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Frustrated magnets can have accidental ground state degeneracies which may be lifted by various forms of
disorder, for example in the form of thermal or quantum fluctuations. This order by disorder (ObD) paradigm
is well established in equilibrium and here is generalized to Floquet many-body systems. Investigating a
periodically-driven XXZ-compass model on the square lattice, we show that in a prethermal regime, dynamical
fluctuations induced by high-frequency drives select a discrete set of states out of a degenerate ground state
manifold of the lowest order Floquet Hamiltonian chosen as initial states. Remarkably, prior to the ObD selec-
tion, an unusual fluctuating regime emerges leading to a prethermalization timescale scaling linearly with the
drive frequency. We argue that prethermal ObD with its unusual approach to the selected states is a generic
phenomenon of driven frustrated systems and confirm it in the paradigmatic J1 − J2 XX model.

Introduction.— Frustration in many-body systems origi-
nates from the presence of competing interactions [1–4] and
can lead to exotic phenomena such as classical spin liquids,
e.g., spin ices [5, 6], or topologically-ordered ground states
in quantum spin liquids [7–12]. Typically, a system subject
to frustration can exhibit accidental degeneracies of the clas-
sical ground-state (g.s.) manifold, unprotected by symmetry.
A central concept in the field is the order by disorder (ObD)
mechanism [13–16], which entails that the classical degener-
acy can be lifted by introducing fluctuations (or entropy). Al-
though the latter normally favor featureless disordered states,
via ObD they turn out to induce long-range ordering.

In equilibrium there are typically three distinct forms of
ObD: i) Originally Villain and collaborators showed that dis-
order in the form of site dilution can induce long-range order
in a fully frustrated Ising model [13]. Generically, quenched
disorders can induce a discrete set of minima in an otherwise
degenerate manifold of the free energy [17]. ii) Disorder as
thermal fluctuations can lead to an entropic selection of spe-
cific states from the degenerate manifold, eventually restoring
long-range order at finite temperatures [18–20]. iii) Zero point
quantum fluctuations can similarly promote ordered states
even at zero temperature [18, 21]. Up to now, most stud-
ies of ObD have been confined to the realm of equilibrium
physics. Notable exceptions are works on tuning the free en-
ergy landscape via time-dependent modulations [22, 23] and,
very recently, the generalization of ObD to dynamical sys-
tems with non-reciprocal interactions [24], both of which in-
corporate stochastic noise for stabilizing ObD-selected steady
states.

In this paper, we address the question of whether ObD can
be generalized to driven systems without noise and whether
qualitatively new features can arise with time dependence?
We provide affirmative answers by focusing on Floquet frus-
trated magnets. Floquet engineering under periodic driving
has recently become a versatile tool for realizing novel phases
of matter beyond thermal equilibrium [25–28]. Even in the
absence of external noise, driven systems can settle - after a
short typically frequency independent time scale τpth – into
quasi-steady, so-called prethermal, states. These appear for
large drive frequency ω and can stabilize quasi-equilibrium

and non-trivial dynamical phases up to exponentially long (in
ω) thermalization timescales, after which the system heats
up to a featureless infinite temperature state [29–38]. While
this has been first worked out for quantum many-body sys-
tems [31, 33], similar effects appear in classical systems where
they can be efficiently simulated [39–42]. It allows us to show
that the fluctuations induced by a periodic drive can select a
long-range ordered prethermal phase, a phenomenon we dub
Floquet prethermal ObD. Remarkably, the transition in time
to the prethermal plateau is itself highly unusual. Namely,
starting from states close to the degenerate g.s. manifold (of
the Floquet Hamiltonian in high-frequency limit), a long fluc-
tuating regime appears scaling linear in frequency, τpth ∝ ω.
The characteristic scaling appears because of a hierarchical
symmetry reduction of the effective Floquet Hamiltonian as
recently introduced in Ref. [43]. Intuitively, the systems need
sufficient time for the drive-induced fluctuations to explore the
whole phase space to generate the entropy for prethermal ObD
selection.

To illustrate this phenomenon, we consider a classical frus-
trated compass spin model on the square lattice which dis-
plays an accidentally O(2) degenerate g.s. manifold. It was
recently shown that in equilibrium, four discrete states are se-
lected via thermal ObD [44]. We here generalize the model
to a periodically driven version. We show that a characteris-
tic dependence of the prethermal mean energy and thermal-
ization time appears for initial states chosen from the original
O(2) manifold. Independent of the initial state, each trajectory
settles into four discrete states and the selection mechanism is
always accompanied by a long fluctuating regime. To explain
the latter, we develop an analytical theory of harmonic fluctu-
ations around the mean-field transient dynamics. Frequency-
dependent corrections to the effective Floquet Hamiltonian
lead to an increase of fluctuations in time, thereby account-
ing for the unusual prethermalization timescale τpth ∝ ω.

Finally, we argue that Floquet prethermal ObD is a generic
phenomenon originating from the interplay of accidental de-
generacies and periodic driving. We confirm that it also ap-
pears in the paradigmatic J1 − J2 model on the square lattice
and discuss its experimental relevance.

Model.— We study a trinary Floquet Hamiltonian H(t) on
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FIG. 1: Prethermal order-by-disorder. (a) The dynamics of an individual O(3) spin (arrow), and the circles positioned atop the arrows strand
for the averaged fluctuations. Left: The system has an accidentally O(2)-degenerate g.s. manifold about the z-axis, w.r.t. the zeroth-order
effective Hamiltonian H0

eff in Eq. (2). The initial state manifests as an in-plane FM-ordered state with an azimuthal angle ϕin. Middle: Before
the prethermal phase, all spins evolve as a single spin, tracing a trajectory represented by colorful dots (blue to red over time). The fluctuations
(circle) increase as et/τpth . Right: In the prethermal phase, fluctuations are relatively strong and almost stop increasing, leading to a FM-
ordered prethermal state selected by fluctuations. (b) The decorrelator initially grows exponentially. The cross of the dashed line at 0.1 and
d(t) determines the prethermalization timescale τpth, which is proportional to drive frequency ω, see inset. (c) Dynamics of the zero-th order
energy E(0)(t). The transparent (solid) regime represents the timescale before (after) τpth. Inset: The zeroth order prethermal energy E(0)

