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We investigate the quantum Hall effect in a single Landau level in the presence of a square superlattice
of δ-function potentials. The interplay between the superlattice spacing as and the magnetic length ℓB in
clean system leads to three interesting characteristic regimes corresponding to as < ℓB , as ≫ ℓB and the
intermediate one where as ∼ ℓB . In the intermediate regime, the continuous magnetic translation symmetry
breaks down to discrete lattice symmetry. In contrast, we show that in the other two regimes, the same is hardly
broken in the topological band despite the presence of the superlattice. In the presence of weak disorder (white-
noise) one typically expects a tiny fraction of extended states due to topological protection of the Landau level.
Interestingly, we obtain a large fraction of extended states throughout the intermediate regime which maximizes
at the special point as =

√
2πℓB . We argue the superlattice induced percolation phenomenon requires both

the breaking of the time reversal symmetry and the continuous magnetic translational symmetry. It could have
a direct implication on the integer plateau transitions in both continuous quantum Hall systems and the lattice
based anomalous quantum Hall effect.

Introduction.– Anderson localisation (AL) is one of the
most outstanding phenomena in physics, which states that for
time reversal symmetric (TRS) systems all the single parti-
cle eigenstates become localized in one and two dimensions
in the presence of random disorder [1]. The first experimen-
tal evidence of AL was found in integer quantum Hall effect
(IQHE) [2] where magnetic field breaks TRS and help form
flat energy bands, known as the Landau Levels (LL). The
impurities or random disorder localise almost all the states
in the LL, leading to the vanishing of longitudinal conduc-
tance when the filling fraction goes though the localised states.
However, every LL is also a topological band with Chern
number C = 1 and hence typically one finds one or very few
extended states at the middle of the band that can carry the
bulk current giving rise to peak in the longitudinal conduc-
tance and a jump in the Hall conductance [3–9]. Such local-
ization plays a crucial role for the experimental observation
of the quantized Hall plateau in experiments, where the de-
sirable large width of the plateau requires the scarcity of the
delocalised states.

From a percolation theory perspective, delocalisation is
equivalent to having an infinite cluster of sites occupied with
finite probability that spans across the entire system. In-
corporating the classical percolation theory [10] with the
quantum tunneling and interference effect, a random net-
work model,namely the Chalker-Coddington model was pro-
posed [11, 12]. The model explains the localised to extended
state transition in a single LL through a one parameter scal-
ing theory which predicts that the localisation length diverges
at the transition with a power-law exponent. The percolation
picture and exponent were in agreement with the experimen-
tal findings [13, 14] although there have been a lot of debate
later on about making this agreement even more exact.

In the past, it has been shown theoretically [5] and later on
verified experimentally [6] that a single δ potential as impu-
rity splits a single localized bound state from a single lowest
Landau level (LLL), while the value of Hall conductance re-
mains the same. A superlattice of δ functions has also been
recently [7] proposed where the lattice spacing as is much

FIG. 1. Schematic of the system and main results: Our system in
the LLL has two length scales: the lattice spacing as of the super-
lattice of δ potentials and constant magnetic length ℓB =

√
ℏ/eB,

where B is the external magnetic field. The schematic shows the
essential physics in the regions I, IIA, IIB and III (see caption of
Fig. 2 for definitions) obtained by increasing as as shown by the bar
in the middle, the left and right ends of which represent the denser
and thinner lattices, respectively. In the schematic the grids represent
the superlattice of δ potentials. In regions I and IIA the Bloch states
(yellow) are localized and delocalized, respectively. In region IIB,
Bloch states are delocalized but coherent states (green) are localized
whereas in region III, both the coherent states and Bloch states are
localized.

larger than the magnetic length ℓB . This shallow super-lattice
gives rise to two bands: a topological Chern band (C = 1)
and the other non-topological band consisting of the number
of states equal to the number of δ potentials and concentrating
around the energy of single δ potential. Hence weak disor-
der localizes the non-toplogical band whereas only very few
midband states of Chern band delocalizes.

