to get cobordism relations

Γ
n[l]
mθ = Γmθ ⊗ Γ

n[l]

∼ (Lfmθ
+ Γ0) ⊗ (Lf nl + Γ0)

= Lfmθ
⊗ Lf nl + Lfmθ

+ Lf nl + Γ0.

Remark 4.13 We are using implicitly that Lagrangian correspondences induce homomorphisms be­

tween Lagrangian cobordism groups [HH22, Appendix C]. In full generality, this is only true if either all

the Lagrangians are undecorated (so that one can apply surgeries to resolve possible self­intersections

arising from geometric composition, see Remark 3.5) or if one is content with working with immersed

cobordisms. However, homomorphisms of cobordism groups obtained by fiberwise summing with

a Lagrangian section are actually induced by global symplectomorphisms, thus giving well­defined

group homomorphisms even at the embedded level. A detailed study of the transformation of the brane

structures under fiberwise addition can be found in Section 4.9.

We can now compute the homology class of the sections Γ
n[l]
mθ . In Appendix A we show that H2(K; ξ) ∼=

Z4 ⊕ Z2 and give explicit generators. Let us recall what these are. Consider the tropical submanifolds

(19) {0},K,C1 = {x = 0},C2 = {y = 1/2},C3 = {y = 0}

inside K . As in Section 2.3, for a tropical submanifold V ⊂ K we denote by LV = N∗V/N∗
ZV the

Lagrangian in K living over V . Then the Z­factors in H2(K; ξ) are generated by L{0} (a fiber), LK (the

zero­section) and the Lagrangians LC1
and LC2

, whereas the Z2 ­factor is generated by the difference

LC2
− LC3

. Using this, we prove the following:

Corollary 4.14 The homology class of Γ
n[l]
mθ is

[Γ
n[l]
mθ ] = (mn, 1,m, n, [l]) ∈ Z4 ⊕ Z2

∼= H2(K; ξ).

7In Proposition 3.6 the functions defining the Lagrangian sections are assumed to be convex. The functions

fmθ we consider are only convex when m ≥ 0. However, it is easy to see that the claimed cobordism relation still

holds if we revert the orientation of Lfmθ
when m < 0.
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Proof Using Lemma 4.12 it is enough to compute the homology class of the terms appearing on

the right­hand side. By construction of fmθ , the tropical submanifold V(fmθ)—the locus where fmθ
is not smooth, each component equipped with a multiplicity as explained before Proposition 3.6—is

homologous to m copies of C1 , whereas V(f nl) is a combination of n copies of C2 and l copies of the

difference C2−C3 . In particular, the term Lfmθ
⊗Lf nl in Lemma 4.12—which lives over the intersection

V(fmθ) ∩ V(f nl)—is a collection of m · n fibers. It then follows that

[Γ
n[l]
mθ ] = (mn, 0, 0, 0, [0]) + (0, 0,m, 0, [0]) + (0, 0, 0, n, [l]) + (0, 1, 0, 0, [0])

= (mn, 1,m, n, [l]),

which proves the Corollary.

4.4 The cycle class map

We start by defining the precise cobordism group that we will consider (namely, the classes L and

Lcob in Definition 1.2). Given a symplectic manifold X , we say a Lagrangian L ⊂ X is weakly exact

if ω(π2(K,L)) = 0, and we say it is tautologically unobstructed or quasi­exact if there exists some

almost complex structure J on X such that L bounds no non­constant J ­holomorphic disks. We denote

by (L, α,P, η) the data of a Lagrangian G­brane, where L ⊂ K is a Lagrangian, α : L → R its

grading, P → L a principal Pin2 ­bundle giving the Pin structure and η : π1(L) → G a local system.

Here, gradings and twisted Pin structures are defined with respect to the natural choices explained

in Example 3.17; that is, we grade Lagrangians with respect to a quadratic volume form given by

complexifying a section of (∧2T∗K)⊗2 , and a twisted Pin structure is in this case a regular Pin structure

(as w2(K) = 0). The same notation is used for cobordisms.

Definition 4.15 Let L = {(L, α,P, η)} be the collection of weakly­exact Lagrangian G­brane, and

Lcob = {(V, α,P, η)} be the collection of Lagrangian cobordisms V ⊂ K × C carrying a G­brane

structure, all of whose ends are weakly­exact, and such that their pullback to the cover T4×C → K×C

is tautologically unobstructed. The Lagrangian cobordism group of K is the group

Cob(K) := Cob(K;L,Lcob)/ ∼,

where ∼ is the equivalence relation generated by expressions of the form

(L, α,P, η) ∼ (L, α,P ⊗ β, η ⊗ β)

for any Z2 ­local system β on L .

Remark 4.16 The weaker condition that the pullback to T4 × C (instead of the cobordism itself) is

tautologically unobstructed is explained further in Section 4.8.

Remark 4.17 Let us briefly justify the additional relation imposed in Definition 4.15. Given any

Lagrangian brane (L, α,P, η), one can tensor both the Pin2 ­bundle P and the local system with a

Z2 ­local system β to obtain a new Lagrangian brane (L, α,P⊗β, η⊗β). These Lagrangian branes are

naturally isomorphic in the Fukaya category, whereas there is no reason to expect they should be related

by a Lagrangian cobordism. Hence, to hope for an isomorphism between the cobordism group and the

Grothendieck group of the Fukaya category, we impose this additional relation in the cobordism group.
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We now introduce the first invariant of cobordism classes. In Remark 3.16 and Example 3.17 we argued

that every graded Lagrangian in K is oriented with respect to the local system π∗(detZ K). Since

cobordisms are also graded and compatible with restriction of gradings, there is a natural cycle class

map

cyc : Cob(K) → H2(K; ξ)

that assigns to each Lagrangian its twisted fundamental class. This map is compatible with the open­

closed map OC : HH0(Fuk(K)) → H2(K; ξ),8 in the sense that there is a commutative diagram

Cob(K) //

cyc
++❲❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

❲

K0(Fuk(K))
T

// HH0(Fuk(K))

OC
��

H2(K; ξ)

.

Here T denotes the Dennis trace map, which exists for any triangulated category and sends an object

to its identity endomorphism, and the map Cob(K) → K0(Fuk(K)) is a Biran­Cornea type map as in

Equation (1) which is further discussed in Section 4.8.

4.5 Tropical cobordism group and the refined cycle class map

The computation in Appendix A shows that H2(K; ξ) ∼= Z4⊕Z2 and reflects an interesting phenomenon.

We showed in Section 4.2 that K is mirror to an algebraic bielliptic surface over the Novikov field. The

(co)homology of bielliptic surfaces has been studied (see for instance [Ser90] for the complex case),

and one finds it does not match our computation of H2(K; ξ) (it does up to torsion). Namely, for an

algebraic bielliptic surface of type I one finds Heven(Y) ∼= Z4 ⊕Z2
2 —an extra Z2 factor appearing with

respect to H2(K; ξ). Moreover, in [Ber+19] the authors exhibit explicit generators for the torsion part

of Heven(Y), and these happen to be (linear combinations of) lifts of the tropical divisors {y = 0} and

{y = 1/2}. By mirror symmetry, these torsion divisors correspond to Lagrangian lifts equipped with

torsion local systems. These Lagrangians have the same underlying Lagrangian submanifold, hence

are not distinguished by the naive map Cob(K) → H2(K; ξ). We will therefore use a refined cycle

class map that distinguishes these two Lagrangians, just as the mirror cycle class map distinguishes the

corresponding divisors.

Although it is possible to define a refinement of cyc on the whole cobordism group, for convenience we

will consider a subgroup Cobtrop(K) ⊂ Cob(K) and define the refinement only on this subgroup. Note

that, after choosing a Pin structure on K , Lagrangian fibers and sections of the projection K → K come

equipped with a preferred Pin structure: for a section Γ there is a natural diffeomorphism Γ ∼= K given

by the projection, whereas the tangent space to the fibers is naturally isomorphic to the (co)tangent

space of K . Furthermore, fibers and sections are weakly exact, since their pullback to the universal

cover R2 → K are exact Lagrangians.9 To summarize, fibers and sections are part of L , and they come

with a preferred Pin structure.

Definition 4.18 The tropical cobordism group is the subgroup Cobtrop(K) ⊂ Cob(K) generated by

Lagrangian fibers and Lagrangian sections of π : K → K equipped with the preferred Pin structure.

8This version of the open­closed map (mapping to twisted homology) has not appeared in the literature before.

It is not needed for our proofs and we just include it for context.
9In fact, for L a fiber or a section we get an even stronger property, sometimes referred to as topological

unobstructedness: the relative homotopy groups π2(K, L) vanish.
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We now introduce the following construction to refine the cycle class map. Let ι : L →֒ K be a

Lagrangian brane (in particular, L is oriented with respect to ξ = π∗(∧2TZT∗K) by Remark 3.16).

Recall that the twisted version of Poincaré duality gives an isomorphism Hi(M; ζ) ∼= Hn−i(M; ζ∨⊗orM)

for any local system ζ on a manifold M . We consider the composition

H3(K; ξ) ∼= H1(K; ξ∨)
i∗

−→ H1(L; ξ∨) ∼= H1(L; orL),

where in the first isomorphism we have used that orK ∼= Z (as for any symplectic manifold), the second

isomorphism follows from L being ξ ­oriented and the third isomorphism is twisted Poincaré duality

for L . The above composition gives an assignment

H3(K; ξ) → H1(L;Z)

C 7→ CL.

Now suppose L carries a G­local system, i.e. a homomorphism η : π1(L) → G .

Lemma 4.19 There is a well­defined pairing

Cobtrop(K) ⊗ H3(K; ξ) → G

(L, η) ⊗ C 7→ η(CL)
(20)

where η(CL) is the product of the monodromies of the local system η around the connected components

of the 1­cycle CL ⊂ L .

Proof We show that the map does not depend on the cobordism class. First note that the extra relation

imposed in Definition 4.15 is trivial on the subgroup Cobtrop(K), so that compatibility with this relation is

immediate. Let (Li, ηi), i = 1, . . . , k be the ends of a cobordism (V, ηV ) and let C ∈ H3(K; ξ). Consider

the transverse intersection (C × C) ⋔ V ⊂ K × C . This is a 2­cycle with boundary CL1
∪ · · · ∪ CLk

,

and we equip it with a local system given by restricting ηV . The product of the monodromies along the

boundary of this cycle must vanish, and since ηV |Li = ηi we get

1 =
∏

i

ηV (CLi) =
∏

i

ηi(CLi).

This proves that the map (20) does not depend on a representative of the cobordism class, hence it is

well­defined.