pth as a
function of drive frequency ω. (d) E(0)(t) for various initial azimuthal angles ϕin, varying from ϕin = 0 to ϕin = π/2 (blue to red). Note that the
blue-side line (ϕb

in ∈ [0, π/4]) and corresponding red-side line ϕr
in = π/2 − ϕ

b
in converge into a single line in the prethermal regime. Inset: The

zeroth-order prethermal energy E(0)
pth as a function of ϕin. E(0)

pth is calculated as an average over the time interval of [103, 3× 103], corresponding
to the time window delimited by two vertical dashed lines. The size of the marker is magnified by a factor of 103 times the standard deviation.
Here we used L = 72, K = 1, Jz = 0, and G = 10−3 [ϕin = 0.2π for (b, c) and ω = 9 for (d)].

the square lattice, subjected to a periodic modulation at fre-
quency ω = 2π/T (with period T ),

H(t) =


Hx ≡ −

∑
r,δ Jx

δS
x
r S x

r+δ for t ∈ [0, T/3)
Hy ≡ −

∑
r,δ Jy

δS
y
rS y

r+δ for t ∈ [T/3, 2T/3)
Hz ≡ −

∑
r,δ JzS z

rS
z
r+δ for t ∈ [2T/3, T ),

(1)

where r is the lattice site and δ = x̂, ŷ denote the lattice vec-
tor along the x- and y-directions, respectively. Specifically,
the bond-oriented XXZ-compass interaction Ja

δ is graphically
illustrated as [45]

Jx
δ = , Jy

δ = , for ≡ J + K, ≡ J.

Here, we use J = 1 as the energy unit and restrict to K ≥ 0 and
0 ≤ Jz < 1. The spin dynamics is described by the standard
Hamilton equations of motion ∂S⃗ r/∂t = {S⃗ r, H(t)}. It leads
to a stroboscopic evolution function which can be analytically
integrated [45, 46]. Noe that the stroboscopic time depen-
dence is chosen for numerical convenience but a continuous
drive would lead to similar results.

Given the stroboscopic evolution function, the effective
prethermal Hamiltonian Heff is defined as e−T {Heff , ·} ≡

e−
T
3 {Hz, ·}e−

T
3 {Hy, ·}e−

T
3 {Hx, ·}. In the high-frequency limit, we can

expand the above equation and approximate the effective
Hamiltonian up to the first order as [47] Heff = H(0)

eff + H(1)
eff +

O(ω−2). The zeroth order, H(0)
eff , is just the XXZ-compass

model studied in Ref. [44]

H(0)
eff =

(
Hx + Hy + Hz

)
/3. (2)

The sub-leading order, which comes from the Poisson brack-
ets Hab ≡ {Ha, Hb}, can be expressed as

H(1)
eff = −

π

9ω

(
Hzx + Hzy + Hyx

)
, (3)

where Hab =
∑

r,δ=±x̂,±ŷ
∑
δ′,δ Ja

δ Jb
δ′ϵ

abcS a
r+δS

b
r+δ′S

c
r +∑

r,δ=x̂,ŷ Ja
δ Jb
δ ϵ

abc
(
S a

r S b
r S c

r+δ + S a
r+δS

b
r+δS

c
r

)
. In the absence

of the compass anisotropy, K = 0, H(0)
eff in Eq. (2) exhibits

in-plane O(2) symmetry about the z-axis. The g.s. is given
by ferromagnetic (FM) aligned spins within the XY plane,
characterized by an azimuthal angle ϕ ∈ [0, 2π). For K > 0,
the O(2) symmetry of H(0)

eff is reduced into a discrete Z4 one.
However, the g.s. energy remains invariant under arbitrary
global in-plane spin rotations, manifesting an accidentally
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O(2)-degenerate g.s. manifold, see Fig. 1(a). In equilibrium,
fluctuations of thermal ObD lift the accidental degeneracy
and the free energy has four minima at half-integer π [44, 45].
In the driven case, we observe that H(1)

eff reduces the Z4
symmetry to Z2, which is an example of the hierarchical
symmetry reduction of Floquet systems [43].

We first explore the dynamical model in Eq. (I) via numer-
ical simulations on a finite system with N = L2 spins. Since
H(0)

eff exhibits thermal ObD, it is natural to explore whether the
corresponding non-equilibrium dynamics can establish a sim-
ilar state selection mechanism via prethermalization. There-
fore, we initialize the simulations with the FM ordered g.s.
of H(0)

eff , characterized by a spin orientation (cos ϕin, sin ϕin, 0),
where ϕin denotes the initial azimuthal angle, see Fig. 1(a). To
bring the many-body character of the system into play, we add
perturbations on top of this FM order such that ϕr = ϕin + δθr,
with δϕr’s a random Gaussian noise with a standard devia-
tion of 2πG. Nonzero G increases the energy density of ini-
tial states and tunes the effective temperature of the expected
prethermal plateau.

Prethermalization timescale.— Generic periodically driven
many-body systems with large drive frequencies are governed
by two timescales. The first one, τpth, captures the initial equi-
libration dynamics after which the system enters the prether-
mal plateau. Normally as the short-time dynamics is primar-
ily governed by H(0)

eff , the prethermalization time is indepen-
dent of frequency and governed by the local energy scale,
τpth ∝ 1/J. However, as a key finding, we report that in our
set-up, τpth has an unusual dependence on ω as τpth ∝ ω, see
inset of Fig. 1(b). To probe τpth, we introduce the decorre-
lator d(t) quantifying the distance between two initially close
replicas of the system [39, 41, 45, 48, 49], S⃗ r(r) and S⃗ ′r(t),

as d(t) =
√

1
N

∑
r

[
S⃗ r(t) − S⃗ ′r(t)

]2
. During the initial fluctuat-

ing dynamics the spins move together and the value of the
decorrelator remains small. Eventually, it grows exponen-
tially from its tiny value around d(t = 0), and this onset of
many-body chaos means that the system explores the many-
body phase space (the distribution of initially almost aligned
spins spreads). Note, at infinite temperature characterized
by only trivial correlations, the typical value of decorrelator
is d∞ =

√
2 [39]. The prethermalization timescale τpth is

quantitatively determined by the time at which the decorre-
lator crosses 10% of its infinite temperature from a tiny initial
value.