It is also interesting to consider the limit where as ∼ ℓB .
In such a case the degenerate Landau level evolves to a topo-
logical Bloch-band with the bandwidth quickly vanishing as
the lattice spacing is reduced. This is because a δ potential
within the LLL localise a coherent state, and a von Neumann
lattice (vNL) of coherent states with as =

√
2πℓB form a

complete basis of the LLL [15–17]. As as decreased below
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FIG. 2. (a) Effect of lattice on clean system: Ẽ (solid) as defined
in Eq. 3 and ∆b (dashed) are plotted as a function of lattice spacing
as (in units of

√
2πℓB). We identify three regions: I. as < ℓB , II.

ℓB < as < 6ℓB and III. as > 6ℓB . The intermediate region is
further divided into two sub-regions: IIA. as <

√
2πℓB and IIB.

as >
√
2πℓB where both the plots maximize at the vNL point (as =√

2πℓB) indicating maximum influence of discrete lattice symmetry.
Density of states in clean system with lattice: (b) Density of states
ρ(ϵ/λ) of energies ϵ re-scaled by the strength of lattice potential λ in
regions I and III, respectively. (c) The same plots but in regions IIA
and IIB, respectively. For all the plots Nϕ = 100 and λ = 10.

√
2πℓB the number of δ potentials becomes larger than the

number of flux. The lattice of δ potentials with as ≤ ℓB can
thus be understood as the vNL Hamiltonian that hardly breaks
the translational symmetry within the LLL [18], a regime that
has not been previously explored; it could be important for
superlattice band engineering and topological bands in lattice
systems.

In this Letter, we consider localization and percolation of
electrons in a continuous two-dimensional system subject to
a strong out-of-plane magnetic field, and also in the presence
of a square superlattice of positive δ-potentials. Since we are
interested in the bulk properties, we consider a two dimen-
sional plane with periodic boundary conditions i.e. the torus
geometry. Very interestingly, in the intermediate region with
as ∼ ℓB we find very robust evidence that most of the single
particle states are strongly delocalised in the bulk, leading to
extensive percolation and the absence of the Anderson locali-
sation. This obstruction to the Anderson localisation is due to
the reduction of the continuous magnetic translation symme-
try (CMTS) to the discrete magnetic translational symmetry
(DMTS), where the broken time reversal symmetry and thus

the unique properties of the single LL also play an important
role. Our main results are schematically presented in Fig. 1.

The presence of a large fraction of delocalised states would
have significant experimental ramifications in the transport
measurement, especially with respect to the width and robust-
ness of the quantum Hall plateau. The interplay between dif-
ferent length scales in topological bands on the hitherto un-
explored localisation properties of electrons warrants detailed
theoretical and experimental studies both for strongly corre-
lated topological phases, and for topological phases realized
in zero magnetic field lattice systems such as the anomalous
quantum Hall effect [19, 20].

The model– We consider a two-dimensional non-interacting
electron gas in a strong perpendicular magnetic field with the
following Hamiltonian projected to the LLL.

H = V + λ

Nδ∑
i=1

δ(r⃗ − r⃗i), (1)

where the first term stands for disorder potential, which is
a Gaussian white-noise potential with strength W such that
⟨V (r⃗)V (r⃗′)⟩ =W 2δ(r⃗− r⃗′). The second term represents the
Nδ number of delta potentials with positive strength λ form-
ing a superlattice with Nδ = L2 number of sites. We work in
the weak disorder limit and henceW ≪ λ so that the disorder
can be treated as a small perturbation.

Such two-dimensional system is characterized by two

length scales: the magnetic length ℓB =
√

ℏ
eB from the exter-

nal magnetic field and the superlattice spacing as. The pres-
ence of magnetic field gives rise to the magnetic translation
operator τ̂(R⃗) = eR⃗.(∇⃗−iA⃗/ℓ2B)−iẑ.(R⃗×r⃗)/ℓ2B where r⃗ is the
co-ordinates of electron with the Landau gauge A⃗ = −Byx̂.
With a total of Nϕ magnetic fluxes, the jth wavefunction of
the LLL basis on torus is given by [21–23],

