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Abstract Fluctuations exist in any material object 𝐴. If 𝐴 has non-zero temperature
𝑇 , one speaks about thermal fluctuations. If 𝐴 is at very low 𝑇 , the fluctuations are
of quantum origin. Interesting effects appear if two bodies 𝐴 and 𝐵 are separated by
a fluctuating medium 𝐶 (say a vacuum, or a fluid close to its critical point) when
the fluctuations are long-ranged, i.e., they decay according to a power-law with the
distance. Then the changes of fluctuations in 𝐶 due to the surfaces and constituents
of 𝐴 are also felt by 𝐵, and vice versa, which leads to a fluctuation induced force
(FIF) between them. This force persists in addition to the direct influence of 𝐴 on 𝐵
(say, via gravity or Coulomb’s force). These FIF’s can be of attractive or repulsive
character. They may play crucially important role on phenomena involving objects
with length scale comparative with the Universe, as well as to the tiny objects relevant
for MEMS and NEMS. In the current article we present some basic facts for the FIF
and their diversity. Then on the example of one dimensional Ising model with a
defect bond we present some new analytical results for such forces.

1 Introduction in Fluctuation-induce Forces: A Brief Review

We consider two macroscopic or mesoscopic material bodies 𝐴 and 𝐵, separated by a
fluctuating medium𝐶. We always suppose that the degrees of freedom can enter and
leave the region between the interacting objects. There are, however, two important
subcases - one in which the𝐶 is in some contact with a reservoir, i.e., its constituents
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2 Fluctuation-induced Interactions

can enter and leave the part of the space occupied by 𝐴 and 𝐵. In this case on speaks
about the Casimir force. In the second case, the system is itself bounded, so that some
quantity characterizing the amount of material in 𝐶 is conserved. Then, on speaks
about the recently introduced, see the Letter [1], and still not well studied, Helmholtz
force. Both these forces are examples of the fluctuation induced forces and they do
exist because the medium𝐶 fluctuates and, when the force decays algebraically with
the distance so do the correlations of the fluctuations in 𝐶. Many other examples of
such forces are presented in Ref. [2].

Maybe the first study of a fluctuation induced force is due to A. Einstein [3].
Having in mind a standard capacitor at nonzero temperature 𝑇 , as early as in 1907
he studied the voltage fluctuations between its plates and even concluded that the
corresponding effect can be measured.

Presently, the most famous example of a fluctuation-induced interaction is the
quantum electrodynamic (QED) Casimir effect [4–8]. Nowadays, investigations de-
voted to that effect are performed on many fronts of research ranging from attempts
to unify the four fundamental forces of nature [5, 7, 9] to rather practical issues such
as the design and the performance of MEMS and NEMS [10–14].

In the QED Casimir effect the medium 𝐶 is the vacuum; the presence of two
conducting plates (the interacting objects 𝐴 and 𝐵) modifies the zero point energy
of the electromagnetic field and leads to an attractive force (normalized per area, i.e.
to the so-called Casimir pressure)

𝐹
(QED)
Cas (𝐿) = − 𝜋2

240
ℏ𝑐

𝐿4 = −1.3 × 10−3 1
(𝐿/𝜇m)4

N
m2 , (1)

where 𝐿 is the separation between the plates, ℏ and 𝑐 are the Planck constant
(ℏ = ℎ/(2𝜋)), and the speed of light in vacuum, respectively. The QED Casimir
effect is one of the rare manifestations of quantum physics at the macroscopic scale,
like super-conductivity and super-fluidity.

At non-zero temperature, as it shall be expected, the thermal fluctuations come
into play, giving rise to additional temperature-dependent interactions. When applied
to realistic materials, the material properties of the bodies 𝐴, 𝐵 and the medium 𝐶

get also involved via their general dielectric and conductive properties. This has been
done by E. M. Lifshitz et al.[15, 16], see also [17, 18]. There the material properties
enter via the frequency-dependent dielectric permittivities 𝜀 (𝐴) (𝜔), 𝜀 (𝐵) (𝜔), and
𝜀 (𝐶 ) (𝜔). In the limit of small separations (but still large compared with molecular
scales) the Casimir force approaches the more familiar van der Waals force [8, 19].
From Lifshitz theory one can infer [19] that there is a possibility to observe QED
Casimir repulsion in the film geometry if the two half-spaces (A) and (B) forming the
plates and confining the film (C) exhibit permittivities which fulfill the relationship

𝜀 (𝐵) (𝑖𝜉) < 𝜀 (𝐶 ) (𝑖𝜉) < 𝜀 (𝐴) (𝑖𝜉). (2)

Experimentally repulsion occurs if the inequality in Eq. (2) holds over a sufficiently
wide frequency range. Actually this is a widespread phenomenon shared by all
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substrate-fluid systems which show complete wetting [20]. Accordingly Casimir
repulsion is a common feature and has been already observed - see, e.g., Ref. [21].