Intuitively, τpth quantifies the time when the dynamics of
systems deviates from its motion as a single large spin, that is,
from the mean-field solution S̄ a(t) given by the generalized
Landau-Lifshitz-Gilbert (LLG) equation

∂tS̄ a(t) = {S̄ a(t),H(0)
eff } + {S̄

a(t),H(1)
eff } + O(ω−2). (4)

We allow fluctuations as perturbations to the mean-field so-
lution such as S̄ a → M−1(S̄ a + δS̄ a) with M the normaliza-
tion factor. We would like to examine the dynamics of fluc-
tuations to gain insights into τpth since d ∼ δS̄ in the sim-
plest approximation. We introduce ϕ̄(t) and θ̄(t) such that
(S̄ x, S̄ y, S̄ z) = (cos ϕ̄ sin θ̄, sin ϕ̄ sin θ̄, cos θ̄). The fluctuations
are now denoted as ϕ̄(t)→ ϕ̄(t)+ δϕ̄(t) and θ̄(t)→ θ̄(t)+ δθ̄(t).

Expanding Eq. (4) to leading order of δϕ̄ and δθ̄, we ob-
tain [45] (

∂t
∂t

) (
δϕ̄
δθ̄

)
=
Ē(t)
ω

(
δϕ̄
δθ̄

)
, (5)

where Ē is a ω-independent 2 × 2 matrix given by the mean-
field solution of S̄ a(t). Therefore, the fluctuations grow ex-
ponentially as ∼ etε/ω with ε the eigenvalues of Ē. Since the
increase of fluctuations leads to the onset of the prethermal
phase, it follows straightforwardly that τpth ∝ ω. The argu-
ment should hold for generic frustrated Floquet systems ini-
tialized within the g.s. manifold of its zeroth-order Floquet
Hamiltonian. It is attributed to the fact that, for these initial
states, the zeroth order term in the equation of motion is negli-
gible. Instead, the LLG equation is governed by the first-order
effective Hamiltonian which is linear in ω−1. Consequently,
the significance of H(1)

eff is to induce the dynamical fluctua-
tions, resulting in a prethermalization timescale proportional
to the drive frequency.

Prethermal ObD.— Subsequent to τpth, the system enters a
prethermal regime over a thermalization timescales τth before
eventually heating up to infinite temperature. In accordance
with the prethermalization paradigm, the non-equilibrium sys-
tem can be described by a thermal Gibbs ensemble at a certain
temperature βpth [32, 34, 50]. As our second key result, we
find that the prethermal ObD selected phase exhibits a strong
dependence on the initial azimuthal angle ϕin.

To characterize the thermal phase and to track the energy
absorption, we investigate the evolution of normalized en-
ergy E(0)(t) = H(0)

eff (t)/E0, where E0 = −(2J + K)N/3 is the
g.s. energy of H(0)

eff . As demonstrated in Fig. 1(c), in the
prethermal phase fluctuations are small, and E(0)(t) exhibits
a plateau value, persisting for an exponentially long time as
τth ∼ ecω [35, 51]. Fixing ω, the manifestation of prether-
mal ObD can be directly elucidated by the significant depen-
dence of thermalization timescales τth on initial azimuthal an-
gles ϕin. As ϕin approaches values around mπ/2 (m = 0, 1, ...,
corresponding to x̂ and ŷ directions), the associated timescales
τth are much longer compared to those with ϕin’s being close
to ±π/4, see Fig. 1(d). For instance, for ϕin = π/10, E(0)(t)
remains around its plateau value up to τth ∼ 106. In contrast,
for ϕin = π/4, it already deviates from the plateau towards its
infinite-temperature value around τth ∼ 104.

The prethermal ObD also appears in the relationship be-
tween prethermal energy E(0)

pth and initial azimuthal angles ϕin,

where E(0)
pth is the average of E(0)(t) over a time window in

the prethermal regime; see inset of Fig. 1(d). We find that
E(0)

pth exhibits a clear π/2-periodicity on ϕin. Note that E(0)
pth is

normalized by a negative constant E0. Therefore, its maxima
(minima) at ϕin = 0, π (ϕin = π/4 modulo π/2) signify the
lowest (highest) points in the landscape of the real energy. In-
deed, the behavior of E(0)

pth clearly resembles the free energy of

H(0)
eff versus ϕin under the thermal ObD mechanism [18, 45].

We emphasize that this prethermal ObD effect vanishes for
K = 0.

It is well-known that the thermal ObD appears only for fi-
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FIG. 2: State selection. The dynamics of (a) averaged azimuthal
angles ϕ(t) and (b) decorrelators d(t) for two different replicas. Here
we used L = 72, K = 1, Jz = 0, G = 10−3, ϕin = 0.2π, and ω = 12.

nite but small temperatures. A similar effect can also be ob-
served in prethermal ObD, where the inverse drive frequency
1/ω can be thought of as tuning the effective temperature.
When 1/ω is zero (zero temperature), the system stops ab-
sorbing energy and cannot prethermalize. When 1/ω is suf-
ficiently large (high temperature), the system absorbs energy
too quickly to sustain a prethermal regime. Moreover, the os-
cillation amplitude of E(0)

pth w.r.t. ϕin decreases with increasing

ω, by noting that E(0)
pth at ϕin = 0.2π increases as ω increases

and that at ϕin = 0 slightly changes with ω (not shown); see
the inset of Fig. 1(c).

One of the crucial aspects of thermal ObD is that it is the
entropy that selects the ordered states. Here, in the absence of
entropy for individual trajectories, we examine the averaged
azimuthal angle, ϕ(t) = N−1 ∑

r cos−1
(
S x

r (t)/
√

1 − [S z
r(t)]2

)
.