ψj(r⃗) =
1√

LsℓB
√
π

∞∑
k=−∞

e
−i

(χj+kLs)x

ℓ2
B

−
(y−χj−kLs)2

2ℓ2
B , (2)

where χj = 2πℓ2Bj/Ls and 0 ≤ x, y < Ls, where Ls = asL.
Periodicity implies L2

s = 2πℓ2BNϕ which further implies
ψj+Nϕ

= ψj . Therefore, there are Nϕ linearly independent
basis states and hence j = {0, 1, 2, .., Nϕ − 1}. For numeri-
cal purpose, V =

∑Nϵ

i=1Wiδ(r⃗ − r⃗i) where the locations of
delta functions are chosen randomly from a uniform distribu-
tion and there are equal number of delta functions with posi-
tive (+W ) and negative (−W ) magnitudes respectively [24].
In the limit Nϵ ≫ Nϕ, this distribution mimics a Gaussian
noise.

Symmetry in the clean limit.– Every delta potential on the
lattice takes away one state from the degenerate band of zero-
energy states [25] within the LL. Hence the non-zero energy
state now appears as a part of the Bloch band far away from
zero-energy states (since λ ≫ 0) [26] . In Fig. 2(a), we show
the energy-bandwidth ∆b as a function of lattice spacing as
(in units of ℓB). From the behavior of ∆b, one can divide the
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parameter space (in this case lattice spacing) mainly into three
regions: I. as ≪ ℓB , II. as ∼ ℓB (the shaded region) and
III. as ≫ ℓB . Regions I and III being two extreme scenar-
ios, can be understood from physical arguments. In region I,
the lattice-spacing as < ℓB , whereas ℓB effectively gives the
spatial resolution within a single LL. Hence, the superlattice
hardly breaks the CMTS within a single LL, even though it
explicitly breaks translational symmetry in real space (the full
two-dimensional Hilbert space). In region III, the number of
delta potentials of the superlattice is very small (Nδ ≪ Nϕ)
such that as ≫ ℓB . The non-zero energy states localised by
the delta potentials have vanishing overlaps between neigh-
bouring sites, leading to exponentially small bandwidth and
an essentially flat Bloch band (see Fig. 2(a)). Hence, in both
the regions I and III there is effective CMTS for electrons in
a single LL: there are essentially no dispersive single particle
states.

Region II on the other hand is qualitatively different. Here
as ∼ ℓB thus almost every electronic state is localised by a
δ-potential, and the overlap between the neighbouring coher-
ent states is substantial, leading to a dispersive Bloch band
and only the DMTS. We further divide this part into two sub-
regions: IIA where Nδ > Nϕ leads to as <

√
2πℓB and

IIB where Nδ < Nϕ leads to as >
√
2πℓB . In region IIA, the

zero-energy band is absent and one is only left with the Bloch-
band of large bandwidth, which increases with as as shown in
Fig. 2(a). In fact, in the limit Nδ = Nϕ or at as =

√
2πℓB ,

the bandwidth reaches the maximum. In region IIB,Nδ < Nϕ

and hence one still has the zero-energy flat-band along with
the non-zero energy states of Bloch band. Now as Nδ (as) is
decreased (increased) the width of Bloch band becomes nar-
rower leading to bandwidth getting smaller and reaching the
limit of region III. In Fig. 2(b) and Fig. 2(c) we show the den-
sity of states (DOS) in regions I, III and in regions IIA, IIB,
respectively giving more insight into spectrum of clean system
as discussed earlier. The DOS and bandwidth of vNL corre-
sponding to the Hamiltonian at as =

√
2πℓB are discussed in

more details in the supplementary materials [27].
To quantitatively capture the effect of the lattice potential

we define the following quantity:

Ẽ = min(∆b, |Eδ −∆b|) (3)

where Eδ (here λ = 10) is the energy of a coherent state
from a single δ-function. In region I, Ẽ vanishes since ∆b ≈
0 whereas in region III, again this quantity almost vanishes
since ∆b ≈ Eδ in this region indicating that the region III
is essentially dominated by single δ-potential physics rather
than physics of a lattice of many δ potentials. Now, in region
II, due to effect of lattice-induced DMTS, the Bloch band is
widened enough and the quantity as shown in Fig. 2(a) reflects
the deviation from the single δ-potential physics towards the
physics of a lattice of δ potentials, which reaches maximum
at the vNL point, where Bloch band has the maximum width.
Thus Ẽ is a good measure of the amount of the breaking of
the CMTS in the system.