Denote by H3(K; ξ)(2) ⊂ H3(K; ξ) the subgroup of 2­torsion elements. A similar computation to that

of Appendix A shows that H3(K; ξ)(2)
∼= Z2 . Restricting the map (20) to H3(K, ξ)(2) , we obtain a map

(21) Ψ : Cobtrop(K) → Hom(H3(K; ξ)(2),G) ∼= G(2).

Definition 4.20 We call the map

c̃yc = cyc ⊕Ψ : Cobtrop(K) → H2(K; ξ) ⊕ G(2)

the refined cycle class map.

Remark 4.21 Intersecting Lagrangians with other classes in H3(K; ξ) records monodromies of the

local systems around different 1­cycles. These will be detected by an Albanese­type map defined in

Section 4.6, hence we forget them here.

Denote by Cobtrop(K)0 ⊂ Cobtrop(K) the kernel of c̃yc . It consists of the following Lagrangians:
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Proposition 4.22 The subgroup Cobtrop(K)0 ⊂ Cobtrop(K) is generated by Lagrangian branes sup­

ported on the differences Fb+ − Fb− and Lf
m+θ+

− Lf
m−θ−

. Here, all Lagrangians are equipped with

the preferred Pin structure.10

Proof We first analyze the kernel of cyc : Cobtrop(K) → H2(K; ξ). By Corollary 4.14, a general

element of ker(cyc) will be a finite sum of the form

(22)

N+∑

i=1

F
b
+
i
−

N−∑

i=1

F
b
−
i
+

∑

(m±
i ,n

±
i ,l

±
i θ

±
i )

(Γ
n
+
i [l+i ]

m
+
i θ

+
i

− Γ
n
−
i [l−i ]

m
−
i θ

−
i

)

for some b±i ∈ K and (m±
i , n

±
i , l

±
i , θ

±
i ) ∈ Z2 ⊕ Z2 ⊕ S1 satisfying:∑
(m+

i n+i − m−
i n−i ) = N+ − N−.(23)

∑
(m+

i − m−
i ) = 0(24)

∑
(n+i − n−i ) = 0(25)

∑
(l+i − l−i ) = 0 (mod 2)(26)

We want to apply cobordism relations as those in Lemma 4.12. However, recall that this Lemma was

proved for undecorated cobordisms (as we were only interested in the homology classes of the underlying

Lagrangians), whereas relations in Cobtrop(K) involve cobordisms carrying G­brane structures and

whose pullback to T4 × C is tautologically unobstructed (cf. Definition 4.15). Once we equip our

Lagrangians with this extra structure—and fix it on the end Γ
n[l]
mθ —there might be some obstruction

to the existence of a Lagrangian cobordism (recall the Lagrangian cobordism itself must carry such

extra structure, and that the restriction to the ends of the cobordism must agree with the extra structure

specified on the Lagrangians). The key to prove Proposition 4.22 will then be to show that, given a

grading, the preferred Pin structure and a local system on Γ
n[l]
mθ , the cobordism relations of Lemma 4.12

hold in Cob(K).

In Section 4.9 we show that Lemma 4.12 can be enhanced to take into account this extra structure.

Namely, Lemmas 4.31­4.32 show that, given any grading on Γ
n[l]
mθ , there are gradings on Γmθ and Γn[l]

such that Equation (18) holds when we put the preferred Pin structure on all three sections, whereas

Proposition 4.38 shows that the surgery cobordism of Equation (17) is tautologically unobstructed when

pulled back to T4 × C and can be equipped with a G­brane structure restricting appropriately to the

ends. The upshot is that, given a G­brane structure on Γ
n[l]
mθ , Lemma 4.12 holds when we equip all the

Lagrangians in the right­hand side with their natural Pin structures. Furthermore, one can choose the

local system on Lf nl to be trivial (see Lemma 4.35).

With this in mind, one can conclude as follows. Apply the cobordism relation of Lemma 4.12 to all the

sections in Equation (22), and note that, since the local system and Pin structure on the Lagrangians

Lf n[l] are all the same, Equation (26) translates into an algebraic cancellation of these Lagrangians.

Hence any null­homologous combination as in Equation (22) consists of fibers, tropical Lagrangians

Lfmθ
plus a cobordism class of the form

L =
∑

i

((Γ0, η
+

iZ2
) − (Γ0, η

−
iZ2

)).

10We already argued that fibers and sections have a preferred Pin structure. Given a cobordism between Γ0,Γmθ

and Lfmθ
together with a Pin structure extending the preferred one on Γ0 and Γmθ , one can simply define the

preferred Pin structure on Lfmθ
to be that induced by the cobordism. The fact that the surgery cobordism admits

a unique Pin structure restricting to the preferred one on Γ0 and Γmθ is proved in Lemma 4.34.
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Now note that ker(c̃yc) = ker(cyc) ∩ ker(Ψ), where Ψ is the map defined in Equation (21). We have

that Ψ(L) = 0 if and only if
∏

i η
+
iZ2

=
∏

i η
−
iZ2

. Under this condition, one can iteratively surger copies

of Γ0 with Lf 10 to obtain a Lagrangian L := Γ0# . . . #Γ0#Lf 10 and a relation
∑

i

(Γ0, η
+
iZ2

) + (Lf 10 , 1) ∼ (L,
∏

i

η+iZ2
)

= (L,
∏

i

η−iZ2
)

∼
∑

i

(Γ0, η
−
iZ2

) + (Lf 10 , 1).

This is equivalent to L ∼ 0, which concludes the proof.

4.6 Symplectic Albanese map

We will need one more tool to prove Theorem A, namely a modification of an Abel­Jacobi type map

introduced by Sheridan­Smith in [SS21, Lemma 2.10]. They define, for any tropical affine torus B , a

map

albfib : Cobfib(X(B))hom → Alb(B)

Fb+ − Fb− 7→ alb(b+ − b−)
(27)

by looking at the flux swept by a homologically trivial collection of fibers. Here, alb is the map of

Equation (3); Cobfib(X(B)) is a cobordism group generated by fibers of the projection X(B) → B and

whose relations come from cobordism all of whose ends are fibers; and Cobfib(X)hom denotes the kernel

of the degree map Cobfib(X) → Z . The following Proposition provides two generalizations: it shows

their map is also well­defined for a symplectic bielliptic surface (which fibers over a quotient of a

tropical affine torus), and it extends their map to the whole kernel of the cycle class map (not just the

part generated by fibers). To state it, let us recall from Proposition 4.22 that Cob(K)0 is generated by

Lagrangians of the form Fb+ − Fb− and Lfm+θ+
− Lfm−θ−

.

Proposition 4.23 There is a well­defined map

alb : Cobtrop(K)0 → Alb(K)
∑

i

(F
b
+
i
− F

b
−
i

) 7→ alb(
∑

(b+i − b−i ))

∑

i

(Lf
m
+
i θ

+
i

− Lf
m
−
i θ

−
i

) 7→ 0.

(28)

Proof We first recall the basic idea of the proof of [SS21, Lemma 2.10] that proves the existence of

the map (27). For such a map to be well­defined, one must show that if
{

Fbi − Fb′i

}
are the ends of a

Lagrangian cobordism V , then the homomorphism

alb
(∑

(b+i − b−i )
)

: H0(T∗
ZK) → R

coincides with integration over some class β ∈ H1(B;Z). Sheridan­Smith construct such class by

‘closing up’ the Lagrangian cobordism to an (n + 1)­cycle in X(B) × C (attaching cylinders fibering

over paths from bi to b′i ), and then projecting the homology class of this cycle to H1(B) via the Künneth

map Hn+1(X(B)) → H1(B)⊗Hn(F) ∼= H1(B). An application of Stokes’ theorem and the fact that V is

Lagrangian then yield the result.
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For the map (28) to be well­defined, we must show that if V ⊂ K × C is a cobordism with ends

F = {F
b+i

− F
b−i
} and L = {Lf

m+θ+
− Lf

m−θ−
}, then alb(

∑
(b+i − b−i )) = 0. In other words, there

exists a class β ∈ H1(K;Z) such that alb(
∑

(b+i − b−i )) =
∫
β . We first close up the cobordism to

obtain a (ξ ­oriented) 3­cycle. Choose paths in K from b+i to b−i ; taking their preimage we get a

3­chain W1 ⊂ K whose boundary is F . On the other hand, the collection L is a linear combination

of Lagrangian lifts of tropical circles {x = θ}, and since L is homologically trivial there are as many

positive as negative ones. We group them in pairs θ±i and choose isotopies νs
i = {x = θs

i} between

the curves {x = θ+i } and {x = θ−i }. Writing W i
2 = ∪sLηi

s
for the union of the Lagrangian lifts of

the curves ηs
i , we obtain a 3­chain W2 = ∪iW

i
2 whose boundary is L . The union V + W1 + W2 is a

ξ ­oriented 3­cycle. We will use this 3­cycle to show that the extension by zero of Equation (28) gives

a well­defined map Cobtrop(K)0 → Alb(K).

Let α ∈ H0(T∗
ZK) be a globally defined tropical 1­form, which corresponds to some global section

of the local system given by the homology of the fibers. Under this correspondence, the value of

alb(
∑

i(b
+
i −b−i ))(α) can be computed as the symplectic area of the 2­chain W1 ⋔ ([K]×α×C) (note

this is now a chain with Z­coefficients). Here, we use the notation [K] × α ∈ H3(K; ξ) to denote the

submanifold of K obtained as the product of the 0­section and a geodesic representative of α passing

through the origin in the fiber; this is a trivial S1 ­bundle over the 0­section, hence a ξ ­cycle. We make

the following observation:

The only global tropical 1­form in K are α = dx and its multiples, and the corresponding homology

class in the fibers intersects Lηi
s

along the 0­section. Hence ωK×C(W2 ⋔ ([K] × α× C)) = 0.

With these in mind, one can compute as in [SS21, Lemma 2.10] to obtain

alb(
∑

i

(b+i − b−i ))(α) =

∫

(πK)∗(V+W1+W2)⋔([K]×α)

ωK

(the key being that the extra 2­chain W2 ⋔ ([K] × α × C) that appears with respect to their proof is

contained in the zero­section, which is Lagrangian).

The last step is to obtain a 1­cycle β ∈ H1(K;Z) from the 3­cycle (πK)∗(V + W1 + W2) ∈ H3(K; ξ).

This is not as straightforward as in [SS21, Lemma 2.10], since (i) the cycle lives in H2(K; ξ) (instead of

H2(K;Z)) and (ii) the fibration is not trivial, hence there is not a Künneth decomposition or a projection

to H1(K;Z). Nonetheless, by analyzing the Leray spectral sequence E2
pq = Hp(K;Hq(F;Z) ⊗ ξ) ⇒

Hp+q(K; ξ) we show in Lemma 4.24 that there is a projection map pr : H3(K; ξ) → H1(K;Z). We

define the cycle

β := pr((πK)∗(V + W1 + W2)) ∈ H1(K;Z).