For different initial angles ϕin, we find that ϕ(t), after τpth,
reaches several prethermal azimuthal angles such as ϕ(t) ≈
0 (modulo π/2); see Figs. 2(a) and 3(a). This is consistent
with the idea of prethermal ObD, e.g., the prethermal angle
is selected by the fluctuations generated by the periodic drive.
This is corroborated by the dynamics of the decorrelator d(t)
in Fig. 2(b). After its exponential increase to a relatively large
value at τpth, d(t) either (i) drops to a relatively smaller plateau
value, or (ii) further grows up and stays at a larger plateau
value of d ≈ 1. Note that there are four degenerate states
selected by the ObD mechanism. Then, two initial states can
end up in the same prethermal state (for instance, both are
along the x̂ direction) leading to a reduction in the value of
d(t). On the other hand, they can occupy two different states
(for instance, one along the x̂ direction and the other along
the ŷ direction). Then it can cause a larger plateau value of
d ≈
√

12 + 12/d∞ ≈ 1.
According to the Z4 symmetry of H(0)

eff , one would have ex-
pected that the prethermal state with ϕ(t) ≈ 0 (along the x̂
direction) and that with ϕ(t) ≈ π/2 (along the ŷ direction) are
exactly degenerate. However, one can find that the prethermal
angles ϕ(t) deviate slightly from these values; see Fig. 1(a).
This can be resolved by taking into account the subleading ef-
fective Hamiltonian H(1)

eff (3) breaking Z4 into Z2. We carry
out Monte Carlo (MC) simulations for the static Hamiltonian
H(0)

eff +H(1)
eff to sample the thermal ensemble, by which we con-

struct a probability distribution for the azimuthal angle P(ϕ).
As shown in Fig. 3(b), the maxima in P(ϕ) are consistent with
the plateau values in the prethermal regime shown in Fig. 3(a).
Note that the peak at ϕ = π/2 is broader than the other two
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FIG. 3: Thermal and prethermal phase transition by Jz in H(0)
eff +H(1)

eff .
(a, c, e) Stroboscopic dynamics of averaged azimuthal angles ϕ(t)
versus initial azimuthal angles ϕin varying from ϕin = 0 to ϕin = π/4
(blue to red) for (a) Jz = 0, (c) Jz = 0.4, and (e) Jz = 0.8. The solid
regimes denote the prethermal phases. Here we have used L = 72,
K = 1, G = 10−3, and ω = 9. b, d, f) Probability distribution P(ϕ) for
the azimuthal angle obtained by using Monte Carlo simulations with
L = 32, K = 1, T = 0.08, β = 5.0, and (b) Jz = 0, (d) Jz = 0.4, as
well as (f) Jz = 0.8. (g) The dynamics of out-of-plane magnetization
mz(t) for various Jz. The rest model parameters are the same as those
in (a, c, e).

peaks, explaining the fact that the fluctuations of ϕ(t) around
the plateau value of π/2 are a little bit stronger than those
around the other two plateau values. Finally, for comparison,
we also perform MC simulations for H(0)

eff only, leading to a
probability distribution P(ϕ) preserving the Z4 symmetry.

Dynamical phase diagram.– The first-order effective
Hamiltonian H(1)

eff favors noncoplanar order but its contribu-
tion to the prethermal energy is small when Jz = 0 and K is
moderately large. As observed above, the dynamics is still
governed by prethermal ObD, in which an in-plane FM order
is selected. However, increasing Jz leads to a nonvanishing
Hzx and Hzy in Eq. (3) competing with the lowest order H(0)

eff .
As a function of increasing Jz, we can identify two phases,

with a phase transition point at Jz,∗ ≈ 0.4, by monitoring
the dynamics of the out-of-plane magnetizations, mz(t) =
1
N

∑
r S z

r(t). (i) When Jz < Jz,∗ the system clearly manifests
prethermal ObD phenomenon, e.g. the prethermal energetics
are governed by H(0)

eff and the main effect of H(1)
eff is to intro-

duce fluctuations as discussed above. In this prethermal ObD
phase, mz(t) vanishes, see Fig. 3(g). (ii) Around the transition
point Jz ≈ Jz,∗, the system is unable to prethermalize, e.g.,
the timescale of τpth > 104 is extremely long; see Fig. 3(c,g).
Neither the azimuthal angles ϕ(t) nor the out-of-plane mz(t)
can manifest a well-defined plateau value; instead, they keep
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displaying strong fluctuations. (iii) For larger Jz > Jz,∗, the
[111] phase is stabilized, in which a finite out-of-plane mag-
netization emerges with a plateau value of mz(t) ≈ ± 0.5.
Meanwhile, the azimuthal angle ϕ(t) settles to a plateau value
shifted towards ≈ π/4 (modulo π/2); see Fig. 3(e).

These nonequilibrium dynamics can be understood better
with the help of MC simulations for H(0)

eff +H(1)
eff . For the transi-

tion point, the probability distribution for the azimuthal angle
ϕ (and also the out-of-plane magnetization mz, not shown) has
no obvious peaks and valleys, as shown in Fig. 3(d). There-
fore, the transition point is akin to a critical point with huge
thermal entropy, which does not support any orders. This
entropy, manifesting in the non-equilibrium dynamics, pre-
vents the system from rapid prethermalization. On the other
hand, in the [111] phase, we find that the probability distri-
bution P(ϕ) exhibits two peaks at ϕ = π/4 and ϕ = 3π/4,
respectively; see Fig. 3(f). It is consistent with the prether-
mal FM order observed in Fig. 3(e), along the [111] direc-
tion or its Z2-symmetric counterparts. We note that the max-
ima of the prethermal energy E(0)

pth are still around ϕ = 0 and
ϕ = π/2 [45], which are not the typical prethermal angle of
the [111] order. It implies that the prethermal [111] order is
not selected by the ObD mechanism of H(0)

eff , but selected by
H(0)

eff + H(1)
eff .