Lattice induced percolation.– We now look at the effect
of weak disorder, which is the Gaussian white-noise as ex-
plained previously, on different regions as described above.
The presence of random disorder leads to broadening of the
otherwise flat LLL affecting the localisation properties of the
single particle states. Since the Hamiltonian matrix obtained
in such a case contains randomness in its elements, we resort
to measures from the random matrix theory to analyse the lo-
calisation properties. Namely, we study the energy-resolved
level-spacing ratio calculated using the consecutive energy-
level spacing sk = ϵk+1 − ϵk when ϵk’s are arranged in the
ascending order. Important information about localisation and
percolation of the system can be extracted by studying the
probability distribution P (s) where s is normalised such that
mean level-spacing ⟨s⟩ = 1. In the localised phase, degen-
erate states can coexist which leads to the appearance of the
Poisson distribution P (s) = e−s with a macroscopic value
at s = 0. On the contrary, in the delocalised phase degen-
erate states are strictly not allowed that leads to distributions
P (s) = Aβs

βe−Bβs
2

which are characterised by level repul-
sion, i.e. zero value at s = 0. Here β = 1, 2 and 4 correspond
to Gaussian orthogonal ensemble (GOE) in TRS abiding sys-
tems, Gaussian unitary ensemble (GUE) in TRS broken sys-
tems and Gaussian symplectic ensemble (GSE) where TRS is
preserved but spin rotation symmetry is broken [28]. Aβ and
Bβ are constants required to normalise the respective distri-
bution functions .

Presence of TRS is an essential ingredient to obtain Ander-
son localization in two dimension where all the single particle
eigenstates are localised. However, our system is TRS bro-
ken due to the presence of magnetic field. Hence, we ex-
pect to obtain a delocalised region in the energy spectrum
that corresponds to GUE ensemble, as discussed above. In-
stead of plotting the whole distribution P (s), one can al-
ternatively calculate the levelspacing ratio r, a modern and
simpler quantity which does not require spectrum unfolding
and gives a single value. The levelspacing ratio is given
by [29], r = ⟨⟨min(sk,sk+1)

max(sk,sk+1)
⟩⟩, where the inner curly braces

represent the average over the chosen bin the energy spec-
trum and the outer braces stand for the average over the dis-
order realisations. For the Poisson distribution (localisation)
r = 0.386 whereas r = 0.599 for the GUE ensemble (delo-
calisation) [29–31]. It shows intermediate values for the in-
termediate phases which are neither delocalised nor localised,
e.g. the nonergodic extended phases. We calculate the energy-
resolved r(ϵ) to detect different regions in the single particle
spectrum.

We choose W = 0.2 and λ = 10 for all numerical calcula-
tions in the weak-disorder limit. In Fig. 3(a-d), we show r(ϵ)
as a function of single-particle energy ϵ in the regions I, IIA,
IIB and III, respectively. In Fig. 3(a), we see that although
most of the states in the Bloch band are now localised with
r ≈ 0.4, the mid-band states are delocalised that corresponds
to r ≈ 0.6. This is expected in TRS broken systems and con-
sistent with a related previous study [9]. Similarly, Fig. 3(d)
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FIG. 3. Energy-resolved levelspacing ratio r(ϵ) in different re-
gions: (a-d) r(ϵ) as a function of single-particle energy ϵ in regions
I, IIA, IIB and III, respectively.

shows that very few midband-states in otherwise zero-energy
flat-band are delocalised whereas all other states including the
ones in otherwise Bloch band tend to get localised. The sce-
nario in region III is expectedly similar to that in region I.

