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Quasiprobabilities are mathematical quantities describing the statistics of measurement outcomes
evaluated at two or more times, which incorporate the incompatibility of the measurement observ-
ables and the state of the measured quantum system. In this tutorial, we present the definition,
interpretation and properties of the main quasiprobabilities known in the literature. We also discuss
techniques to experimentally access a quasiprobability distribution, ranging from the weak two-point
measurement scheme, to a Ramsey-like interferometric scheme and procedures assisted by an exter-
nal detector. Once defined the fundamental concepts following the standpoint of joint measurability
in quantum mechanics, we illustrate the use of quasiprobabilities in quantum thermodynamics to
describe the quantum statistics of work and heat, and to explain anomalies in the energy exchanges
entailed by a given thermodynamic transformation. On the one hand, in work protocols, we show
how absorbed energy can be converted to extractable work and vice versa due to Hamiltonian in-
compatibility at distinct times. On the other hand, in exchange processes between two quantum
systems initially at different temperatures, we explain how quantum correlations in their initial state
may induce cold-to-hot energy exchanges, which are unnatural between any pair of equilibrium non-
driven systems. We conclude the tutorial by giving simple examples where quasiprobabilities are
applied to many-body systems: scrambling of quantum information, sensitivity to local perturba-
tions, quantum work statistics in the quenched dynamics of models that can be mapped onto systems
of free fermions, for instance the Ising model with a transverse field. Throughout the tutorial, we
meticulously present derivations of essential concepts alongside straightforward examples, aiming to
enhance comprehension and facilitate learning.
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I. INTRODUCTION

In this paper we provide a tutorial that delves into the
use of quasiprobabilities and their associated distribu-
tions within the realm of quantum science and with spe-
cific applications in quantum thermodynamics and many-
body quantum systems.

As evident from numerous studies [11–1818], quasiproba-
bilities have garnered significant interest within the quan-
tum community. In fact, they are a proper tool to de-
scribe the statistics of the outcomes resulting from con-
secutive events in several areas of quantum mechanics
and associated technologies, from foundations to quan-
tum devices. The most appealing feature of a quasiprob-
ability is its capability to embody the incompatibility of
quantum observables, due to their nonzero commutator,
that are evaluated at different times of a given exper-
iment. This incompatibility is singled out by the fact
that the distribution of the measurement outcomes ad-
mits non-classical traits. The latter ones, expressed in
the form of ‘negative’ and ‘non-real probabilities’, reflect
the effects entailed by the Heisenberg uncertainty princi-
ple that indeed concerns the impossibility of concurrently
measuring two complementary and incompatible proper-
ties of a quantum system in contiguous times.

In the following, we are going to introduce the concept
of quasiprobability from theoretical arguments, and we
then outline their main properties, especially those con-
cerning the loss of positivity. After that, we will address
measurement procedures that allow to observe the ‘nega-
tive’ and ‘non-real probabilities’ of pairs of measurement
outcomes, by showing that such genuinely quantum fea-
tures have a clear physical interpretation inherently re-
lated to quantum coherence and correlations. We are
particularly interested in pedagogically explaining those
physical interpretations that can be linked to thermo-
dynamic quantities under out-of-equilibrium conditions
(work, heat and their distributions) [55, 88, 1212, 1515, 1919–
2222], and in the rich arena of many-body quantum sys-
tems [44, 66, 1111, 1414, 1616, 1717, 2323]. In this regard, interpreta-
tions of the well-known Loschmidt echo and out-of-time-
ordered correlators (OTOCs) for many-body systems in
term of quasiprobabilities are discussed and illustrated
with step-by-step worked examples. Finally, the tuto-
rial is concluded with a discussion containing some per-
spectives on possible theoretical studies and experimen-
tal observations of quasiprobabilities in current quantum
platforms [1212, 2222, 2424].
This tutorial is targeted at graduate students and

researchers, both theoretical and experimental, with a
basic knowledge of quantum mechanics. Specifically,
we aim to provide both the formal definitions that lay
the foundations for quasiprobabilities in quantum sci-
ence, and simple analytical examples helping understand-
ing the fundamental concepts and applications of the
methodology. We would also give some hints on new
directions on the use of quasiprobabilities that have not
yet been explored, especially in quantum thermodynam-

ics and many-body quantum systems.

II. QUASIPROBABILITIES

In this section, we introduce the concept of quasiproba-
bilities in quantum mechanics, following the seminal pa-
pers by Kirkwood [2525] and Dirac [2626] in the 30’s and
40’s, respectively. There have been several approaches
that brought to light the notion of a ‘negative proba-
bility’ and crucially even probabilities represented by a
complex number. In this tutorial, we choose to approach
this topic from the fundamental standpoint of joint mea-
surability in quantum mechanics.
Under conditions we are going to detail, Kirkwood-

Dirac quasiprobabilities (KDQ) can take both negative
and imaginary values. ‘Negative probability’ and even
‘probabilities represented by a complex number’ can be
explained from the fundamental standpoint of joint mea-
surability in quantum mechanics.
For this purpose, let us set the theoretical framework.

First, consider a quantum state preparation that gener-
ates a generic density operator ρ that, by definition, is a
Hermitian, semi-definite operator with trace 1. Then, we
define two quantum observables, associated to two Her-
mitian operators, O1(t1) and O2(t2), that we measure
at two distinct times t1 and t2 with t1 < t2. The ob-
servables can be generally expressed using their spectral
decomposition as

Oi(ti) =
∑
si

osi(ti)Πsi(ti), (1)

in terms of their eigenvalues osi(ti) and the associated
projectors Πsi(ti) onto the corresponding eigenspace.
In the general case, ρ, O1(t1) and O2(t2) do not com-

mute with each other. Moreover, in the time interval
[t1, t2]—after the first measurement of O1(t1) and be-
fore the second measurement of O2(t2)—the state of the
quantum system can be subject to a generic quantum
process described by a completely positive trace preserv-
ing (CPTP) quantum map Φ : ρ(t1) 7→ Φ[ρ(t1)] = ρ(t2),
which operates on and returns density operators. We
introduce its Kraus representation such that Φ[ρ] =∑

αKαρK
†
α and

∑
αK

†
αKα = I, where I is the identity

operator. The reader interested in the main properties
of quantum maps can refer to Refs. [2727, 2828].
In this Section, we discuss how to characterize the

statistics of measurements outcomes from the 2-time
evaluation of O1(t1) and O2(t2), by also taking into ac-
count the non-commutativity of the involved operators,
i.e., the initial density operator ρ and the two observ-
ables. We explicitly wrote “2-time evaluation” in order
to clearly distinguish it from the wording sequential mea-
surements. In fact, as we will explain in a while, a pro-
cedure based on sequential measurements is necessarily
invasive. As a result, (a) the measured system is per-
turbed; (b) initial quantum coherence in ρ (with respect
to the basis decomposing O1(t1)) is destroyed; (c) the
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statistics of the outcome pairs (os1 , os2) resulting from
sequentially measuring O1(t1) and O2(t2) changes.
Because of these reasons, we are going to consider an

approach that, even in the general non-commutative case,
can return a statistics of (os1 , os2) that is exempt from
the invasiveness of the measurement apparatus, and is
not affected by the first measurement of a sequential pro-
cedure, at least in some statistical moments [2929]. This as-
pect should not be surprising since it is known that [3030]
when non-commuting observables are taken into account,
there is no unique formula to describe the joint proba-
bilities of (os1 , os2) that has both a correspondence with
the classical theory of probability and at the same time
is returned by a non-invasive measurement routine; see
Sec. II BIIB for more details on this aspect.
Now let us discuss in greater depth the invasiveness un-

der the joint measurability problem, by introducing the
celebrated two-point measurement (TPM) scheme [3131].

A. Sequential projective measurements and the
TPM scheme

The TPM scheme is the procedure to characterize the
statistics of (os1 , os2) by means of sequential measure-
ments, which has a correspondence with the classical
theory of probability [3232]. Albeit the process underly-
ing the measurement outcomes has quantum traits, the
results from such measurement procedure can be also de-
scribed by a probability distribution that obeys the Kol-
mogorov’s axioms of probability. The Kolmogorov’s ax-
ioms are: (i) the probability of getting a measurement
outcome is a non-negative real number; (ii) the probabil-
ity to measure at least one of the outcomes is 1; (iii) the
probability to measure any countable sequence of mutu-
ally exclusive measurement outcomes is equal to the sum
of the probabilities for each outcome.

Operationally, the two quantum observables O1(t1)
and O2(t2) are measured at times t1 and t2, respectively,
and a pair of outcomes (os1 , os2) is obtained. The prob-
ability distribution associated to any outcome pair is de-
termined by repeating the sequential measurement pro-
cedure several times. Formally, the joint probability to
get (os1 , os2), according to the TPM scheme, is

p(s1, s2) = Tr
[
ΠH

s2(t2)Πs1(t1)ρΠs1(t1)
]
, (2)

where ρ is the initial quantum state (prepared at time t1),
and ΠH

s2(t2) = Φ†[Πs2(t2)] =
∑

αK
†
αΠs2(t2)Kα is one of

the two projectors of O2(t2) evolved in Heisenberg the
picture. For unitary dynamics, ΠH

s2(t2) = U†Πs2(t2)U ,
where we have introduced the unitary evolution opera-

tor of the system U ≡ T exp
(
−(i/ℏ)

∫ t2
t1
H(t)dt

)
with ℏ

denoting the reduced Planck’s constant, set to 1 for sim-
plicity from now on, T the time-ordering operator and
H(t) the Hamiltonian of the system at time t.
A procedure based on sequential measurements is inva-

sive as it violates the no-signaling in time condition [3333].

If applied to our case-study, the no-signaling in time con-
dition states that the statistics of (os1 , os2) that is re-
turned by a non-invasive measurement apparatus must
fulfill the condition∑

s1

d(s1, s2) = ps2(t2) = Tr
[
ΠH

s2(t2)ρ
]
, (3)

where d(s1, s2) stands for a generic joint probability. In
other terms, the requirement for the non-invasiveness is
that, marginalizing the distribution over the outcomes s1
of the first observable O1(t1) at time t1, we recover the
unperturbed single-time probability ps2(t2) associated to
the outcomes of the second observable O2(t2) at t2.
In this respect, non-invasiveness can be considered as

a synonymous of unperturbed marginals. The validity of
Eq. (33) is a necessary condition for macrorealism [3434]
and, interestingly, Eq. (33) can be violated even in situ-
ations where no violation of Leggett-Garg inequalities is
allowed [3333]. The violation of the no-signaling in time
condition marks the main consequence of the joint mea-
surability problem due to the incompatibility of the in-
volved quantum operators ρ, O1(t1) and O2(t2).
The question that now arises is: “What information

is erased by using the TPM scheme in the attempt of
attaining the statistics of (os1 , os2)?” or equivalently
“How invasive is a procedure based on sequential mea-
surements?” We are going to show that the TPM
scheme is non-invasive if and only if [ρ,Πs1(t1)] = 0 or
[Πs1(t1),Π

H
s2(t2)] = 0. Otherwise, Eq. (33) would be vio-

lated. In order to determine what information is erased
by the TPM scheme, let us compare the final-time prob-
ability ps2(t2) = Tr[ΠH

s2(t2)ρ] and
∑

s1
p(s1, s2). The lat-

ter equals

∑
s1

p(s1, s2) = Tr

[
ΠH

s2(t2)
∑
s1

Πs1(t1)ρΠs1(t1)

]
=

= Tr
[
ΠH

s2(t2)D1[ρ]
]
, (4)

where the super-operator

D1[ρ] ≡
∑
s1

Πs1(t1)ρΠs1(t1) =
∑
s1

ps1(t1)Πs1(t1) (5)

denotes the dephasing channel, which is defined over
the eigenbasis of the quantum observable O1(t1) and is
applied to the initial density operator ρ. In Eq. (55),
ps1(t1) = Tr[Πs1(t1)ρ]. Hence, if we compare ps2(t2) and∑

s1
p(s1, s2), we can see that the first measurement of

the TPM scheme erases the quantum coherence contained
in ρ once projected onto the eigenbasis of O1(t1).
It is worth noting that the initial density operator can

always be linearly decomposed in the basis of O1(t1) as

ρ = D1[ρ] + χ, (6)

where

χ ≡
∑

s1 ̸=s′1

ρs1,s′1 |s1⟩⟨s
′
1| (7)
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is the operator containing the off-diagonal elements of ρ,
with Tr[χ] = 0.

As an example, let us consider a qubit as the quan-
tum system and O1(t1) = σz as the quantum observ-
able at time t1. We have introduced the Pauli matrices
{σx, σy, σz} [3535]. Then,

χ = ρ0,1|0⟩⟨1|+ ρ1,0|1⟩⟨0|, (8)

where |0⟩, |1⟩ are the two eigenstates of σz, ρi,j = ⟨i| ρ |j⟩,
and, due to the Hermiticity of ρ, ρ1,0 = ρ∗0,1.

B. No-go theorem for sequential outcomes
statistics

Previously, we have outlined that a procedure based on
sequential measurements fails in recovering the marginal
distribution of the pairs (os1 , os2) with respect to the
measurement outcomes os1 of O1(t1). This directly vi-
olates the no-signaling in time condition Eq. (33), and
establishes that the measurement procedure is invasive.
The origin of such violation lies in the fact that at least
one of the commutators [ρ,Πs1(t1)] and [Πs1(t1),Π

H
s2(t2)]

is different from zero.
This conclusion is related to a deeper statement sum-

marised by the no-go theorem reported in Ref. [1111],
which is less restrictive than the formulation firstly
proven in Ref. [3636]. The no-go theorem states that
the following three properties cannot be valid simulta-
neously for any initial density operator ρ if and only if
[Πs1(t1),Π

H
s2(t2)] ̸= 0 for some pair (os1 , os2):

i) The probability distribution of the pairs (os1 , os2),
defined by the generic joint probabilities d(s1, s2)
in the time interval [t1, t2], obeys the Kolmogorov’s
axioms of the classical theory of probability.

ii) The joint probabilities d(s1, s2) lead to unperturbed
marginals:∑

s1

d(s1, s2) = ps2(t2), (9)∑
s2

d(s1, s2) = ps1(t1) . (10)

iii) The joint probabilities d(s1, s2) are linear func-
tions of the initial density operator ρ. Formally,
this means that, given a linear combination ρ =∑

k akρk, then d(s1, s2, ρ) =
∑

k akd(s1, s2, ρk).

The three properties i)-iii) are all simultaneously satis-
fied under the assumption of the commutative condition
[Πs1(t1),Π

H
s2(t2)] = 0, and the probability distribution

that fully characterizes the statistics of the pairs (os1 , os2)
is the one returned by the TPM scheme.

In the following and throughout the tutorial, we will
give up the property i). As a consequence we can no
longer employ sequential measurements to characterize

the statistics of (os1 , os2). Avoiding the direct applica-
tion of the TPM scheme on the quantum system under
scrutiny may completely eliminate the invasiveness of the
measurement procedure and allow us to recover unper-
turbed marginal distributions [property ii)]. Such a re-
quirement for the generic joint probabilities d(s1, s2) is
well-justified if we want that our knowledge on the fluc-
tuations of the pairs (os1 , os2) is not decreased by the
quantum measurement back-action. We therefore require
that the no-signaling in time condition is fulfilled. Fur-
thermore, we demand that the probability distribution of
(os1 , os2) exhibits linearity, in conformity with the prop-
erty iii). In this way, for any variation of ρ, one does
not need to repeat from scratch the experimental proce-
dure (which, as noted earlier, should not be sequential)
to determine d(s1, s2).
As a result, by linearly decomposing ρ as in Eq. (66),

in terms of its diagonal and off-diagonal parts with re-
spect to the eigenbasis of O1(t1), we recover the results
of the TPM scheme whenever χ = 0, with 0 denoting the
matrix with all zeros. In addition, another consequence
of the linearity property is that the procedure for mea-
suring d(s1, s2) can be independent on the initial density
operator ρ, as it is customary in the classical case.