Lastly, consider the SES

0 → H0(K;H2(F)) → H2(K;Z) → H1(K;H1(F)) → 0

coming from the Leray spectral sequence. It shows that the class (πK)∗(V + W1 + W2) ⋔ ([K] × α) ∈
H2(K;Z) is of the form

(πK)∗(V + W1 + W2) ⋔ ([K] × α) = β ⊗ α+ γ,

where γ ∈ H0(K;H2(F)) ⊂ H2(K;Z). The class γ is Lagrangian (it is supported on a fiber), hence

one concludes

alb(
∑

i

(b+i − b−i ))(α) =

∫

(πK)∗(V+W1+W2)⋔([K]×α)

ωK =

∫

β×α
ωK =

∫

β
α,

completing the proof.
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Lemma 4.24 There is a projection map H3(K; ξ) → H1(K;Z).

Proof Let us consider the Leray spectral sequence

E2
pq = Hp(K;Hq(F;Z) ⊗ ξ) ⇒ Hp+q(K; ξ).

For degree reasons one has E∞
11

∼= E2
11 = H1(K;H1(F;Z) ⊗ ξ), hence there is a short exact sequence

(29) 0 → H1(K;H2(F;Z) ⊗ ξ) → H3(K; ξ) → E∞
21 → 0.

It follows from the computations in Appendix A that im(E2
21 → E2

02) = 0, hence E∞
21

∼= E2
21 =

H2(K;H1(F) ⊗ ξ). This group is isomorphic to Z and generated by [K] × α , thus Equation (29) splits

canonically giving a decomposition

H3(K; ξ) ∼= H2(K;H1(F;Z) ⊗ ξ) ⊕ H1(K;H2(F;Z) ⊗ ξ).

The geometry of Lagrangian torus fibrations shows that H2(F;Z) ∼= ∧2T∗
ZK = ξ∨ , and hence the

local system H2(F;Z) ⊗ ξ is trivial. Putting everything together, we get the desired projection pr :

H3(K; ξ) → H1(K;Z).

As mentioned in [SS21, Remark 2.11], there is an extension of the fibered albanese map that incorporates

the local systems on the Lagrangians. In the present case, if λ = λx ⊗ λy is a local system on F with

monodromies λx, λy ∈ G along the homology classes corresponding to dx and dy, then this map takes

the form

albloc
fib : Cobfib(K)hom → Alb(K) ⊕ G

∑
((F+

i , λ
+
i ) − (F−

i , λ
−
i )) 7→ (alb(

∑

i

(F+
i − F−

i )),
∏

i

λ+i,x(λ−i,x)−1).(30)

The fact that this map is well­defined follows from a similar argument to that of Proposition 4.23.

Namely, given (V, λ) a cobordism with local system between a linear combination of fibers, its

intersection with the 5­cycle K × [α] × C is a 2­dimensional surface with boundary inside V . It

follows that the product of the monodromies around the boundary components of this surface of any

local system must vanish. In particular, for the local system λ—which restricts to λ±i on the ends of

V —we have that
∏

i λ
+
i,x(λ−i,x)−1 = 1.

Proposition 4.25 The fibered albanese map albloc
fib : Cobfib(K)hom → Alb(K) ⊕ G is an isomorphism.

Proof The map is clearly surjective (recall H0(T∗
ZK) ∼= Z〈dx〉). To prove injectivity we proceed as

follows. Denote by pr : K → S1 the projection to the line {y = 1/2}. Consider a Lagrangian fiber

with local system (Fp, λ = λx ⊗ λy). We will show that

(31) (Fp, λ) ∼ (Fpr(p), λx).

Given this, injectivity follows from injectivity of albloc
fib : Cobfib(T2)hom → S1 × G (a consequence of

Corollary 3.12).

Write πx : K → S1 and πy : K → I = [0, 1] for the projections to the (equivalence class of the) x and

y coordinates of K . Note both of these maps give tropical S1 ­fibrations of K , meaning the fibers are

embedded tropical circles. Let θ ∈ S1 and t ∈ I be the unique points with p ∈ π−1
x (θ) ∩ π−1

y (t).

We first claim that if ι : K → K is the map induced by (x, y) 7→ (x,−y), then the cobordism class

F1 = (Fp, λx ⊗ λy) − (Fι(p), λx ⊗ λ−1
y )
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Figure 2: Schematic picture to show that 2F1 ∼ 0. The left picture shows the (projection to K of

the) class F1 ∈ Cobfib(K)hom as well as its preimage p−1(F1) ∈ Cobfib(T2 × T2)hom . The right picture

shows the decomposition of p−1(F1) in the product T2 × T2 ; namely, the top part shows the class

(F1
θ −F1

θ+1/2
)×F2

t , whereas the bottom part shows (F1
θ −F1

θ+1/2
)×F2

1−t . Note that while the torus in

the left picture represents a tropical affine base, the 2­tori in the right picture represent symplectic tori

living above the tropical base (that is, the symplectic manifold T2 × T2 in the right picture is the total

space of the Lagrangian torus fibration over the tropical 2­torus T2 in the left picture).

is 2­torsion. Indeed, let p : T2×T2 → K be the double cover of K (cf. Lemma 4.3) and write T2×T2 =

(R/Z×R/l1Z)× (R/Z×R/l2Z). We denote by Fi
t the fibers of the projection R/Z×R/liZ → R/Z .

Then the pull back of the class F1 under p is a linear combination of Lagrangian torus fibers of the

form (see Figure 2):

p−1(F1) = (F1
θ − F1

θ+1/2) × (F2
t + F2

1−t).

Now note that the linear combination F1
θ − F1

θ+1/2
is a null­homologous combination of fibers in

Cob(T2), and that its image under the map Φ of Lemma 3.8 is 2­torsion. It then follows from

Proposition 3.10 that this class is 2­torsion in Cob(T2), and hence—by crossing the cobordism with

the constant Lagrangian F2
t +F2

1−t in the other T2 ­factor—that p−1(F1) is 2­torsion in Cob(T2 × T2).

The cobordism is furthermore p­invariant, hence descends to give the relation 2F1 ∼ 0 ∈ Cob(K).

Next, we claim that the cobordism class

F2 = (Fp, λx ⊗ λy) − (Fpr(p), λx)

is 4­torsion. By the previous claim we have that

4(Fp, λx ⊗ λy) ∼ 2(Fp, λx ⊗ λy) + 2(Fι(p), λx ⊗ λ−1
y ).
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As before, we can pull back the class 4F2 to T2 × T2 and obtain a linear combination of fibers of the

form

p−1(F2) = (F1
θ + F1

θ+1/2) × (2F2
t + 2F2

1−t − 4F2
1/2).

The linear combination 2F2
t +2F2

1−t−4F2
1/2

is null­homologous and maps to 0 under Φ , hence vanishes

in Cob(T2) by Proposition 3.10. Crossing with the constant Lagrangian F1
θ + F1

θ+1/2
in the other T2

factor yields a cobordism in T2 × T2 × C , and descending it to K × C we get the desired relation

4F2 ∼ 0 ∈ Cob(K).

We have now proved Equation (31) up to torsion. The complete result follows from noting that

(Fp, λx ⊗ λy) − (Fpr(p), λx) ∼ 4((Fq, λx ⊗ λy) − (Fpr(p), λx))

for any q ∈ π−1
x (θ) such that 4(q − pr(q)) = p − pr(p) ∈ Alb(π−1

x (θ)) (again, a consequence of

Proposition 3.10).

A similar argument to the proof of Proposition 4.23 shows that albloc
fib extends to the whole tropical

cobordism group, giving a map

(32) albloc : Cobtrop(K)0 → Alb(K) ⊕ G.

4.7 Computation and dimensionality

The following is one of the two main results of this paper:

Theorem 4.26 The short exact sequence

(33) 0 → Cobtrop(K)0 → Cobtrop(K)
c̃yc
−−→ H2(K; ξ) ⊕ G(2) → 0

is split, and Cobtrop(K)0
∼= (S1 ⊕ G)2 .

Proof Let Ψ : K → K be the involution swapping the y­coordinate on K with its cotangent coordinate

(recall K = T∗K/T∗
ZK and K is as in Lemma 2.11). That is, Ψ is given in local coordinates by

(x1, y1, x2, y2) 7→ (x1, y1, y2, x2),

where we are identifying K with the quotient of (R4, dx1 ∧ dy1 + dx2 ∧ dy2) by the symplectic

transformations

(x1, y1, x2, y2) 7→ (x1, y1, x2, y2) + ei, i = 1, . . . , 4

(x1, y1, x2, y2) 7→ (x1 + p1, y1 + p2,−x2,−y2), 2(p1, p2) = 0.

The composition π′ = π ◦ Ψ : K → K is still a Lagrangian torus fibration; let K′ be the Klein bottle

whose tropical affine structure is that induced by π′ .

Consider the map albloc : Cobtrop(K)0 → Alb(K) × G of Equation (32). There is an analogous map

alb′,loc : Cobtrop(K)0 → Alb(K′)×G arising from the Lagrangian torus fibration π′ . We claim the map

(34) albloc ⊕ alb′,loc : Cobtrop(K)0 → (Alb(K) ⊕ G) ⊕ (Alb(K′) ⊕ G)

is an isomorphism. Indeed, note that Ψ interchanges fibers with the tropical Lagrangians Lfmθ
, so that

alb′ is the map

alb′ : Cobtrop(K)0 → Alb(K′)
∑

i

(F
b
+
i
− F

b
−
i

) 7→ 0

∑

i

(Lf
m
+
i θ

+
i

− Lf
m
−
i θ

−
i

) 7→ alb′(p+i − p−i )
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where p±i = π′(Lf
m
±
i θ

±
i

) ∈ K′ . The fact that (34) is an isomorphism follows now immediately from

Proposition 4.25 applied to both albloc and alb′,loc .

To show that Equation (33) splits, we consider the map H2(K; ξ)⊕G(2)
∼= Z4⊕Z2⊕G(2) → Cobtrop(K)0

that sends an element (Nf ,N0,m, n, [l], g) to the cobordism class

Nf F(0,1/2) + N0Γ0 + mLf10
+ nLf 10 + lLf 01 + ((Lf 10 , g) − Lf 10).

Here, all the Lagrangians are equipped with the preferred Pin structure and trivial local system, except

(Lf 10 , g) which carries a local system whose monodromy around the dy­coordinate is g. The argument

at the end of Proposition 4.22 shows that
∑

i

((Lf 10 , gi) − Lf 10) ∼ (Lf 10 ,
∏

i

gi) − Lf 10 ,

hence this map is a group homomorphism, and it is clearly a section by Appendix A. It follows that the

short exact sequence (33) is split.