Discussion and conclusion.— In addition to known types of
‘disorder’ in equilibrium ObD – e.g. quenched lattice disor-
der, thermal and quantum fluctuations – we showed that fluc-
tuations induced by a periodic drive can select a discrete set
of states starting with initial conditions within the accidental
degenerate g.s. manifold of the lowest order Floquet Hamil-
tonian. Focusing on the Floquet XXZ-compass model, we
reveal the prethermal ObD through the analysis of the prether-
mal energy and thermalization time dependence on the initial
state direction. We argue that the concept of prethermal ObD
is generic and not sensitive to specific driving protocols. In-
deed, we have confirmed similar results for a driven J1-J2 an-
tiferromagnetic XX model [45].

A remarkable finding is that the prethermal ObD can only
be observed after an unusual prethermalization timescale lin-
early in the drive frequency ω. The reason is that the initial
state lies within the accidental degenerate g.s. manifold of
the zeroth order effective Floquet Hamiltonian. It is then the
subleading ω−dependent correction that introduces the fluc-
tuations necessary for the entropic ObD selection, which we

confirmed in a fluctuation calculation. As a side effect, we
also observe that for large Jz these corrections can trigger
a prethermal transition to a different state with out-of-plane
magnetization.

For future work, it will be very worthwhile to study other
examples of prethermal ObD, e.g., those with an extensive
number of accidental symmetries of the g.s. manifold like
the antiferromagnetic Heisenberg model on the kagome lat-
tice. In addition, our set-up is a natural platform for inves-
tigating the (accidental) symmetry-breaking hierarchy which
can be engineered in Floquet systems [43]. Another intrigu-
ing possibility is that different choices of the periodic drive
can activate different types of fluctuations which could lead
to distinct orders in the prethermal plateau. It will also be
interesting to establish the general relation between thermal,
quantum, and prethermal ObDs. Since entropy plays a pivotal
role in achieving prethermal ObD, it will be helpful to develop
numerical tools and concepts to quantify entropy production
in driven systems. Similarly, it would be worthwhile to think
of different experimental platforms for its realization.

In conclusion, we expect that prethermal ObD will provide
a versatile playground for intriguing nonequilibrium physics
and adds another aspect to one of the paradigms of frustrated
systems.
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In this Supplementary Materials, we provide more information about (i) the stroboscopic equation of motion, (ii) the thermal
order-by-disorder effect in H(0)

eff , (iii) the dynamics for decorrelator d(t), (iv) the perturbation theory based on Landau-Lifshitz-
Gilbert equations, (v) prethermal energy for various Jz, and (vi) the simulations on the J1 − J2 model.

I. STROBOSCOPIC EQUATION OF MOTION FOR EQ. (1)

We consider the dynamical Hamiltonian defined in Eq. (1) in the main text, which now is re-expressed explicitly as

H(t) =


−

∑
r(J + K)S x

r S x
r+x̂ −

∑
r JS x

r S x
r+ŷ for t ∈ [0, T/3)

−
∑

r JS y
rS y

r+ŷ −
∑

r(J + K)S y
rS y

r+x̂ for t ∈ [T/3, 2T/3)
−

∑
r Jz

(
S z

rS
z
r+x̂ + S z

rS
z
r+ŷ

)
for t ∈ [2T/3, T ),

As mentioned in the main text, the equation of motion for the above formula is governed by Hamilton’s formalism as ∂tS⃗ r =

{S⃗ r,H(t)}. The Poisson bracket relation for classical O(3) spins reads

{S a
i , S

b
j } = δi, jϵ

abcS c
i ,

where ϵabc is the fully antisymmetric tensor. Integrating the equation of nation over one total period T analytically, the strobo-
scopic equation of motion for a spin is

S⃗ r(t + T ) = Rz[θzr(t)]Ry[θyr (t)]Rx[θx
r (t)]S⃗ r(t),

where Ra[θar ] (a = x, y, z) denotes rotation matrices about the a axis by an angle θar . Here, the explicit forms of θar are expressed
as

θx
r = −

T
3

(J + K)
(
S x

r+x̂ + S x
r−x̂

)
−

T
3

J
(
S x

r+ŷ + S x
r−ŷ

)
,

θ
y
r = −

T
3

J
(
S y

r+x̂ + S y
r−x̂

)
−

T
3

(J + K)
(
S y

r+ŷ + S y
r−ŷ

)
,

θzr = −
T
3

Jz
(
S z

r+x̂ + S z
r−x̂ + S z

r+ŷ + S z
r−ŷ

)
.

With this integrated equation of motion over long timescales, the classical systems can be simulated efficiently.

II. THERMAL ORDER BY DISORDER IN THE 0TH-ORDER EFFECTIVE HAMILTONIAN

For K > 0, H(0)
eff only preserves the Z4 symmetry. However, the ground state manifold, which corresponds to a ferromagnetic

(FM) order, is of O(2). For Jz < 1, it is obvious that the z component of spins in the ground state manifold should vanish to gain
energy. We parameterize the O(3) spins in the ground states as

S⃗ i = (cos θ0, sin θ0, 0) . (S1)

For a N = Lx × Ly system, the ground state energy is independent of θ0, which reads

E(0)
eff = −2JN − KN. (S2)

Now we consider thermal fluctuation within the XY plane, i.e., the spins are still XY spins with

θi → θ0 + δθi.
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Expand the Hamiltonian around the ground state, we have

δH(0)
eff = −

∑
i,δ=x,y

J cos(δθi − δθi+δ)

−
∑

i

K
[
cos(θ0 + δθi) cos(θ0 + δθi+x) + sin(θ0 + δθi) sin(θ0 + δθi+y)

]
=E0 + δE0 + O3(δθi),

(S3)

where

δE0 = −
∑

i

[
(2J + K)(δθi)2 − (J + K cos2 θ0)δθiδθi+x − (J + K sin2 θ0)δθiδθi+y

]
. (S4)

Then, we use the Fourier transformations and obtain that

δE0 = −
∑

q

[
(2J + K) − (J + K cos2 θ0) cos qx − (J + K sin2 θ0) cos qy

]
δθqδθ−q. (S5)

Given such a Gaussian form of the low-energy Hamiltonian of δH(0)
eff , the corresponding free energy at temperature 1/β reads

F ≡ −
1
β

log
{∫
D[δθq]D[δθ−q]e−βδE0

}
.