Thirty years after H. B. G. Casimir, in 1978 M. Fisher and P-G. de Gennes [22]
have shown that a very similar fluctuation-induced effect exists in fluids. This is now
the widely-investigated critical Casimir effect (CCE). It results from the fluctuations
of an order parameter and, more generally, from the thermodynamics of the medium
supporting that order parameter in the vicinity of a critical point. Recently, a review
on the exact results available for the CCE has been published in Ref. [2]. On different
aspects of this effect overviews can be found in [2, 23–26]. For the critical Casimir
effect (CCE) the expression, analogous to Eq. (1), exist at the critical point 𝑇 = 𝑇𝑐 of
the fluid 𝐶. For the (𝑑 = 3)-dimensional system one can write the critical Casimir
force (CCF) per unit area, i.e., the Casimir pressure, in the form

𝐹
(𝜏 )
Cas (𝑇 = 𝑇𝑐, 𝐿) ≃ 8.1 × 10−3Δ

(𝜏 ) (𝑑 = 3)
(𝐿/𝜇m)3

𝑇𝑐

𝑇roon

N
m2 , (3)

where 𝑇room = 20 ◦C (293.15 K). Here Δ(𝜏 ) is the so-called Casimir amplitude that
depends on the bulk and surface universality classes (see below) of the system and
the applied boundary conditions 𝜏. For most systems and boundary conditions one
has Δ(𝜏 ) (𝑑) = O(1).

Thus, the both forces, the quantum and the critical one, can be of the same order
of magnitude, i.e., they both can be essential, measurable and obviously significant at
or below the micrometer length scale. Let us stress that Δ(𝜏 ) (𝑑) can be both positive
and negative, i.e., 𝐹 (𝜏 )

Cas (𝑇, 𝐿) can be both attractive and repulsive. The accepted
terminology terms the negative force as attractive one.

In recent Letter [1] we have introduced and studied a Helmholtz fluctuation
induced force. It is a force in which an integral quantity value of the order parameter
characterizing the system is fixed (say the total magnetization in the system). We
stress, that in standard envisaged applications of, say, the equilibrium Ising model
to binary alloys or binary liquids, the case with order parameter fixed must be
addressed, provided that one considers finite systems and insists on a rigorous
analytical treatment. In Refs. [1, 27] via deriving there exact results on the example
of Ising chain with fixed magnetization under periodic and antiperiodic boundary
conditions, we have established a very different behavior of the Helmholtz force
from that one of the Casimir force, in the same model and under the same boundary
conditions. It is interesting to note that, actually, under periodic boundary conditions
the studied Helmholtz force has a behavior similar to the one appearing in some
versions of the big bang theory — strong repulsion at high temperatures, transitioning
to moderate attraction for intermediate values of the temperature, and then back to
repulsion, albeit much weaker than during the initial period of highest temperature.

In order to be concrete and avoid any misunderstandings, let us remind the
definitions of the critical Casimir and Helmholtz forces — the Casimir force in the
grand canonical ensemble (GCE), and its analogue in the canonical ensemble (CE)
— the Helmholtz force .
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In the general case, we envisage a 𝑑-dimensional system with a film geometry
∞𝑑−1 × 𝐿, 𝐿 ≡ 𝐿⊥, and with boundary conditions 𝜁 imposed along the spatial
direction of finite extent 𝐿. Let us take F (𝜁 )

tot (𝐿,𝑇, ℎ) to be the total (Gibbs) free
energy of such a system within the GCE, where 𝑇 is the temperature and ℎ is the
magnetic field. Then, if 𝑓 (𝜁 ) (𝑇, ℎ, 𝐿) ≡ lim𝐴→∞ F (𝜁 )

tot /𝐴 is the free energy per
area 𝐴 of the system, one can define the Casimir force for critical systems in the
grand-canonical (𝑇 − ℎ)-ensemble, see, e.g. Ref. [2, 23–26], as:

𝛽𝐹
(𝜁 )
Cas (𝐿,𝑇, ℎ) ≡ − 𝜕

𝜕𝐿
𝑓
(𝜁 )

ex (𝐿,𝑇, ℎ) (4)

where
𝑓
(𝜁 )

ex (𝐿,𝑇, ℎ) ≡ 𝑓 (𝜁 ) (𝐿,𝑇, ℎ) − 𝐿 𝑓𝑏 (𝑇, ℎ) (5)

is the so-called excess (over the bulk) free energy per area and per 𝛽−1 = 𝑘𝐵𝑇 .
Along these lines, if 𝑀 is the fixed value of the total magnetization, the definition

of the Helmholtz fluctuation induced force [1, 27] in the canonical (𝑇−𝑀)-ensemble
is:

𝛽𝐹
(𝜁 )
H (𝐿,𝑇, 𝑀) ≡ − 𝜕

𝜕𝐿
𝑓
(𝜁 )

ex (𝐿,𝑇, 𝑀) (6)

and
𝑓
(𝜁 )

ex (𝐿,𝑇, 𝑀) ≡ 𝑓 (𝜁 ) (𝐿,𝑇, 𝑀) − 𝐿 𝑓𝐻 (𝑇, 𝑚). (7)

In the above formula, 𝑚 = lim𝐿,𝐴→∞ 𝑀/(𝐿𝐴) is the average magnetization, and
𝑓𝐻 (𝑇, 𝑚) is the Helmholtz free energy density of the “infinite” system. In the re-
mainder of this article we will take 𝐿 = 𝑁𝑎, where 𝑁 is an integer number, and
without loss of generality we set the lattice spacing 𝑎 = 1.

