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games. However, we also note that, irrespective of the tie-breaking rule, the

equilibrium set is excessively large. Specifically, any pure strategy that allocates
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some equilibrium. Furthermore, refinements based on the elimination of weakly
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multiplicity, we compute strategies resulting from long-run adaptive learning.
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1. Preliminaries

1.1 Introduction

In a Colonel Blotto game, as envisaged by Borel (1921), two adversaries are

tasked with allocating their budgets of a resource secretly over a given set of

battlefields, aiming to conquer as many battlefields as possible. In each bat-

tlefield, victory is awarded to the adversary allocating a higher amount of the

resource, where a tie-breaking rule is invoked when both parties assign an equal

amount. Applications of Colonel Blotto games extend beyond military conflicts

to areas such as strategic marketing, electoral competition, innovation contests,

and network security. Key contributions in the literature, including Roberson

(2006) for continuous and Hart (2008) for discrete strategy spaces, assumed that

the Colonel Blotto game is constant-sum at ties, i.e., that any tied battlefield

is ultimately conquered by one contestant or another, but never lost. This

characteristic of the standard model ensures that the Colonel Blotto game is

a two-person constant-sum game, significantly simplifying the equilibrium anal-

ysis. Notably, however, the assumption is not satisfied in experimental studies

such as Arad and Rubinstein’s (2012) investigation of multidimensional strategic

reasoning. In their case, tied battlefields count as lost for both parties, rendering

the standard equilibrium characterization invalid.1

The present study investigates a class of Colonel Blotto games characterized

by discrete strategy spaces and flexible tie-breaking rules. Our model nests both

the constant-sum version of the game and its variant where tied battlefields gen-

erate no value. We present an approach that allows constructing Nash equilibria

in this wider class of games. In particular, we find an equilibrium in the ex-

1See Arad and Rubinstein (2012, p. 584) for their statement: “We are not aware of any
analysis of the Nash equilibria of our version of the game.”
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ample considered by Arad and Rubinstein (2012). However, a caveat emerges.

Specifically, our analysis reveals an excessively large equilibrium set within the

model. Furthermore, attempts to narrow the set of equilibria down by applying

the concept of weak dominance prove ineffective. To derive specific predictions

nevertheless, we explore the implications of long-run adaptive learning.

1.2 Contribution

The present study contributes to the literature on finite Blotto games in two main

ways. Firstly, we construct Nash equilibria in the analyzed class of games. For

the constant-sum game, Hart (2008) demonstrated that marginal distributions

on individual battlefields can be chosen to be essentially uniform. Consequently,

assuming divisibility, players can partition the set of battlefields into pairs, evenly

distribute their resources, and randomize uniformly within each pair. We observe

that the precise form of the tie-breaking rule is less crucial, as the probability

of a tie remains constant across bid levels used in equilibrium. We also point

out that the loss of payoffs due to ties, when compared to the constant-sum

version, is insufficient to make overbidding an attractive strategy. Based on

these observations, we establish equilibria in the model with flexible tie-breaking,

specifically in the Arad-Rubinstein game. In doing so, we identify conditions

under which the equilibrium initially identified by Hart (2008) persists in games

with modified tie-breaking.

Our second main contribution is the observation that irrespective of the tie-

breaking rule, the equilibrium set of games in the considered class is excessively

large. More specifically, we show that any pure strategy that does not put too

many resources on any individual battlefield is part of some equilibrium strategy.

The idea of identifying pure strategies that are part of some equilibrium arises

already in Tukey (1949), who termed those strategies as “good.” We find that
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any pure strategy that allocates at most twice the fair share of the budget to

each battlefield is good in this sense.2 Moreover, none of these strategies can

be eliminated by equilibrium refinements based on the elimination of weakly

dominated strategies. As a remedy to this problem, we propose simulating long-

run adaptive learning, which indeed yields definite predictions commensurate

with experimental data.3

1.3 Related literature

In his seminal paper on Colonel Blotto games, Borel (1921) considered both

continuous and finite strategy spaces. For the model with continuous strategy

spaces, Roberson (2006) characterized optimal marginal distributions and unique

equilibrium payoffs. He also noted that in the continuous model, tie-breaking

rules often do not matter (but may need modification to ensure existence).