We numerically calculate F for given θ0 and find that the minima of free energy are achieved when

cos2 θ0 = 0 or 1. (S6)

Therefore, the O(2) ground state degeneracy is lifted by arbitrary small thermal fluctuations, with FM orders along the ±x̂ or ±y
directions being selected.

III. NON-EQUILIBRIUM DYNAMICS FOR DECORRELATOR

To probe the signal of chaos and evaluate the relaxation timescale τpth, we introduce a decorrelator d(t), measuring the 2-norm
distance between two initially very close replicas of system, S⃗ r(t) and S⃗ ′r(t), as

d(t) =

√
1
N

∑
r

[
S⃗ r(t) − S⃗ ′r(t)

]2
/d∞. (S7)

We parameterize the two replicas as

S⃗ r = (sin θ cos ϕ, sin θ sin ϕ, cos θ) and S⃗ ′r =
(
sin θ′ cos ϕ′, sin θ′ sin ϕ′, cos θ′

)
, (S8)

where θ′r(t = 0) = θr(t = 0) + π∆ϵr and ϕ′r(t = 0) = ϕr(t = 0) + 2π∆εr. Here ϵr and εr are standard normal random numbers
and ∆ ≪ 1 controlling the size of the perturbations. The spin orientations are completely random (without any correlations) at
infinite temperature, and thereby the decorrelator is normalized by an infinite-temperature value of d∞ =

√
2.

In Fig. S1 (a), we show the dynamics of decorrelators for various drive frequencies ω. For short time, the decorrelator grows
exponentially from an initial value of d(t = 0) ∼ ∆, as shown in Fig. S1. We quantitatively determine the relaxation timescale
τpth by the time when the decorrelator d(t) crosses 10% of its infinite temperature value, see Fig. S1 (b). Crucially, τpth, the
timescale of the prethermalization, strongly depends on the drive frequency ω. Indeed, we find that τpth ∼ ω, see the figures in
the main text, which is unusual in general Floquet heating profiles. And later we will resolve this linear dependence in ω by a
perturbation theory.

IV. LANDAU-LIFSHITZ-GILBERT EQUATIONS FOR THE EFFECTIVE HAMILTONIAN AT Jz = 0

We focus on the non-equilibrium dynamics for the Hamiltonian defined in Eq.(1) with Jz = 0 (see main text). The effective
Hamiltonian is simplified as

Heff =
1
3

(
Hx + Hy

)
−
π

9ω
Hyx + O(ω−2). (S9)
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FIG. S1: (a) The dynamics of the decorrelators for various drive frequency ω. (b) The decorrelator initially grows exponentially. The cross of
the dashed line at 0.1 and d(t) determines the prethermalization timescale τpth, which exhibits an obvious dependence on ω.

The equation of motion for a spin at site r reads

∂S a
r (t)
∂t

={S a
r (t),Heff} ≡ F(0)

a (r, t) + F(1)
a (r, t) + O(ω−2), (S10)

where F(n)
a (r) corresponds to the n-th order effective Hamiltonian H(n)

eff . This differential equation in Eq. (S10) is a generalized-
version Landau–Lifshitz–Gilbert (LLG) equation. For the zero-th order, we find that

F(0)
x (r, t) = −

1
3

[
(J + K)

(
S z

rS
y
r+ŷ + S z

rS
y
r−ŷ

)
+ J

(
S z

rS
y
r+x̂ + S z

rS
y
r−x̂

)]
,

F(0)
y (r, t) = +

1
3

[
(J + K)

(
S z

rS
x
r+x̂ + S z

rS
x
r−x̂

)
+ J

(
S z

rS
x
r+ŷ + S z

rS
x
r−ŷ

)]
,

F(0)
z (r, t) = −

1
3

[
(J + K)

(
S y

rS x
r+x̂ + S y

rS x
r−x̂

)
+ J

(
S y

rS x
r+ŷ + S y

rS x
r−ŷ

)]
+

+
1
3

[
(J + K)

(
S x

r S y
r+ŷ + S x

r S y
r−ŷ

)
+ J

(
S x

r S y
r+x̂ + S x

r S y
r−x̂

)]
.

(S11)

And for the first-order we find that,

F(1)
x (r) =

π

9ω

∑
δ=±x̂,±ŷ

∑
δ′,δ

Jy
δJ

x
δ′

(
S z

rS
x
r+δ−δ′S

z
r−δ − S y

r+δS
x
r+δ′S

y
r

)
+

π

9ω

∑
δ=x̂,ŷ

Jx
δ Jy
δ

(
S z

rS
x
r S z

r+δ + S z
rS

x
r S z

r−δ − S y
r−δS

x
r−δS

y
r − S y

r+δS
x
r+δS

y
r

)
,

F(1)
y (r) =

π

9ω

∑
δ=±x̂,±ŷ

∑
δ′,δ

Jy
δJ

x
δ′

(
S y

r+δS
x
r+δ′S

x
r − S y

r+δ−δ′S
z
r−δ′S

z
r

)
+

π

9ω

∑
δ=x̂,ŷ

Jx
δ Jy
δ

(
S y

r−δS
x
r−δS

x
r + S y

r+δS
x
r+δS

x
r − S y

rS z
rS

z
r+δ − S y

rS z
rS

z
r−δ

)
,

F(1)
z (r) =

π

9ω

∑
δ=±x̂,±ŷ

∑
δ′,δ

Jy
δJ

x
δ′

(
S y

rS z
r−δS

y
r+δ′−δ − S x

r S z
r−δ′S

x
r+δ−δ′

)
+

π

9ω

∑
δ=x̂,ŷ

Jx
δ Jy
δ

(
S y

rS y
r − S x

r S x
r

) (
S z

r+δ + S z
r−δ

)
.