Note that, in particular,

Cobtrop(K) ∼= H2(K; ξ) ⊕ G(2) ⊕ (S1 ⊕ G)2

is 2­dimensional in the sense of Definition D.2. As discussed in the introduction, this should be

compared with the work of Sheridan­Smith [SS20], who show that a symplectic 4­manifold with trivial

canonical bundle containing a Lagrangian of genus at least 1 has infinite­dimensional cobordism group.

The crucial difference in Theorem 4.26 is that the canonical bundle of a bielliptic surface is torsion but

non­trivial, thus a graded Lagrangian is not necessarily oriented (see Section 1.2 for more details).

Remark 4.27 One would expect—based on the analogous result for the mirror bielliptic surface—that

a computation of the cobordism group of a symplectic bielliptic surface living over K = K2 (see

Remark 2.12) would follow the same argument. However, in the symplectic setting some difficulties

arise. While we do have a short exact sequence as in Equation (33), the definition of the Abel­Jacobi

type map Cobtrop(K)0 → Alb(K) is not so clear in this case.

4.8 The Lagrangian cobordism group and the Grothendieck group

We now turn to the comparison between the cobordism group Cobtrop(K) and the Grothendieck group

of the Fukaya category of K . We do this via intermediate comparison with the Chow groups of the

mirror Y (see Section 4.2). Thus, from now on we fix G = UΛ to be the unitary group of the Novikov

field.

Recall from Appendix A that there is an isomorphism H2(K; ξ) ∼= Z4 ⊕ Z2 . Putting this together with

Theorem 4.26, one obtains an explicit presentation

Cobtrop(K) ∼= Z4 ⊕ Z2
2 ⊕ E2

for E the closed points of an elliptic curve over the Novikov field. We now sketch how to compute the

Chow groups of the mirror Y and exhibit a specific isomorphism between Cobtrop(K) and CH∗(Y):

• CH2(Y) ∼= Z is generated by the bielliptic surface Y itself. This factor is mirror to a Z­factor in

Cobtrop(K) corresponding to the zero­section.
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• For complex bielliptic surfaces CH0(Y) ∼= Z⊕ Alb(Y): as follows from the results in [BKL76].

The proof is based on analyzing the kernel of the Albanese map alb : CH0(Y)hom → Alb(Y). The

Albanese map exists for fields other than the complex numbers, and one can run the arguments

in [BKL76] to show that ker alb = 0 still holds. Thus CH0(Y) ∼= Z ⊕ Alb(Y), where the Z

factor is generated by a fixed reference point and the Alb(Y) factor is generated by differences

p+ − p− ∈ CH0(Y)hom for points p± ∈ Y . This is mirror to Cobfib(K) ∼= Z ⊕ (Alb(K) ⊕ UΛ)

(an explicit isomorphism is given by the map deg⊕ albloc
fib : Cobfib(K) → Z ⊕ (Alb(K) ⊕ UΛ),

where albloc
fib is constructed from the map in Proposition 4.25 after choosing a reference fiber).

• CH1(Y) ∼= Pic(Y) fits into a short exact sequence

0 → Pic0(Y) → Pic(Y) → NS(Y) → 0

where Pic0(Y) is the Picard variety of Y (the connected component of the identity in Pic(Y)) and

NS(Y) = Pic(Y)/Pic0(Y) is the so­called Neron­Severi group. For a complex bielliptic surface,

the group NS(Y) ∼= H2(Y;Z) has been fully computed in [Ser90], and this computation applies to

bielliptic surfaces over algebraically closed fields of characteristic zero by the Lefschetz principle.

Since Pic0(Y) ∼= (Alb(Y))∨ ∼= E ,11 we get

CH1(Y) ∼= NS(Y) ⊕ E

where E is an elliptic curve over the Novikov field. The group NS(Y) ∼= Z2 ⊕Z2
2 is generated by

two general fibers of the projections π1 : Y → E1/Z2 and π2 : Y → E2/Z2
∼= P1 (cf. Section 4.1)

and differences D1 − D2,D1 − D3 of the four reduced special fibers Di of the projection π2

[Ber+19]; this is mirror to the subgroup (Z2 ⊕ Z2) ⊕ Z2 ⊂ H2(K; ξ) ⊕ Z2 generated by the

tropical Lagrangians LC1
,LC2

,LC2
− LC3

and LC3
− (LC3

, η). Here we denote by LCi the tropical

Lagrangians living over the tropical subvarieties Ci of Equation (19); they all carry the natural

Pin structure and the trivial local system, except (LC3
, η) that carries a 2­torsion local system

that is non­trivial in the dy­direction. The E factor is generated by differences of fibers of the

projection π1 ; it is mirror to Alb(K′)⊕UΛ and is generated by differences of tropical Lagrangians

LC1
− L{x=a} equipped with arbitrary local systems.

We now turn to the comparison between the cobordism group Cobtrop(K) and the Grothendieck group

of the Fukaya category. A homomorphism relating the Lagrangian cobordism group (without the extra

data of a brane structure) and the Grothendieck group of the Fukaya category as in Equation (1) was

first considered by Biran­Cornea in [BC14]. Their work proves the existence of such homomorphism

for a version of the cobordism group whose generators and relations are monotone Lagrangians and

Lagrangian cobordisms, i.e. Lagrangians L ⊂ M for which the homomorphisms

ω : π2(M,L) → R

µ : π2(M,L) → Z

given by measuring the symplectic area and the Maslov index of topological discs with boundary on

L satisfy ω = λLµ for some λL > 0. This monotonicity condition is imposed to exclude bubbling

of pseudo­holomorphic disks, so that Floer homology is well­defined.12 In later work [BCS21],

Biran­Cornea­Shelukhin relax the assumptions on cobordisms to include tautologically unobstructed

11Recall that Alb(Y) is an abelian variety and that its dimension is equal to h1(Y,OY ) = 1. It follows that

Alb(Y) is an elliptic curve, hence isomorphic to its dual.
12In that paper Biran­Cornea impose an additional condition on the fundamental groups of all Lagrangians and

cobordism. This condition gives a bound on the area of holomorphic disks and is not needed when working over

the Novikov field, so we will not treat it here.



Lagrangian cobordisms and K ­theory of symplectic bielliptic surfaces 33

cobordisms (recall this means there exists a compatible almost complex structure such that V bounds

no non­constant holomorphic disks, a property to which they refer as ‘quasi­exactness’). This comes

at the cost of strengthening the monotonicity condition imposed on the ends, where they must now be

weakly exact Lagrangians (recall this means ω(π2(M,L)) = 0). See their results in [BCS21, Chapter

4].

Remark 4.28 There is a stronger expectation—which is believed by experts but has not yet appeared in

the literature—that the iterated cone decomposition results of [BC14; BCS21] hold for the broadest class

of Lagrangians and cobordisms for which Floer theory can be defined, namely (Floer­theoretically)

unobstructed Lagrangians in the sense of [Fuk+09]. These are the most natural Lagrangians to consider

in the context of mirror symmetry (for instance, to compare Lagrangian cobordism groups with Chow

groups). We remark that the group Cobtrop(K) that we compute in this paper (a group generated by

Lagrangian fibers and sections) does not depend on whether we consider it as a subgroup of Cob(K),

as defined in Definition 4.15, or as a subgroup of a cobordism group built from Floer­theoretically

unobstructed Lagrangians and cobordisms. However, since the existence of a map from the cobordism

group to the Grothendieck group has only been proved to exist for a cobordism group of weakly exact

Lagrangians and tautologically unobstructed cobordisms, we think of Cobtrop(K) as a subgroup of

Cob(K) as defined in Definition 4.15.

Recall from Definition 4.15 that the generators of Cob(K) are weakly exact. On the other hand, we

imposed the weaker condition that cobordisms are tautologically unobstructed only when pulling them

back under the covering map T4 × C → K × C . We argue in Appendix C that cobordisms with

the above property still induce iterated cone decompositions between their ends, see Proposition C.2.

Hence we have a map

Cob(K) → K0(DFuk(K)).

The above matching of the tropical cobordism group and the Chow groups of the mirror together with

the HMS statement of Section 4.2 suggest our second main result:

Theorem 4.29 The natural homomorphism

(35) Cobtrop(K) → K0(DbFuk(K))

is an isomorphism.

Proof We first prove an isomorphism Cobtrop(K) ∼= K0(DπFuk(K)) between the Lagrangian cobor­

dism group and the Grothendieck group of the split­closed derived Fukaya category. Recall from

Section 4.2 that we have an equivalence of triangulated categories DπFuk(K) ≃ DbCoh(Ǩ), the latter

category being isomorphic to the derived category of coherent sheaves DbCoh(Y) of an algebraic biellip­

tic surface over the Novikov field. Taking the Grothendieck group on both sides yields an isomorphism

of abelian groups

K0(DπFuk(K)) ∼= K0(DbCoh(Y))

which reduces the computation of K0(DπFuk(K)) to algebraic geometry. Now recall that there is a

Chern character map

ch : K0(DbCoh(Y)) → CH∗(Y)Q

which furthermore is a rational isomorphism. In the present case, one can show that ch is well­defined

as a map to CH∗(Y) (i.e. we can get rid of denominators), and that such map is an isomorphism—see
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Appendix B. Putting this together with the Chow group computations at the beginning of this section,

we have

K0(DπFuk(K)) ∼= K0(DbCoh(Y)) ∼= CH∗(Y) ∼= Z4 ⊕ Z2
2 ⊕ E2,

showing that K0(DπFuk(K)) and Cobtrop(K) are, at least abstractly, isomorphic groups.

To see that the natural homomorphism Cobtrop(K) → K0(DπFuk(K)) provides an isomorphism we will

show that the composition

Cobtrop(K) → K0(DπFuk(K))
∼
−→ K0(DbCoh(Y))

is an isomorphism. For this we use that the mirror functor of [Abo14; Abo21] sends a tropical Lagrangian

LV living over a tropical submanifold V ⊂ K to the structure sheaf OZV
of the corresponding algebraic

subvariety ZV ⊂ Y living over V . Choosing a set of generators of Cobtrop(K) given by (linear

combinations of) tropical Lagrangians as at the beginning of this section, the map

Cobtrop(K) ∼= Z4 ⊕ Z2
2 ⊕ E2 → K0(DbCoh(Y))

coincides with the map of Corollary B.5, hence the result follows.