C. Beyond the two-point measurement scheme:
Quasiprobability approach

Under the non-commutativity hypothesis
[Πs1(t1),Π

H
s2(t2)] ̸= 0 for some pair (os1 , os2), drop-

ping the property i) of the no-go theorem mentioned in
Sec. II BII B allows for the introduction of a quasiprobability
distribution (QD), whose terms can be non-positive (i.e.,
negative real numbers or even complex numbers), albeit
still summing to 1. In general, there is not a unique QD
due to ordering ambiguities in how the QD is defined
(see Refs. [99–1111, 1313, 3030]). As a consequence, there are,
in principle, infinite QD that are linear in the initial
state ρ and lead to unperturbed marginals, at both the
initial and final times t1 and t2.
Let us introduce the quasiprobabilities. We start

from the expression for the generic joint probabilities
d(s1, s2) and assign a linear operator M(s1, s2) to each
pair (os1 , os2) of measurement outcomes. Without loss of
generality, we can write:

d(s1, s2) = Tr [M(s1, s2)ρ] . (11)

From classical probability theory, in the case of the TPM
scheme [see Sec. IIAIIA], we find that

M(s1, s2) =MTPM(s1, s2) ≡ Πs1(t1)Π
H
s2(t2)Πs1(t1),

(12)
that returns Eq. (22). Instead, we obtain a quasiprobabil-
ity by setting either

M(s1, s2) =MKDQ1(s1, s2) ≡ ΠH
s2(t2)Πs1(t1) , (13)
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or

M(s1, s2) =MKDQ2(s1, s2) ≡ Πs1(t1)Π
H
s2(t2) . (14)

Substituting the linear operators MKDQ1(s1, s2) or
MKDQ2(s1, s2) in Eq. (1111) gives two perfectly valid KDQ.
The difference of applyingMKDQ1 orMKDQ2 on ρ is that
they operate on off-diagonal terms of ρ with exchanged
indexes [(os1 , os2) ←→ (os2 , os1)]. In fact, one can prove
that

Tr
[
ΠH

s2Πs1ρ
]

= ReTr
[
ΠH

s2Πs1ρ
]
+ i ImTr

[
ΠH

s2Πs1ρ
]

Tr
[
Πs1Π

H
s2ρ
]

= ReTr
[
ΠH

s2Πs1ρ
]
− i ImTr

[
ΠH

s2Πs1ρ
]
,

whence

Tr
[
ρΠs1Π

H
s2

]
= Tr

[(
ΠH

s2Πs1 ρ
)†]

= Tr
[
ΠH

s2Πs1 ρ
]∗
,

(15)
thus meaning that the KDQ Tr[MKDQ1(s1, s2)ρ] and
Tr[MKDQ2(s1, s2)ρ] differ by their imaginary parts that
are opposite in sign.

Both KDQ reduce to p(s1, s2) = Tr[MTPM(s1, s2)ρ], as
in Eq. (22), if [ρ,Πs1(t1)] = 0 or [Πs1(t1),Π

H
s2(t2)] = 0. In

this tutorial, without loss of generality, we will make use
of the KDQ defined by MKDQ1(s1, s2) that, from now
on, we denote as

q(s1, s2) ≡ Tr [MKDQ1(s1, s2)ρ] =

= Tr
[
ΠH

s2(t2)Πs1(t1)ρ
]
. (16)

The sign ambiguity in Tr[MKDQ1(s1, s2)ρ] and
Tr[MKDQ2(s1, s2)ρ] can be overcome by taking
the uniformly-weighted sum of MKDQ1(s1, s2) and
MKDQ2(s1, s2), i.e.,

MMHQ(s1, s2) ≡
1

2

(
MKDQ1(s1, s2) +MKDQ2(s1, s2)

)
=

1

2

{
ΠH

s2(t2),Πs1(t1)
}
, (17)

where {A,B} ≡ AB +BA denotes the anti-commutator
of the generic operators A,B. In this way, we end-up
with the quasiprobability

qMHQ(s1, s2) ≡ Tr [MMHQ(s1, s2)ρ] =

=
1

2
Tr
[{
ΠH

s2(t2),Πs1(t1)
}
ρ
]
= (18)

= ReTr
[
ΠH

s2(t2)Πs1(t1)ρ
]
=

= Re [q(s1, s2)] , (19)

commonly known as the Margenau-Hill quasiprobability
(MHQ) [3737].

Other quasiprobabilities have been considered in the
literature for systems weakly interacting with a detector
in order to avoid the invasiveness of the first measurement
of the TPM scheme [1919, 2121, 3838–4242]. We will discuss them
in detail in Sec. IIIIII.
The quasiprobabilities defined in Eq. (1616) and Eq. (1919)

respect properties ii) and iii) of the no-go theorem in

Sec. II BIIB, meaning that the no-signaling in time condition
is fulfilled and the measurement procedure that allows to
get a QD is independent of the initial state ρ. Moreover,
the TPM statistics is recovered in the case in which ρ,
O1(t1), O2(t2) all commute with each other.
These characteristics are important requisites to build

a consistent thermodynamic theory via quasiprobabil-
ities. In fact, any dependence of thermodynamic
quantities—work, heat and entropy—on the initial state
seems to be in contradiction with their standard defini-
tion in classical thermodynamics that does change de-
pending on the particular phase-space distribution taken
as the input ensemble.

1. Non-positivity

KDQ naturally encode temporal correlations between
outcomes of the measurements of the quantum observ-
ables O1(t1) and O2(t2). As explained in Sec. II BIIB,
in relation to the no-go theorem, the quasiprobabilities
q(s1, s2) can be non-positive, although they are still sub-
ject to the normalisation constraint∑

s1,s2

q(s1, s2) = 1. (20)

In the case of KDQ, non-positivity can mean the fol-
lowing two facts:

I) the real part of q(s1, s2) is negative;

II) q(s1, s2) is a complex number with a nonzero imag-
inary part.

From a mathematical point of view, the onset of non-
positivity in KDQ is a consequence of the fact that the
product of two quantum observables (say, A and B) can
always be decomposed as the linear combination of self-
adjoint operators as AB = {A,B}/2+i[A,B]/(2i). Thus,
for the product ΠH

s2(t2)Πs1(t1), we have

ΠH
s2(t2)Πs1(t1) =

{
ΠH

s2 ,Πs1

}
2

+ i

[
ΠH

s2 ,Πs1

]
2i

. (21)

The first term on the right-hand-side of Eq. (2121) gives
rise to the MHQ, the real part of the KDQ, when
evaluated (i.e., averaged) with respect to the initial
density operator ρ. Moreover, looking at the second
term of Eq. (2121), it is evident that a necessary con-
dition for the KDQ to have an imaginary part is the
non-commutativity of Πs1(t1) and ΠH

s2(t2). In this re-

gard, we stress that if [Πs1(t1),Π
H
s2(t2)] = 0, then

ΠH
s2(t2)Πs1(t1) = Πs1(t1)Π

H
s2(t2)Πs1(t1), and the KDQ

coincides with the TPM probabilities. Furthermore, in
order to ensure the validity of Eq. (2020), the imaginary
parts of KDQ must cancel each other out.
In Sec. II C 2IIC 2, we will show a simple case-study that di-

rectly connects the imaginary part of the KDQ with the
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presence of imaginary coherence terms in the initial den-
sity operator ρ, with respect to the eigenbasis of O1(t1).
Hence, if we ignored the imaginary parts of q(s1, s2), we
would exclude some information stemming from quan-
tum coherence and correlations that may emerge in the
quantum statistics of (os1 , os2). The occurrence of non-
positivity can be considered as a non-classical feature in
the statistics of the measurement pairs, underlining the
presence of genuinely quantum features due to the inter-
play of quantum dynamics and measurement. From here
on, we will refer to this with the term non-classicality.
a. Non-commutativity is a necessary condi-

tion. In this context, for the MHQ qMHQ, see Eq. (1919),
it has been recently shown that the pairwise non-
commutativity of the initial density operator and the
quantum measurement observables is only a necessary
but not sufficient condition for non-positivity (i.e., nega-
tivity of the MHQ). This means that there are counterex-
amples where [ρ,Πs1(t1)] ̸= 0 and/or [Πs1(t1),Π

H
s2(t2)] ̸=

0, but still Re [q(s1, s2)] ≥ 0. A detailed analysis of this
aspect can be found in Ref. [99], where it has been formu-
lated with the wording negativity is stronger than non-
commutativity.

b. Linear positivity. The fact that the non-
commutativity is only necessary condition for negativity
is strongly linked with the findings in Ref. [4343] by Gold-
stein and Page. They recognised that non-commutativity
conditions, a hallmark of the non-classicality defined
above, can coexist with Re [q(s1, s2)] ≥ 0 to some ex-
tent. In other words, there can be time intervals of a
given dynamical evolution of the quantum system under
scrutiny where the occurrence of (os1 , os2) is described
by positive probabilities. In view of this argument, Gold-
stein and Page introduced the concept of linear positiv-
ity [4343] to single-out the weakest conditions under which
positive MHQ can be assigned to the statistics from non-
commuting observables.

c. Direct link with weak values. Finally, the
non-positivity of KDQ can find a physical interpreta-
tion from their direct connection with weak values [4444–
4646] that, indeed, are conditional KDQ [1111]. To see this,
we set ΠH

s2(t2) = |s̃2⟩⟨s̃2|, where |s̃2⟩ = U |s2⟩, under the
hypothesis that the dynamics is unitary, and ΠH

s2(t2) is
a rank-1 projector. Moreover, we take ρ = |ψ⟩ ⟨ψ| as a
pure state. Hence, from Eq. (1616) one has that

q(s1, s2)

ps2(t2)
=
⟨ψ|s̃2⟩⟨s̃2|Πs1(t1)|ψ⟩

|⟨ψ|s̃2⟩|2
=
⟨s̃2|Πs1(t1)|ψ⟩
⟨s̃2|ψ⟩

,

(22)
where

⟨s̃2|Πs1(t1)|ψ⟩
⟨s̃2|ψ⟩

≡ ⟨Πs1(t1)⟩WV (23)

is the original definition of the weak value (WV) of
the projector Πs1(t1) with initial state |ψ⟩ and post-
selection |s̃2⟩. In this way, the weak value ⟨O1(t1)⟩WV of
the observable O1(t1) is obtained by averaging the out-
comes os1(t1) over the conditional KDQ ⟨Πs1(t1)⟩WV =

q(s1, s2)/ps2(t2). Formally, we have that

⟨O1(t1)⟩WV ≡
⟨s̃2|O1(t1)|ψ⟩
⟨s̃2|ψ⟩

=
∑
s1

os1(t1)⟨Πs1(t1)⟩WV .

(24)
We recall that the weak values are obtained via a weak
measurement that is performed on both a properly cho-
sen pre-selected quantum state and a post-selected one.
Weak values are called anomalous when ⟨O1(t1)⟩WV lies
outside the spectrum of O1(t1) (see Refs. [4747–5050]). In
order to guarantee such anomaly, it is required that
the (possibly mixed) pre- and postselection states have
quantum coherence with respect to the eigenbasis of
O1(t1) [5151]. Moreover, the generalization of weak val-
ues to mixed density operators instead of pure quan-
tum states, can be a complex number, and this is ev-
idently in a one-to-one correspondence with complex
KDQs [4747, 4949, 5252, 5353].
d. Non-positivity functional. We conclude this

subsection by discussing the non-positivity of KDQ.
For this purpose, we introduce the non-positivity func-
tional [99, 1111, 1212, 5454]

ℵ ≡ −1 +
∑
s1,s2

∣∣q(s1, s2)∣∣, (25)

that quantifies the ‘amount’ of non-classicality in the
statistics of the outcome pairs (os1 , os2). It is worth not-
ing that both the real and imaginary parts of the KDQ
contribute to the non-classicality, whereby if present one
has that ∑

s1,s2

∣∣q(s1, s2)∣∣ > 1 ⇒ ℵ > 0. (26)

Instead, ℵ = 0 when all the KDQ are positive real num-
bers [5555].

2. Comparing KDQ and TPM probabilities

In this subsection we are going to compare the KDQ
q(s1, s2) with the joint probabilities p(s1, s2) returned by
applying the TPM scheme. In this regard, notice that

q(s1, s2)− p(s1, s2) = Tr
[
ΠH

s2(t2)Πs1(t1)ρΠ
⊥
s1(t1)

]
,
(27)

where

Π⊥
s1(t1) ≡ I−Πs1(t1) (28)

is the projector orthogonal to Πs1(t1). Interestingly,
as discussed in Ref. [3030], Eq. (2727) quantifies the in-
terference patterns between the two different sequential
pairs of projectors, also known in the literature as quan-
tum histories, (Πs1(t1),Π

H
s2(t2)) and (Π⊥

s1(t1),Π
H
s2(t2)).

Moreover, the right-hand-side of Eq. (2727) is also recov-
ered from the so-called non-demolition quasiprobability
(NDQP) [1919, 2121, 5656]

q(s1, s
′
1, s2) ≡ Tr

[
ΠH

s2(t2)Πs1(t1)ρΠs′1
(t1)

]
(29)
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with s1 ̸= s′1. The NDQP is evidently defined over three
indexes: two, s1 and s′1 (different each other), refer to
two possible measurement outcomes of the quantum ob-
servable O1(t1) at time t1, while s2 refers to O2(t2) as it
holds for q(s1, s2). Thus, by marginalizing over s′1 ̸= s1,
one directly obtains the difference between the KDQ and
TPM (joint) probabilities:

q(s1, s2)− p(s1, s2) =
∑

s′1 ̸=s1

q(s1, s
′
1, s2) . (30)

It can be easily observed that if Re [q(s1, s2)] < 0,
then necessarily

∑
s′1 ̸=s1

q(s1, s
′
1, s2) < 0; moreover,

when the KDQ q(s1, s2) is a complex number, also∑
s′1 ̸=s1

q(s1, s
′
1, s2) is a complex number with the same

imaginary part of q(s1, s2).
Let us now exemplify these concepts with a simple

case-study. Let us consider a spin-1/2 particle, first
initialized in the generic density operator ρ. Then,
the spin of the particle is consecutively measured along
two orthogonal axes, the z- and x-axis, respectively, i.e.
O1(t1) = σz and O2(t2) = σx. Moreover, we assume
U = I, so that the system does not evolve between t1 and
t2. Note that, under specific conditions [5757], this set-up is
representative of the physics underlying the well-known
Stern-Gerlach experiments.

At the end of this quantum process, the state of the
system collapses onto one of the eigenstates of σx, namely
|−⟩⟨−| and |+⟩⟨+|, with |±⟩ ≡ (|0⟩ ± |1⟩)/

√
2. Let us

denote the eigenvalues of the observables σz and σx with
z1 = 1, z0 = −1 and x+ = 1, x− = −1, respectively.
The quantum process is inherently probabilistic, due to
the stochastic nature of any quantum measurement. We
thus need to calculate the probabilities of obtaining the
pairs of measurement outcomes (zk(t1), xj(t2)) measured
at times t1 and t2 with k ∈ {0, 1} and j ∈ {−,+}, for
the initial density operator ρ.
As previously anticipated, if [ρ,O1(t1)] ̸= 0, then the

application of the TPM scheme (i.e., sequential measure-
ments) does no longer suffice. This fact is confirmed
by the direct computation of the differences q(zk, xj) −
p(zk, xj):

q(−1,−1)− p(−1,−1) = −ρ0,1
2
, (31)

q(−1,+1)− p(−1,+1) =
ρ0,1
2
, (32)

q(+1,−1)− p(+1,−1) = −ρ
∗
0,1

2
, (33)

q(+1,+1)− p(+1,+1) =
ρ∗0,1
2
, (34)

where, by construction,
∑

k,j p(zk, xj) =∑
k,j q(zk, xj) = 1.

From Eqs. (3131)-(3434), it is also apparent that at least
two of the differences q(zk, xj)−p(zk, xj), among all four,
exhibit negative real parts whenever the initial state ρ
does not commute with the quantum observable σz at

time t1. Notably, such a negativity is preserved from
applying a second measurement of the observable σx im-
mediately after the first.
Of course, in the case ρ0,1 = 0, the KDQ q(zk, xj) re-

duces to the TPM joint probabilities p(zk, xj), and the
no-signaling in time condition is fulfilled. On the con-
trary, in the case ρ0,1 ̸= 0, the first measurement of σz

of the TPM scheme turns out to be invasive for the joint
statistics of the measurement outcomes (zk(t1), xj(t2)).
Finally, we conclude this analysis by providing the av-

erage of the difference of outcomes ∆o = x(t2) − z(t1)
(thus, ∆oj,k = xj(t2) − zk(t1)) that is evaluated with
respect to the KDQ q(zk, xj). We have

⟨∆o⟩ ≡
∑
j,k

(xj(t2)− zk(t1)) q(zk, xj) =

= 2 (q(−1,+1)− q(+1,−1)) =
= 1− 2ρ1,1 + 2Re [ρ0,1] . (35)

By setting ρ = I/2, it holds that ⟨∆o⟩ = 0 that stems
from having all the KDQ equal to 1/4. This finding is
in accordance with the classical theory of probability ap-
plied to our case-study. In fact, if the initial density op-
erator of the spin-1/2 is mixed with both elements equal
to 1/2 (i.e., the spin of the particle is initially up or down
with equal probability 1/2), then the sequence of mea-
surement outcomes ±1 obtained from applying two mu-
tually uncorrelated operations (i.e., the sequential pro-
jective measurement of σz and σx) is naturally equiprob-
able. As a result, on average the difference of the mea-
surement outcomes ∆o is zero.
Let us now add quantum coherence to the initial state

ρ with respect to the eigenbasis of σz, by taking

ρ =
I
2
+ χ, (36)

with χ defined in Eq. (88). Hence, from Eq. (3535), we
obtain ⟨∆o⟩ = 2Re [ρ0,1], meaning that a correction to
the “classical” result ⟨∆o⟩ = 0 has to be included. In
this case-study, such a correction is directly proportional
to the quantum coherence of ρ.