For the model with discrete strategy spaces, Hart (2008) constructed equilib-

ria not only in all cases with homogeneous endowments, but also for special cases

with heterogeneous endowments. He used two auxiliary models. In the Colonel

Lotto game, players can be thought of as being restricted to mixed strategies

that are invariant under arbitrary permutations of the set of battlefields. In

the General Lotto game, the budget constraint needs to be satisfied in expec-

tation only. Solutions of the General Lotto game turn into solutions of the

corresponding Colonel Lotto and Colonel Blotto games provided that those so-

lutions are feasible, i.e., marginals can be derived from a joint distribution that

satisfies the budget constraint with equality. Building on these concepts, Dzi-

ubiński (2013, 2017) characterized the set of optimal marginal distributions in

the General Lotto game and, provided that the number of resources is divisible

2Conversely, strategies that concentrate the resource on too few battlefields are never good.
3The analysis also leads to a number of supplementary observations on the constant-sum

model, which we decided to report upon in a separate section before the conclusion.
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by the number of battlefields, also the set of optimal marginal distributions of

Colonel Blotto games with discrete strategy spaces. Despite this progress, the

general characterization of the equilibrium set in Colonel Blotto games with dis-

crete strategy spaces has remained elusive. More recently, Liang et al. (2019) and

Aspect and Ewerhart (2022) characterized equilibria in discrete Colonel Blotto

games with two battlefields. Prior work has not attempted to characterize the

equilibrium in a discrete Colonel Blotto game with a modified tie-breaking rule.4

Experimental tests of Blotto games not mentioned above include Avrahami

and Kareev (2009), Kohli et al. (2012), Chowdhury et al. (2013), Avrami et

al. (2014), and Montero et al. (2016), among others.

1.4 Overview of the paper

The structure of this paper is as follows. Section 2 introduces the model. In

Section 3, we present an approach for constructing Nash equilibria within the

analyzed class of games. Section 4 concerns the equilibrium set. Section 5 deals

with refinements, while Section 6 reports on the simulation of adaptive learning

utilizing a high-performance computing environment. Section 7 discusses exten-

sions. Our supplementary findings regarding the standard model are compiled

in Section 8. Section 9 concludes the paper. Technical proofs are provided in an

appendix.

4However, Rapoport and Almadoss (2000) and Dechenaux et al. (2006) have considered an
all-pay auction with discrete bids and a modified tie-breaking rule.
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2. The model

2.1 Setup and notation

Two players, denoted by A and B, each allocate a total of N ≥ 1 units of a

resource over K ≥ 2 battlefields.5 Units of the resource are not divisible. Hence,

a pure strategy of player i is a vector

si =

 si1
...
siK

 ,

such that ski ∈ {0, 1, . . . , N} for every k ∈ {1, . . . , K}, and

K∑
k=1

sik = N.

The set of strategies for players A and B is identical and denoted by S. As

usual, we refer to the opponent of player i by −i. For a given pure strategy

profile (si, s−i) ∈ S × S, the payoff of player i ∈ {A,B} in the Colonel Blotto

game is defined by

πi
(
si, s−i

)
=

K∑
k=1

(
1sik>s−i

k
+

α

2
· 1sik=s−i

k

)
,

where 1sik>s−i
k

equals one if player i’s bid in battlefield k exceeds that of player

−i, and zero otherwise, 1sik=s−i
k

equals one in the case of a tie on battlefield k, and

zero otherwise, and α is a parameter. The departure from the standard model is

the introduction of flexible tie-breaking, represented by α. We call the two-player

game with strategy sets and payoffs defined as above the Colonel Blotto game

Bα ≡ Bα(N,K).

2.2 Examples

Below, we recall two examples of finite Colonel Blotto games that have been

considered in the literature.
5In the excluded cases where N = 0 or K = 1, players have only one strategy. However,

note that we allow for K = 2, which is not necessarily trivial in our model.
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Example 1 (Hart, 2008). In the standard version of the Colonel Blotto game,

B1(N,K), player i’s payoff is defined as

πi
(
si, s−i

)
=

K∑
k=1

(
1sik>s−i

k
+

1

2
· 1sik=s−i

k

)
.

The constant-sum setup underlying Example 1 has indeed been prevalent in the

literature. Borel (1921, p. 100) considered a particular case where N = 7 and

K = 3, a solution of which has been offered by Hart (2008). The setup in

Example 1 has been tested as a symmetric control by Avrahami et al. (2014) for

N ∈ {16, 24} and K = 8.