We stress that the definition and existence of Helmholtz force is by no means
limited to the Ising chain and can be addressed, in principle, in any model of interest.

We note that a somewhat elaborate information about the ensemble behaviour of
fluctuation-induced forces has not yet been obtained.

In the remainder of the current text, on the example of the well known one-
dimensional Ising model, we present some new both exact analytical and numerical
results for the behavior of the Casimir and Helmholtz forces. We will consider the
case of the Ising model with a defect bond. The definition of the model is given in
Sec. 2. The derivation of the partition function of the model in GCE is presented in
Sec. 3. General results for the behavior of the free energy density of the finite chain
with defect bond and how from the results presented there one easily can obtain
those for periodic, antiperiodic and Dirichlet boundary conditions are given in Sec.
3.1. The behavior of the Casimir force in Ising chain with defect bond is discussed
in Sec. 4. The derivation of the partition function in canonical ensemble is presented
in Sec. 5. The behavior of the Helmholtz is then discussed and visualized in Sec. 6.
The article closes with a discussion and concluding remarks section 7.
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2 The Model

Let us consider a one-dimensional Ising chain of 𝑁 spins (𝑆𝑖 ± 1, 𝑖 = 1, .., 𝑁). We
suppose that the interaction between them 𝐽 is of a ferromagnetic type, i.e., that
𝐽 > 0. The Hamiltonian of the model is given by

H (𝜁 ) = −𝐽
𝑁−1∑︁
𝑖=1

𝑆𝑖𝑆𝑖+1 − 𝐽𝐵𝐶𝑆1𝑆𝑁 + ℎ
𝑁∑︁
𝑖=1

𝑆𝑖 . (8)

This form of the Hamiltonian allows for the discussion of different boundary con-
ditions: when 𝐽𝐵𝐶 = −𝐽, 𝐽, 0, 𝐽𝑎 one has periodic (PBC’s), antiperiodic (ABC’s),
or Dirichlet-Dirichlet (DBC’s) (also termed free, or missing neighbors), boundary
conditions, respectively. Here we focus on the more general case when 𝐽𝐵𝐶 = 𝐽𝑎,
where 𝐽𝑎 can have both positive or negative values, which we will call a model with
a defect bond. In the last case we will use the notation 𝜁 = db.

The main quantity of interest in the statistical mechanics is the partition function.
For the considered model the partition function is given by

𝑍
(db)
GC (𝑁, 𝐾, 𝐾𝑎, ℎ) =

∑︁
{𝑆𝑖 }

exp
[
−𝛽H (db)

]
. (9)

Here 𝐾 = 𝛽𝐽 and 𝐾𝑎 = 𝛽𝐽𝑎, while (db) depicts the considered boundary conditions.

3 On the Behavior of the Model in Grand Canonical Ensemble

The partition function of the system can be written in the form

𝑍
(db)
GC (𝑁, 𝐾, 𝐾𝑎, ℎ) =

∑︁
{𝑆𝑖=±1}

exp [𝐾 (𝑆1𝑆2 + 𝑆2𝑆3 + · · · + 𝑆𝑁−2𝑆𝑁−1) + 𝐾𝑎𝑆1𝑆𝑁

+ℎ (𝑆1 + 𝑆2 + · · · + 𝑆𝑁−1 + 𝑆𝑁 )] . (10)

It is helpful to cast the above formula as follows

𝑍db
GC (𝑁, 𝐾, 𝐾𝑎, ℎ) = (11)∑︁

{𝑆𝑖 }
exp

[
1
2
(ℎ𝑆1 + ℎ𝑆2) + 𝐾𝑆1𝑆2

]
exp

[
1
2
(ℎ𝑆2 + ℎ𝑆3) + 𝐾𝑆2𝑆3

]
× · · · × exp

[
1
2
(ℎ𝑆𝑁−1 + ℎ𝑆𝑁 ) + 𝐾𝑆𝑁−1𝑆𝑁

]
exp

[
1
2
(ℎ𝑆𝑁 + ℎ𝑆1) + 𝐾𝑎𝑆𝑁 𝑆1

]
.

Introducing the matrices
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T =
©«
exp (𝐾 + ℎ) exp (−𝐾)

exp (−𝐾) exp (𝐾 − ℎ)
ª®¬ , and T𝑎 =

©«
exp (𝐾𝑎 + ℎ) exp (−𝐾𝑎)

exp (−𝐾𝑎) exp (𝐾𝑎 − ℎ)
ª®¬ ,
(12)

it is easy to show that

𝑍
(db)
GC (𝑁, 𝐾, 𝐾𝑎, ℎ) = Tr

[
T𝑁−1T𝑎

]
. (13)

The matrix T is usually called transfer matrix. In the remainder we will need its
eigenvalues. They are, customarily, denoted by 𝜆1 and 𝜆2 and read

𝜆1,2 (𝐾, ℎ) = 𝑒𝐾
(
cosh ℎ ±

√︁
𝑒−4𝐾 + sinh2 ℎ

)
. (14)

Obviously, 𝜆1, 𝜆2 ∈ R, with 𝜆1 > 𝜆2. The two-dimensional matrix, which diagonal-
izes T is