3. Distribution and characteristic function of KDQ

As mentioned in the previous sections, the KDQ
q(s1, s2) describes the joint probability of the pairs of out-
comes (os1 , os2) from measuring the quantum observables
O1(t1) and O2(t2) at times t1 and t2, initial and final
times of the quantum process in analysis, with t1 < t2.
The individual outcomes s1 and s2 correspond to the
eigenvalues of the observables in Eq. (11).
Let us introduce the generic difference of outcomes

∆o ≡ o(t2)− o(t1) (37)

such that ∆os1,s2 = os2(t2) − os1(t1). The number of
values that ∆o can take depends on the combinations of
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all possible measurement outcomes at t1, t2. Therefore,
the KDQ distribution of ∆o is defined by

P [∆o] =
∑
s1,s2

q(s1, s2) δ (∆o−∆os1,s2) , (38)

where δ(·) is the Dirac delta function. We remark that
the KDQ distribution P [∆o] is not unique due to order-
ing ambiguities entailed by the non-commutativity of ρ,
O1(t1) and O2(t2), as discussed in Sec. II CIIC. We also note
that the distribution of ∆o provided by the TPM scheme
is

PTPM[∆o] =
∑
s1,s2

p(s1, s2) δ (∆o−∆os1,s2) , (39)

where, as before, p(s1, s2) denotes the TPM joint proba-
bilities.

All the information about the statistics of the outcome
pair (os1 , os2) is also encoded in the characteristic func-
tion of P [∆o] defined as its Fourier transform:

G(u) =

∫ ∞

−∞
P [∆o]eiu∆od∆o

=
∑
s1,s2

q(s1, s2)e
iu∆os1,s2 =

= Tr
[
e−iuO1(t1)ρΦ†

[
eiuO2(t2)

]]
. (40)

While in principle for a Fourier transform the variable
u is real, it may be useful to extend Eq. (4040) with u
as a complex number, as we will see in Sec. IVBIVB. In-
terestingly, both the KDQ q(s1, s2) and the character-
istic function G(u) are quantum correlation functions,
namely they can be obtained as the expectation value
of the product of two operators, not necessarily Hermi-
tian, but defined at two times, on the initial density op-
erator ρ. In general, the distribution P [∆o] depends on
the time duration of the quantum system dynamics. Of
course, the time-dependence of P [∆o] is mirrored in a
time-dependent characteristic function G(u). Both for
P [∆o] and G(u), the time-dependence is omitted, unless
specified to enhance the clarity of the presentation.

III. MEASURING QUASIPROBABILITIES

In this section, we are going to present two methods
that allows the reconstruction of a QD: the first is based
on performing only projective measurements [1212, 5858],
while the second is aimed at measuring directly the char-
acteristic function of the QD under scrutiny. More than
these two approaches have been formulated so far to
achieve such a reconstruction [5959–6464]; the reader can find
more details in Ref. [1111] where these methods have been
surveyed and some of them extended. Moreover, it is
also worth mentioning Ref. [6565] that investigates the use
of quantum circuits for the measurement of weak values
and KDQ distributions.

A. Weak two-point measurement scheme

It can be proved that the real part of the KDQ distri-
bution, defined in Sec. II CIIC as the Margenau-Hill (MH)
distribution, can be determined by resorting only to a
scheme entirely based on projective measurements. We
have already proved that a direct sequential measure-
ment procedure cannot carry out this task. Instead the
combination of projective measurement schemes accom-
plishes the task. This is indeed enabled by the weak two-
point measurement (wTPM) scheme for the measure-
ment of quantum time correlators [1111, 5858]. The main fea-
ture of the wTPM scheme is to cancel the measurement
back-action, thus attaining the back-action-free limit and
restoring a condition of no measurement invasiveness [33].
As noticed in Ref. [1212], the wTPM scheme can be effec-

tively seen as a probabilistic error cancellation technique,
a technique largely employed in quantum computing from
sampling noisy circuits [6666].
Let us consider the MHQ qMHQ(s1, s2) =

ReTr[ΠH
s2(t2)Πs1(t1)ρ] and the wTPM probability:

w(s1, s2) ≡ Tr
[
ΠH

s2(t2)
(
Πs1(t1)ρΠs1(t1) +

+ Π⊥
s1(t1)ρΠ

⊥
s1(t1)

)]
, (41)

where Π⊥
s1(t1) has been defined in Eq. (2828). The wTPM

probability has a clear physical meaning and can be ob-
tained via a proper measurement procedure. In fact, the
transformation

ρ −→ Πs1(t1)ρΠs1(t1) + Π⊥
s1(t1)ρΠ

⊥
s1(t1) (42)

is associated to the events “the outcome os1 is recorded”
or “the outcome os1 is not recorded”, both at the initial
time t1. For this reason, being given by a binary mea-
surement result, the transformation Eq. (4242) is denoted
as non-selective measurement, and applies to a given pro-
jector of the quantum observable of interest—in this case,
the projector Πs1(t1) of O1(t1).
We introduced the wTPM probability because one can

infer the MHQ from w(s1, s2). To see this, we just need
to substitute Eq. (2828) in Eq. (4141), and write the explicit
expression of w(s1, s2) as a function of Πs1(t1); we get:

w(s1, s2) = 2p(s1, s2) + ps2(t2)− 2qMHQ(s1, s2), (43)

with the result that

qMHQ(s1, s2) = p(s1, s2) +
1

2

(
ps2(t2)− w(s1, s2)

)
. (44)

Eq. (4444) is the way the MHQ can be experimentally
reconstructed via the wTPM scheme, as done e.g. in
Ref. [1212], where a pictorial representation of the scheme is
provided. In fact, p(s1, s2) is a TPM joint probability ob-
tained by applying a sequential measurement procedure.
Moreover, ps2(t2) is the unperturbed single-time proba-
bility to measure one of the outcomes os2(t2) of O2(t2)
at the final time t2.
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Note that the probability ps2(t2) also enters the so-
called end-point measurement (EPM) scheme [6767, 6868]
that, by construction, singles out the presence of quan-
tum coherence in the initial state ρ by performing single
measurements at the end of the quantum process under
scrutiny. A discussion about the conceptual difference of
the KDQ and the joint probabilities stemming from the
EPM scheme can be found in [1111]. Finally, the wTPM
probability w(s1, s2) is returned via a procedure based
on non-selective projective measurements, as already ex-
plained above.

We conclude this subsection by observing that, for
qubits, the expression of w(s1, s2) simplifies. This is be-
cause

Πs1(t1)ρΠs1(t1) + Π⊥
s1(t1)ρΠ

⊥
s1(t1) = D1[ρ] , (45)

where D1[ρ] is the dephasing super-operator defined in
Eq. (55). As a result, the wTPM probability reduces to
the marginal of the TPM joint probability p(s1, s2) over
the outcomes s1 of the initial observable, i.e.,

w(s1, s2) = Tr
[
ΠH

s2(t2)D1[ρ]
]
=
∑
s1

p(s1, s2), (46)

such that

qMHQ(s1, s2) = p(s1, s2) +
1

2

(
ps2(t2)−

∑
s1

p(s1, s2)
)
=

= p(s1, s2) +
1

2
Tr
[
ΠH

s2(t2)χ
]
, (47)

where χ, defined in Eq. (77), contains the quantum coher-
ence in ρ.

B. Interferometric scheme

The second approach for the inference of the KDQ dis-
tribution P [∆o], which we consider in this tutorial, is
an interferometric scheme. This method consists in en-
coding on an auxiliary system A the real and imaginary
parts of the characteristic function G(u) of P [∆o] for a
given quantum system S. In this regard, we point out
that auxiliary systems are the requisite to infer also the
imaginary parts of the KDQ composing a quasiprobabil-
ity distribution. As explained in Sec. IIIAIIIA, if our aim is
just to measure the real part of a KDQ, we can resort to a
reconstruction procedure that is only based on projective
measurements.

The interferometric scheme we are going to present
here is a simplified variant of the theoretical propos-
als discussed in Refs. [1111, 6969–7272], and has similarities
with the experimental schemes employed in Refs. [7373, 7474].
However, all these interferometers lead to the same re-
sult, namely the direct measurement of the characteristic
function G(u). Notably, the observed G(u) can belong to
both a probability distribution stemming from a sequen-
tial measurement procedure (thus, a TPM distribution),
and a quasiprobability one.

U

�x
A
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FIG. 1. Pictorial representation of the interferometric
scheme to directly access the characteristic function G(u) of
a KDQ distribution P [∆o]. The scheme encodes the infor-
mation on the real and imaginary parts of G(u) associated
to the quantum system S of interest that is initialized in the
generic density operator ρ. Such an encoding is operated on
the auxiliary system A via the two conditional gates FC

t1 and

FC
t2 , which applies the operations Et1 and E†

t2
on S whether

A is in |0⟩A (white dot in the figure) or |1⟩A (black dot) re-
spectively. The other gates involved are the Hadamard gate
UHad, the system’s evolution operator U and the gate σx

A for
the auxiliary system. A detector-like box on A denotes its
final measurement.

When the auxiliary system A is taken as a qubit, the
real and imaginary parts of G(u), can be extracted from
the expectation values of two Pauli matrices with re-
spect to the state of A at the end of the scheme. As
it will be clearer later, in order to implement the in-
terferometer, u is taken as a real number with the di-
mension of a time t. By collecting several values of the
pairs (Re[G], Im[G]) for different u, we can reconstruct the
(quasi)probability distribution P [∆o] by applying the in-
verse Fourier transform to G. The Fourier transform is
performed numerically, and hence is subject to finite-
time and finite-resolution constraints; see for example
Ref. [7575].

Let us present the interferometric scheme for quantum
systems subject to unitary dynamics and assuming A is a
qubit. The extension to open quantum systems, i.e., non-
unitary dynamics, is straightforward through the substi-
tution of the unitary operator with a CPTP map Φ, as
long as the environment does not affect the auxiliary sys-
tem.

As pictorially represented in Fig. 11, the working prin-
ciple of the scheme is to initialize the auxiliary system A
in the state |0⟩A⟨0| where we denote with |i⟩A the eigen-
states of the Pauli matrix σz

A for the auxiliary system A
(i = 0, 1). We then perform a Ramsey interferometric
scheme on A [7676, 7777]. Between the application of both
the Hadamard UHad = 2−1/2(σx

A + σz
A) and σx

A gates,
and the final projective measurement of A (with respect
to the observables σx

A, σ
y
A), the auxiliary system inter-

acts with the quantum system S via the conditional (C)
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gates

FC
t1 ≡ Et1 ⊗ |0⟩A⟨0|+ IS ⊗ |1⟩A⟨1|, (48)

FC
t2 ≡ IS ⊗ |0⟩A⟨0|+ E†

t2 ⊗ |1⟩A⟨1|, (49)

where

Etj ≡ exp (−iOj(tj)u) , j = 1, 2, (50)

can be thought of as unitary evolution operators corre-
sponding to the effective Hamiltonian Oj(tj) for a time
u. Moreover, between the two conditional gates FC

t1 and

FC
t2 , the quantum system S undergoes the actual unitary

dynamics of the process ruled by the evolution operator
U .

The result of implementing the interferometric scheme
of Fig. 11 is that the reduced state ρ′A of A, before the
final measurement of σx

A and σy
A, is

ρ′A =
1

2
IA +

1

4
G(u) (σx

A − i σy
A) +

1

4
G∗(u) (σx

A + i σy
A) =

=
1

2
IA +

1

2
Re [G(u)]σx

A +
1

2
Im [G(u)]σy

A . (51)

In this way, we can obtain:

Re [G(u)] = ⟨σx
A⟩(u) = Tr [ρ′Aσ

x
A] , (52)

Im [G(u)] = ⟨σy
A⟩(u) = Tr [ρ′Aσ

y
A] . (53)

In Sec. IIIDIIID, we will illustrate how the interferometric
scheme works in a simple qubit case.

C. Detector-assisted measurement of
quasiprobabilities

Here we provide a more general framework for the
measurement of quasiprobabilities considering a quan-
tum model for a detector coupled to the system of in-
terest. This approach extends the TPM and the Ramsey
scheme, by realising that the observation of the change of
an observable O(t) can be attained not through von Neu-
mann projective measurements, but rather via a general-
ized measurement or, more precisely, a positive operator-
valued measure (POVM). This was first introduced by
Roncaglia et al. in Ref. [3838] to assess the thermodynamic
work done on a quantum system (see Sec. IVIV), while

a proposal for its measurement in cold atoms was re-
ported immediately after in Ref. [3939]. Moreover, an ex-
perimental realization of the POVM to measure quantum
work done on a Bose-Einstein condensate is in Ref. [4141].
In a series of papers, Solinas and his collaborators for-
malised this approach establishing a profound connection
between fluctuations of quantum observables, quasiprob-
abilities and the full counting statistics [1919, 2121, 4040, 4242, 5656].
We will describe two possible schemes: one that pro-

vides access to the characteristic function of the observ-
able change ∆o, and the other providing directly the
TPM probability distribution [1919].
Let us imagine a system coupled to a detector that

is modelled as a quantum free particle moving in one
dimension. The detector is described by the canonical
position X and momentum P operators. We assume that
the system-detector interaction Hamiltonian is

HSD = −b(t)P ⊗ O(t) , (54)

where the time-dependent coupling constant b(t) =
κ[δ(t − t2) − δ(t − t1)] is such that the detector is im-
pulsively coupled to the system only at times t1 and t2
with strength κ. The operator O(t) is the observable
to be measured and, without loss of generality, can be
thought of being O1(t1) at time t1 and O2(t2) at time t2,
as formalized in Sec. IIII.
In the same spirit of what we discussed above, we con-

sider the initial state of the system to be ρ and that of
the detector to be pure, i.e.,

|ϕD⟩ =
∫ ∞

−∞
dp G(p) |p⟩ , (55)

where |p⟩ are eigenstates of the momentum operator with
eigenvalue p and G(p) is the initial momentum distri-
bution of the detector. Moreover, for simplicity, let us
assume the system to evolve with the unitary operator
U between times t1 and t2. The extension to the case
of a non unitary evolution described by a CPTP map
is straightforward. The detector may also evolve during
these times, but the effect of this free evolution can be
very small or compensated, and we will therefore ignore
it [1919].
The final state of the detector, after tracing out the

state of the system, can be cast in the following two
equivalent forms, with ∆os1,s2 = os2(t2) − os1(t1) [see
Eq. (3737)]:

ρD(t2) =
∑

s1,s′1,s2

∫ ∞

−∞
dp

∫ ∞

−∞
dp′q(s1, s

′
1, s2)G(p)G

∗(p′)eiκp∆os1,s2 e
−iκp′∆os′1,s2 |p⟩⟨p′| (56)

=
∑

s1,s′1,s2

∫ ∞

−∞
dx

∫ ∞

−∞
dx′q(s1, s

′
1, s2)g(x− κ∆os1,s2)g∗(x′ − κ∆os′1,s2) |x⟩⟨x

′| , (57)

where we have used the expression q of the NDQP, see Eq. (2929). The last two equations are written in the detec-
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tor momentum and position representations respectively,
and we have introduced the detector position distribution
g(x) as the Fourier transform of G(p).
Some considerations are in order: since the detector

momentum P is a conserved quantity (as it commutes
with the interaction Hamiltonian), the sole effect of the
evolution is to induce phase shifts in the momentum
eigenstates |p⟩. By measuring these phase shifts we ac-
cess information about the observable change ∆o. On the
other hand, the evolution operator exp{−iκP∆o} associ-
ated with the system-detector interaction is effectively a
translation or displacement operator of the detector po-
sition. Therefore, the quantities ∆o can be also observed
by measuring the detector position distribution. In the
following, we will describe two schemes that follow these
two ideas, respectively.

In the first scheme, the detector is initially prepared in
a superposition of two states with opposite momenta of
magnitude p0:

|ΦD⟩ = A (|p0/2⟩+ |−p0/2⟩) , (58)

where A is a real normalization constant [7878]. This cor-
responds to a momentum distribution G(p) = A[δ(p −
p0/2)+ δ(p+p0/2)]. After the evolution, the state of the
detector can be written as

ρD(t2) = A2
(
|p0/2⟩⟨p0/2|+ |−p0/2⟩⟨−p0/2|

+eiϕ |p0/2⟩⟨−p0/2|+ e−iϕ |−p0/2⟩⟨p0/2|
)
, (59)

where information about the dynamics is contained in
the phase ϕ given that P is a conserved quantity (see
also considerations above). If we now measure the phase
ϕ accumulated during the whole evolution between the
eigenstates |p0/2⟩ and |−p0/2⟩, we have access to a mod-
ified characteristic function:

G̃ ≡ eiϕ =
∑

s1,s′1,s2

q(s1, s
′
1, s2)×

× exp

{
iκp0

[
os2(t2)−

os1(t1) + os′1(t1)

2

]}
, (60)

which resembles the characteristic function G(u) defined
in Eq. (4040), but this time computed over the NDQP of
Eq. (2929). Hence, to all effects, Eq. (6060) represents the
characteristic function of a non-demolition quasiproba-
bility distribution. As already outlined at the level of
quasiprobabilities in Sec. II C 2IIC 2, G̃ is a symmetric version
of a KDQ characteristic function, where the symmetriza-
tion is done over the indexes s1 and s′1 labelling the out-
comes of the initial observable O1(t1). Thus, the inverse

Fourier transform of G̃ returns the NDQP distribution

PNDQP[∆o] =
∑

s1,s′1,s2

q(s1, s
′
1, s2)

×δ
{
∆o−

[
os2(t2)−

os1(t1) + os′1(t1)

2

]}
(61)

that is real (since q(s1, s
′
1, s2) + q(s′1, s1, s2) is real) but

can assume negative values due to the non commuta-
tivity of ρ,O(t1) and O(t2). When the initial state of
the system ρ does not have any coherence in the basis
of eigenstates of O(t1), then ρs1s′1 = 0 for s1 ̸= s′1 and

the inverse Fourier transform of G̃ reduces to the TPM
probability distribution, see Eq. (22).
In the second scheme, we analyze directly Eq. (5757),

which leads to the position probability distribution for
the detector:

P (x) = ⟨x| ρD |x⟩ = (62)

=
∑

s1,s′1,s2

q(s1, s
′
1, s2)g(x− κ∆os1,s2)g∗(x− κ∆os′1,s2),

that is real and never negative as it derives from the ex-
pectation value of a Hermitian and positive semi-definite
density operator. If we assume an initially localized de-
tector position, g(x) = δ(x), then

δ(x− κ∆os1,s2)δ(x− κ∆os′1,s2) = δ(x− κ∆os1,s2)δs1,s′1 ,

and Eq. (6262) reduces to

P (x) =
∑
s1,s2

ρs1,s1p(s1, s2)δ(x− κ∆os1,s2), (63)

that corresponds to the TPM probability distribution for
x = κ∆o. In contrast to the case in which g(x) is delo-
calised, in this case there is a unique relation connecting
x and ∆o allowing perfect reconstruction of the TPM
probability distribition for ∆o from the statistics of the
detector’s position X.
Even though P (x) in Eq. (6262) is real and positive

semi-definite, effects due to initial quantum coherences
can manifest themselves when the detector initial wave-
function g(x) is not localized and has a width compara-
ble or larger than the typical changes κ∆os1,s2 . In fact,
imagine that ρs1,s′1 ̸= 0, then in Eq. (6262) the functions
g(x−κ∆os1,s2) and g∗(x−κ∆os′1,s2) may have an overlap
that results in a modification of the position probability
distribution if compared to the one provided by the TPM
scheme.