(S12)

Note that, for simplicity, the time index t for spins has been omitted.
We initialize the evolution with a FM ordered state perturbed by tiny Gaussian fluctuations. Consequently, at least for the short

dynamics, the system can be well described as a mean-field ansatz as S a
r (t) → S̄ a(t), namely, all spins rotate simultaneously as

a single spin, see Fig. S2(a). With this treatment, we can rewrite Eq. (S10)

∂S̄ x(t)
∂t

= −
2(K + 2J)

3
S̄ zS̄ y +

4π(K + 2J)2

9ω
(S̄ zS̄ z − S̄ yS̄ y)S̄ x,

∂S̄ y(t)
∂t

= +
2(K + 2J)

3
S̄ zS̄ x −

4π(K + 2J)2

9ω
(S̄ zS̄ z − S̄ xS̄ x)S̄ y,

∂S̄ z(t)
∂t

=
4π(K + 2J)2

9ω
(S̄ yS̄ y − S̄ xS̄ x)S̄ z.

(S13)
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FIG. S2: (a) The short-time dynamics for the averaged spin magnetizations S a(t) (a = x, y, z). We emphasize that the variance of spin
magnetizations ∆S a(t) is always around ∼ 10−4 for time t < 200. Therefore, the systems can be treated as a single spin. Here the model
parameters are J = K = 1, Jz = 0, linear lattice size L = 72, drive frequency ω = 18, initial Gaussian noise G = 10−4, and initial azimuthal
angle ϕin = 0.2π. (b) The Fourier transformation of the short-time S a(t) is shown in panel (a). We find that S a(Ω) exhibits a peak around Ω⊥
for a = x, y and that aroundΩ⊥ for a = z. (c) The out-of-plane magnetization sin θ̄ exhibits a clear linear dependence of inverse drive frequency
ω−1.

Note that the leading order for S̄ z is given by F(1)
z since F(0)

z always vanishes with such a mean-field treatment. Nevertheless, F(0)
x

and F(0)
y can be finite. The mean-field equation of motion can be further simplified by introducing ϕ̄(t) and θ̄(t) to parameterize

the exact mean-field solution as [
S̄ x(t), S̄ y(t), S̄ z(t)

]
=

[
cos ϕ̄(t) sin θ̄(t), sin ϕ̄(t) sin θ̄(t), cos θ̄(t)

]
. (S14)

Then Eqs. (S13) are reduced into two independent equations as

∂ϕ̄

∂t
=

2(K + 2J)
3

cos θ̄ −
π(K + 2J)2

9ω

(
1 + 3 cos 2θ̄

)
sin 2ϕ̄,

∂θ̄

∂t
=
π(K + 2J)2

9ω

(
1 + 3 cos 2θ̄

)
sin 2θ̄ cos 2ϕ̄,

(S15)

When ω → ∞, namely, F(1)
a (r, t) → 0, one can find that θ̄(t) = π/2 can be the exact solutions for Eq. (S15). As shown in

Figs. S2(a) and (b), sin θ̄ and cos ϕ̄ exhibit harmonic behaviors with frequencies Ω⊥ and Ω∥, respectively. We numerically find
that Ω⊥ = 2Ω∥ and Ω⊥ ∝ 1/ω, with ω the drive frequency.

We now allow weak fluctuations around the mean-field solution as

ϕ̄(t)→ ϕ̄(t) + δϕ(t), θ̄(t)→ θ̄(t) + δθ(t),

where δϕ(t), δθ(t) ≪ 1 can be treated as small perturbations. Note that here, for simplicity, we have assumed that the fluctuations
are independent of spacial dimension, namely, lattice site r. Since S̄ z is relatively small, δθr and δϕr can be approximately
considered as the out-of-plane and in-plane fluctuations, respectively. Then, by expanding Eq. (S10) in the leading order of
perturbations, we find two independent equations of motion as(

∂t
∂t

) (
δϕ
δθ

)
=
Ē

ω

(
δϕ
δθ

)
≡

1
ω

(
B11 B12
B21 B22

) (
δϕ
δθ

)
, (S16)
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FIG. S3: (a, b) The prethermal energies (a) E(0)
pth + E(1)

pth and (b) E(1)
pth as functions of initial azimuthal angles ϕin in the prethermal ObD phase

(Jz = 0), around transition point (Jz = 0.4), and in the dynamical [111] phase (Jz = 0.6), respectively. (c) The dynamics of E(0) for Jz = 0.4.
Here we use L = 72, K = 1, G = 10−3, and ω = 9.0.

where

B11 = −
2π(K + 2J)2

9

(
1 + 3 cos 2θ̄

)
cos 2ϕ̄,

B12 = −
2(K + 2J)

3
ω sin θ̄ +

6π(K + 2J)2

9
sin 2θ̄ sin 2ϕ̄,

B21 = −
2π(K + 2J)2

9

(
1 + 3 cos 2θ̄

)
sin 2θ̄ sin 2ϕ̄,

B22 =
2π(K + 2J)2

9

(
cos 2θ̄ + 3 cos 4θ̄

)
cos 2ϕ̄.

Note that Bab are time-dependent factors. It seems to be that the first term in B12 is proportional to ω. However, it is evident that
sin θ̄, characterizing the out-of-plane magnetization, exhibits a linear dependence of ω−1; see Fig. S2(c). Overall, we numerically
confirm that implicitly, the leading order of ω sin θ̄ and thereby B12 is ω0 rather than ω.

By taking the ansatz of δθ ∼ etE1 and δϕ ∼ etE2 , one can diagonalize Eq. (S16) and obtain

E1 ∝
1
ω

and E2 ∝
1
ω
. (S17)

Since the increase of fluctuations leads to the beginning of prethermalization, we have

τpth ∼ (E1)−1 ∼ ω.