The non-trivial scenario happens in regions IIA and IIB,
where only DMTS is present. In region IIA, as shown in
Fig. 3(b), there is a large fraction of Bloch band states that
are still delocalised, even in the presence of weak disorder
whereas very few states at the band-edges tend to localise. In
region IIB, both the zero-energy states and Bloch-band states
are present. On introducing weak disorder in region IIB, as
shown in Fig. 3(c), while the few the mid-band states near
zero energy are delocalised as expected, there is also a large
fraction of states in the Bloch band are all delocalised. An ex-
treme case of the vNL is separately shown in the supplemen-
tary material, where almost all the states are delocalised and
very robust with respect to finite-size effect [27]. We also pro-
vide a dynamical perspective in Fig. 4(a-b) which is the time
evolution of an initially Gaussian wavefunction representing
a single δ potential in LLL. As Fig. 4(a) implies that in the
long-time limit the wavefunction hardly shifts from a Gaus-
sian in region I or III due to scarcity of delocalised eigenstates
whereas in region II, shown in Fig. 4(b), it quickly perco-
lates across the whole system due to dominance of delocalised
states in the spectrum.

We attribute the interesting delocalisation phenomenon in
region II to the DMTS imposed onto the system by the domi-
nant superlattice potential strength (than disorder strength). In
absence of the DMTS, which can be achieved by either mov-
ing to region I or III. or through increasing disorder strength
W , or by randomizing the positions of δ potentials instead of
a lattice, this enhanced percolation (delocalisation) effect dis-
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FIG. 4. (a-b) Percolation picture: Density profile n(x, y) of an
initially Gaussian wavepacket in LLL in clean system in the long-
time limit in region I (III) and region II, respectively. (c) Schematic
of expected outcome in experiment: The expected outcome in the
integer quantum Hall experiment as the lattice-spacing as is changed
such that the system is in regions I, IIA, IIB and III, respectively and
also when it is at the vNL limit. (d) Effect of disorder on Chern
insulator: Energy-resolved levelspacing ratio r(ϵ) as a function of ϵ
in the Chern band and trivial band, respectively in the flat band limit
of the weakly disordered Haldane model.

appears [27]. All of these really stresses on the importance of
having an effective DMTS as reason behind the appearance of
the large fraction of delocalised states, in a system with broken
TRS.

Experimental ramifications.– Our results can have direct
implications on integer quantum Hall experiments which
are mainly explained with the non-interacting single parti-
cle physics. The larger fraction of localised states con-
tributes to wider plateaus, while a small fraction of delocalised
states leads to steeper plateau-to-plateau transitions and non-
vanishing longitudinal resistance. In the presence of a super-
lattice of delta potentials with as ∼ ℓB , the curious absence
of the Anderson localization can lead to significant shrinking
of the plateaus width and even difficulties in measuring the
quantized Hall conductivity (see Fig. 4(c)). We expect that
with the recent progress [32–34] with super-lattice potential
in two dimensions could lead to the testing of our predictions
in the experiments.

We also expect the same physics of bulk percolation to per-
sist for the fractional quantum Hall (FQH) phases in the pres-
ence of the superlattice potential. The interplay between the
superlattice constant and the characteristic length scales of the
interacting topological phases is fundamental. For the Abelian
FQH phases such as the Laughlin phase, such characteristic
length scale can be intuitively understood in the composite



5

fermion [35, 36] picture with the rescaled magnetic field (by
flux attachment), leading to a greater ℓ∗B as compared to ℓB .
The related subtleties and the characteristic length scales for
the non-Abelian topological phases will be discussed in [18]
and they warrant further detailed studies.