D. Examples

We conclude this section by providing examples of the
quasiprobability distributions obtained using the schemes
presented above.

1. Weak-TPM scheme

Let us start with an application of the weak two-point
measurement scheme to a three-level system (or a spin-
1) that is initialized in a generic density operator ρ, and
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whose spin is consecutively measured along the orthogo-
nal axes z and x. In particular, we take

O1(t1) = Sz =

1 0 0
0 0 0
0 0 −1


O2(t2) = Sx =

 0 1√
2

0
1√
2

0 1√
2

0 1√
2

0


that share the same set of eigenvalues os1(t1), os2(t2) =
−1, 0, 1, with eigenvectors{

|ϕ(−1)
z ⟩, |ϕ(0)z ⟩, |ϕ(1)z ⟩

}
=


0
0
1

 ,

0
1
0

 ,

1
0
0


and{
|ϕ(−1)

x ⟩, |ϕ(0)x ⟩, |ϕ(1)x ⟩
}
=

1

2

{(
1

−
√
2

1

)
,

(
−
√
2

0√
2

)
,

(
1√
2
1

)}
respectively. As in the qubit example in Sec. II C 2IIC 2, no
quantum dynamics occurs in between the projective mea-
surements of O1(t1) and O2(t2) i.e. U = I. We now write
the expression of the MHQ qMHQ(s1, s2), the joint prob-
ability p(s1, s2) of the TPM scheme, the unperturbed
final-time probability ps2(t2) and the wTPM probability
w(s1, s2). We recall that p(s1, s2), ps2(t2), w(s1, s2) can
be all experimentally measured via a procedure based
on single or sequential measurements. Moreover, by lin-
early combining them together according to Eq. (4444), any
MHQ can be fully reconstructed [1212]. Thus, for the ex-
ample under scrutiny,

qMHQ(s1, s2) = Re
[
⟨ϕ(s2)x |ϕ(s1)z ⟩⟨ϕ(s1)z | ρ |ϕ(s2)x ⟩

]
(64)

p(s1, s2) =
∣∣∣⟨ϕ(s2)x |ϕ(s1)z ⟩

∣∣∣2 ⟨ϕ(s1)z | ρ |ϕ(s1)z ⟩ (65)

ps2(t2) = ⟨ϕ(s2)x | ρ |ϕ(s2)x ⟩ , (66)

and w(s1, s2) is given by Eq. (4141) with ΠH
s2(t2) =

|ϕ(s2)x ⟩⟨ϕ(s2)x | and Πs1(t1) = |ϕ(s1)z ⟩⟨ϕ(s1)z |. In this exam-
ple, Π⊥

s1(t1) = I − Πs1(t1) are projectors with rank 2
and describe the collapse of the spin-1 state onto a two-
dimensional subspace. For completeness, the explicit ex-
pressions of Π⊥

s1(t1) with os1(t1) = −1, 0, 1 are:

Π⊥
−1(t1) =

1 0 0
0 1 0
0 0 0

 ,

Π⊥
0 (t1) =

1 0 0
0 0 0
0 0 1

 , Π⊥
1 (t1) =

0 0 0
0 1 0
0 0 1

 .

Let us now take the initial density operator ρ = |ψ⟩⟨ψ|
with

|ψ⟩ = 1√
2

(
|ϕ(−1)

z ⟩ − |ϕ(0)z ⟩
)
=

1√
2

 0
−1
1

 . (67)

In the following, we provide the analytical expressions of
qMHQ(s1, s2), p(s1, s2), ps2(t2) and w(s1, s2) for a single
pair (s1, s2): s1 = −1, s2 = 1. This choice ensures that
qMHQ(−1, 1) < 0. In doing this, we will show a specific
example of how Eq. (4444) effectively works:

qMHQ(−1, 1) = p(−1, 1) + 1

2

(
ps2(1)− w(−1, 1)

)
. (68)

From direct calculations, one can find that

⟨ϕ(1)x |ϕ(−1)
z ⟩ = 1

2 , ⟨ϕ(−1)
z | ρ |ϕ(1)x ⟩ =

1−
√
2

4
,

⟨ϕ(−1)
z | ρ |ϕ(−1)

z ⟩ = 1
2 , ⟨ϕ(1)x | ρ |ϕ(1)x ⟩ =

3− 2
√
2

8
.

Therefore,

qMHQ(−1, 1) =
1−
√
2

8
≈ −0.0518 < 0 (69)

p(−1, 1) =
1

8
(70)

ps2(1) =
3− 2

√
2

8
≈ 0.0214 . (71)

Moreover,

w(−1, 1) = Tr
[
|ϕ(1)x ⟩⟨ϕ(1)x |

(
⟨ϕ(−1)

z | ρ |ϕ(−1)
z ⟩|ϕ(−1)

z ⟩⟨ϕ(−1)
z |

+ Π⊥
−1(t1) ρΠ

⊥
−1(t1)

)]
=

3

8
(72)

that validates Eq. (6868).

2. Interferometric scheme

We consider the Ramsey interferometric scheme ap-
plied to a spin-1/2 particle that is sequentially measured
along the z− and x−axis, as in the example reported in
Sec. II C 2IIC 2. We recall that, in the case the initial den-
sity operator ρ does not commute with O1(t1) = σz, any
procedure based on sequential projective measurements
is invasive and unavoidably cancels out the quantum co-
herence contained in ρ, with respect to the eigenbasis of
O1(t1). As a result, the statistics of the outcome pairs
(zk(t1), xj(t2)) is distorted. The unperturbed statistics
of the outcome pairs is provided by the KDQ distribu-
tion that, as shown in Sec. II C 2IIC 2, can exhibit negative
and imaginary KDQ.
The interferometric scheme finds application to such

a case-study by making the substitution Et1 =
exp(−i σzu), U = I, and Et2 = exp(−i σxu). In this
way, by measuring the expectation values ⟨σx

A⟩(u) and
⟨σy

A⟩(u), we can recover the real and imaginary parts of
the KDQ characteristic function of the statistics of out-
come pairs (zk(t1), xj(t2)). In this case, the characteristic
function reads as [see also Eq. (4040)]

G(u) = Tr
[
e−i σzuρ ei σ

xu
]
. (73)
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Using the initial state defined in Eq. (3636), we obtain:

G(u) = cos2(u) + 2i sin(u)×
× (cos(u)Re [ρ0,1] + sin(u) Im [ρ0,1]) , (74)

such that the analytical expressions of the expectation
values for the auxiliary system are

⟨σx
A⟩ = cos2(u), (75)

⟨σy
A⟩ = 2 sin(u) (cos(u)Re [ρ0,1] + sin(u) Im [ρ0,1]) .

(76)

Taking the inverse Fourier transform, we get the following
QD for ∆o:

P [∆o] =
1 + 2i Im [ρ0,1]

2
δ(∆o) +

+
1− 2ρ0,1

4
δ(∆o− 2) + (77)

+
1 + 2ρ∗0,1

4
δ(∆o+ 2) ,

which may be complex depending on the form of ρ0,1.
It is instructive to point out that, by defining the ef-

fective Hamiltonian operators H1 ≡ ωσz and H2 ≡ ωσx,
then Eq. (7373) takes the more general expression

G (ωt) = Tr
[
eiH2t e−iH1tρ

]
(78)

with u = ωt. From this, we observe that the character-
istic function of the KDQ distribution can be identically
equal to the so-called Loschmidt [7979, 8080]. Hence, thanks
to the link with the Loschmidt echo, H1 and H2 can be
interpreted as the Hamiltonian operators governing, re-
spectively, the forward and backward evolution of a per-
turbed quantum system [8181], and t as the time instant at
which the reversal operation takes place.

In Sec. VBVB we will show that the connection between
the characteristic function of a KDQ distribution and
Loschmidt echos does not hold only in specific examples,
but it is valid in general for any quantum system. In this
respect, condensed-matter physics and quasiprobabilities
are deeply related.

3. Detector-assisted scheme

Let us consider the modified characteristic function G̃
in Eq. (6060). Thus, by choosing the initial state qubit to
be Eq. (3636) as in IIID 2IIID 2, we find:

G̃ =
1

2

[
1 + cos(2κp0) + 4iRe [ρ0,1 sin(κp0)]

]
, (79)

which clearly depends on the presence of the off-diagonal
element ρ0,1 of the system density matrix ρ.
Consequently, taking the Fourier transform we obtain

the NDQP:

PNDQP[∆o] =
1

2
δ(∆o) +

1

4

(
δ(∆o− 2) + δ(∆o+ 2)

)
+

+ Re [ρ0,1]
(
δ(∆o+ 1)− δ(∆o− 1)

)
(80)

ρ0,1=0

ρ0,1=0.3

ρ0,1=-0.3
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FIG. 2. Distribution function P (x) observed by an imperfect
detector for ρ0,1 = 0, ρ0,1 = 0.3 and ρ0,1 = −0.3. We have
chosen units in which κ = 1 and σ = 0.6.

that contains peaks at ∆o = ±1 that are absent in the
KDQ (or for an incoherent initial state) and that can
be negative depending on the sign of Re [ρ0,1]. Another
difference with the KDQ extracted from the Ramsey
scheme, Eq. (7777), is that Eq. (8080) is strictly real.
Let us now consider the signal observed in the

position representation of the detector assuming for
concreteness the detector’s wave-function g(x) =
(2πσ2)1/4 exp

[
−x2/(4σ2)

]
, albeit any localized function

would be suitable. From Eq. (6262), we obtain P (x) =
Pinc(x) + Pcoh(x), where the incoherent and coherent
parts of the distributions read:

Pinc(x) =
e−

x2

2σ2 + 1
2e

− (x−2κ)2

2σ2 + 1
2e

− (x+2κ)2

2σ2

2(2πσ2)1/2
, (81)

Pcoh(x) =
Re [ρ0,1] e

− κ2

2σ2

(2πσ2)1/2

(
e−

(x−κ)2

2σ2 − e−
(x+κ)2

2σ2

)
.

(82)

The probability density Pinc(x) would always appear in
the expression of P (x), even in the absence of initial co-
herence. It represents a coarse grained version of the
TPM probability distribution; see Eq. (3939) for the gen-
eral definition. On the other hand, Pcoh(x) is propor-
tional to Re [ρ0,1] and can be negative (although P (x)
can never be negative).
We show P (x) in Fig. 22 and compare the cases when

ρ0,1 = 0 and ρ0,1 ̸= 0. The latter case brings an asym-
metry to the function P (x) and for sufficiently large σ a
shift in the position of the peaks.

IV. QUANTUM THERMODYNAMICS

In Sec. IIII, we have argued that, in the general case of ρ
and O1(t1) arbitrary non-commuting operators, the first
measurement of the TPM scheme is invasive. Specifically,
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the TPM scheme does not allow one to recover the un-
perturbed single-time probability p(s2) by marginalizing
the joint probability p(s1, s2) of the TPM scheme over the
outcomes s1 of the first measurement. As a result, ap-
plying the TPM scheme breaks the no-signaling in time
condition, failing to capture non-commutativity in the
statistics of the measurement outcomes taken at times
t1 and t2 [55, 2020]. This evidence is proven to be true for
arbitrary quantum observables O1(t1) and O2(t2). Con-
sequently, the same considerations shall hold in a ther-
modynamic context, where the measured observables are
Hamiltonian operators.

Kirkwood-Dirac quasiprobabilities can be employed
to investigate non-classical energetic processes, where
here ‘non-classical’ indicates the presence of negative
and imaginary values in the quasiprobability distribu-
tion of the thermodynamic quantity of interest, for in-
stance, work, heat or entropy. In the current litera-
ture, Margenau-Hill quasiprobability distributions [55, 88,
1212, 3030, 8282, 8383], the real parts of Kirkwood-Dirac ones,
have been already discussed and employed to character-
ize non-classical work distributions [1212, 8484], as well as the
statistics of anomalous heat exchanges due to quantum
correlations [88].
In this section, we discuss the KDQ approach to char-

acterize the statistics of internal energy fluctuations in
a generic quantum system, close or open. Then, we will
focus on the ways the presence of non-classicality is re-
sponsible for anomalous energy exchanges [2222] (see below
for a proper definition) that can be identified, e.g., in the
average and variance of work and heat distributions.

As we are going to show in Sec. IVDIVD, negative prob-
abilities in a KDQ distribution of work find an inter-
pretation as non-classical energy transitions that make
use of quantum coherence to transform absorbed en-
ergy in extractable work. In this regard, we will show
how KDQ can take into account genuinely quantum fea-
tures in energy-change fluctuations, and outline thermo-
dynamic advantages. For example, this becomes evident
when noting that, without quantum coherence, stochas-
tic work processes can generate a lower amount of ex-
tractable work and thus be less performing in operating
a quantum device.

A. Quantum internal energy distribution

From a stochastic thermodynamic point of view, any
internal energy difference of a quantum transformation is
a stochastic process. This holds even for isolated systems,
since energy-change fluctuations—that however average
to zero—are induced by the measurement apparatus. We
recall that the latter irreversibly perturbs the measured
(thermodynamic) system in any sequential measurement
procedure that is directly performed on the system.

In the following, we are going to introduce the concepts
of stochastic internal energy and stochastic quantum work
in a generic quantum scenario with arbitrary density op-

erators and time-dependent thermodynamic transforma-
tions. Let us identify the time-dependent quantum ob-
servables O1(t1) and O2(t2) with the Hamiltonian opera-
tors H(t1) and H(t2) at the initial and final times of the
transformation under scrutiny. The Hamiltonian opera-
tors admit the spectral decomposition:

H(t1) =
∑
i

Ei(t1)Πi(t1) (83)

H(t2) =
∑
f

Ef (t2)Πf (t2) , (84)

where i, f denote the indexes on the initial and final en-
ergies, respectively. From Eqs. (8383)-(8484), the definition
of the stochastic internal energy ∆Uif follows. ∆Uif is
defined within the time interval [t1, t2], and it is given
by the differences ∆Uif ≡ Ef − Ei. Notice that ∆Uif

depends only on the eigenvalues of the Hamiltonian H at
the initial and final times of the thermodynamic transfor-
mation described by the CPTP map Φ which the system
is subject to, and not directly on Φ itself. On the other
hand, what is dependent on Φ is the probability distri-
bution ruling the occurrence of any value of ∆Uif . Thus,
in order to describe such a distribution, we introduce the
Kirkwood-Dirac quasiprobability qif ≡ q(Ei, Ef ) defined
as

qif = Tr
[
ΠH

f (t2)Πi(t1)ρ
]
, (85)

with ρ the initial density operator, such that the
quasiprobability distribution P [·] of ∆Uif is

P [∆Uif ] =
∑
i,f

qifδ (∆U −∆Uif ) . (86)

Notice that, from here on, we are going to use a simplified
notation for the KDQ, qif using as a subscript the labels
for the initial and final energies, respectively.
Following what we previously stated in Sec. II CIIC about

the properties of a KDQ, all the information about the
statistics of the stochastic internal energy ∆Uif is also
contained in the characteristic function

GU (u) =
∫ +∞

−∞
P [∆Uif ]eiu∆Ud∆U , (87)

obtained by the Fourier transform of P [∆Uif ]. As such,
the KDQ distribution of the internal energy variation
can be directly evaluated by means of the interferomet-
ric schemes discussed in Sec. III BIII B. As in the general
case, the characteristic function GU (u)—as well as each
KDQ qif—is formally a quantum correlation function
that takes the form

GU (u) =
∑
i,f

qif e
iu(Ef (t2)−Ei(t1)) =

= Tr
[
e−iuH(t1)ρΦ†

[
eiuH(t2)

]]
. (88)



15

For the case of time-dependent unitary dynamics (possi-
bly leading to work fluctuations),

Φ†[eiuH(t2)] = U†eiuH(t2)U = eiuH
H(t2) (89)

where HH(t2) = U†H(t2)U is the evolution of the Hamil-
tonian of the quantum system at the final time of the
work protocol in the Heisenberg picture.