Example 2 (Arad and Rubinstein, 2012). Two colonels are asked to dis-

tribute a total of N = 120 units of the resource over a total of K = 6 battlefields.

The payoff of a player is the number of battlefields that she assigned strictly more

resources than her opponent. Thus, the game is B0(120, 6), the common set of

strategies is given as S = {si ∈ {0, 1, . . . , 120}6 :
∑6

k=1 s
i
k = 120}, and the payoff

of player i is defined by

πi
(
si, s−i

)
=

6∑
k=1

1sik>s−i
k
.

Abstracting from the fact that the first example keeps N and K flexible, the

main difference between the two examples lies in the tie-breaking rule applied.

In contrast to Example 1, the game in Example 2 fails to be constant-sum, as

the sum of payoffs of both players depends on probabilities of ties occurring on

individual battlefields. This complicates the equilibrium analysis but also makes

the game more interesting. Intuitively, setting α = 0 provides an additional

incentive to outguess the opponent. For instance, in an experiment with α = 1,

subjects might perceive the pure strategy (20, 20, 20, 20, 20, 20)′ as a focal point
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that leads to a fair division.6 With α = 0, however, payoffs at this focal point are

zero for both players, i.e., there is a strong incentive to engage in at least some

additional reasoning. As this consideration is mentioned by Arad and Rubinstein

(2012) early in their work, it might have contributed to their decision to depart

from the standard tie-breaking rule.

2.3 Assumptions

For expositional reasons, we will initially work under a set of simplifying assump-

tions. The implications of dropping these assumptions will be discussed in the

extensions section. Our first assumption concerns the parity of the number of

battlefields.

Assumption 1. K is even.

Assumption 1 simplifies the analysis but can often be dropped at the cost of

additional arguments. Experimental papers tend to work under the assumption.

Our second assumption concerns the relationship between N and K.

Assumption 2. N is divisible by K.

Thus, in the main part of the analysis, we will assume that the number of re-

sources N is a multiple of K. It follows from Assumption 2 that

m =
N

K

is an integer. For an experimental subject, this means that the uniform allocation

that assigns m units of the resource to each of the battlefields is a possibility.

E.g., Assumption 2 is violated in Avrahami and Kareev (2014), but it holds in

Avrahami et al. (2014). The parameter m will play an important role in the

6Here and below, we represent the strategy as a row vector via transposition.
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sequel. The same is true for the efficiency parameter α on which we impose the

following assumption.

Assumption 3. α ∈ [0, 2].

Assumption 3 may be considered natural but nevertheless restricts the efficiency

parameter in two ways. The restriction α ≥ 0 says that ties cannot cause inef-

ficiencies beyond the complete loss of the battlefield value. For α < 0, players

would have a very strong incentive to avoid ties, which may lead to asymmetric

equilibria. Conversely, for α > 2, ties would be “superefficient,” so that pure-

strategy equilibria become natural. Such possibilities will be further discussed

in the extensions section.

Note that Assumptions 1 through 3 hold in the Arad-Rubinstein game. In-

deed, in Example 2, K = 6 is even, m = 120
6

= 20 is an integer, and α = 0 ∈ [0, 2].

2.4 Equilibrium concept

Given a finite non-empty set X, let ∆ (X) denote the set of all probability distri-

butions on X. We are interested in mixed-strategy Nash equilibria of the game,

i.e., mixed strategy profiles σ = (σi, σ−i) ∈ ∆(S)×∆(S) such that no player can

improve her expected payoff by unilaterally changing her mixed strategy. By a

symmetric Nash equilibrium strategy, we mean any mixed strategy σi such that

σ = (σi, σi) is a mixed-strategy Nash equilibrium.

A crucial property of Colonel Blotto games is that payoffs are functions of

the respective marginal distributions at each battlefield. Given a mixed strategy

σi and a battlefield k ∈ {1, . . . , K}, let σi
k denote the marginal distribution of

σi at battlefield k. Following Hart (2008), we denote the uniform marginal on

{0, . . . , 2m} by Um. A mixed strategy σi such that σi
k = Um for every battlefield

k will be said to induce uniform marginals.
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3. Equilibrium in the Colonel Blotto game with flexible tie-breaking

In this section, we present a simple approach that allows constructing an equilib-

rium in the Colonel Blotto game with the flexible tie-breaking rule. As mentioned

before, this will lead us to an equilibrium in the Arad-Rubinstein game as well.