To conclude the proof, note that the natural embedding DbFuk(K) →֒ DπFuk(K) induces an iso­

morphism of Grothendieck groups: it is always an injection and the generators of K0(DπFuk(K)) are

honest Lagrangians (as opposed to direct summands), thus it is also surjective.

4.9 Admissibility of the surgery cobordism

In this section we upgrade Lemma 4.12 to include all the extra structure that is present in the cobordism

group (G­brane structures and unobstructedness properties). It is mostly technical and can safely be

skipped by readers on a first read.

There are two separate issues to treat. The first is the transformation of gradings, Pin structures and

local systems under fiberwise addition. The second is the admissibility of the Lagrangian cobordisms

obtained as surgery of a section Γn[l] (or Γmθ ) and the zero section Γ0 —that is, whether these cobordisms

admit G­brane structures and whether their pullback to T4 × C is tautologically unobstructed.

Let us start with the transformation of gradings, Pin structures and local systems under fiberwise

addition. This is part of the more general story of how these properties transform under geometric

composition of Lagrangian correspondences: transformation of gradings is treated in [WW10, Section

3], transformation of Pin structures is discussed in [WW15] and transformation of local systems is

detailed in [Sub10]. To apply these results, recall that the Lagrangian correspondence giving rise to

fiberwise addition is given by

Σ = {(q1, p1, q2, p2, q3, p3) ∈ (X(B) × X(B))− × X(B) | q1 = q2 = q3, p3 = p1 + p2}

for (qi, pi) ∈ X(B) canonical coordinates [Sub10]; one then defines

L1 ⊗ L2 = ΦΣ(L1 × L2) = π13((L1 × L2 × X(B)) ∩ Σ).

Lemma 4.30 The Lagrangian correspondence Σ admits a natural grading. Furthermore, any Pin

structure on B induces a natural Pin structure on Σ .

Proof With respect to a quadratic volume form defined by complexifying a section of (∧3nT∗B3)⊗2 , a

computation shows the Lagrangian correspondence Σ has phase map αΣ : Σ → S1 constant and equal

to (−1)dim B ∈ S1 . We equip Σ with the grading α̃Σ : Σ → R given by the unique constant function

α̃Σ ∈ {0, 1/2} (in particular, α̃Σ ≡ 0 when dim B is even). To equip Σ with a Pin structure, note that

we have an isomorphism TΣ ∼= TB ⊕ T∗B ⊕ T∗B . Hence a Pin structure on B induces one on Σ .
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Note that in our case we have chosen a Pin structure on B (this is an input to run Family Floer theory,

see [Abo14, Section 3.1]). Equip the Lagrangian correspondence Σ with the natural choice of grading

and Pin structure given by Lemma 4.30.

Lemma 4.31 There are gradings on Γmθ and Γn[l] inducing any given grading on Γ
n[l]
mθ .

Proof This follows directly by tracing the construction of a grading on the geometric composition

explained in [WW10, Section 3].

Lemma 4.32 The Pin structure induced on the fiberwise addition of any two tropical Lagrangians

equipped with the preferred Pin structure is again the preferred Pin structure.

Proof Let us first recall how the geometric composition of Lagrangian correspondences inherits a Pin

structure. Given a Lagrangian correspondence Σ ⊂ X− × Y and a Lagrangian L ⊂ X , the geometric

composition is defined by ΦΣ(L) = πY (L×∆X
Σ) ⊂ Y , where ∆X ⊂ X ×X is the diagonal (we assume

that the intersection is transverse and that the map πY restricts to an embedding). Let Z = L ×∆X
Σ ,

which is diffeomorphic to ΦΓ(L) via πY . Consider the isomorphism TZ ⊕T∆X
∼= TL⊕TΣ . It follows

that Pin structures on Σ , L and ∆X determine one on Z (and hence on ΦΣ(L) ∼= Z ).

In the present case, X = K comes equipped with a polarisation P given by the tangent space to the

fibers, giving an isomorphism TK ∼= TP ⊕ TP . Since fibers have a preferred Pin structure induced

from a choice of Pin structure on the base, K (and thus ∆K ) have a natural Pin structure. One can then

see that, with the choice of Pin structure for Σ explained above, the fiberwise addition of two tropical

Lagrangians equipped with the preferred Pin structure yields another Lagrangian with the preferred Pin

structure (the reason being that the inclusion TZ ∼= TK →֒ TL ⊕ TΣ ∼= (TK)⊕3 ⊕ (T∗K)⊕2 can be

homotoped to the map that identifies TZ with the first TK factor on the right, hence the Pin structure

induced on Z is that of K ).

We now turn to the second issue, namely the admissibility of the surgery cobordisms. The main

observation is that all the Lagrangians we are considering are product­type when pulled back to the

cover T4 = T2 ×T2 → K . Furthermore, the surgery cobordisms V ⊂ K×C involved in Equation (17)

pull back under p : T4 × C → K× C to either

(36) p−1(V) = S1 × W ⊂ T2 × T2 × C or p−1(V) = W × S1 ⊂ T2 ×C× T2,

where W ⊂ T2 ×C is a surgery cobordism in T2 and S1 ⊂ T2 is the zero section.

Lemma 4.33 The cobordism V admits a grading.

Proof Note that the phase map of p−1(V) is the product of the phase maps of S1 and W . The former is

constant and the latter is null­homotopic by [Hau15, Lemma 5.2]; thus p−1(V) admits a grading. Since

furthermore αp−1(V) = αV ◦ p|p−1(V) and p|p−1(V) : p−1(V) → V induces an injection on H1(−;Z), the

map αV is also null­homotopic. Thus V admits a grading and, given a grading on Γmθ (resp. Γn[l] ),

Equation (17) holds for Lfmθ
(resp. Lf nl ) and Γ0 equipped with the induced grading from V . Note

that Lagrangian cobordism classes are invariant under a grading change of 2k , whereas changing the

grading by 2k+ 1 modifies their class in the cobordism group by a factor of −1 (this can be seen using

a product­type cobordism γ × L , where γ ⊂ C is a C­shaped curve).
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Lemma 4.34 The cobordism V admits a unique Pin structure restricting to the preferred one on its

two section ends.

Proof Let us analyze the first case in Equation (36) (the second is similar but simpler). The topology

of W is that of a pair of pants. In particular, TW is trivial and it admits a canonical Pin structure,

which in turn induces one on [0, 1] × W . Let t be a coordinate on [0, 1] and (p, z) be coordinates on

W ⊂ T2 × C . Then giving a Pin structure on

V ≃
[0, 1] × W

(t, p, z) ∼ (t + 1,−p, z)

amounts to choosing a lift to Pin3 of the linearisation of the gluing map. One can see that in a suitable

trivialisation of TW , the linearization of the gluing map takes the form (∂u, ∂v, ∂t) 7→ (∂u,−∂v, ∂t),

which is a reflection along the hyperplane ∂v = 0. Recalling that lifts of reflections R ∈ On to Pinn

are identified with co­orientations of the fixed hyperplane, the two choices of Pin structure above can

be identified with the vectors ±∂v . Given such a choice, we equip the ends of the cobordism with the

restricted Pin structure. Note that the induced Pin structure is the same on all three ends.

Lastly, recall that Pin structures on V are a torsor over H1(V;Z2) ∼= Z2
2 ⊕ Z2 . The restriction map

H1(V;Z2) → H1(∂V;Z2) ∼= Z2
2 ⊕ Z2

2 ⊕ Z2
2 is given by

(37) (a1, a2, b) 7→ (a1, b) ⊕ (a2, b) ⊕ (a1 + a2, b)

where we have decomposed ∂V = ⊔3
i=1Zi as a disjoint union of its three boundary Klein bottles. Since

the canonical Pin structure on W × [0, 1] together with a choice ±∂t induces the same Pin structure

on the three ends, it follows from this and Equation (37) that there exists a unique Pin structure on V

restricting to the preferred one on Γn[l] and Γ0 .

Lemma 4.35 Given a local system η = ηZ ⊗ ηZ2
: H1(Γn[l]

mθ ) → G on Γ
n[l]
mθ , one can put local systems

on Lfmθ
and Γ0 and the trivial local system on Lf nl such that Lemma 4.12 holds.

Proof Let us first recall how the construction in [Sub10] interacts with local systems. Let Σ ⊂ X−×Y

be a Lagrangian correspondence and consider a Lagrangian L ⊂ X equipped with a local system η .

Then, assuming πY : L1 ×X Σ → Y is an embedding, one equips the Lagrangian ΦΣ(L) = πY(L1 ×X Σ)

with the local system given by the composition

π1(ΦΣ(L))
(π−1

Y )#
−−−−→ π1(L1 ×X Σ)

(p1◦i)#
−−−−→ π1(L1)

η
−→ G

where i : L1 ×X Σ →֒ L1 × Σ is the inclusion and p1 : L1 × Σ → L1 is the projection.

The above construction shows that, given any local system η on Γ
n[l]
mθ , one has

(Γ
n[l]
mθ , η) = (Γmθ, η) ⊗ (Γn[l], 1),

Here, in the right­hand side we denote still by η the local systems on Γmθ induced by the canonical

diffeomorphism between Γ
n[l]
mθ and Γmθ , and we denote by 1 the trivial local system.

We first study the potential restrictions on local systems for the existence of a cobordism V between

Γmθ , Γ0 and Lfmθ
as in Equation (17). One can use a Mayer­Vietoris decomposition of the cobordism

V between Γmθ , Γ0 and Lfmθ
to show that

H1(Z) ∼=
H1(Γmθ) ⊕ H1(Γ0)

v ∼ w
⊕ Zm−1

where v,w ∈ Z2 are the generators of the torsion factor of H1(Γmθ) and H1(Γ0) respectively. The last

factor Zm−1 can be identified with cycles living in the conormal direction of m − 1 of the Lagrangians
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in the surgery Lfmθ

∼= ⊔m
i=1N∗S1/N∗

ZS1 . Hence, given the local system η = ηZ ⊗ ηZ2
: H1(Γmθ) → G ,

Equation (17) can be upgraded to

(Γmθ, ηZ ⊗ ηZ2
) ∼ (Γ0, h ⊗ ηZ2

) + (Lfmθ
,⊕m

i=1(νi ⊗ ηZ2
)),

where h : H1(Γ0) → G is a local system that factors through H1(Γ0)/Z2 and νi are local systems on

the i­th copy of Lfmθ
such that ηZ(v) = h(v)

∏
i νi(vi). Here, vi are the generators of the fiber direction

of Lfmθ
and v is the generator of Z ⊂ Z⊕ Z2

∼= H1(Γmθ) ∼= H1(Γ0).

On the other hand, there is clearly a cobordism relation

(Γn[l], 1) ∼ (Γ0, 1) + (Lf n[l], 1).