It is worth also stressing that, when [ρ,Πi(t1)] ̸= 0 or
[Πi(t1),Π

H
f (t2)] ̸= 0, the corresponding KDQ qif can be

a complex number, with possibly a negative real part.
We recall that we have denoted this circumstance as be-
ing non-classical. Even in this quantum thermodynamics
case, the non-classicality of the internal energy distribu-
tion P [∆Uif ], in the time interval [t1, t2], is measured via
the functional ℵ computed over the KDQ qif .

B. Quantum work & KDQ correction to Jarzynski
equality

In any closed quantum system that is driven by a time-
dependent Hamiltonian H in the time interval [t1, t2],
the internal energy difference corresponds to the exerted
workW . This means that ∆U =W , being the dissipated
heat equal to zero in such a case.

In the context of (quantum) work fluctuations, the
Jarzynski equality (JE) [3232, 8585]

lim
N→∞

EN

[
e−βW

]
≡ lim

N→∞
1

N

N∑
n=1

e−βWn = e−β∆F , (90)

with n labelling the n-th realization of the work pro-
tocol, is a cornerstone result in non-equilibrium statis-
tical physics. In fact, Eq. (9090) relates a fluctuating
physical quantity (the work W ) measured for an out-
of-equilibrium system in a given time during the work
protocol, and the equilibrium free-energy difference

∆F ≡ −β−1 ln

(
Z(t2)

Z(t1)

)
, (91)

where Z(tk) ≡ Tr[e−βH(tk)] is the system partition func-
tion in equilibrium at inverse temperature β with the
Hamiltonian H(tk). Notice that setting the limit of
N → ∞ ensures the overcoming of all convergence is-
sues [8686–8888], and the direct connection with the average
of the energy differences Ef (t2)−Ei(t1) over all the statis-
tical configurations dictated by the corresponding work
distribution. For practical purposes, the value of N can
be taken finite but sufficiently large.

The equilibrium free-energy difference is achieved
asymptotically by the driven quantum system under the
assumptions that, once the work protocol is over, (i) the
Hamiltonian of the system is assumed constant and equal
to H(t2); (ii) the system is put in contact with a thermal
bath at inverse temperature β. Moreover, in Eqs. (9090)-
(9191), it is implicitly assumed that the quantum system is

connected to the thermal bath at inverse temperature β
also before the work protocol is applied.
As surveyed in Ref. [8989–9292], the symmetries allow-

ing for the JE in Eq. (9090) to hold are generally main-
tained as long as (I) the initial density operator is ther-
mal at inverse temperature β, namely ρ = ρth(t1) ≡
e−βH(t1)/Z(t1); (II) the dynamics of the quantum sys-
tem is unital, meaning that the identity I is a fixed-point
of the quantum map to which the system is subject:
Φ[I] = I. Notice that unitary dynamics are a subgroup
of such more general family of maps. Therefore, a re-
quirement for the validity of the JE is that ρ is a thermal
state, i.e., both (a) [ρ,H(t1)] = 0, and (b) the diagonal
elements of ρ (with respect to the eigenbasis of H(t1))
follow a Boltzmann distribution.
As a result, the JE in Eq. (9090) can be obtained by

applying the TPM scheme, which returns the following
characteristic function for any given work distribution:

GTPM
W (u) =

∑
i,f

pif e
iu(Ef (t2)−Ei(t1)) =

= Tr
[
U†eiuH(t2)Ue−iuH(t1)ρth(t1)

]
(92)

with pif = Tr[U†Πf (t2)UΠi(t1)ρth(t1)Πi(t1)] the joint
probabilities of the TPM scheme, and u complex number.
Hence, by setting u = iβ, we get

GTPM
W (iβ) ≡ ⟨e−βW ⟩TPM =

Z(t2)

Z(t1)
= e−β∆F . (93)

This simple derivation singles-out that, under the limit
of N →∞, the average EN

[
e−βW

]
over the realizations

of the work protocol is identically equal to the statistical
average with respect to the work distribution returned
by the TPM scheme. Moreover, if one applies the Jensen
inequality on both sides of Eq. (9393), we directly get the
inequality

⟨W ⟩TPM ≥ ∆F, (94)

that is one of the formulation of the second law of ther-
modynamics in relation with the Clausius theorem.
Let us now start connecting these results with the dis-

cussion undertaken in the previous sections. In this re-
gard, we already know from Sec. IIII that, if the density
operator ρ at the beginning of the work protocol does
not contain quantum coherence χ with respect to the
eigenbasis of H(t1) (ρ = D1[ρ]), then the first energy
measurement of the TPM scheme is not invasive. Hence,
in such a case, ⟨W ⟩TPM −∆F denotes, without any am-
biguities, the dissipated work that is the amount of work
that cannot be converted in extracted work.
However, the JE breaks down if ρ is not a thermal

state. The failure of the JE also occurs when ρ is thermal
but the dynamics of the quantum system is non-unital,
possibly leading to heat dissipation [9393–9696]. As a conse-
quence, one ends up with an expression similar to the JE
that exhibits a correction that is not a state function and
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depends on both the dynamical map to which the quan-
tum system is subject and its initial state. We stress
that this holds also in the case no quantum coherence χ
is contained in ρ, i.e., ρ = D1[ρ]. Accordingly, by setting
ρ = D1[ρ], the characteristic function of the work distri-
bution provided by the TPM scheme reads as [9797–101101]

⟨e−βW ⟩TPM = e−β∆F γ , (95)

where

γ ≡ Tr
[
(ρth(t1))

−1D1[ρ] Φ
† [ρth(t2)]

]
(96)

with ρth(t2) ≡ e−βH(t2)/Z(t2) and Φ†[·] = U† · U for
work protocols. Being expressed as a function of the
dynamical transformation applied to the system, the ef-
ficacy γ ≥ 0 depends on the time t2, making γ generally
a time-dependent quantity. Of course, γ = 1 ∀t1, t2 if
ρ = ρth(t1) and Φ is a unital map. We recall that the
difference D1[ρ] − ρth(t1) is commonly known as ather-
mality as it quantifies the non-thermal contributions in
the diagonal of ρ with respect to the eigenbasis of H(t1).
The athermality can be a significant thermodynamic re-
source if the quantum system undergoes dynamics with
feedback [101101–103103].
If we now abandon the use of the TPM scheme and

work in the more general framework of a quasiprobabil-
ity distribution, how is the average exponentiated work
⟨e−βW ⟩ modified if [ρ,H(t1)] ̸= 0, namely quantum co-
herences are present in the initial density operator ρ? It
is indeed clear that, since ρ is not thermal, the JE in
Eq. (9090) is no longer valid and a further correction has
to be included to attain a modified JE expression even
for this case. Notice that a different correction has to be
considered for all the protocols that go beyond the TPM
scheme [6767, 104104–106106].
The use of KDQ to describe quantum work fluctuations

leads to the relation

⟨e−βW ⟩KDQ = GW (iβ) = e−β∆FΓ , (97)

Γ ≡ Tr
[
(ρth(t1))

−1
ρΦ† [ρth(t2)]

]
, (98)

is the KDQ correction to the JE that holds for any CPTP
map Φ. In conformity with the results shown in Sec. IIII,
Γ = γ when ρ = D1[ρ], i.e., under the commutative
condition [ρ,H(t1)] = 0. Similar to the efficacy γ, the
KDQ-correction Γ to the JE is not a state function, and
therefore depends on the specific thermodynamic trans-
formation that is performed on the system. However, in
contrast to the TPM result, Γ is in general a complex
number, whose real part can take both negative and pos-
itive values. Consequently, as a possible application, if
one measured Re [Γ] < 0 or Im [Γ] ̸= 0, it would imply
the presence of non-classicality, since the non-positivity
function ℵ in Eq. (2525) would necessarily be greater than
zero.

We conclude this subsection by admitting that the
thermodynamic meaning of the KDQ-correction Γ, as

well as the corrections for the other protocols beyond
the TPM scheme, is still lacking, meaning that further
investigations are thus needed.

C. Non-classical work exerted by qubits: A
case-study

In this section, we discuss a simple example to ana-
lyze the KDQ distribution of work done on a single qubit
that is driven by a work protocol described by a uni-
tary operator U . Assuming the system does not interact
with any external bath, the internal energy change can be
fully identified as work. Albeit simple, this model can be
solved analytically and finds experimental applications
in nuclear magnetic resonance (NMR) spin systems [106106]
and nitrogen-vacancy (NV) centers [1212, 6868] (point defects
in the diamond lattice), where experiments of quantum
thermodynamics beyond TPM have been recently per-
formed.
Let us assume the Hamiltonian of the qubit to be:

H(t) = 1

2

[
Ω (cos δt σx + sin δt σy) + δσz

]
, (99)

corresponding to a spin-1/2 particle subject to an ef-
fective magnetic field rotating around the z-axis. In
the rotating frame, described by the unitary operator
Urot = eiδσ

zt/2, the effective Hamiltonian describing the
dynamics of the qubit becomes time-independent and
reads

H̃ = UrotHU†
rot + i U̇rotU

†
rot =

Ω

2
σx , (100)

so that the system’s evolution operator (in the original
frame) is

U = e−iδσzt/2e−iΩσxt/2. (101)

To find the statistics of work done between times t1 = 0
and t2 = t, we use the spectral decomposition of the time-
dependent Hamiltonian, i.e.,

H(t) =
∑
α=±

EαΠα(t) , (102)

E± = ±1

2
∆ , (103)

Π±(t) =
I
2
± Ω(σx cos δt+ σy sin δt) + δσz

2∆
, (104)

where we have defined a generalized Rabi frequency
∆ ≡

√
δ2 +Ω2. Moreover, we assume the system to have

quantum coherence in the eigenbasis of H(0), so that

ρ =

(
p c
c 1− p

)
, (105)

where 0 ≤ p ≤ 1 corresponds to the populations of the
initial eigenstates, and c is the quantum coherence that
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we have chosen to be real for simplicity. Using the def-
inition of the quasiprobability distribution for work, see
Eq. (8686), we find:

P [W ] = (q−− + q++) δ(W ) +

+ q+−δ(W +∆) + q−+δ(W −∆) , (106)

where the KDQ q are [see Eq. (8585)]:

q−− =
p(δ2 + 2Ω2)− cδΩ+ δ(pδ + cΩ) cosΩt+ icδ∆sinΩt

2∆2
, (107)

q−+ = δ sin
Ωt

2

[
− ic cos(Ωt/2)

∆
+

(pδ + cΩ) sin(Ωt/2)

∆2

]
, (108)

q+− =
δ[(1− p)δ − cΩ](1− cosΩt)− icδ∆sinΩt

2∆2
, (109)

q++ =
(1− p)(δ2 + 2Ω2) + cδΩ+ δ[(1− p)δ − cΩ] cosΩt+ icδ∆sinΩt

2∆2
. (110)

First, we notice that the imaginary parts of qif are
always proportional to the coherence c. Second, the real
parts of qif may become negative. To see this, we specify,
for simplicity, initial conditions and take the maximum
possible coherence: p = c = 1/2. In this case, the real
parts Re[qif ] become:

Re[q−−] =
δ2 − δΩ+ 2Ω2 + δ(δ +Ω) cosΩt

4∆2
, (111)

Re[q−+] =
δ(δ +Ω)(1− cosΩt)

4∆2
, (112)

Re[q+−] =
δ(δ − Ω)(1− cosΩt)

4∆2
, (113)

Re[q++] =
δ2 + δΩ+ 2Ω2 + δ(δ − Ω) cosΩt

4∆2
.(114)

It is possible to see that the minimum value of Re[q−−]
is (1−

√
2)/4 < 0 that is obtained for Ω = (

√
2−1)δ. Sim-

ilarly, the minimum value of Re[q+−] is also (1 −
√
2)/4

attained for Ω = (
√
2 + 1)δ. The time-dependence of

the quasiprobabilities qif is shown in Fig. 33 for the two

cases Ω = (
√
2 ± 1)δ. It is interesting to see that only

one of the Re[qif ] may become negative for each value of
Ω. Moreover, choosing c complex may lead to another of
the Re[qif ] to become negative, but the minimum value

is still (1−
√
2)/4.

D. Enhancement of extractable work

In this section, we are going to explain the meaning
of non-classical work extraction and anomalous energy
exchange or variation.
In any system that is subject to a work protocol,

the extractable work is defined as the amount of en-
ergy that is left over, with respect to the energy of the
system at the beginning of the transformation. Accord-
ingly, if a protocol admits non zero extractable work,

then the average energy at the end of the work proto-
col, ⟨H(t2)⟩ = Tr[UρU†H(t2)], is smaller than the av-
erage energy at the beginning, ⟨H(t1)⟩ = Tr[ρH(t1)], so
that the extra energy amount can be used by a work
reservoir [107107] or stored in a battery [108108]. Hence, the
requirement for work extraction is that

⟨W ⟩ ≡ ⟨H(t2)⟩ − ⟨H(t1)⟩ < 0 . (115)

Recently, it has been discussed whether the negativ-
ity of the terms composing a quasiprobability work dis-
tribution may correspond to an enhancement of work
extraction, and whether this circumstance can be wit-
nessed by violating an inequality that is instead valid
under the commutative conditions [ρ,H(t1)] = 0 and
[H(t1),H(t2)] = 0, i.e., when ℵ = 0. The answer to
both these questions is positive [1212].
In order to see this, at the level of energy transi-

tions, let us consider the fact that an excitation process
∆Uif ≡ Ef − Ei > 0 (indexes i, f labelling the initial
and final energies, respectively) occurring in a quantum
process with negative quasiprobability qif is equivalent
to a de-excitation process ∆Uif < 0 in a classical work
transformation with probability |qif |.
During an excitation (stochastic) process, the system

absorbs energy and uses this energy to carry out a tran-
sition between the energy levels. On the other hand, any
de-excitation process that is operated by a thermody-
namic transformation contributes to increase the amount
of the extractable work. Therefore, the presence of nega-
tive quasiprobabilities can be effectively exploited as a re-
source to enhance work extraction, beyond what any clas-
sical stochastic process can achieve. Such enhancement is
deemed as ‘non-classical’, and the internal energy varia-
tions ∆Uif associated to negative probabilities, enabling
it, are called ‘anomalous’. Thus, anomalous energy varia-
tions denote energy exchanges that are inherently quan-
tum mechanical, and heralded by the non-positivity of
KDQ.
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FIG. 3. Real parts of the quasiprobabilities qif defined in
Eqs. (111111)-(114114) (with p = c = 1/2) as a function of time
t = t2 for Ω = (

√
2 − 1)δ in panel (a) and Ω = (

√
2 + 1)δ in

panel (b). Re[q−−] (blue solid line), Re[q+−] (orange dashed
line), Re[q−+] (green dotted line), Re[q++] (red dot-dashed
line).

Let us see how the enhancement of work extraction
occurs. If one uses the TPM scheme, the work extraction
is maximized if we minimize ⟨W ⟩TPM =

∑
i,f pif∆Uif .

Without specifying anything about the thermodynamic
transformation, the necessary condition to achieve the
largest extractable work is to set{

pif = 0 for ∆Uif > 0,

pif > 0 for ∆Uif ≤ 0,
(116)

such that

WTPM = −⟨W ⟩TPM =
∑

Ei≥Ef

pif (Ei − Ef ) ≥ 0 , (117)

leads to extractable work (in absolute value) in the TPM
framework.

If instead the statistics of the internal energy varia-
tions ∆Uif are described by quasiprobabilities (for ex-
ample when [ρ,H(t1)] ̸= 0, as shown in Sec. IIII), then
the extractable work can be enhanced beyond what is

obtained by the TPM scheme, by setting

{
Re [qif ] < 0 for ∆Uif > 0,

Re [qif ] > 0 for ∆Uif ≤ 0 .
(118)

In this way, the magnitude of the extractable work

W = −⟨W ⟩ =
∑
i,f

qif (Ei − Ef ) ≥ 0, (119)

can be effectively maximized and satisfies the inequality

Wmax ≥ Wmax
TPM. (120)

To achieve this, any excitation process ∆Uif > 0 has
to be associated to a negative Re[qif ], while any de-
excitation process ∆Uif < 0 should occur with positive
quasiprobability. It is worth observing that for the task
of work extraction, the imaginary parts of KDQ do not
play an effective role, since they do not affect the average
work. Also notice that enhanced extractable work, en-
abled by negativity, can be experimentally demonstrated,
not by means of a procedure based on sequential measure-
ments, but via a procedure that is able to reconstruct
KDQ [see Sec. IIIIII].

What really matters to get enhanced work extrac-
tion is to ensure non-classical behaviours in the time-
distribution of negativity, namely the distribution over
time of the quasiprobabilities with negative real part. In
fact, it is not crucial for the non-positivity functional ℵ
to take a large value, but that a significant negativity
is associated to a positive ‘anomalous’ energy variations
∆Uif > 0. At the same time, work extraction is enhanced
when negative values of ∆Uif occur with the largest pos-
sible positive quasiprobability qif . The interplay of all
these conditions is model-dependent and depends on the
specific parameters that rule the dynamics of the work
process. Therefore, it is evident that attaining enhanced
work extraction stems from an optimization routine that
makes Eqs. (118118) valid in a given time interval of the
work protocol.