3.1 A canonical equilibrium

The following result characterizes one particular Nash equilibrium in Bα(N,K).

Proposition 1. Impose Assumptions 1 through 3. Then, a symmetric equilib-

rium strategy of Bα(N,K) is given by uniform randomization over the set of pure

strategies

S0 =




0

2m
...
0

2m

,


1

2m− 1
...
1

2m− 1

, . . . ,


2m
0
...

2m
0




.

In the resulting equilibrium, players’ expected payoffs amount to π∗ = K · m+α
2

2m+1
.

Proof. See the Appendix.

As can be seen, players partition the set of battlefields into pairs. This is pos-

sible, of course, because the number of battlefields has been assumed even via

Assumption 1.7 To each pair of battlefields, a constant number of 2m resources

is allocated, which is feasible due to Assumption 2. Moreover, the split among

the two battlefields in each pair is uniformly distributed, with perfect correlation

across pairs. We note that players’ strategies induce uniform marginals. Indeed,

for any battlefield k, every number of resources in {0, 1, 2, . . . , 2m} is assigned

to battlefield k with the same probability of 1
2m+1

.

7We would like to add, however, that Assumption 1 can be dropped, as will be explained
in the extensions section.
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3.2 Discussion

Hart (2008) has shown that, under Assumptions 1 and 2, strategies inducing

uniform marginals form an equilibrium in the constant-sum game B1(N,K).

The point to note is that this remains the case even with flexible tie-breaking.

The reason why the equilibrium property does not break down with more flexible

tie-breaking, and this is the main observation that motivated our work on the

present paper, is that, given uniform marginals, the likelihood of getting tied is

constant across all bid levels that are used in equilibrium with positive probability.

As a result, the indifference in the standard setup with α = 1 is not affected by

the modification of the payoff functions at ties.

One might wonder if, with the modified tie-breaking in place, players would

not have an incentive to bid higher than 2m on some of the battlefields. Such

an incentive might arise for α < 1, because the tie-breaking is inefficient in that

case. However, overbidding cannot raise a player’s payoff. The reason is that

any additional unit of the resource required to assign more than 2m on some

battlefield needs to be taken from some other battlefield, where this lowers the

probability of winning by 1
2m+1

. Indeed, every bid level in {0, 1, . . . , 2m} is used

by the opponent on every battlefield with the same probability of 1
2m+1

. On

the other hand, the increase in payoff from bidding 2m + 1 instead of 2m in a

battlefield is 1
2m+1

× (1 − α) ≤ 1
2m+1

. Therefore, given Assumption 3, or more

precisely given that α ≥ 0, the deviation never yields a strictly higher payoff.8

3.3 Illustration

We illustrate Proposition 1 with an example.

8As the discussion shows, the conclusion of Proposition 1 remains technically true for α >
2. However, as mentioned before, there is no reason to hide one’s strategy for α ≥ 2, i.e.,
symmetric pure-strategy equilibria may be more plausible in that case.
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Corollary 1 (Equilibrium in the Arad-Rubinstein game). The following

strategy is a symmetric Nash equilibrium strategy in B0(120, 6). Both players

individually and independently randomize uniformly over the set

S0 =




0
40
0
40
0
40

,


1
39
1
39
1
39

, . . . ,


40
0
40
0
40
0




.

The equilibrium payoff is π∗ = 120
41

≈ 2.927.

Proof. Immediate from Proposition 1.

Even though the equilibrium characterized by Proposition 1 has a canonical

structure (e.g., it has uniform marginals, and is symmetric with respect to per-

mutations of the battlefield pairings and within battlefield pairings), it is not the

only equilibrium, as will be shown in the next section.

4. Understanding the equilibrium set

The equilibrium set turns out to be very large. To illustrate this point, we study

the support of equilibrium strategies in the present section. We first identify

pure strategies that are chosen with positive probability in some mixed-strategy

Nash equilibrium (Subsection 4.1). Then, we outline the proof (Subsection 4.2).

Finally, we turn to strategies that are never “good” (Subsection 4.3).

4.1 Pure strategies that arise in some equilibrium

The following result provides an indication about the size of the equilibrium set.