P =
©«
cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙

ª®¬ , with P−1 T P =
©«
𝜆1 0

0 𝜆2

ª®¬ , (15)

where 𝜙 is determined by [28]

cot 2𝜙 = exp(2𝐾) sinh ℎ, 0 < 𝜙 < 𝜋/2. (16)

Explicitly, one then has

cos 𝜙 =
1
√

2

√√√
1 + sinh(ℎ)√︃

sinh2 (ℎ) + 𝑒−4𝐾
,

sin 𝜙 =
1
√

2

√√√
1 − sinh(ℎ)√︃

sinh2 (ℎ) + 𝑒−4𝐾
. (17)

Using the cyclic property of the trace operation we can transform 𝑍
(db)
GC (𝑁, 𝐾, 𝐾𝑎, ℎ)

in Eq. (13) into

𝑍
(db)
GC (𝑁, 𝐾, 𝐾𝑎, ℎ) = Tr

[(
P−1T𝑁−1P

) (
P−1T𝑎 P

)]
= Tr

©«
𝜆𝑁−1

1 0

0 𝜆𝑁−1
2

ª®¬

(
P−1T𝑎 P

)
. (18)

Performing the calculations in Eq. (18), we obtain the partition function of the finite
Ising chain with a defect bond in the GCE:

𝑍
(db)
GC (𝑁, 𝐾, 𝐾𝑎, ℎ) = 𝜆𝑁−1

1

(
𝑒𝐾𝑎 cosh(ℎ) + 𝐴(𝐾, 𝐾𝑎, ℎ)

)
+𝜆𝑁−1

2

(
𝑒𝐾𝑎 cosh(ℎ) − 𝐴(𝐾, 𝐾𝑎, ℎ)

)
, (19)
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where

𝐴(𝐾, 𝐾𝑎, ℎ) = 𝑒−𝐾𝑎

(
sinh2 (ℎ)𝑒2(𝐾+𝐾𝑎 ) + 1

)
√︃
𝑒4𝐾 sinh2 (ℎ) + 1

. (20)

3.1 On the Behavior of the Infinite Ising Chain and Leading Finite-Size
Corrections for the Finite Chain with Defect Bond

The behavior in GCE of the one-dimensional Ising model in the thermodynamic
limit 𝑁 → ∞ is discussed in most textbooks on statistical mechanics [28–32] and is
well known. Here we summarize only these of the known results that will be used in
the remainder of the current study.

We first remind that the infinite one-dimensional Ising chain with short-ranged
interactions exhibits an essential critical point at 𝑇 = 0. About that point the chain
demonstrates the usual scaling behavior - see below.

The free energy density of the ”bulk” chain is

𝛽 𝑓𝑏 (𝐾, ℎ) = − ln𝜆1 (𝐾, ℎ), (21)

with 𝜆1 (𝐾, ℎ) given in Eq. (14). We know the behavior of the correlation length, see,
e.g., Ref. [28, p. 36, Eq. 2.2.15]

𝜉−1 (𝐾, ℎ) = ln [𝜆1 (𝐾, ℎ)/𝜆2 (𝐾, ℎ)] , (22)

and so one can easily specify the scaling variables. It is clear that 𝜉 diverges when
𝜆2 → 𝜆1. Obviously, this happens when ℎ → 0 and 𝐾 → ∞. Defining

𝜉𝑡 ≡ 𝜉 (𝐾, 0) ≃
1
2
𝑒2𝐾 , when 𝐾 ≫ 1, and 𝜉ℎ ≡ lim

𝐾→∞
𝜉 (𝐾, ℎ) ≃ 1

2ℎ
, when ℎ ≪ 1,

(23)
for the scaling variables one identifies

𝑥𝑡 = 𝑁/𝜉𝑡 = 2𝑁𝑒−2𝐾 , and 𝑥ℎ = 𝑁/𝜉ℎ = 2𝑁ℎ. (24)

It immediately follows that the correlation length, the bulk magnetization, and the
bulk Gibbs free energy in the limit 𝐾 ≫ 1, in terms of these scaling variables, read

𝜉 (𝐾, ℎ) = 𝑁√︃
𝑥2
ℎ
+ 𝑥2

𝑡

, 𝑚𝑏 (𝐾, ℎ) =
𝑥ℎ√︃
𝑥2
ℎ
+ 𝑥2

𝑡

, 𝛽 𝑓𝑏 (𝐾, ℎ) = −𝐾 − 1
4𝑁

√︃
𝑥2
ℎ
+ 𝑥2

𝑡 .

(25)
Next, it must be recalled that in terms of 𝑡 = exp(−2𝐾) and ℎ, one obtains the

usual scaling relations with the scaling exponents, see, e.g., Ref. [28]

𝛼 = 𝛾 = 𝜈 = 𝜂 = 1, 𝛽 = 0, 𝛿 = ∞, with, however, 𝛽𝛿 = 1. (26)
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By definition, the free energy density of the finite chain is,

𝛽 𝑓 (db) (𝑁, 𝐾, 𝐾𝑎, ℎ) = − 1
𝑁

ln 𝑍 (db)
GC (𝑁, 𝐾, 𝐾𝑎, ℎ). (27)