In Ref. [1212], the electronic spin of an NV center in bulk
diamond at room temperature was considered as the sys-
tem to which a work protocol would be applied. Work
extraction was observed and its maximum values were
associated to negative Re[qif ] fulfilling Eq. (120120). The
work extraction enhancement observed in Ref. [1212] orig-
inates from a sub-optimal solution for the optimization
of work extraction against the time duration of the work
protocol. In fact, due to the experimental constraints,
only one internal energy change ∆U , corresponding to
the largest possible value, was associated with a negative
quasiprobability. At the same time, the smaller internal
energy variation −∆U occurred with positive quasiprob-
ability, with all other quasiprobabilities being negligible.



19

1. Enhanced extractable work from violating a classical
inequality

We are going to show that fulfilling Eq. (120120) implies
the violation of an inequality for work extraction that
holds as long as the commutativity condition [ρ,H(t1)] =
0 is obeyed [1212]. The violation of such an inequality
cannot occur in any experiment implementing the TPM
scheme.

Let us thus consider that the projectors Πi and Πf of
the Hamiltonian at the initial and final times t1 and t2
of the work protocol are rank 1 operators. This means
that Πi = |Ei(t1)⟩⟨Ei(t1)| and Πf = |Ef (t2)⟩⟨Ef (t2)|.
Moreover, we assume, for simplicity, the initial density
operator ρ = |ψ⟩⟨ψ| to be pure. Under these assumptions,
the MHQ takes the form

Re [qif ] = Re
[
⟨ψ|Ei⟩⟨Ei|U†|Ef ⟩⟨Ef |U |ψ⟩

]
. (121)

Interestingly, all the terms ⟨ψ|Ei⟩, ⟨Ei|U†|Ef ⟩, ⟨Ef |U |ψ⟩
are complex numbers whose real parts are linked with a
standard probability amplitude, either defined at a single
time or measurable by means of the TPM scheme. In
particular, for the probability pi to measure the initial
energy of the system, one has

pi ≡ |⟨Ei|ψ⟩|2 =⇒ ⟨ψ|Ei⟩ = e−iϕi
√
pi , (122)

where ϕi is a phase factor. Then, in the same spirit, we
can write

pf |i ≡ |⟨Ef |U†|Ei⟩|2 =⇒ ⟨Ei|U†|Ef ⟩ = e−iφif
√
pf |i

(123)
and

pf ≡ |⟨ψ|U |Ef ⟩|2 =⇒ ⟨Ef |U |ψ⟩ = e−iθf√pf ,
(124)

where φif , θf are the corresponding phase factors.
In Eq. (123123), pf |i is the conditional probability (asso-

ciated to the TPM scheme) of measuring the energy Ef

at time t2 conditioned to have measured Ei at time t1.
Instead, in Eq. (124124), pf is the probability to measure the
energy Ef at the end of the work protocol, by initializing
the system in ρ = |ψ⟩⟨ψ|. Notice that, by construction,
the probability pf encodes information on the quantum
coherence that is initially present in ρ; for this reason, pf
is a key element of the EPM scheme [6767, 6868, 109109].
Overall, combining Eqs. (122122)-(124124) we arrive at

Re [qif ] = Re
[
Λif
√
pif pf

]
, (125)

where, by definition, pif = pf |ipi is the joint prob-
ability returned by the TPM scheme, and Λif ≡
cos(ϕi + φif + θf ) that is named activity [1212]. The latter
brings information on the quantum interference fringes
among the eigenbasis of ρ, Πi(t1) and ΠH

f (t2). It is in-
deed the activity Λif that is responsible for the negativity
of Re [qif ], such that Re [qif ] < 0 if and only if Λif < 0.

If we substitute Eq. (125125) into the expression of the
work extraction, we find

WTPM ≤
∑

Ei≥Ef

(Ei − Ef )
√
pif pf (126)

whenever Λif ≥ 0 ∀ i, f . The inequality in Eq. (126126) gives
an upper bound, dependent on the work protocol, to the
amount of extractable work when ℵ = 0, and applies
also to initial mixed quantum states. Hence, a violation
of this bound, as experimentally tested in Ref. [1212], is
a witness of the presence of negativity, as well as non-
classical work extraction.
In Fig. 44, we show an example of the enhancement of

work extraction aided by negativity in the qubit driven
work protocol introduced in IVCIVC. In particular, we
plot the average work of the TPM and KDQ probabil-
ity distribution using the energies and Hamiltonian pro-
jectors in Eqs. (103103)-(104104), as well as the quasiproba-
bilities in Eqs. (107107)-(110110), with p = 1/2, c = −1/2
(c = 0 to get the work statistics of the TPM scheme),

and δ = Ω/(
√
2 + 1).

Interestingly, if the initial state of the qubit [see
Eq. (105105)] is fully mixed (c = 0), then the average work is
zero for any value of the final time t2, see Fig. 44. On the
other hand, turning on the quantum coherence in ρ and
making use of quasiprobability to attain the work dis-
tribution P [W ], the energy injected by the driving field
is transformed into extractable work, beyond the classi-
cal bound [right-hand-side of Eq. (126126)] in the interval
(Ωt)/π ∈ [0.6, 1.4] approximately.
In this qubit case-study the classical bound amounts

to

−(E− − E+)
√
p+−p− =

= δ

(
(1− p)(1− cos(Ωt))

2
Tr
[
UρU†Π−

])1/2

with U given by Eq. (101101).

E. Work variance in the KDQ setting

In the previous section, we have shown how using KDQ
to describe the work fluctuations makes the average work
⟨W ⟩ =

∑
i,f qif (Ef − Ei) equal to the corresponding

value that is unperturbed by the measurement distur-
bance. Moreover, even though the KDQ qif are complex
numbers, the average work ⟨W ⟩ is always a real num-
ber, with a clear interpretation with classical physics, as
shown above.
In the following, we analyze how the fact that qif

are complex numbers affects the second moment of the
KDQ distribution of work, P [W ], i.e., the work variance
(∆W )2. This is formally defined by

(∆W )2 =
∑
i,f

qif (Ef − Ei)
2 −

(∑
i,f

qif (Ef − Ei)
)2

=

= ⟨W 2⟩ − ⟨W ⟩2 , (127)
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FIG. 4. Average work in units of Ω for the spin-1/2 model
described in Sec. IVCIVC as a function of the final protocol time
t2 = t. We assume the parameters p = 1/2, c = −1/2 and
Ω = (1 +

√
2)δ. In particular, we plot the average ⟨W ⟩ of

the KDQ distribution of work (blue solid line), the average
work ⟨W ⟩TPM returned by the TPM scheme (orange dashed
line)—equal to zero for any time—and the classical bound
from Eq. (126126) (green dotted line) taken with opposite sign.

where, as before, all the averages ⟨·⟩ are performed with
respect to ρ, and the second statistical moment ⟨W 2⟩
reads as

⟨W 2⟩ =∑i,f qif

(
E2

i + E2
f − 2EiEf

)
=

= ⟨H2(t1)⟩+ ⟨HH(t2)
2⟩ − 2Tr

[
ρH(t1)HH(t2)

]
.

(128)

The quantity Tr
[
ρH(t1)HH(t2)

]
in the right-hand-

side of Eq. (128128) is a two-time quantum correlation func-
tion for the Hamiltonian H and is generally complex,
making ⟨W 2⟩ also complex. This means that the imag-
inary part of ⟨W 2⟩ is equal to the imaginary part of
Tr[ρH(t1)HH(t2)], whose meaning lies in the presence
of phase correlations in the scalar products of the eigen-
vectors of ρ and H at the times t1, t2. For this reason,
the quantum correlation function for H preserves infor-
mation about the quantum coherence contained in ρ, and
this feature is transferred to the work variance (∆W )2.
In this regard, we are going to show that the imaginary
part of (∆W )2, Im

[
(∆W )2

]
, is directly linked with the

non-commutativity between ρ and H. From this, follow-
ing the time-energy Schrödinger-Robertson uncertainty
relation [110110–112112], Im

[
(∆W )2

]
is bounded by the prod-

uct of the uncertainties of H(t1) and HH(t2) respectively.
A first expression of the work variance is obtained by

combining Eqs. (127127)-(128128), so that:

(∆W )2 = (∆H(t1))2 +
(
∆HH(t2)

)2
+

−2Tr
[
ρ (H(t1)− ⟨H(t1)⟩ )

(
HH(t2)− ⟨HH(t2)⟩

)]
,

(129)

where

(∆H(t1))2 = Tr
[
ρ
(
H(t1)− ⟨H(t1)⟩

)2] ∈ R (130)

and(
∆HH(t2)

)2
= Tr

[
ρ
(
HH(t2)− ⟨HH(t2)⟩

)2] ∈ R .
(131)

The last term in the right-hand-side of (129129) identifies
the way Hamiltonian operators at distinct times correlate
in a quantum work protocol. The real and imaginary
parts of Tr

[
ρ (H(t1)− ⟨H(t1)⟩ )

(
HH(t2)− ⟨HH(t2)⟩

)]
are equal respectively to [113113]:

1

2
Tr
[
ρ
{(
H(t1)− ⟨H(t1)⟩

)
,
(
HH(t2)− ⟨HH(t2)⟩

)}]
≡ Cov

(
H(t1),HH(t2)

)
∈ R (132)

and

1

2
Tr
[
ρ
[(
H(t1)− ⟨H(t1)⟩

)
,
(
HH(t2)− ⟨HH(t2)⟩

)]]
≡ −2 iTr

[
ρ
[
H(t1),HH(t2)

] ]
∈ R. (133)

Eq. (132132) defines the quantum covariance of H(t1) and
HH(t2). Instead, in Eq. (133133),Tr[ρ [H(t1),HH(t2)]] is a
purely imaginary number and, by definition, is the ex-
pectation value of the commutator [H(t1),HH(t2)] with
respect to the initial density operator ρ.
This derivation demonstrates that the work variance

has both a real and an imaginary part. The real part
has a clear correspondence with the thermodynamics of
classical systems, as

Re
[
(∆W )2

]
= (∆H(t1))2 +

(
∆HH(t2)

)2
+

− 2Cov
(
H(t1),HH(t2)

)
. (134)

In addition, the fact that the commutator [ρ,H(t1)] ̸= 0
or [H(t1),HH(t2)] ̸= 0 may lead to a decreased work vari-
ance, namely to Re

[
(∆W )2

]
≤ (∆WTPM)2. We show

this for the driven qubit of Sec. IVCIVC and report the re-
sults in Fig. 55 where we assume the same values used for
Fig. 44. Interestingly, apart for Ωt/π = 0, 2 where both
the work average and variances are zero, the real part
of the KDQ work variance Re

[
(∆W )2

]
has a local mini-

mum at Ωt/π = 1 that is the time instant with maximum
negativity.
On the other hand, the imaginary part of the work

variance is

Im
[
(∆W )2

]
= iTr

[
ρ
[
H(t1),HH(t2)

] ]
(135)

that quantifies the possible non-commutativity of H(t1)
andHH(t2). The magnitude of Im

[
(∆W )2

]
can be upper

bounded by making use of the time-energy Schrödinger-
Robertson uncertainty relation [110110–112112]. In fact, the
latter states that, for any quantum observables O1, O2

and density operator ρ,∣∣∣∣ ⟨ [O1,O2] ⟩
2i

∣∣∣∣ ≤ ∆O1 ∆O2 , (136)
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FIG. 5. Plot of the work variances of the KDQ (real part,
blue solid line) and TPM (orange dashed line) distributions,
respectively. The parameters are the same as in Fig. 44.

where ⟨ [O1,O2] ⟩ = Tr[ρ [O1,O2]] and

∆O =
√
⟨O2⟩ − ⟨O⟩2 (137)

with ⟨Ok⟩ = Tr[ρOk]. Therefore, by applying the in-
equality in Eq. (136136) to our setting, we obtain the in-
equality∣∣∣Im [(∆W )2

] ∣∣∣ ≤ 2∆H(t1)∆HH(t2) . (138)

F. Heat fluctuations in the quantum regime

In this section, we no longer deal with work distribu-
tions, and we will focus on heat fluctuations. For this
purpose, we consider the paradigmatic model that con-
sists in placing into contact a cold and a hot quantum
system, which globally undergo a unitary quantum dy-
namics. Depending on the initial quantum states of the
cold and hot systems, different results as well as thermo-
dynamic interpretations can be drawn. In this context,
a first relevant result is in Ref. [114114] and goes under the
name of Jarzynski-Wójcik exchange fluctuation theorem.
In Ref. [114114], two quantum systems Bc and Bh with finite
Hilbert space dimension are prepared in two equilibrium
thermal states at different temperatures βc and βh with
βc > βh. Then, they are made weakly interacting with
one another for a given time interval. Under this assump-
tion, one gets that

⟨e−∆β Q⟩ = 1 , (139)

where Q is the stochastic heat exchanged by the two bod-
ies, and ∆β = βc−βh denotes the difference of the inverse
temperature of the initial thermal states for the two bod-
ies.

If the initial global state of the two systems is a product
state then the average ⟨·⟩ in Eq. (139139) can be performed
with respect to the TPM distribution of the exchanged

heat. To find this, it is sufficient to measure the statis-
tics of the time-independent Hermitian operator repre-
sented by the sum of the local Hamiltonian operators
of the two bodies, i.e., H = HBc

+ HBh
. Furthermore,

throughout this section, we also implicitly assume the
energy-preserving condition for the unitary operator U
that describes the quantum dynamics of the two bodies:

[H , U ] = 0 . (140)

Eq. (140140) physically entails that, at any time t, the aver-
age energy variation in a body is minus the corresponding
average energy variation in the other body. Such symme-
try allows one to study fluctuations of exchanged energy
between the two bodies by just measuring one of them.
In the literature, it has been considered also the case

of an initial quantum state that is locally thermal as in
[114114], but also classically correlated [115115]. This kind of
correlations makes non-thermal the diagonal of the initial
density operator ρ for the two bodies taken individually,
but does not add off-diagonal elements in ρ with respect
to H. As shown in Ref. [115115], a generalized exchange
fluctuation relation, extending Eq. (139139), can be still ob-
tained, as we will discuss next.
Let us now introduce the spectral decomposition of

the local Hamiltonians HBc
and HBh

for each of the two
bodies:

HBk
=
∑
ℓk

EℓkΠℓk (141)

with k = c, h and ℓ = i, f . This implies that the projec-
tors of the total Hamiltonian H are Πicih = Πic ⊗Πih .
For the initial state ρ, we require that the reduced

states of the each body is in equilibrium at inverse tem-
perature βk:

ρth,Bc = Trh [ρ] =
e−βcHBc

Zc
(142)

ρth,Bh
= Trc [ρ] =

e−βhHBh

Zh
(143)

where Zk ≡ Tr
[
e−βkHBk

]
are the local partition func-

tions. We hence have: ρ = ρth,Bc
⊗ ρth,Bh

. While the
reduced states are diagonal in the eigenbasis of HBk

, in
general the global state ρ may contain off-diagonal ele-
ments, with respect to the local energy eigenbasis, that
may be the signature of the presence of quantum corre-
lations.
We are now in the position to define the average heat

flow that, due to the energy-preserving condition, can
be inferred from the energy change of either the cold or
the hot body. Without loss of generality, we choose to
measure it for the cold system as in Ref. [88]. The aver-
age heat flow at the final time t2 of the thermodynamic
transformation is

⟨Q⟩ ≡ Tr [(ρ− ρ′)HBc ] , (144)

where ρ′ = UρU† denotes the evolved density operator
of the two bodies.
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According to Eq. (144144), ⟨Q⟩ ≤ 0 denotes that heat
flowing on average from the hot to the cold body, as
naturally requested by the second law of thermodynamics
with the intervention of no external drive. On the other
hand, by resorting to additional resources, it can also
occur that ⟨Q⟩ > 0 meaning that on average heat flows
from the cold body to the hot one, as in a refrigerator.
Summarising,

⟨Q⟩ ≤ 0 =⇒ hot-to-cold heat flow,

⟨Q⟩ > 0 =⇒ cold-to-hot heat backflow.

Moreover, if the amount of exchanged heat from the
cold to the hot body exceeds in magnitude the value of
(∆β)−1 ln d, with d the Hilbert space dimension of each
body, then the heat backflows are called strong. Notably,
the observation of strong backflows indicates that the
actual quantum states of the bipartite system, on which
heat fluctuations are evaluated, is entangled [116116].
Let us introduce the quasiprobabilities qicihfcfh asso-

ciated to the energy variations ∆Eicihfcfh , eigenvalues
of the total Hamiltonian H of the two bodies. Using
again the definition of the quasiprobability distribution
in Eq. (8686), one has that

qicihfcfh = picihfcfh +Tr
[
ΠH

fcfh
Πicihχ

]
, (145)

where ΠH
fcfh

= U†ΠfcfhU and

picihfcfh = Tr
[
ΠH

fcfh
ΠicihD1[ρ]

]
(146)

is the corresponding joint probabilities returned by the
TPM scheme. As before, in Eq. (146146) we have employed
the dephasing operator D1[ρ] =

∑
icih

ΠicihρΠicih . In

Eqs. (145145)-(146146) the initial quantum state ρ of the two
bodies is linearly decomposed as ρ = D1[ρ] + χ [see
Eq. (55)], where both the diagonal and off-diagonal parts
of ρ are considered with respect to the eigenbasis of H.