More importantly for lattice based Chern insulators (CI),
where a topological Chern band can form at zero magnetic
field and local Berry curvature can be large (on the order of
∼ 100T ) [37–39], periodic potentials from the underlying lat-
tice is naturally present and can no longer be ignored like the
cases in quantum Hall systems (where ℓB is much larger than
the lattice constant of the crystal). Thus even without an ad-
ditional superlattice, there are many relevant length scales in
a CI and their effects on the electron localization and perco-
lations in a Chern band are not very well understood. In the
presence of weak disorder, the Chern band shows a few ex-
tended states (with r not exactly but close to 0.6), whereas
all states in the trivial band become localized (with r ≈ 0.4).
We take the flat-band limit in our calculations as shown in
Fig. 4(d). In the Chern band r-value indicates that the states
are critical in nature i.e. they are extended but not perfectly
delocalized, unlike the results obtained for LLL in our work
where the presence of perfectly delocalized states are found.
How will the interplay between these length scales affect the
intrinsic robustness of the quantized Hall plateau (both for in-
teger and fractional CIs), and if we can use superlattice engi-
neering [40–43] to enhance the robustness of the plateau from
transport measurement [44], can be very exciting and will be
discussed elsewhere[45] .
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in moiré superlattices,” Nature 497, 598–602 (2013).

[42] Cheol-Hwan Park, Young-Woo Son, Li Yang, Marvin L Cohen,
and Steven G Louie, “Landau levels and quantum hall effect
in graphene superlattices,” Physical review letters 103, 046808
(2009).

[43] Jiaqi Cai, Eric Anderson, Chong Wang, Xiaowei Zhang, Xi-
aoyu Liu, William Holtzmann, Yinong Zhang, Fengren Fan,
Takashi Taniguchi, Kenji Watanabe, et al., “Signatures of frac-
tional quantum anomalous hall states in twisted mote2,” Nature
622, 63–68 (2023).

[44] Nicolas Regnault and B Andrei Bernevig, “Fractional chern in-
sulator,” Physical Review X 1, 021014 (2011).

[45] The precision of quantum Hall plateau (ideally Rxy = h/νe2

for ν ∈ integers) in CIs is one of the main concerns. Typically
this accuracy is O(10−3) in CIs [46] whereas for IQHE it is
so highly precise up to O(10−9) [47] that it is being used as
the universal standard for resistance metrology. Typically more
dirt in the CI samples is made responsible for this than that in
the IQHE counterparts. However, efforts have been made re-

cently on CIs with improved precision toward the magnetic-
field-independent resistance metrology but they are still not
close to the current universal standard [20].

[46] Cui-Zu Chang, Weiwei Zhao, Duk Y Kim, Haijun Zhang,
Badih A Assaf, Don Heiman, Shou-Cheng Zhang, Chaoxing
Liu, Moses HW Chan, and Jagadeesh S Moodera, “High-
precision realization of robust quantum anomalous hall state
in a hard ferromagnetic topological insulator,” Nature materi-
als 14, 473–477 (2015).

[47] F Schopfer and W Poirier, “Testing universality of the quan-
tum hall effect by means of the wheatstone bridge,” Journal of
Applied Physics 102 (2007).

[48] Fritz Haake, Quantum signatures of chaos (Springer, 1991).
[49] Xiao Chen and Andreas WW Ludwig, “Universal spectral cor-

relations in the chaotic wave function and the development of
quantum chaos,” Physical Review B 98, 064309 (2018).

[50] Junyu Liu, “Spectral form factors and late time quantum chaos,”
Physical Review D 98, 086026 (2018).

[51] Aamna Ahmed, Nilanjan Roy, and Auditya Sharma, “Dynam-
ics of spectral correlations in the entanglement hamiltonian of
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S1. Density of states and localization behavior of the von Neumann lattice

Here we discuss the density of states (DOS) of the clean system and localization behavior of the weakly disorder system in
the presence of the von Neumann lattice (vNL), i.e. when the number of δ potentials is exactly equal to the integer number of
flux. In Fig. S1(a) we show the DOS ρ(ϵ/λ), with re-scaled energies ϵ/λ, of the clean (W = 0) system at the vNL limit. At the
vNL point Nδ = Nϕ. Hence the original flat-band at zero energy is just destroyed and the broadening of Bloch-band reaches the
maximum, which is evident in Fig. S1(a) as one compares this with Fig. 2 of the main text. Now as the weak disorder is turned
on at this limit almost all states get delocalized as r ≈ 0.6 throughout the spectrum which is shown in Fig. S1(b). This also
shows that the fraction of delocalized states maximizes at the vNL limit as one compares it with other regions which are shown
in Fig. 3 in the main text.
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FIG. S1. Results for the von Neumann lattice: (a) Density of states ρ(ϵ/λ) of energies ϵ re-scaled by the strength of lattice potential λ
at vNL limit. Nϕ = 100 and λ = 10 for this plot. (b) Energy-resolved levelspacing ratio r(ϵ) as a function of energy ϵ at the same limit.
Nϕ = 1600, W = 0.2 and λ = 10 for this plot.