From Eq. (27) and Eq. (19), one obtains the result

𝛽 𝑓 (db) (𝑁, 𝐾, 𝐾𝑎, ℎ) = 𝛽 𝑓𝑏 (𝐾, ℎ)+
1
𝑁
𝛽 𝑓

(db)
surface (𝐾, 𝐾𝑎, ℎ)+𝛽Δ 𝑓

(db)
𝑁

(𝐾, 𝐾𝑎, ℎ), (28)

where

𝛽 𝑓
(db)

surface (𝐾, 𝐾𝑎, ℎ) = 𝜆1 (𝐾, ℎ) − ln
[
𝑒𝐾𝑎 cosh(ℎ) + 𝐴(𝐾, 𝐾𝑎, ℎ)

]
, (29)

and

𝛽Δ 𝑓
(db)
𝑁

(𝐾, 𝐾𝑎, ℎ) = − 1
𝑁

ln
{
1 + exp

[
− 𝑁 − 1
𝜉 (𝐾, ℎ)

]
𝑒𝐾𝑎 cosh(ℎ) − 𝐴(𝐾, 𝐾𝑎, ℎ)
𝑒𝐾𝑎 cosh(ℎ) + 𝐴(𝐾, 𝐾𝑎, ℎ)

}
.

(30)
Let us briefly discuss the meaning of the terms in Eq. (28).

First, the term 𝛽 𝑓
(db)

surface (𝐾, 𝐾𝑎, ℎ) has the meaning of a ”surface free energy
density”. It shall exist under DBC’s but shall vanish for PBC’s. One can check
that, after some simple algebra, indeed 𝛽Δ 𝑓

(db)
𝑁

(𝐾, 𝐾𝑎 = 𝐾, ℎ) = 0. For ABC’s,
when 𝐾𝑎 = −𝐾 the quantity 𝛽 𝑓 (db)

surface (𝐾, 𝐾𝑎 = −𝐾, ℎ) has the meaning of an inter-
face free energy, which characterize the interface effected by the imposed ABC’s.
Apparently, the corresponding result for this case is 𝛽 𝑓 (db)

surface (𝐾, 𝐾𝑎 = −𝐾, ℎ) =

− ln
[
cosh(ℎ)

/√︃
𝑒4𝐾 sinh2 (ℎ) + 1

]
, which coincide with the one reported in Ref.

[27, Eq. (3.9)].
Second, we note that the redundant term 𝛽Δ 𝑓

(db)
𝑁

(𝐾, 𝐾𝑎, ℎ) is exponentially small
for 𝑁 ≫ 1 when 𝜉 (𝐾, ℎ) = O(1). The only exception is the case when 𝑁 ∝ 𝜉 (𝐾, ℎ),
i.e., 𝑁/𝜉 (𝐾, ℎ) = O(1). The last relation defines the so-called ”finite-size scaling
region”. Inherently, it is described by scaling variables 𝑥𝑡 = O(1) and 𝑥ℎ = O(1), as
given in Eq. (24). Thus, the term 𝛽Δ 𝑓 (db) (𝐾, 𝐾𝑎, ℎ) cannot be neglected and, as we
will see below, is of a primarily importance for the behavior of the Casimir force.

4 Behavior of the Casimir Force in Ising Chain with Defect Bond

In accordance with the definitions Eqs. (4), (5), from Eqs. (28) – (30) for the Casimir
force we obtain the following result

𝛽𝐹
(db)
Cas (𝑁, 𝐾, ℎ) = − 1

𝑁

𝑁

𝜉 (𝐾, ℎ)
1

𝑟 (𝐾, 𝐾𝑎, ℎ) exp [(𝑁 − 1)/𝜉 (𝐾, ℎ)] + 1
, (31)

where
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𝑟 [𝐾, 𝐾𝑎, ℎ] :=
𝑒𝐾𝑎 cosh(ℎ) + 𝐴(𝐾, 𝐾𝑎, ℎ)
𝑒𝐾𝑎 cosh(ℎ) − 𝐴(𝐾, 𝐾𝑎, ℎ)

. (32)

The behavior of the Casimir force as a function of 𝐾 , 𝐾𝑎 and ℎ for 𝑁 = 100 and
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-0.20

-0.15

-0.10

-0.05

0.

-0.2

0.

0.2

0.4

0.6

0.8

Fig. 1 If 𝐾𝑎 > 0 the Casimir force is attractive (the corresponding function is negative). In the
opposite case - with 𝐾𝑎 < 0, the force can be both attractive and repulsive, depending on 𝐾 and
ℎ. The force is always symmetric with respect of the sign of the external magnetic field ℎ. In the
current figure the left panel shows the behavior of the Casimir force for 𝑁 = 100 with 𝐾𝑎 = 3.
The right panel depicts the behavior of the Casimir for with again 𝑁 = 100 but for 𝐾𝑎 = −3. The
behavior of the force is shown as a function of 𝐾 and ℎ.