Based on this framework, we describe an exchange fluc-
tuation relation that is also valid in the non-commutative
regime of [ρ,H] ̸= 0, due to the presence of quantum cor-
relations or entanglement in the initial state. For this
purpose, let us introduce the stochastic mutual informa-
tion I with elements

Ijcjh ≡ ln

(
Tr [Πjcjhρ]

Tr [Πjcρth,Bc
] Tr [Πjhρth,Bh

]

)
(147)

where j = i, f , such that ∆I ≡ Ifcfh − Iicih . We also
recall that the energy variation in the cold body is Q ≡
Eic − Efc = Efh − Eih , assuming the energy-preserving
condition for U and a resonant interactions between the
bodies. Hence, we find [88]

⟨e∆I+∆βQ⟩ = 1 +Υ, (148)

where the average ⟨·⟩ in Eq. (148148) is made with respect
to the quasiprobabilities qicihfcfh , and

Υ ≡
∑

ic,ih,fc,fh

Tr
[
ΠH

fcfh
Πicihχ

]
Tr [Πfcfhρ]

Tr [Πicihρ]
. (149)

The correction to the exchange fluctuation theorem,
Υ, is equal to zero if [ρ,H] = 0, which is equivalent to
ρ = D1[ρ] and χ = 0. In this case the application of
the TPM scheme suffices. The exchange fluctuation re-
lation Eq. (148148) reduces to the Jarzynski-Wójcik iden-
tity Eq. (139139) in the case ρ = ρth,Bc ⊗ ρth,Bh

, whereby
∆I = 0. Instead, if the diagonal elements of ρ are not
thermally distributed—due to classical correlations in the
H eigenbasis—and χ = 0, then one recovers the exchange
fluctuation relation in [115115], i.e.,

⟨e∆I+∆βQ⟩ = 1 . (150)

We conclude this theoretical analysis about heat fluc-
tuations in the quantum regime, by providing the ther-
modynamic interpretation of the fluctuation profiles as-
sociated to the quasiprobability distribution of heat ex-
changes. Previously, we have seen that the presence of
quantum correlations in the initial state can enhance the
amount of heat backflows, such that ⟨Q⟩ ≥ 0 accord-
ing to the used convention. The explanation of this
phenomenon lies in the possibility to associate nega-
tive quasiprobabilities Re [qicihfcfh ] to positive heat ex-
changes Q = Eic−Efc > 0 corresponding to heat flowing
from the cold body to the hot one. Such a process, which
needs an external energy source for its activation, is trig-
gered by quantum correlations.
Notice that, in order for quantum correlations to be ef-

fectively considered as a resource for heat backflows, it is
required that negative heat exchanges Q ≤ 0 (i.e., energy
fluxes from the hot to the cold bodies) occur with pos-
itive quasiprobabilities Re [qicihfcfh ], similarly to what
happens to work extraction in Sec. IVDIVD. When the en-
hancement induced by quantum correlations in ρ allows
for strong cold-hot heat backflows, then one can state
that the corresponding energy exchange process takes
non-classical traits.

1. Example: Two-qubit system

We now apply the theoretical framework introduced
above to a pair of interacting qubits, at inverse temper-
atures βc and βh, respectively, and local Hamiltonians
HBk

= Ωσz
k, k = c, f . The two qubits are initialized

in a global state ρ containing off-diagonal elements with
respect to H = HBc

+HBh
.

As proven in [88], a general form of the initial state for a
two-qubit system fulfilling the requirements (142142)-(143143)
is

ρ =


p 0 0 0
0 α−1

c − p η eiξ 0
0 η e−iξ α−1

h − p 0
0 0 0 αcαh−αc−αh

αcαh
+ p

 (151)

where p ∈ [0, 1] is a population term, αk ≡ 1 + e−βk

(k = c, h), ξ ∈ [0, 2π], and |η| ≤
√
(α−1

c − p)(α−1
h − p)
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FIG. 6. Average heat exchanged ⟨Q⟩, see Eq. (153153), against
θ for different values of the coherence strength η = 0 (solid
line), η = 0.2 (dashed line), η = 0.4 (dotted line). Note that
⟨Q⟩ = ⟨Q⟩TPM for η = 0. Other parameters: p = 0, ξ =
0, βc = 10, βh = 0.1.

such that ρ ≥ 0. In Ref. [88], it is also shown that the
energy-preserving condition [Eq. (140140)] is responsible to
set a minimal form for the unitary operator U :

U =

1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 (152)

with θ ∈ [0, 2π], equivalent to a partial swap transforma-
tion. In the expression of U in Eq. (152152), it is implicitly
assumed that the interaction between the two bodies is
taken resonant, in order to optimize the dynamics of heat
exchange with U energy-preserving.
Under these assumptions, the analytical expression of

the heat exchange (144144) between the two bodies reads [88]

⟨Q⟩ = −η cos(ξ) sin(2θ) + ⟨Q⟩TPM (153)

where

⟨Q⟩TPM = sin2(θ)

(
1

1 + eβc
− 1

1 + eβh

)
(154)

is the average heat flow obtained by applying the TPM
scheme, or by setting η = 0 (no quantum coherence) in
Eq. (153153). For any value of θ, βc and βh, it can be easily
found that ⟨Q⟩TPM ≤ 0, which means no cold-to-hot heat
backflows is possible. This is evident in Fig. 66 where we
plot Eq. (153153) against θ for η = 0 and for η ̸= 0 for fixed
p, ξ, βc, βh. From the figure it can be observed that, for
some values of θ, ⟨Q⟩ > 0 (cold-to-hot heat backflows) is
possible when η ̸= 0. The parameter η also affects the
magnitude of the heat exchanged between the cold and
hot systems.

V. QUANTUM MANY-BODY SYSTEMS

Quasiprobability distributions play an instrumental
role in the understanding of quantum many-body sys-

tems. In this section, we will present their applica-
tions in the context of quantum scrambling and out-
of-time-ordered correlators (Sec. VAVA), the Loschmidt
echo (Sec. VBVB) and a technique for efficiently calculating
the quasiprobability distributions of free fermion systems
(Sec. VCVC).

A. Quantum scrambling & Out-of-time-ordered
correlators (OTOCs)

Out-of-time-ordered correlators (OTOCs) allow the
study of quantum information scrambling, a phenomenon
in which localized quantum information rapidly spreads
across multiple degrees of freedom in many-body sys-
tems [117117, 118118]. OTOCs have recently found extensive
applications in diverse fields, such as condensed matter
physics, quantum chaos, holography, and the study of
black holes. Their versatility has thus pushed the de-
velopment of numerous experimental proposals aimed at
measuring OTOCs [119119–124124], with some experiments al-
ready realized [125125–130130].
In this section, we review the basic definition of

OTOCs and show how they relate to quasiprobabili-
ties. This connection has been recently noted in various
works [44, 2323, 5454, 131131].
Let us consider a system that is initially prepared at

time t = 0 in the state ρ and subject to a time evolution
described by the unitary operator U . We also assume
that, at the beginning of the dynamics, the system is per-
turbed by the application of a unitary operator Y [132132],
acting locally on a part of the system. For instance©,
if the system is made of qubits, we may consider the
spin flip Y = σx

j that acts on the qubit j (see Fig. 77).
As the system evolves in time, we would like to see how
the dynamics of the perturbation Yt = U†Y U affects the
measurement of another local operator V acting on an-
other disjoint part of the system, e.g. V = σz

i with i ̸= j.
This can be assessed by considering the OTOC:

F (t) ≡
〈
Y †
t V

†YtV
〉
, (155)

where, here and in the following, the average is always
taken over the initial state ρ: ⟨·⟩ = Tr[ρ ·].
While the OTOC is in general a complex number, one

can consider a real quantity by introducing the OTO
commutator:

C(t) ≡ 1

2

〈
[Yt, V ]†[Yt, V ]

〉
. (156)

Its interpretation is quite clear: initially, the operators Y
and V commute as they have support on spatially sepa-
rated parts of the system, [Y, V ] = 0. However, as time
progresses, the effects of the perturbation Yt may reach
the support region of V and their commutator might be-
come nonzero: [Yt, V ] ̸= 0. The quantity C(t) measures
the magnitude of this commutator. If both operators V



24

1

N

i
j

2
3

N − 1

k Y

V

FIG. 7. Schematic diagram of the OTOC measurement: the
system is made ofN interacting units. Initially a perturbation
described by a unitary operation Y is applied to the unit j;
subsequently, the quantum observable V is measured on the
unit i.

and Y are unitary, the OTO commutator is related to
the OTOC by:

C(t) =
1

2

〈
(V †Y †

t − Y †
t V

†)(YtV − V Yt)
〉
=

= 1− 1

2

〈
Y †
t V

†YtV + V †Y †
t V Yt

〉
=

= 1− Re[F (t)] . (157)

Next, we are going to show that an OTOC is equal
to the characteristic function of a KDQ. To this end, let
us follow Ref. [133133], which introduces the wing-flap pro-
tocol and express the unitary operator V in exponential
form in terms of its generator: V (u) = eiuO with O a
Hermitian operator and u a real scalar. The spectral de-
composition of the observable O reads: O =

∑
m omΠm

in terms of its real eigenvalues om and the corresponding
orthogonal projectors Πm. Using these definitions, V can
be expressed as

V (u) =
∑
m

eiuomΠm . (158)

Hence, we can define both the KDQ

qnm(t) =
〈
Y †
t ΠnYtΠm

〉
, (159)

and the change ∆onm = om − on in the eigenvalues of
O when two measurements of O are performed at times
t1 = 0 and t2 = t, respectively. Notice that, in order to
denote a quasiprobability, we continue using the simpli-
fied notation adopted in Sec. IVIV, whereby the subscript in
qnm contains the indexes labelling the measurement out-
comes at the initial and final times of a two-time proce-
dure. Then, the quasiprobability distribution to observe

a change ∆o(t) at time t is given by

P [∆o, t] =
∑
mn

qnm(t)δ(∆o(t)−∆onm), (160)

and the characteristic function of P [∆o, t] is its Fourier
transform (see Sec. II C 3IIC 3), such that

G(u, t) =

∫ ∞

−∞
P [∆o, t]eiu∆od∆o =

=
∑
n,m

qnm(t)eiu∆onm =

=
∑
n,m

eiu(om−on)
〈
Y †
t ΠnYtΠm

〉
=

=
〈
Y †
t V

†(u)YtV (u)
〉
= F (t) (161)

that can thus be expressed as an OTOC.
In general, whenever [ρ,O] ̸= 0, both the KDQ

P [∆o, t] and its characteristic function G(u, t) are com-
plex numbers. When [ρ,O] = 0, the KDQ is real and
positive, as explained in Sec. IIII.
Similar to Secs. IIII-IVIV, we can define the corresponding

MHQ distribution that can be associated with an OTOC.
Such a distribution is the real part of the corresponding
KDQ one: rnm = Re qnm(t) and its characteristic func-
tion reads as

GMHQ(u, t) =
G(u, t) + G∗(−u, t)

2
. (162)

Interestingly, using the equality

G(−u, t) =
〈
Y †
t V

†(−u)YtV (−u)
〉
=

=
〈
Y †
t V (u)YtV

†(u)
〉
, (163)

we obtain

GMHQ(u, t) =

=
1

2

[〈
Y †
t V

†(u)YtV (u)
〉
+
〈
V (u)Y †

t V
†(u)Yt

〉]
=

= Re[F (t)] = 1− C(t) . (164)

Let us now consider a practical example and let

H = B1σ
z
1 +B2σ

z
2 + Jσx

1σ
x
2 (165)

be the Hamiltonian of two qubits initially in the thermal
state

ρ =
e−βH

Tr [e−βH]
(166)

with inverse temperature β. Then, we choose Y = σz
1

and O = σz
2 . Notice that neither Y nor O commute

with either H or ρ. Therefore, this is an ideal setting to
test the possible presence of non-positivity in the KDQ
(159159). For this purpose, we can write the measurement
observable as O = |0⟩⟨0| − |1⟩⟨1|, from which Π0 = |0⟩⟨0|
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and Π1 = |1⟩⟨1| with the corresponding eigenvalues o0 =
1 and o1 = −1. We stress that the projectors Π0,Π1 of
O act locally on qubit 2. One can see that the evolution
operator U = exp(−iHt) is periodic with the frequency

ω = 2
√
(B1 +B2)2 + J2.

In Fig. 88, we show the real and imaginary part of
G(u, t) fixing u = π/2 for various values of J . It is evi-
dent that Re[G(u, t)] can become negative for sufficiently
large J and that Im[G(u, t)] is generally nonzero. We
also show the quasiprobabilities qnm. The negativity in
Re[G(u, t)] is reflected in the negativity of the quasiprob-
ability q00 that is the only one becoming negative. Since
the probabilities need to fulfil the normalization condi-
tion, it means that q11 is amplified due to the presence
of quantum coherences in the initial state ρ, compared
to a case in which the initial state commutes with the
observable O.

In Fig. 88(f), we show a contour plot of the minimum
value of Re[G(u, t)] = GMHQ(u, t) in the time interval
0 ≤ t ≤ 20 as a function of β and J . First, as expected,
we confirm that larger values of the interaction strength
J always lead to a stronger negativity. On the other
hand, the effect of temperature is nontrivial, as increas-
ing temperatures may lead to a larger negative value of
Re[G(u, t)]. This seemingly counter-intuitive behaviour
stems from the fact that sometimes initializing the quan-
tum system in the ground state alone does not lead to
non-positivity. Instead, the nonzero occupation of ex-
cited states, even if populated incoherently [134134], and
the transitions between them may lead indeed to nega-
tive quasiprobabilities. A similar behaviour is observed
for the KDQ of the Ising model, see Sec. VCVC.

B. Link with the Loschmidt echo

Another interesting connection of quasiprobability dis-
tributions with the irreversibility of many-body systems
arises in the context of quantum chaos and decoherence.
Consider a system of many particles, classical or quan-
tum, that evolves in time for a period t according to a
time-independent Hamiltonian H0. If we were to invert
all momenta and run the evolution backward we should
be able to recover the initial state. However, little imper-
fections in the inverted evolution or decoherence induced
by an external environment may cause some deviations.
For an initial pure state |ψ⟩, one can define the Loschmidt
echo (LE) L(t) = |G(t)|2 as the absolute square value of
the complex amplitude

G(t) = ⟨ψ| eiH0te−iHδt |ψ⟩ , (167)

and the generalization to mixed states and non unitary
evolutions is straightforward.

Mathematically, L(t) represents the fidelity, in terms of
the overlap, between the initial state |ψ⟩ evolved with the
unperturbed Hamiltonian H0 and the state |ψ⟩ evolved
with the perturbed Hamiltonian Hδ. Peres transferred
the LE idea in the quantum domain [7979], while Ref. [135135]

used the LE to analyze the decoherence of a many-body
spin system and the relation to chaos. For the quantum
version of systems with a classically chaotic Hamiltonian
(for instance a particle moving in a driven double well,
see Ref. [135135]) the rate at which the information about
the initial state is destroyed by the environment, within
a range of couplings to the environment, is set by the
classical maximal Lyapunov exponent. Under these as-
sumptions, the LE decays exponentially in time with the
Lyapunov exponent, thus revealing the underlying clas-
sical chaotic behaviour; see also Ref. [8080].
Moreover, the LE was beneficial to uncover a new type

of phase transition occurring in time. In this regard, if we
assume that the initial state |ψ⟩ is the ground state of H0

with zero energy, then the LE amplitude (167167) reduces
to

G(t) = ⟨ψ| e−iHδt |ψ⟩ , (168)

which looks like the partition function of the Hamiltonian
Hδ but with an imaginary inverse temperature it. Since
classical phase transitions arise because of singularities
in the partition function, Heyl and coworkers discovered
dynamical quantum phase transitions as those that give
rise to singularities in the LE at specific instants of time,
see Refs. [136136, 137137].
The LE is also strongly connected with the statistics

of work as mentioned in Sec. IVIV and described in detail
in Ref. [138138]. In fact, Eq. (167167) can be interpreted as
the characteristic function of the work done on a quan-
tum system initially in the state |ψ⟩, whose Hamilto-
nian is subject to a quench dynamics that instantaneously
changes H0 to Hδ.
Let us now formalize the connection between the LE

and the KDQ. First, we write the spectral decomposition
of the two Hamiltonian operators: H0 =

∑
nEnΠn and

Hδ =
∑

mE
(δ)
m Π

(δ)
m . With these assumptions, let us write

an expression for the LE for a generic mixed initial state:

G(t) = Tr
[
ρ eiH0te−iHδt

]
=

=
∑
n,m

e−i(E(δ)
m −En)tqnm , (169)

where we have introduced the KDQ qnm of the random

variable W = E
(δ)
m − En, defined as

qnm = Tr
[
ρΠnΠ

(δ)
m

]
. (170)

Thus, the Fourier transform of G(t) with respect to time
t, i.e.,

P [W ] =

∫
G(t)eiWtdt =

=
∑
n,m

δ(W − E(δ)
m + En)qnm, (171)

can be interpreted as the quasiprobability distribution for

the work W = E
(δ)
m − En done on the quantum system,
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FIG. 8. Real and imaginary parts of G(u, t), panels (a) and (b) respectively, and the non-positivity functional ℵ [see Eq. (2525)]
in panel (c), as a function of time for different values of the coupling J (lines, blue solid: J = 0.5, orange dashed: J = 1.5,
green dotted: J = 2.5). For J = 2, we plot the real and imaginary parts of qnm in panels (d) and (e) respectively, as a function
of ωt, where ω is defined in the main text (lines, blue solid: nm = 11, orange dashed: nm = 10, green dotted: nm = 00). (f)
Contour plot of the the minimum value of Re[G] = GMHQ in the time interval 0 ≤ t ≤ 20 as a function of β and J . Other
parameters: u = π/2, B1 = 1, B2 = 1.1, β = 10.

which initially is in the state ρ and whose Hamiltonian is
suddenly changed from H0 to Hδ. However, it is worth
noting that in contrast to the characteristic function of
work obtained using the TPM scheme [138138], in the gen-
eral case the initial state ρ may not commute with any
of the two Hamiltonian operators H0 and Hδ. This fact,
as we have seen in other examples earlier, may give rise
to a distribution P [W ] with non-positive values.