Choosing h = 1 and νi ∈ G satisfying the relation ηZ =
∏

i νi , we get cobordism relations compatible

with local systems

(Γ
n[l]
mθ , η) = (Γmθ, ηZ ⊗ ηZ2

) ⊗ (Γn[l], 1)

∼ ((Lfmθ
,⊕m

i=1(νi ⊗ ηZ2
)) + (Γ0, ηZ2

)) ⊗ ((Lf n[l] , 1) + (Γ0, 1))

= (Lfmθ
⊗ Lf n[l],⊕ijνi) + (Lfmθ

,⊕i(νi ⊗ ηZ2
)) + (Lf n[l], 1) + (Σ0, ηZ2

).

Lemma 4.36 The pull back to T4 × C of the cobordism V is tautologically unobstructed.

Proof Recall from Equation (36) that, up to reordering of the factors, p−1(V) is of the form

p−1(V) = S1 × W ⊂ T2 × (T2 × C)

for S1 ⊂ T2 a non­contractible curve and W a surgery cobordism between Lagrangians circles in T2

(in fact, it is always the case for us that one of the Lagrangians is the 0­section and the other is the graph

of a tropical function). It was proved in [Hau15, Lemma 5.2] that W has Maslov index 0, thus it bounds

no non­constant J ­holomorphic disks for a generic choice of almost complex structure J on T2 × C .

On the other hand, the projection to the first factor of any disk must be null­homotopic for topological

reasons; furthermore, choosing the almost complex structure on T2 × (T2 × C) to be of product type

jT2 ⊕ jT2×C the projection of the disk is a null­homotopic pseudo­holomorphic disk, hence constant.

Thus p−1(V) does not bound any non­constant pseudo­holomorphic disks for a complex structure of

the form jT2 ⊕ J .

Remark 4.37 The almost complex structure for which W does not bound any holomorphic disk need

not be invariant under the covering group. Hence, we cannot say that V is tautologically unobstructed

(the almost complex structure does not descend to K). This is the reason why we need to work with

cobordisms with the weaker property that their pullback is tautologically unobstructed. Nonetheless,

we argue in Appendix C that such cobordisms still induce iterated cone decompositions between their

ends (see Proposition C.2).

Summarizing, we have proved the following Proposition:

Proposition 4.38 Consider a Lagrangian G­brane supported on Γmθ equipped with the preferred Pin

structure and an arbitrary grading and local system. There exists a Lagrangian cobordism V ⊂ K × C

between Γmθ,Γ0 and Lfmθ
such that:

(1) V admits a G­brane structure restricting to the given G­brane structure on Γmθ ;

(2) the restriction of the Pin structure of V to Γ0 and Lfmθ
is the preferred one;

(3) the pullback of V to T4 × C is tautologically unobstructed.

A similar statement holds for the Lagrangians Γn[l],Γ0 and Lf nl .
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Figure 3: Decomposition of the Klein bottle to run Mayer­Vietoris. Note that both V1 and V2 retract

to a circle, whereas V1 ∩ V2 retracts to the disjoint union of two circles

A Homology with local coefficients

Let K be a symplectic bielliptic surface and π : K → K its Lagrangian torus fibration over a tropical

Klein bottle. Denote by detZ K = ∧2T∗
ZK the (integral) orientation bundle of K and let ξ := π∗ detZ K

be the local system on K obtained by pullback. In this Appendix we compute the second singular

homology H2(K; ξ) of K with coefficients in the local system ξ .

Proposition A.1 The second homology of K with coefficients in the local system ξ is given by

(38) H2(K; ξ) ∼= Z4 ⊕ Z2.

Furthermore, every class has a Lagrangian representative.

Proof We will use a Mayer­Vietoris decomposition K = U1 ∪ U2 coming from a decomposition

K = V1 ∪ V2 of the base (see Figure 3), i.e. Ui = π−1(Vi). Note the restricted fibrations Ui → Vi and

U1 ∩ U2 → V1 ∩ V2 are trivial. Furthermore, since the local system ξ is trivial on the fiber direction

(it’s pulled back from the base) and the homology of the fiber is free, the Künneth isomorphism for

homology with local coefficients says13

Hj(Ui; ξ|Ui)
∼=

j⊕

k=0

Hk(Vi; detZ K|Vi) ⊗ Hj−k(T2;Z)

∼=

j⊕

k=0

Hk(S1;Z) ⊗ Hj−k(T2;Z)

(39)

(40) Hj(U1 ∩ U2; ξ|U1∩U2
) ∼=

(
j⊕

k=0

Hk(S1;Z) ⊗ Hj−k(T2;Z)

)⊕2

.

To simplify notation, from now on we will omit the restriction notation and simply write Hk(U; ξ) ≡
Hk(U; ξ|U) for any U ⊂ K . We will also write Hk(U) ≡ Hk(U;Z) whenever we are taking integral

homology.

13Although Equations (39)­(40) seem to forget the local system, we will see shortly that the maps appearing in

the Mayer­Vietoris long exact sequence are different from those computing integral homology.
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The Mayer­Vietoris long exact sequence splits to give

(41) 0 →
H2(U1; ξ) ⊕ H2(U2; ξ)

im(i21 ⊕ i22)∗
→ H2(K; ξ) → ker(i11 ⊕ i12)∗ → 0

where the maps (i
j
1 ⊕ i

j
2)∗ : Hj(U1 ∩ U2; ξ) → Hj(U1; ξ) ⊕ Hj(U2; ξ) are induced by the inclusions

ik : U1 ∩U2 →֒ Uk . One can check that ker(i11 ⊕ i12)∗ ∼= Z2 , with one factor generated by the difference

of the two primitive elements of H1(V1∩V2;Z)⊗H0(T2) and the other by the difference of two primitive

elements of H0(V1 ∩V2;Z)⊗〈dy〉 ⊂ H0(V1 ∩V2;Z)⊗H1(T2) (recall there is a canonical identification

H1(Fp;Z) ≃ T∗
p,ZK ). Analyzing the Mayer­Vietoris boundary map, one sees the short exact sequence

(41) is split by the map ker(i11 ⊕ i12)∗ → H2(K; ξ) sending these two generators to the 0­section (which

is a cycle with ξ ­coefficients) and the conormal lift of the tropical curve {y = 1/2}. We now compute

the quotient in the left of Equation (41):

• Using (39) we get H2(U1; ξ) ∼= Z⊕ Z2 ∼= H2(U2; ξ), the first factor generated by a fiber and the

last two by the conormal and cotangent lift of the tropical circle {x = 1/2} ⊂ K .

• To compute im(i21 ⊕ i22)∗ , note that H2(U1 ∩ U2; ξ) ∼= (Z ⊕ Z2)⊕2 by Equation (40). Denoting

by a1, b1, c1, a2, b2, c2 the generators of H2(U1 ∩ U2; ξ) ∼= (Z ⊕ Z2)⊕2 , the map (i21, i
2
2)∗ :

H2(U1 ∩ U2; ξ) → H2(U1; ξ) ⊕ H2(U2; ξ) is given by

(a1, b1, c1, a2, b2, c2) 7→ (a1 + a2, b1 − b2, c1 + c2) ⊕ (a1 + a2, b1 + b2, c1 + c2).

Hence

im(i21 ⊕ i22)∗ = 〈(u, v − w, z) ⊕ (u, v + w, z), u, v,w, z ∈ Z〉 ⊂ H2(U1; ξ) ⊕ H2(U2; ξ).

• Putting everything together, we get

H2(U1; ξ) ⊕ H2(U2; ξ)

im(i21 ⊕ i22)∗

∼= Z⊕ Z2 ⊕ Z

generated by a fiber and the cotangent and conormal lift to the curve {x = 1/2} respectively.

Reordering the terms, we have computed

H2(K; ξ) ∼= Z4 ⊕ Z2,

with generators a fiber, the 0­section, the conormal lifts to the curves {x = 1/2} and {y = 1/2} and

the cotangent lift of the curve {x = 1/2}.

For the last part of the Theorem, note all but the last homology class have been given Lagrangian

representatives. For the last one, the 3­chain obtained by taking the y­cotangent direction to the 2­

chain given by the bottom­half of K has boundary T∗{x = 0} − N∗{y = 1/2}+ N∗{y = 0}, showing

that the symplectic torus T∗{x = 0} representing the Z2 ­factor has the difference of Lagrangians

N∗{y = 1/2} − N∗{y = 0} as a representative.

Remark A.2 Note there are important differences between H2(K; ξ) and H2(K;Z). Most notably for

our purposes, the zero­section is not a cycle with integer coefficients, whereas it is with ξ ­coefficients

and furthermore it defines a non­zero homology class. A similar phenomenon happens for the conormal

lift of the tropical circles {y = 0} and {y = 1/2}: they are topologically Klein bottles and do not

define cycles with integer coefficients, but they do with ξ ­coefficients. Also, the Lagrangian (conormal)

lift of the y­axis is 2­torsion in H2(K;Z), but it has infinite order in H2(K; ξ).
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B Integral Chern character

In this appendix we show that for a bielliptic surface Y the Chern character ch : K0(DbCoh(Y)) →
CH∗(Y)Q can be lifted to an integral isomorphism. That is, there exists a well­defined map c̃h :

K0(DbCoh(Y)) → CH∗(Y) and it is an isomorphism.

Remark B.1 Similar results appear in [Huy16, Corollary 1.5], where Huybrechts shows that for a K3

surface the Chern character ch : K0(K3) → CH∗(K3)Q factors through the natural map CH∗(K3) →
CH∗(K3)Q in a canonical way, and that the corresponding map K0(K3) → CH∗(K3) is an isomorphism.

A crucial property for his proof to work is that CH0(K3) is torsion­free. That clearly does not hold in

our case, where CH0(Y) = Z⊕ Alb(Y), the latter factor being an elliptic curve.

We first state a preliminary result, whose proof is a simple computation:

Lemma B.2 Let V = ⊕iVi be a graded Z­module and let W be another Z­module. Assume we have

a commutative map V ⊗ V → W and maps Hi : Vi → W such that

(42) Hi(α+ β) = Hi(α) + Hi(β) + αβ.

Then the map H : V → W defined by

H(⊕ivi) :=
∑

i

Hi(vi) +
∑

i<j

vivj

satisfies Equation (42).

Proposition B.3 Let Y be an algebraic bielliptic surface. There is an isomorphism of abelian groups

ch : K0(DbCoh(Y)) → CH∗(Y).

Proof Recall from Section 4.8 that CH1(Y) = Z2 ⊕ Z2
2 ⊕ Pic0(Y). Write Y = (E1 × E2)/Z2 as in

Theorem/Definition 4.1 and let πi : Y → Ei/Z2 , where E1/Z2 is again an elliptic curve and E2/G ∼= P1 .