𝐾𝑎 = ±3 is shown in Fig. 1.
Let us now consider the behavior of the force in the scaling regime. On general

grounds we expect that the scaling function of the Casimir force 𝑋Cas (𝑥𝑡 , 𝑥𝑎, 𝑥ℎ) is

𝛽𝐹
(db)
Cas (𝑁, 𝐾, ℎ) = 1

𝑁
𝑋

(db)
Cas (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ). (33)

From Eq. (24), and Eqs. (31) – (33) one derives the corresponding explicit expres-
sions

𝑋
(db)
Cas (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ) = −

√︃
𝑥2
ℎ
+ 𝑥2

𝑡

𝑟 (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ) exp
(√︃
𝑥2
ℎ
+ 𝑥2

𝑡

)
+ 1

, (34)

where

𝑟 (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ) =

√︃
𝑥2
ℎ
+ 𝑥2

𝑡 + 𝑥𝑡 exp(−2𝐾𝑎)√︃
𝑥2
ℎ
+ 𝑥2

𝑡 − 𝑥𝑡 exp(−2𝐾𝑎)
. (35)

Obviously, if 𝑟 (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ) > 0 one has 𝑋Cas (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ) < 0. Furthermore,
𝑋Cas (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ) decays exponentially when 𝑥2

ℎ
+ 𝑥2

𝑡 ≫ 1.
The behavior of the scaling function 𝑋 (db)

Cas (𝑥𝑡 , 𝐾𝑎, 𝑥ℎ) of the Casimir force are
visualized in Fig. 2. We observe, that the force is symmetric with respect to the sign
of 𝑥ℎ, as must be the case.
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Fig. 2 On the left panel: The behavior of the scaling function 𝑋 (db)
Cas (𝑥𝑡 , 𝐾𝑎 , 𝑥ℎ ) of the Casimir

force as a function of the scaling variables 𝑥𝑡 and 𝑥ℎ for 𝐾𝑎 = 3. We observe that the function is
negative for all values of 𝑥𝑡 and 𝑥ℎ, i.e., the force is attractive. On the right panel: The behavior
of the function 𝑋 (db)

Cas (𝑥𝑡 , 𝐾𝑎 , 𝑥ℎ ) for 𝐾𝑎 = −3. We observe that the force is repulsive.

5 On the Behavior of the Model in Canonical Ensemble

In the canonical ensemble the total magnetization 𝑀 of the chain is fixed. This
constrain can be expressed by using an integral presentation of the Kronecker delta-
function

𝛿[𝑆, 𝑀] = 1
2𝜋

∫ +𝜋

−𝜋
𝑒𝑖 (𝑆−𝑀 )𝜙𝑑𝜙, 𝑆 =

𝑁∑︁
𝑖=1

𝑆𝑖 , 𝑆, 𝑀 ∈ Z. (36)

Then the canonical partition function is given by

𝑍
(db)
𝐶

(𝑁, 𝐾, 𝐾𝑎, 𝑀) =
∑︁

{𝑆𝑖 } (db)

𝑒−𝛽H𝛿[𝑆, 𝑀], (37)

where H is given by Eq. (8) with 𝐽𝐵𝐶 = 𝐽𝑎. Here the symbol {𝑆𝑖} (db) means that
the set of spins obeys the boundary conditions with a defect bond. Further we have

𝑍
(db)
𝐶

(𝑁, 𝐾, 𝐾𝑎, 𝑀) = 1
2𝜋

∫ 𝜋

−𝜋
𝑒−𝑖𝑀𝜙


∑︁

{𝑆𝑖 } (db)

𝑒−𝛽H+𝑖𝜙∑
𝑖 𝑆𝑖

𝑑𝜙
=

1
2𝜋

∫ 𝜋

−𝜋
𝑒−𝑖𝑀𝜙 𝑍 (db)

GC (𝑁, 𝐾, 𝐾𝑎, 𝑖𝜙) 𝑑𝜙. (38)

Using Eq. (19), as well as [33, see there Eqs. (2.9) and (2.11)], one derives

𝑍
(db)
GC (𝑁, 𝐾, 𝐾𝑎, 𝑖𝜙) = 2

[√︁
2 sinh(2𝐾)

]𝑁−1
(39)

×
{
𝑒𝐾𝑎 cos(𝜙)𝑇𝑁−1

(
𝑧(𝐾, 𝜙

)
+ 𝑒

−(𝐾𝑎+𝐾 ) − 𝑒𝐾+𝐾𝑎 sinh2 (𝜙)√︁
2 sinh(2𝐾)

𝑈𝑁−2

(
𝑧(𝐾, 𝜙)

)}
,
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where

𝑧(𝐾, 𝜙) ≡ 𝑧(𝐾, 𝑖𝜙) = 𝑒𝐾 cos(𝜙)√︁
2 sinh(2𝐾)

, 𝐾 > 0, 𝜙 ∈ [−𝜋, 𝜋] . (40)

Plugging Eq. (39) into Eq. (38) after using the properties of the Chebyshev’s poly-
nomials [34, 8.941.1-8.941.3] it can be shown that

𝑍
(db)
𝐶

(𝑁, 𝐾, 𝐾𝑎, 𝑀) =
[√︁

2 sinh(2𝐾)
]𝑁 {[

𝑒𝐾𝑎−𝐾 − sinh(𝐾𝑎 + 𝐾)
sinh(2𝐾)

]
D
(
𝑁, 𝑀; 𝑒−4𝐾

)
+1

2
𝑒𝐾−𝐾𝑎

[
𝑒2𝐾𝑎 − 𝑒−2𝐾

sinh(2𝐾)

]
I(𝑁, 𝑀, 𝑒−4𝐾 )

}
. (41)