S2. The weak disorder case

Here we discuss the dependence of our results, reported in the main text, on the system sizes and the density of disorder
potentials. In Fig. S2(a-e), we show system-size dependence of our results in regions I, IIA, at vNL point, regions IIB and III,
respectively. We find that our result is quite robust with respect to finite size effect and in fact, the same becomes more clear
as system size is increased. In Fig. S2 in all the plots one has equal number of data points (20 points). The no. of states in a
single bin is kept proportional to system size Nϕ to obtain a single data point such that the data can be compared for different
system sizes as it is increased, especially in region II. For example, in Fig. S2(b) of region IIA, around 70% states are delocalised
whereas in Fig. S2(d) of region IIB, around 40% states are delocsalised. At the vNL point, shown in Fig. S2(c) almost 90% or
even more states tend to delocalize. We find similar results as we now increase the density of disorder potentials for a constant
system size, as shown in Fig. S3(a-e) for different regions of lattice-spacing including the vNL point. Since, adding more and
more disorder potentials helps in approaching the white-noise limit, the plots approach the results claimed in the main text.

S3. The strong disorder case

In Fig. 3 of main text, we have seen the effect of weak disorder on different regions depending on the value of the lattice-
spacing parameter as. Here in Fig. S4(a-d) we show the effect of strong disorder strength in the same regions. Here we choose
W = 5.0 and λ = 10 which essentially mix the non-zero energy states with zero-energy states wherever present. However,
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FIG. S2. System-size dependence of energy-resolved levelspacing ratio: (a-e) r(ϵ) as a function of ϵ for increasing system sizes Nϕ =
100, 400, 900, 1600 in the regions I,IIA, at vNL pint, regions IIB and III, respectively. Here the no. of disorder potentials Nϵ = 40Nϕ for all
the plots.
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FIG. S3. Disorder-density dependence of energy-resolved level-spacing ratio: (a-e) Energy-resloved r(ϵ) for increasing no. of disorder
potentials Nϵ = 2Nϕ, 10Nϕ, 40Nϕ in the regions I,IIA, at vNL point, regions IIB and III, respectively. Here Nϕ = 400 for all the plots.

we see similar effect of strong disorder in all four regions I, IIA, IIB and III. The large fraction of delocalised states, found in
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regions IIA and IIB in presence of weak disorder, now shrinks to very few states in presence of strong disorder which cannot
be treated perturbatively on clean system anymore. Hence, one has a tiny fraction of delocalised states responsible for a sharp
integer plateau transition in Hall-resistivity experiments. This also proves the importance of DMTS for the delocalising effect in
the weak disorder limit. The effect of DMTS goes away as strength of disorder approaches the strength of the lattice potential.
Similar results are obtained when DMTS is broken by randomizing the positions or magnitudes of the δ potentials otherwise
representing a lattice.
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FIG. S4. Energy-resolved levelspacing ratio in strong-disorder limit: (a-d) Levelspacing ratio r(ϵ) as a function of single-particle energy
ϵ in regions I, IIA, IIB and III, respectively in presence of strong disorder strength. Here Nϕ = 400 and for all the plots.