Then, following [Ser90; Ber+19], we can give the following explicit generators for CH1(Y). The first

two Z­factors are generated by a fiber of π1 and a reduced multiple fiber of π2 ; call these D1 and D2 .

The second two Z2 ­factors are generated by F1−F2 and F1−F4 , where Fi are the four reduced multiple

fibers of π2 and we take F1 = D2 ; call these two generators D3 and D4 . Lastly, Pic0(Y) is an elliptic

curve, whose points correspond to the divisor classes Dp := D1−π
−1
1 (p) for p ∈ E1/Z2

∼= Pic0(Y); we

will write D
p

5 for these generators. Since the normal bundles to both D1 and D
p

5 are trivial, it follows

that D2
1 = (D

p

5)2 = 0 ∈ CH0(Y). Furthermore, we have

D2
3 = (F1 − F2)2

= F2
1 + F2

2 = 0

since F2
i = F2

j for all i, j and these classes are necessarily 2­torsion. The same argument shows that

D2
4 = 0.

Now write CH1(Y) = Z2 ⊕Z2
2 ⊕ Pic0(Y) = ⊕iVi , where Vi denotes the i­th summand of CH1(Y) as in

Lemma B.2. Then the previous discussion shows that the maps Hi ≡ 0 for i 6= 2 satisfy Equation (42).

Furthermore, define H2(kD2) = k2P , where P ∈ CH2(Y) is chosen such that 2P = D2
2 (that such P

exists follows from D2
2 being a 2­torsion element in CH0(Y), hence it lives in the divisible subgroup

Alb(Y) ⊂ CH0(Y)). Then

H2(mD2 + nD2) = (m + n)2P = H2(mD2) + H2(nD2) + 2mnP
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with 2mnP = mnD2
2 , so H2 also satisfies Equation (42). Let H : CH1(Y) → CH2(Y) be the map

defined in Lemma B.2. We define a modified Chern character c̃h : K0(DbCoh(Y)) → CH∗(Y) via

c̃h(F) = rk(F) + c1(F) + (H ◦ c1 − c2)(F).

Note that c̃h is a group homomorphism: for F1,F2 ∈ K0(DbCoh(Y)) we have

c̃h2(F1 ⊕F2) = H(c1(F1 ⊕F2)) − c2(F1 ⊕F2)

= H(c1(F1) + c1(F2)) − (c2(F1) + c2(F2) + c1(F1)c1(F2))

= H(c1(F1)) + H(c1(F2)) + c1(F1)c1(F2) − (c2(F1) + c2(F2) + c1(F1)c1(F2))

= c̃h2(F1) + c̃h2(F2).

After establishing the existence of a well­defined integral Chern character c̃h : K0(DbCoh(Y)) →
CH∗(Y), the fact that it is an isomorphism is a minor adaptation of the argument in [Huy16, Corollary

1.5]. Namely, we have c̃h(O) = 1 so CH2(Y) ⊂ im(c̃h). Since c̃h(Op) = c2(Op) = p, it follows that

also CH0(Y) ⊂ im(c̃h). Lastly, CH1(Y) ⊂ im(c̃h) because c̃h(O(D)) = 1 + D + H(D) and both 1 and

H(D) are in im(c̃h). Hence c̃h is surjective. For injectivity, note that for any smooth surface S we have

isomorphisms [Ful13, Example 15.3.6]

rk : F0K0(S)/F1K0(S) → Z

c1 : F1K0(S)/F2K0(S) → Pic(S)

c2 : F2K0(S) → CH0(S),

where FiK0(S) ⊂ K0(S) is the filtration given by sheaves whose support has dimension at most 2−i. Sup­

pose now that c̃h(F) = 0. Since c̃h(F) = 0 implies 0 = rk(F) = c1(F), we get F ∈ F2K0(DbCoh(Y)).

Furthermore 0 = H(c1(F)) − c2(F) = −c2(F), so using that c2 : F2K0(DbCoh(Y)) → CH0 is an

isomorphism we get F = 0.

Remark B.4 Unlike for K3 surfaces, our proof does not produce a canonical lift of the Chern character:

we have made a choice of the ‘half class’ P ∈ CH0(Y)hom such that 2P = D2
2 .

In Section 4.8 we argue that CH∗(Y) = Z4 ⊕ Z2
2 ⊕ E2 and give explicit generators: we denote

these by Zi, i = 1, . . . , 6 and Zp,Z
′
p′ , (p, p

′) ∈ E2 . More explicitly, Z1 = Y,Z2 is some refer­

ence point p0 ∈ Y , the divisors Z3, . . . ,Z6,Zp are the divisors denoted by D1, . . . ,D4,D
p

5 in the

proof of Proposition B.3, and Z′
p′ is represented by p0 − p′ ∈ CH0(Y)hom . We consider classes

[OZi ], [OZp ], [OZ′

p′
] ∈ K0(DbCoh(Y)) represented by the structure sheaves of such generators of

CH∗(Y). The following result will be useful to prove Theorem 4.29:

Corollary B.5 There is a well­defined group homomorphism

h : Z4 ⊕ Z2
2 ⊕ E2 → K0(DbCoh(Y))

(n1, . . . , n6, p, p
′) 7→

∑

i

ni[OZi ] + [OZp ] + [OZ′

p′
]

and it is an isomorphism.

Proof To see it is well­defined we must check that the relations

2[OZi ] = 0, i = 5, 6

[OZp1+p2
] = [OZp1

] + [OZp2
], pj ∈ E

[OZ′

p′
1
+p′

2

] = [OZ′

p′
1

] + [OZ′

p′
2

], p′j ∈ E
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hold in K0(DbCoh(Y)). It is equivalent to show that their images under c̃h satisfy such relations. For

the first two, note that c̃h([OZi ]) = Zi for i = 5, 6, and that the classes Zi are 2­torsion in CH∗(Y). For

the last two, we have c̃h([OZp ]) = Zp for any p ∈ E (and similarly for Zp′ ), so the relations also hold.

To see it is an isomorphism, note that c̃h([OZi ]) = Zi for all i 6= 4 and c̃h([OZ4
]) = Z4 + P , hence the

composition c̃h ◦ h is given by

Z4 ⊕ Z2
2 ⊕ E2 → CH∗(Y)

(n1, . . . , n6, p, p
′) 7→

∑

i

niZi + n4P + Zp + Z′
p′ .

This map is clearly an isomorphism, hence so is h.

C Fukaya categories from multivalued perturbations

In this appendix we sketch a definition of a Fukaya category Fuk(X; Y) of a symplectic manifold together

with a finite covering π : Y → X using multivalued perturbations. We then apply this construction to

Y = T4 × C and X = K × C and argue that quasi exact cobordisms in Fuk(K × C; T4 × C) between

weakly exact Lagrangians still give iterated cone decomposition results as in [BCS21], as claimed in

Section 4.8.

Let X be a symplectic manifold and π : Y → X a finite covering with covering group H . Given a

collection of Lagrangians L(X), we define two Fukaya categories:

• Fuk(X) = Fuk(X;L(X)) is the Fukaya category whose objects are pairs (L, JL) for L ∈ L(X)

and JL an almost complex structure such that L bounds no non­constant JL ­holomorphic disk.

Morphism spaces and the A∞ ­structure are defined as usual [Fuk+09; Sei08].

• Fuk(X; Y) = Fuk(X;L(X),Y) is a Fukaya category whose objects are pairs (L, J̃L) for L ∈ L(X)

and such that π−1(L) bounds no J̃L holomorphic disks (note that now J̃L is an almost complex

structure on Y , not on X ). Morphism spaces in Fuk(X; Y) are defined to be the same as in Fuk(X).

To define the A∞ ­operations, let (L0, J̃0), . . . , (Lk, J̃k) be objects of Fuk(X; Y) and let Dk be a disk

with k + 1 boundary punctures p0, . . . , pk ∈ ∂D . Given an element h = (h0, . . . , hk) ∈ Hk+1 ,

we define an h­perturbation datum to be a map Jg : Dk → J = {ω − compatible a.c.s on Y}
whose restriction to the i­th boundary component of Dk agrees with (hi)

∗J̃i (here we denote by

hi : Y → Y the covering automorphism induced by hi ). A universal choice of perturbation datum

is a choice of h­perturbation datum for each h ∈ Hk+1 and each fiber of the universal curve

over the moduli­space of disks with k + 1 punctures; these should be regular and compatible in

the usual sense (where we think of the elements hi as labeling the i­th boundary component of

Dk ). Given y the data of y0, . . . , yk−1 Hamiltonian chords from Li to Li+1 and yk a Hamiltonian

chord from L0 to Lk and h ∈ Hk+1 , we define M(h; y) to be the moduli­space of disks

u : D2 \{p1, . . . , pk} → Y that are Jg ­holomorphic for the given choice of h­perturbation datum

and asymptotic to some lift of the yi at each boundary puncture pi . Then we have A∞ ­operations

µk : hom((Lk−1, J̃k−1), (Lk, J̃k)) ⊗ · · · ⊗ hom((L0, J̃0), (L1, J̃1)) → hom((L0, J̃0), (Lk, J̃k))

〈µk(y0 ⊗ · · · ⊗ yk−1), yk〉 =
∑

h∈Hk+1

#M(h; y)

|H|k+2

(43)

The proof that these operations satisfy the A∞ ­relations is the usual one.
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Remark C.1 From the above expression one sees that |H| should be invertible in the coefficient

ring used to define the Fukaya category.

Note that if J̃i is invariant under H then there is an action of H on M(h; y) via h · u = h ◦ u (which

is still holomorphic for the original choice of h­perturbation datum due to the invariance of J̃i ). In the

particular case where J̃i = π∗Ji is an almost complex structure pulled back by π , we get an isomorphism

M(h; y)/H ∼= MX(y) for MX(y) the moduli­space of disks used in the definition of Fuk(X). Hence

#MX(y) =
M(h;y)
|H| , so it follows from Equation (43) that we have an embedding

ι : Fuk(X) →֒ Fuk(X; Y)

(L, JL) 7→ (L, π∗JL).
(44)

More generally, we have an action of H on ∪
h∈Hk+1M(h; y) that, for any h ∈ H , sends a disk

u ∈ M(h; y) to the disc h◦u ∈ M(h′ ·h; y), where h ·h := (h · h0, . . . , h · hk). We think of the quotient

moduli­space ⋃
h∈Hk+1 M(h; y)

H
∼=

⋃

h∈Hk+1/H

M(h; y)

as a moduli space of multi­perturbed holomorphic disks in X , in the sense of [Sal99, Section 5]. An

H ­orbit of a disk u in Y corresponds to the projected disk π ◦ u inside X .