We now proceed to illustrate these concepts with a
simple example. Let us consider a qubit in the pure initial
state

|ψ⟩ = |0⟩+ |1⟩√
2

(172)

and let us choose the Hamiltonian operators H0 and Hδ

as

H0 = Bσz, (173)

Hδ = H0 + δσx. (174)

The eigenstates of H0 are simply |0⟩ and |1⟩, with eigen-
values ±B respectively, and let us define the projectors
on these states as Πi = |i⟩⟨i| with i = 0, 1. Similarly, for
Hδ, the eigenstates are:

|0δ⟩ = cos(θ) |0⟩+ sin(θ) |1⟩ , (175)

|1δ⟩ = − sin(θ) |0⟩+ cos(θ) |1⟩ , (176)

with eigenvalues ±Bδ, where we have introduced Bδ ≡√
B2 + δ2 and the mixing angle θ such that

tan(θ) =
δ

δ2 + 2B(B +Bδ)
. (177)

Hence, for the LE, we get:

G(t) = cos(Bt) cos(Bδt)+
B sin(Bt)− iδ cos(Bt)

Bδ
sin(Bδt),

(178)
whose real part is plotted in Fig. 99(a).

It is evident that for very small δ the two evolutions
associated with H0 and Hδ are very similar and G(t)
remains close to 1. However, when δ increases, the per-
turbed Hamiltonian Hδ induces a diverging trajectory
for the initial state |ψ⟩. As the system is small, large
revivals of the LE are possible for longer times, but the
short time response is symptomatic of what would hap-
pen for a much larger system. Moreover, for the KDQ,
we obtain:

qnm =
1

4Bδ
[Bδ + (−1)m(δ + (−1)nB)] , (179)

where n,m = 0, 1. After a close inspection, since Bδ <
B + δ, it is evident that q01 < 0 that corresponds to
the transition between the highest and the lowest energy
eigenstates of H and Hδ, respectively. Instead, all the
other quasiprobabilities are strictly positive. They are
plotted in Fig. 99(b). In the inset of the figure, we also plot
the non-positivity functional ℵ, which is always nonzero
(since one quasiprobability q01 is always negative) and
peaks around δ ∼ B.
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FIG. 9. (a) Real part of LE G(t) as a function of time for
different values of δ: 0.1 (blue solid line), 0.4 (orange dashed
line) 0.7 (green dotted line) 1.0 (red dot-dashed line). (b)
Quasiprobabilities qnm associated with the LE of Eq. (178178)
as a function of δ/B: q00 (blue solid line), q01 (orange dashed
line), q10 (green dotted line), q11 (red dot-dashed line). Inset:
non-positivity functional ℵ [see Eq. (2525)] as a function of δ/B.

C. Quantum work in quadratic fermionic systems

In this section, we explain how to calculate the KDQ
for systems of free fermions described by Hamiltonians
that are quadratic in fermionic creation and annihila-
tion operators. This is relevant not only for actual
fermionic systems, for instance ultracold atoms in op-
tical lattices, but also for systems that can be mapped
onto free fermion models, for instance Ising and XY spin
chains.

Quasiprobability distributions of work in quadratic
fermionic systems have been recently calculated in a few
references; see for instance Refs. [1616, 1717, 139139]. Inspired
by the approach taken in Ref. [139139], here we showcase
the calculation of the KDQ for an Ising spin chain with

N spin-1/2 particles, described by the Hamiltonian

H(λ) = −
N∑
j=1

(
λσz

j + σx
j σ

x
j+1

)
, (180)

where periodic boundary conditions are assumed:
σα
N+1 ≡ σα

1 , α = x, y, z. The parameter λ is an effective
transverse magnetic field. The critical value λc = 1 sep-
arates the ferromagnetic phase, existing for λ < λc, from
the paramagnetic phase occurring for λ > λc. Within
the ferromagnetic phase, in the thermodynamic limit,
the ground state is doubly degenerate with a macroscopic
magnetization along x, while in the paramagnetic phase
the ground state is non degenerate and exhibits an in-
duced magnetization along z.
To diagonalize the Ising Hamiltonian in Eq. (180180),

following Refs. [140140, 141141], we first employ the Jordan-
Wigner transformation that expresses the fermionic an-
nihilation operators

ai =

i−1∏
j=1

σz
j

σ−
i (181)

in terms of the spin ladder operators σ−
i ≡ 1

2 (σ
x
i − iσy

i ).
Then, we transpose the problem to the quasimomen-

tum space by defining the fermionic operators

ck =
1√
N

N∑
j=1

e−ikjaj , (182)

where the possible values of the quasimomenta are k =
2πm/N with m = −N/2+1, . . . , N/2 (assuming for sim-
plicity N even). Let us thus define the fermionic op-
erators γk that are obtained by applying the following
Bogoliubov rotation to the operators ck:

γk = cos

(
θk
2

)
ck − i sin

(
θk
2

)
c†−k . (183)

The fermionic operators γk depend on the angles θk, im-
plicitly given by

eiθk =
λ− e−ik√

sin2 k + (λ− cos k)2
, (184)

and satisfy the canonical anti-commutation relations

{γk, γ†k′} = δkk′ , {γk, γk′} = 0 . (185)

In terms of the operators γk, the Hamiltonian Eq. (180180)
reduces to a diagonal form:

H(λ) =
∑
k

ϵk(λ)

(
γ†kγk −

1

2

)
, (186)

where

ϵk(λ) = 2

√
sin2 k + (λ− cos k)2 (187)
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are the single particle eigenenergies.
In what follows, we consider a sudden change of

the Hamiltonian H(λ) in which the magnetic field λ is
changed instantaneously from the initial value λ0 to the
final value λ1. To calculate the quasiprobabilities de-
fined in Eq. (8585), we need to express the fermionic op-

erators γ
(1)
k , which diagonalize H(λ1) with eigenenergies

ϵ
(1)
k = ϵk(λ1), in terms of the fermionic operators γ

(0)
k di-

agonalizing H(λ0) with eigenenergies ϵ
(0)
k = ϵk(λ0). This

is possible thanks to the linear Bogoliubov transforma-
tion [140140]:

γ
(1)
k = γ

(0)
k cos

(
∆k

2

)
+ γ

(0)†
−k sin

(
∆k

2

)
, (188)

where ∆k ≡ θ
(1)
k − θ(0)k denotes the difference of Bogoli-

ubov angles θ
(j)
k corresponding to λj , with j = 0, 1. Let

us now define the vacuum states |0k⟩ and
∣∣0̃k〉 that are

such that γ
(0)
k |0k⟩ = 0 and γ

(1)
k

∣∣0̃k〉 = 0. The vacua
of the two Hamiltonian operators H(λ0) and H(λ1) are
related by the relation

|0k0−k⟩ =
(
cos

(
∆k

2

)
+ sin

(
∆k

2

)
γ
(1)†
k γ

(1)†
−k

) ∣∣0̃k0̃−k

〉
.

(189)
Here, the need for a quasiprobability approach arises
whenever one chooses an initial state ρ that has coher-
ences in the eigenbasis of H(λ0). In our example, we
choose the following state:

ρ = p |ΨG⟩⟨ΨG|+ (1− p)ρG(λ0), (190)

with 0 ≤ p ≤ 1. In Eq. (190190), ρG(λ0) is the Gibbs equilib-
rium thermal state that corresponds to the initial Hamil-
tonian, i.e.,

ρG(λ0) =
e−βH(λ0)

Z(λ0)
= (191)

=
1

Z(λ0)

⊗
k

[
e−βϵ

(0)
k /2 |1k⟩⟨1k|+ eβϵ

(0)
k /2 |0k⟩⟨0k|

]
,

where β is the inverse temperature, and Z(λ0) =∏
k Zk(λ0) is the total partition function, with Zk(λ0) =

2cosh(βϵ
(0)
k /2) denoting the partition function for each

quasimomentum. Moreover, in Eq. (190190), we have also
introduced the coherent Gibbs state |ΨG⟩:

|ΨG⟩ =
⊗
k

1√
Zk(λ0)

(
e−βϵ

(0)
k /4 |1k⟩+ eβϵ

(0)
k /4 |0k⟩

)
,

(192)
which has the same energy distribution of ρG(λ0) but is a
pure state. Crucially, |ΨG⟩⟨ΨG| contains coherent terms
in the initial energy eigenbasis, e.g., |0k⟩⟨1k|. This means
that the initial state ρ is a mixture of the Gibbs equi-
librium state ρG(λ0), which is diagonal in the eigenbasis
of the initial Hamiltonian, and of |ΨG⟩⟨ΨG| that exhibits
non diagonal quantum coherence.
Let us now calculate the KDQ distribution of the work

done by suddenly change the Hamiltonian from H(λ0) to
H(λ1). Since ϵk = ϵ−k, we can rewrite the initial state
as:

ρ =
1

Z(λ0)

⊗
k>0

[
e−βϵ

(0)
k |1k1−k⟩⟨1k1−k|+ |1k0−k⟩⟨1k0−k|

+ |0k1−k⟩⟨0k1−k|+ eβϵ
(0)
k |0k0−k⟩⟨0k0−k|

]
+

+
p

Z(λ0)

⊗
k>0

[
|1k1−k⟩⟨0k0−k|+ |1k0−k⟩⟨0k1−k|+ h.c.

]

From Eq. (189189), we see that the eigenstates ofH(λ0) with
quasimomenta ±k are transformed into the superposition
of eigenstates of the H(λ1) with the same pair of quasi-
momenta. Therefore, we can compute the work done for
all possible transitions from |mk, n−k⟩ to

∣∣m′
k, n

′
−k

〉
that

correspond to the work instancesWmn,m′n′(k). The only
transitions that have nonzero quasiprobabilities

qmn,m′n′(k) =
〈
m′

kn
′
−k

∣∣mk, n−k

〉
⟨mk, n−k| ρ

∣∣m′
kn

′
−k

〉
(193)

are:

|0k, 0−k⟩ →
∣∣0′k, 0′−k

〉
W00,00(k) = −ϵ(1)k + ϵ

(0)
k q00,00(k) =

eβϵ
(0)
k

Zk(λ0)2
cos2

(
∆k

2

)
− p sin (∆k)

2Zk(λ0)2

|0k, 0−k⟩ →
∣∣1′k, 1′−k

〉
W00,11(k) = ϵ

(1)
k + ϵ

(0)
k q00,11(k) =

eβϵ
(0)
k

Zk(λ0)2
sin2

(
∆k

2

)
+
p sin (∆k)

2Zk(λ0)2

|0k, 1−k⟩ →
∣∣0′k, 1′−k

〉
W01,01(k) = 0 q01,01(k) =

1

Zk(λ0)2

|1k, 0−k⟩ →
∣∣1′k, 0′−k

〉
W10,10(k) = 0 q10,10(k) =

1

Zk(λ0)2

|1k, 1−k⟩ →
∣∣0′k, 0′−k

〉
W11,00(k) = −ϵ(1)k − ϵ

(0)
k q11,00(k) =

e−βϵ
(0)
k

Zk(λ0)2
sin2

(
∆k

2

)
− p sin (∆k)

2Zk(λ0)2

|1k, 1−k⟩ →
∣∣1′k, 1′−k

〉
W11,11(k) = ϵ

(1)
k − ϵ

(0)
k q11,11(k) =

e−βϵ
(0)
k

Zk(λ0)2
cos2

(
∆k

2

)
+
p sin (∆k)

2Zk(λ0)2

where, for each process, we have included the value of the stochastic work instances and the associated quasiproba-
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FIG. 10. KDQ distribution of work for the Ising model under-
going a sudden change of the Hamiltonian H(λ). Specifically,
the Ising spin chain with N = 12 spins is quenched from λ = 0
to λ = 0.5. Panel (a), p = 0. Panel (b), p = 1. Other param-
eters: β = 0.1.
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FIG. 11. Average work (absolute value) and work variance for
the quantum Ising model as a function of the initial coherence
weight p. The other parameters are the same as in Fig. 1010.

bility. As expected, the quasiprobabilities with non van-
ishing work also depends on the mixture parameter p,
which weighs the contribution of the initial state ρ con-
taining quantum coherence in the eigenbasis of H(λ0).

From the results above we can finally write the KDQ
distribution of work by summing over all the quasimo-

menta k > 0:

P [W ] =
∑

All combinations

∏
k>0

qn,m,n′m′(k)×

× δ

(
W −

∑
k>0

Wn,m,n′,m′(k)

)
. (194)

A coarse grained histogram of P [W ] is shown in
Fig. 1010. For p = 0 the distribution is always non-
negative, while for p = 1 some negative parts appear
and are associated with positive values of W . As a con-
sequence P [W < 0], corresponding to work extraction,
tends to be enhanced, so that ⟨W ⟩ < 0, as explained in
Sec. IVDIVD and shown explicitly in Fig. 1111. Notice that,
in order for P [W ] to exhibit negativity, the temperature
entering ρG(λ0) must be high enough for two-body pro-
cesses 00 ↔ 11 to be significant. In contrast, if the ini-
tial state is close to the ground state these processes are
suppressed and P [W ] is non negative everywhere. Ini-
tial state coherence also leads to a reduction of the work
fluctuations as measured by its variance, see Fig. 1111.

VI. DISCUSSION

Quasiprobabilities have been quite elusive quantities so
far, due to the difficulty for their experimental inference.
As stressed in Sec. IIII, procedures based on sequential pro-
jective measurements cannot reconstruct the quasiprob-
ability distribution of a physical quantity that is defined
over two times, as well as its corresponding statistical
moments.
Recently, however, we have witnessed a resurgence

of quasiprobabilities, thanks to their direct link with
two-point quantum correlation functions of the form
⟨O1(t1)O2(t2)⟩, with O1(t1), O2(t2) quantum observ-
ables, and the average ⟨·⟩ performed with respect to a
generic density operator ρ. Quantum correlation func-
tions are a powerful tool to describe phase changes in
quantum statistical mechanics. Hence, the possibility
to express them in terms of quasiprobabilities opens
the door for building a microscopic, nonequilibrium de-
scription of phenomena that naturally includes genuinely
quantum resources as quantum coherence and correla-
tions.
Beyond theoretical arguments, quasiprobabilities may

turn out to be pivotal also for revealing advantages in
quantum technology applications. In this tutorial we
have seen several examples in quantum thermodynamic
applications, particularly in experiments, including work
extraction [1212]. This is also relevant for the energetic
assessment of quantum computation, where the energy
exchange of a qubit with its environment can be contin-
uously monitored through weak measurements [2222].
The contextual nature of quantum systems facilitates

the emergence of anomalous weak values of the energy ex-
changes due to quantum coherence which manifest them-
selves through negative quasiprobability distributions. In
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the context of metrological applications, negative values
of quasiprobability distributions may enhance parameter
estimation increasing the precision of quantum sensing
protocols [77, 2424].
We conclude the tutorial by mentioning some possi-

ble future perspectives of the topics treated here. By
now, it should be apparent how quasiprobabilities have
connections with all main theoretical and experimental
aspects of quantum theory. Here, we explored the direct
link with quantum measurement theory, fluctuation theo-
rems, work and heat in quantum systems led by genuinely
quantum resources, and the scrambling of information in
many-body systems. Thus, further investigations on the
following subjects could be considered:

(i) To determine how the thermodynamic entropy pro-
duction in a nonequilibrium quantum process is
expressed in terms of a quasiprobability distribu-
tion. In doing this, one could determine the link
with quantum information theory and feedback
mechanism naturally including so-called Maxwell’s
demons [142142].

(ii) The extension of two-time quasiprobability distri-
bution to access multi-time statistics in open quan-
tum systems. This could help investigating non-
Markovian effects arising because of memory effects
in the environment.

(iii) To define to what extent the quasiprobability dis-

tribution underlying an OTOC can be a proper
quantum sensing toolbox. In fact, given a quantum
many-body system, different perturbations may
scramble differently the state of the global sys-
tem [130130], and the corresponding quasiprobability
distribution could give access to this information
and measured by means of an interferometric pro-
cedure.

We hope that the curious and interested reader can
find new, fascinating ideas from this tutorial, and can
develop some of the perspectives listed here, by opening
in turn further open problems.
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