S4. Spectral form factor

The energy-level spacing ratio deals with the adjacent energy levels and hence it measures the short-range correlations of the
energy spectrum. But there is another quantity, namely the spectral form factor (SFF) that includes both short-range and long-

range correlations in the spectrum. One first defines a function Z(τ) =
N∑

m=1
e−iEmτ (Fourier transform of density of states) of

fictitious time τ with N being the number of energy levels. The SFF can then be written as [48]

K(τ) = ⟨Z∗(τ)Z(τ)⟩,
= N + ⟨

∑
m ̸=n

e−i(Em−En)τ ⟩, (S4. .1)

where ⟨...⟩ here stands for an average over an ensemble, e.g. realizations of disorder in our model. In a many-body en-
ergy spectrum with GUE random matrices, K(τ) typically shows three regimes: a dip and then a linear ramp followed by a
plateau [49–51]. At τ = 0, K = N2. For very small τ < τD, the Thouless time, ⟨Z∗(τ)Z(τ)⟩ = ⟨Z∗(τ)⟩⟨Z(τ)⟩ due to
absence of spectral correlation and K(τ) decreases showing non-universal model-specific spectral features. At τ = τH , the
Heisenberg time, τ becomes comparable to inverse of mean levelspacing and hence the second term in Eq. S4. .1 vanishes on
average and a plateau at K = N appears. For τD < τ < τH , K shows a linear ramp indicating the development of spectral
correlation such that ⟨Z∗(τ)Z(τ)⟩ ≠ ⟨Z∗(τ)⟩⟨Z(τ)⟩. This region captures universal features and does not appear in the absence
of any spectral correlations.

In Fig. S5(a) SFF is plotted for regions I, IIA, III and at vNL limit, respectively of our model which involves single particle
physics in the bulk. All the plot shows a dip in the beginning and a saturation in the end. The region I and region III show
a weak ramp which is not really linear. This is expected since very few delocalized states are present in the energy spectrum
that leads to small amount of spectral correlations. However, in the intermediate region II the spectrum is dominated by a large
fraction of delocalized states and hence one expects to see a more sharper and closer to linear ramp in this region. Expectedly
we see sharper ramps for region IIA and at vNL point. In fact, for vNL the ramp is closest to the linear one since at this point
the spectrum has the largest fraction of delocalized states as evinced in Fig. S5(a). But there is also an oscillatory regime prior
to the ramp, especially for the vNL. These pre-ramp oscillations are actually signatures of single-particle chaos, which has been
put forth recently in the studies of quadratic SYK models [52, 53] and SSH chains [54] which belong to symmetry-protected
topological (SPT) phase. But here we find similar signatures in a two dimensional topological phase that goes beyond SPT. The
non-universal spectral signatures can mask the ramp which can lead to reduced ramp size in K(τ). Hence, one typically defines
the connected SFF (CSFF) which can be written as

Kc(τ) = ⟨Z∗(τ)Z(τ)⟩ − ⟨Z(τ)⟩⟨Z∗(τ)⟩, (S4. .2)
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FIG. S5. Spectral form factor: (a) The SFF K(τ) is plotted as a function of τ for regions I, IIA, III and at the vNL limit, respectively. The
upper and lower dashed horizontal lines represent K = N2

ϕ and K = Nϕ, respectively. (b) Similarly, the CSFF Kc(τ) is plotted as a function
of τ for the same regions. The dashed horizontal line represent Kc = Nϕ. Here W = 0.2, λ = 10 and Nϕ = 400 for all the plots. The tilted
dashed line is linear in τ and provides a guide to the eyes.

which is obtained by deducting the disconnected part from K(τ). At τ = 0, Kc = 0 whereas for τ > τH Kc is expected to
saturate atN . The CSFF is shown in Fig. S5(b) for the same regions as in Fig. S5(a). Broadly we see that the initial non-universal
signatures including the oscillatory regime of K(τ) do not appear in Kc(τ) anymore. Instead one now finds an extended and
unmasked ramp which becomes almost linear for vNL indicating that almost all the eigenstates can become delocalized at this
point and the eigenvalues resembles that of GUE matrices. This is consistent with the findings from the levelspacing ratio
discussed in the main text. An extensive study of SFF and CSFF in the disordered topological phases is beyond the scope of the
current work and worth exploring in the future.


	Superlattice induced electron percolation within a single Landau level
	Abstract
	Acknowledgments
	References
	 S1. Density of states and localization behavior of the von Neumann lattice
	 S2. The weak disorder case
	 S3. The strong disorder case
	 S4. Spectral form factor