V. PRETHERMAL ENERGY FOR VARIOUS Jz

In this section, we small more information about the zero-order prethermal energy E(0)
pth and also the first-order prethermal

energy E(1))
pth for different Jz. Here E(1))

pth is an average of E(1))(t) ≡ H(1)
eff (t)/E0 over a time window in the prethermal regime.
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The short-time dynamics of the system are mainly governed by H(0)
eff supporting ObD phenomena. Consequently, apart from

the prethermal ObD phase, the dynamical [111] phase also manifests, to varying degrees, a dependence on the initial angle
ϕin. As shown in Fig. S3(a), the prethermal energy E(0)+(1)

pth ≡ E(0)
pth + E(1)

pth in the [111] phase (Jz = 0.6) demonstrates a π/2
periodicity, akin to the prethermal ObD phase. However, it does exhibit a reduced oscillation amplitude, indicating now the
effect of prethermal ObD is less significant.

The dynamical phase transition can be characterized by the first-order prethermal energy E(1)
pth, as shown in Fig. S3(b). In the

prethermal ObD phase (Jz = 0), we find that E(1)
pth is at least two orders of magnitude smaller than E(0)

pth. More importantly, it

exhibit a similar π/2 periodicity with respect to ϕin, when compared to those of E(0)
pth. Therefore, we can conclude that in the

prethermal ObD phase, H(1)
eff is a perturbative correction to H(0)

pth. On the contrary, in the dynamical [111] phase (Jz = 0.6), E(1)
pth

is only one order of magnitude smaller than E(0)
pth. Moreover, its π/2 periodicity is in the opposite phase compared to that of E(0)

pth.

This indicates that H(1)
pth is more of a competitor rather than a mere correction to H(0)

pth. Around the transition point, as previously
mentioned, the system is hard to prethermalize for ϕin being proximity to mπ/2 (m = 0, 1, 2, ...), as demonstrated in Fig. S3(c).
It is reasonable to anticipate that at the exact transition point, inadequate prethermalization can appear for any value of ϕin. For
the ϕin for which the system achieve prethermalization, we find that E(1)

pth roughly exhibit a ϕin-independent behavior. It indicates
that due to the prolonged prethermalization time, the information given by initial conditions becomes lost.

VI. PRETHERMAL ORDER-BY-DISORDER IN THE SQUARE-LATTICE J1-J2 XX MODEL

We introduce a periodically driven model on the square lattice. The spins are governed by the following periodic binary
Hamiltonian at frequency ω = 2π/T ,

Hxx(t) =

 J1
∑
⟨i j⟩1 S x

i S x
j + J2

∑
⟨i j⟩2 S x

i S x
j for t ∈ [0, T/2)

J1
∑
⟨i j⟩1 S y

i S y
j + J2

∑
⟨i j⟩2 S y

i S y
j for t ∈ [T/2, T ),

(S18)

where J1 > 0 and J2 ≥ 0 are antiferromagnetic (AFM) XX exchanges, and ⟨i j⟩1 as well as ⟨i j⟩2 denote the 1st and 2nd nearest-
neighbor bonds, respectively. The effective Hamiltonian for Eq. (S18) in the leading order is just a J1-J2 XX model with in-plane
O(2) rotational symmetry, which reads

Hxx
eff =

J1

2

∑
⟨i j⟩1

(
S x

i S x
j + S y

i S y
j

)
+

J2

2

∑
⟨i j⟩2

(
S x

i S x
j + S y

i S y
j

)
. (S19)

The ground-state phase diagram for this model has been investigated: (i) If J2/J1 < 0.5, the ground state is the well-known AFM
Néel order. (ii) When J2/J1 ≥ 0.5, the system breaks up into two square sublattices, say a and b. In a (b) sublattice, the spins
form a Néel order, in which the direction of the Néel order can be characterized by a angle ϑa (ϑb). The ground states, up to a
global O(2) rotation, can be labeled by a reference angle ϑ ≡ ϑa−ϑb. Here we name this kind of ground state as a two-sublattice
state with a reference angle ϑ.

Because the ground-state energy for Eq. (S19), Exx
0 = −NJ2, is independent o ϑ, there is an accidentally degenerate O(2)

ground-state manifold. It indicates a thermal order-by-disorder effect at finite temperature, and it has been point out in Ref. [18]
that the thermal fluctuations will select a collinear two-sublattice state with ϑ = 0, π (cosϑ = ±1).

Here, we evolve this system according to the dynamical Hamiltonian in Eq. (S18). The initial state is prepared to be a two-
sublattice state with initial reference angle ϑin. In-plane Gaussian noise, parameterized by G, is incorporated into the initial state.
(see main text for the details). The main observables of interest are the normalized zeroth order energy E(0)

xx (t), the reference
angles cosϑ(t), and the decorrelator d(t)

The main results are summarized in Fig. S4. Similar to the dynamical XXZ-compass model discussed in the main text, the
plateau value of E(0)

xx (t) also demonstrates a π/2-periodicity on the initial reference angles θin, see Fig. S4(b). This provides
compelling evidence for the prethermal order-by-disorder effect. As shown in Fig. S4(c), the periodic drive selects a collinear
prethermal state with ϑ = 0, π, akin to the thermal order-by-disorder mechanism. We observe a rapid increase in the decorrelator
around the prethermal timescale τpth, followed by a slight decrease at the onset of the prethermal regime. Mover, the inset of
Fig. S4 (d) illustrates that the prethermalization timescale τpth exhibits a linear dependence on the drive frequency ω.

In summary, we demonstrate that the prethermal order-by-disorder effect can emerge as a general non-equilibrium phase of
matter, prevalent in diverse periodically driven systems.
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FIG. S4: The prethermal order-by-disorder effect in the J1-J2 XX model. (a) The dynamics for the zero-th energy, E0
xx(t), normalized by the

g.s. energy of the Hamiltonian (S19). (b) The corresponding plateau value of E0
xx(t) as a function of the initial reference angles ϑin. (c) The

reference angles between a and b sublattices in the prethermal regime will be selected as ϑ = 0, π. (d) The decorrelator increases rapidly
around the prethermal τpth, and decreases sightly at the onset of the prethermal regime. Inset: the prethermal timescale as a function of drive
frequency ω. We take that the AFM XX exchanges J1 = J2 = 1, drive frequency ω = 10, initial Gaussian notice G = 0.01, and linear lattice
size L = 72. For panels (a), (c), and (d), the initial reference angle is fixed as ϑin = 0.22π.