Here

I(𝑁, 𝑀, 𝑧) :=
4
𝜋

∫ 𝜋/2

0
cos(𝑀𝑥) 𝑇𝑁

(
cos(𝑥)
√

1 − 𝑧

)
𝑑𝑥, (42)

and

D (𝑁, 𝑀; 𝑧) = 4
𝜋

∫ 𝜋/2

0
cos(𝑀𝑥) cos(𝑥)

√
1 − 𝑧

𝑈𝑁−1

(
cos(𝑥)
√

1 − 𝑧

)
𝑑𝑥. (43)

As shown in Ref. [27] and [33], the above integrals can be expressed in terms of the
Gauss hypergeometric functions. The results are

I(𝑁, 𝑀, 𝑧) = 𝑁𝑧(1 − 𝑧)−𝑁/2
2𝐹1

(
1
2
(𝑀 − 𝑁 + 2), 1

2
(−𝑀 − 𝑁 + 2); 2, 𝑧

)
, (44)

and

D(𝑁, 𝑀, 𝑧) = (1 − 𝑧)−𝑁/2𝑧

{
𝑁 2𝐹1

(
1
2
(𝑀 − 𝑁 + 2), 1

2
(−𝑀 − 𝑁 + 2); 2, 𝑧

)
+

2(𝑧−1 − 1) 2𝐹1

(
1
2
(𝑀 − 𝑁 + 2), 1

2
(−𝑀 − 𝑁 + 2); 1, 𝑧

) }
. (45)

Thus, we have derived in an exact explicit form the partition function of the one-
dimensional Ising model with fixed magnetization 𝑀 possessing a defect bond 𝐾𝑎.
Now we pass to its scaling behavior. Using the asymptotic expansion [27, Eq. (D.6)],
which in the current notations reads

2𝐹1 (
1
2
(𝑁𝑚 − 𝑁 + 2),1

2
(−𝑁𝑚 − 𝑁 + 2); 𝛾; 𝑒−4𝐾 ) ≃ (46)

(𝛾 − 1)!
(

1
4

√︁
1 − 𝑚2 𝑥𝑡

)1−𝛾 [
𝐼𝛾−1

(
1
2

√︁
1 − 𝑚2 𝑥𝑡

)
+𝑂 (𝑁−1)

]
,

from Eq. (41), and Eqs. (44), (45), we obtain
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𝑒−𝐾𝑁 𝑍
(𝐷)
𝐶

(𝑁, 𝐾, 𝐾𝑎, 𝑀) = (47)

A(𝐾, 𝐾𝑎)
𝐼1

(
1
2

√
1 − 𝑚2 𝑥𝑡

)
√

1 − 𝑚2
+ B(𝐾, 𝐾𝑎)𝐼0

(
1
2

√︁
1 − 𝑚2 𝑥𝑡

)
,

where, for 𝐾 ≫ 1:

A = 2𝑒−2𝐾
{[
𝑒𝐾𝑎−𝐾 − sinh(𝐾𝑎 + 𝐾)

sinh(2𝐾)

]
+ 1

2
𝑒−𝐾𝑎

[
𝑒2𝐾𝑎 − 𝑒−2𝐾

𝑒−𝐾 sinh(2𝐾)

]}
≃
𝐾≫1

2𝑒𝐾𝑎−3𝐾 .

(48)
and

B = 2
[
𝑒𝐾𝑎−𝐾 − sinh(𝐾𝑎 + 𝐾)

sinh(2𝐾)

]
≃
𝐾≫1

2𝑒−𝐾𝑎−3𝐾 . (49)

6 Behavior of the Helmholtz Force in Ising Chain with Defect
Bond

Based on Eqs. (41) – (45) we are ready to derive the behavior of the Helmholtz
force defined in Eqs. (6) – (7). The only additional information we still need is the
behavior of the bulk Helmholtz free energy density. It is, see Ref. [27] and Ref. [33]

𝛽𝑎𝑏 (𝐾, 𝑚) = 𝐾 + 1
2

ln(1 − 𝑚2) (50)

− ln
[
1 +

√︁
𝑚2 + 𝑒4𝐾 (1 − 𝑚2)

]
+ 𝑚 sinh−1

(
𝑒−2𝐾𝑚
√

1 − 𝑚2

)
.

The behavior of the Helmholtz force is shown in Figs. 3 and 4 . In Fig. 3 the force is
visualized as a function of 𝐾 . The left panel of the figure shows the behavior of the
force for magnetization 𝑚 = 0.1 and for the three limiting cases of the values of the
coupling constant: 𝐾𝑎 = 𝐾 , when our system is equivalent to the one with periodic
boundary conditions, for 𝐾𝑎 = −𝐾 when it represents a system under antiperiodic
boundary conditions, and with 𝐾𝑎 = 0 when it turns into a system with Dirichlet
boundary conditions. We see that the obtained curves, calculated for 𝑁 = 300, agree
completely with the ones reported in Refs. [1, 27, 33]. The right panel of Fig. 3
shows the behavior of the Helmholtz force for 𝑁 = 100 with the values of 𝐾𝑎 fixed
ate 𝐾𝑎 = ±3. We observe that for moderate values of 𝐾 the behavior of the force
essentially differ in the two sub-case having, however, the same asymptotic for large
and small values of 𝐾 .