Now we apply the above construction to π : Y × C → X × C . We restrict the objects L(X × C) to be

Lagrangian cobordisms in X ×C equipped with all the extra data that we would like the corresponding

cobordism group to have (for us, they come equipped with G­brane structures). This gives a Fukaya

category Fukcob(X×C; Y×C) whose objects are by definition Lagrangian cobordisms in X×C (carrying

a G­brane structure) that are tautologically unobstructed when pulled back under π . The machinery

of [BC14; BCS21] shows that these objects induce iterated cone decompositions in Fuk(X; Y). Using

that the functor ι in Equation (44) is an embedding, it follows that cobordisms in Fuk(X × C; Y × C)

with ends ι(L0), . . . , ι(Lk) induce cone decompositions between the Li in Fuk(X). In particular, we

have the following:

Proposition C.2 Let π : Y → X be a finite covering, with both Y and X symplectic manifolds and

π∗ωX = ωY . Let Cob(X) be a cobordism group whose generators are weakly exact Lagrangians in

X , and whose relations come from cobordisms V ⊂ X × C such that (π × idC)−1(V) ⊂ Y × C is

tautologically unobstructed. Then there is a well­defined map

Cob(X) → K0(Fuk(X)).

Specializing to the case X = K and Y = T4 gives the result claimed in Section 4.8.

D Proof of Proposition 1.6

In this appendix we prove Proposition 1.6 by using the arguments in [SS20, Section 7] and applying

some elementary linear algebra. It is worth pointing out that, while [SS20, Lemma 7.9] should be

thought of as the symplectic analog of Mumford’s theorem [Mum69], our extension is the symplectic

analog of a more general theorem due to Roitman [Roi71, Theorem 5]. In fact, the key result from

linear algebra that we use was already encountered and proved by Roitman in his original paper.
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Let L ⊂ X be a Lagrangian submanifold. Weinstein’s tubular neighborhood theorem gives an identifi­

cation between deformations of L and closed 1­forms on L that are close to 0. Since exact 1­forms

define Hamiltonian isotopic Lagrangians, we obtain an identification between nearby Lagrangians

to L modulo Hamiltonian isotopy and a neighborhood of 0 in the first deRham cohomology group

H1
dR(L) ∼= H1(L;R). More precisely, recall that given a Lagrangian isotopy L = {Lt}t∈[0,1] , there is an

associated flux map FluxL ∈ H1(L;R) ∼= Hom(π1(L),R) defined via

FluxL : π1(L) → R

[γ] 7→

∫

Γ

ω

where Γ := ∪tγt is the cylinder obtained by parallel transporting γ = γ0 along the isotopy L (see

[Sol13, Section 6] for more details). Since the flux is invariant under homotopies of L with fixed

end­points and it vanishes if (and only if for nearby Lagrangians) L0 and L1 are Hamiltonian isotopic,14

the mapping

L′ 7→ FluxLL′

sending a Lagrangian L′ close to L to the flux of an isotopy LL′ = {Lt}t∈[0,1] with L0 = L and L1 = L′

provides an explicit indentification between Lagrangians close to L modulo Hamiltonian isotopy and

a neighborhood of the origin UL ⊂ H1(L;R) (note that for sufficiently close Lagrangians, the isotopy

LL′ is well­defined up to homotopy with fixed end­points).

Definition D.1 Given a class α ∈ UL , we denote by L(α) the corresponding deformation of L .

Note the Lagrangian L(α) can be explicitly represented (up to Hamiltonian isotopy) as the graph of any

1­form representing the cohomology class α .

Let L := (L1, . . . Lk) be a tuple of Lagrangians and let UL :=
∏

i ULi . It follows from the invariance of

the Lagrangian cobordism class under Hamiltonian isotopy that there is a well­defined map

fL : UL → Cob(X)

α 7→
∑

i

L(αi).

One can easily incorporate local systems into the picture so that if L = (L1, . . . Lk) is a tuple of

Lagrangians as above and UL :=
∏

i(ULi × H1(Li; G)), there is a well­defined map

fL : UL → Cob(X)

(αi, ηi) 7→
∑

i

(L(αi), ηi).

Here, the notation (L(αi), ηi) means the Lagrangian L(αi) equipped with the local system induced from

ηi : π1(Li) → G via the isotopy. Writing dimUL := dim(
∏

i ULi), we present the following notion of

dimensionality of Lagrangian cobordism groups:

Definition D.2 We say the Lagrangian cobordism group Cob(X) is d­dimensional if d is the minimum

N ∈ N such that there exists a sequence (Li,ULi )i∈N of Lagrangian tuples Li = (L
(i)
1 , . . . ,L

(i)
ni ) and

(not­necessarily open) subsets ULi ⊂
∏

j(H
1(L

(i)
j ;R) × H1(L

(i)
j ; G)) containing 0 and of dimension at

most N such that ∪i im(fLi ) = Cob(X).

14Similar statements for the flux of a path of symplectomorphisms can be found in [MS17, Section 10.2], and

were adapted to this setting in [Sol13].
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Remark D.3 The above notion of dimensionality of cobordism groups is similar, but not equal, to that

in [SS20]—even without the presence of local systems. The key difference is that we allow arbitrary

sets ULi containing 0, whereas Sheridan­Smith require them to be open. For instance, for X = T2 it is

known by Haug [Hau15] (see also our Section 3.2) that the Lagrangian cobordism group of a 2­torus is

Cob(T2) ∼= Z2 ⊕ S1 . This group is 1­dimensional under Definition D.2, but it is not finite­dimensional

if one requires the subsets ULi to be open neighborhoods of 0 and their dimensions to be bounded.

Sheridan­Smith prove an infinite­dimensionality result for cobordism groups as follows. First, they

prove:

Lemma D.4 ([SS20, Lemma 7.4]) Given L and L′ finite tuples of Lagrangians, the subset

ZL,L′ = {(α,α′) ∈ UL × UL′ |fL(α) = fL′(α′)}

is a countable union of (open subsets of) affine subspaces of UL × UL′ .

Consider now the n­form Ω ∈ ∧nT∗UL defined by

(45) Ω(α1, . . . , αn) =
∑

i

∫

Li

α1
i ∪ · · · ∪ αn

i

for αj = (αj
1, . . . , α

j
k) ∈ UL1

× . . .×ULk
≃ TUL . It can be naturally extended to an n­form on UL×UL′

via the identification UL × UL′ ≃ UL∪L′ .

Lemma D.5 ([SS20, Lemma 7.5]) The n­form Ω vanishes on ZL,L′ .

The key property is that Ω is non­degenerate for n = 2. Hence we have a symplectic form on UL×UL′

and an isotropic subspace ZL,L′ ⊂ UL × UL′ , which gives a bound dimZL,L′ ≤ 1
2

dim(UL × UL′).

Using this, Sheridan­Smith state the infinite­dimensionality of Cob(X):

Lemma D.6 ([SS20, Lemma 7.9]) Suppose X is a symplectic four manifold containing a Lagrangian

of genus at least one. Then, for any countable family {Li} of finite tuples Li = (Li
1, . . . ,L

i
ni

) such that

supi dimULi <∞ , the cobordism group Cob(X) is not covered by the images of the maps fLi .

The dimension bound dimZLL′ ≤ 1
2

dim(UL × UL′) is the key to make their proof work. This bound

comes from having a symplectic form, which only works in the case n = 2. For arbitrary n, recall

from Equation (45) that we have an n­form Ω of the form Ω =
∑

i pr∗i ωi , where pri : UL → ULi is

the projection and ωi : H1(Li;R)⊗n → R is given by cup­product and integration. It turns out that in a

situation like this one still has a useful bound:

Lemma D.7 ([Roi71, Lemma 9]) Let V = ⊕m
j=1Vj be a graded vector space and 0 6= ωj ∈ ∧qV∗

j

non­zero q­forms on Vj , q ≥ 2. Denote by prj : V → Vj the natural projection. If W ⊂ V is an

isotropic subspace for the q­form Ω =
∑

j pr∗j ωj , then dim W ≤ dim V − m .

With this result, the proof of [SS20, Lemma 7.9] translates almost directly:
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Proof of Proposition 1.6 Let N be such that dimULi < N for all i, and consider the family L(N) =

(T, . . . ,T) consisting of N copies of the Lagrangian torus T . We choose UT to be an open neighborhood

of 0 and as before write UL(N) =
∏N

k=1 UT . We will prove that the images of the maps fLi can’t cover

im(fL(N) ) ⊂ Cob(X), so that in particular they can’t cover Cob(X). Note that the images of the maps fLi

cover im(fL(N)) if and only if the projections

ZLi,L(N) ⊂ ULi × UL(N) → UL(N)

cover all of UL(N) . We will show that dimZLi,L(N) < dimUL(N) for all i, and since countably many sets

of strictly lower dimension cannot surject onto UL(N) the result will follow.

Consider the decomposition ULi⊕UL(N) = ⊕jVj given by V1 = ULi⊕UT and Vj = UT for j = 2, . . . ,N .

Given a Lagrangian L we denote by ωL ∈ ∧nH1(L;R)∗ the n­form on H1(L;R) given by cup­product

and integration; they naturally restrict to n­forms on UL ⊂ H1(L;R). We then define n­forms ωj ∈ ∧nV∗
j

by ω1 =
∑

k ωL
(i)
k

+ωT and ωj = ωT for j = 2, . . . ,N . Note that ωj 6= 0 for all j since T is a torus and

thus ∪ : H1(T;R)⊗n → Hn(T;R) is a surjection. The form

Ω =

N∑

j=1

pr∗j ωj, prj : V = ULi ⊕ UL(N) = ⊕jVj → Vj

vanishes on ZLi,L(N) by Lemma D.5, hence we have:

dimZLi,L(N) ≤ dim(ULi × UL(N)) − N (Lemma D.7)

< N + dimUL(N) − N (dimULi < N)

= dimUL(N).

In particular the projection ∪iZLi,L(N) ⊂ ∪iULi × UL(N) → UL(N) cannot be surjective.
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[ALP94] Michèle Audin, François Lalonde, and Leonid Polterovich. “Symplectic rigidity: La­

grangian submanifolds”. Holomorphic curves in symplectic geometry. Springer, 1994,

pp. 271 – 321.

[Arn80a] Vladimir Igorevich Arnol’d. “Lagrange and Legendre cobordisms. I”. Funktsional’nyi

Analiz i ego Prilozheniya 14.3 (1980), pp. 1 – 13.

[Arn80b] Vladimir Igorevich Arnol’d. “Lagrange and Legendre cobordisms. II”. Funktsional’nyi

Analiz i ego Prilozheniya 14.4 (1980), pp. 8 – 17.
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