The Helmholtz force as a function of 𝐾𝑎 for two pairs of fixed values of 𝑚 and 𝐾
is depicted in Fig. 4 as a function of 𝐾𝑎. The left panel demonstrates the influence
of 𝐾 when 𝑚 is fixed, while the right panel show the complimentary case - the role
of the value of 𝑚 when 𝐾 is fixed.
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Fig. 3 If 𝐾𝑎 > 0 the Helmholtz force is similar to the corresponding result for PBC’s - see Refs.
[1, 27, 33]. In the opposite case - with 𝐾𝑎 < 0, the force resembles the one for ABC’s - see Refs.
[27, 33]. The force is always symmetric with respect of the sign of 𝑀. In the current figure the left
panel shows the behavior of the Helmholtz force for 𝑁 = 100 with 𝐾𝑎 = ±𝐾 . The right panel
depicts the behavior of the force with again 𝑁 = 100 but for 𝐾𝑎 = ±3.
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Fig. 4 The Helmholtz force as a function of 𝐾𝑎 for two fixed pairs of values of 𝑚 and 𝐾 . The left
panel demonstrates the influence of 𝐾 for a fixed value of𝑚 = 0.1, while the right panel shows the
role of 𝑚 for a fixed value of 𝐾 = 3. We observe that for large values of 𝐾 the force is very small
for negative values of 𝐾𝑎 . For moderate values of 𝐾 (say 𝐾 = 3) the force is a negative constant
for negative values of 𝐾𝑎 , and positive for large values of 𝐾𝑎 .

7 Discussion and concluding remarks

In the current article we have presented a brief review of some of the fluctuation
induced forces. This have been done in Sec. 1. We commented on the QED and
critical Casimir force, as well as on the newly introduced Helmholtz force. Some
theoretical questions of practical application in nano- and micro-world have been
outlined and discussed. Then the behavior of the critical Casimir and Helmholtz
forces have been considered on the example of the one-dimensional Ising model in
grand canonical and in the canonical statistical mechanical ensembles. The model is
with one defect bond and is defined in Sec. 2.

The behavior of the model in grand canonical ensemble is studied in Sec. 3. The
main result there is the exact expression for the partition function of the model given
in Eq. (19) and Eq. (20).

The behavior of the Casimir force is investigated in Sec. 4. The main results are
visualized in Figs. 1 and 2.



14 Fluctuation-induced Interactions

• Fig. 1 shows the behavior of the force for general values of the basic two parameters
of the model - the strength of the coupling constant 𝐾 and the external magnetic
field ℎ. The calculations are performed for 𝑁 = 100. We observe that when the
defect bond 𝐾𝑎 is of a ferromagnetic type, see the left panel, force is attractive and
symmetric, as expected, with respect to the sign of the external magnetic field.

• When the defect bond is of antiferromagnetic type. i.e., 𝐾𝑎 < 0 the behavior of
the force is much more interesting in that it can be both attractive and repulsive -
see the right panel of the figure.

• On the left panel of Fig. 2 it is shown the scaling function of the Casimir force
𝑋

(db)
Cas (𝑥𝑡 , 𝐾𝑎 = 3, 𝑥ℎ), with the scaling variables 𝑥𝑡 and 𝑥ℎ defined in Eq. (24).

Since 𝐾𝑎 > 0 the behavior of the force is similar to that of the periodic boundary,
conditions, i.e., the force is attractive.

• In the right panel of Fig. 2 the opposite case of 𝑋 (db)
Cas (𝑥𝑡 , 𝐾𝑎 = −3, 𝑥ℎ). As we see,

with 𝐾𝑎 < 0 the force resembles the one for antiperiodic boundary conditions
and is always repulsive.

The behavior of the model in the canonical ensemble is considered in Sec. 5.
Again, the main result there is the explicit exact expression for the partition function
of the model given in Eqs.(41) – (45). It is presented there in terms of the Gauss
hypergeometric functions.

The behavior of the Helmholtz Force in Ising chain with defect bond is considered
in Sec. 6. The basic results are depicted in Figs. 3 and 4.

• Fig. 3 represents the behavior of the Helmholtz force as a function of the coupling
constant 𝐾 . On the left panel few principal cases of the value of 𝐾𝑎, namely
𝐾𝑎 = 𝐾, 𝐾𝑎 = −𝐾 and 𝐾𝑎 = 0 are shown. The value of the magnetization is
fixed to 𝑚 = 0.1. We observe that the force can be both attractive and repulsive
and coincides with the behavior of the system with periodic, antiperiodic and
Dirichlet, boundary conditions, respectively.

• The right panel of Fig. 3 clearly shows that the precise value of 𝐾𝑎, with all other
parameters kept the same, is important for the behavior of the force.

• Fig. 4 depicts the Helmholtz force as a function of 𝐾𝑎. We observe that for large
values of 𝐾 the force is very small for negative values of 𝐾𝑎. The force changes
sign for moderate values of 𝐾 (say 𝐾 = 3): it is attractive for negative values of
𝐾𝑎, and repulsive for large values of 𝐾𝑎.

We find that all significant results are consistent with the expectations of finite-size
scaling theory [24].

The present article demonstrates that the behavior of the fluctuation induced
forces crucially depend on the statistical ensemble in which they are defined and
also on the presence of impurity in the system. These important issues have not been
intensively studied yet.
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