Proposition 2. Impose Assumptions 1 through 3. Then, every pure strategy si

such that sik ≤ 2N
K

for every battlefield k, is used with positive probability in some

equilibrium strategy of Bα(N,K).
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Proof. See Subsection 4.2.

Thus, every pure strategy that does not allocate an excessive number of resources

to an individual battlefield is part of some mixed-strategy Nash equilibrium.

In the Arad-Rubinstein game B0(120, 6), every pure strategy that assigns at

most 40 soldiers to each of the battlefields is part of some mixed strategy Nash

equilibrium. This observation illustrates a drawback of the Nash equilibrium

concept for the analysis of Colonel Blotto games with practical relevance. The

set of equilibrium predictions is simply very large. We will come back to this

issue in the next section.

Proposition 2 relates to observations made by Tukey (1949) saying that “there

are good strategies in which a given player either (i) sends out no units, (ii) sends

out more than half of some kind of unit, or (iii) sends units to more than half

of the available sites.”9 Interpreting “good” as appearing in the support of an

equilibrium strategy, it is not hard to see that Proposition 2 implies conditions

(i) and (iii) under the assumptions of the present paper. An illustration of the

possibility of condition (ii) will be given later in the paper (see Example 3).

4.2 Proof of Proposition 2

To understand why Proposition 2 is true, suppose that both players uniformly

randomize over the set of pure strategies

S1 =




s1

2m− s1
...
sL

2m− sL

 : s1, . . . , sL ∈ {0, 1, . . . , 2m}


.

Clearly, this strategy induces uniform marginals. But this implies, by the discus-

sion following Proposition 1, that both players are actually using an equilibrium

9These general observations hold, in particular, for an asymmetric version of the Colonel
Blotto game discussed in McDonald and Tukey (1949).
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strategy.10

Let s be any pure strategy such that sk ≤ 2m for all k ∈ {1, . . . , K}. Then,

it suffices to replace the two pure strategies
s1

2m− s1
...

sK−1

2m− sK−1

 ,


2m− s2

s2
...

2m− sK
sK


in the support of the mixed strategy σ̂ by

s1
s2
...

sK−1

sK

 ,


2m− s2
2m− s1

...
2m− sK

2m− sK−1

 ,

respectively. The marginals do not change, and hence, we have found an equi-

librium strategy in which s is played with positive probability. This concludes

the argument.

4.3 Strategies that are never “good”

In analogy to Proposition 2, one may ask what type of pure strategies are never

used in any equilibrium. To address this question, we identify the maximum

loss of efficiency that is feasible with modified tie-breaking. Then, we derive

conditions on pure strategies that make them render an expected payoff too low

to correspond to the maximum efficiency loss. Proceeding along these lines, we

show that any strategy that focuses on too few battlefields will never be part of

any mixed-strategy Nash equilibrium.

10However, compared to Proposition 1, the correlation of the L uniform distributions, one
for each pair of battlefields, has been dropped.
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Proposition 3. Impose Assumptions 1 and 2, and let α ∈ [0, 1). Then, any

pure strategy that allocates the resource to strictly less than

K∗ =
NK

2N + K

(
1 − α

2 − α

)
battlefields is never part of any equilibrium of Bα(N,K).

Proof. See the Appendix.

How strong is the conclusion of Proposition 3 in specific games? For the Arad-

Rubinstein game,

K∗ =
120 · 6

2 · 120 + 6
= 2.9268.

This means that every pure strategy that assigns a positive number of resources

to less than three battlefields is never a part of any equilibrium.

Corollary 2. In the Arad-Rubinstein game, any pure strategy that allocates the

resource to just one or two battlefields is never part of any equilibrium.

Proof. See the text above.

Thus, pure strategies such as (120, 0, 0, 0, 0, 0)′ and (60, 60, 0, 0, 0, 0)′ are never

good strategies in the example. Regrettably, this leaves a gap to the conclusion

of Proposition 2. I.e., we do not know if strategies such as (60, 30, 30, 0, 0, 0)′

that assign strictly positive resources over at least three battlefields and more

than 40 soldiers to at least one of those are “good.”11

11As α becomes larger, the conclusion of Proposition 3 weakens. For instance, the conclusion
becomes void in the limit case as α → 1.
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5. Refinements

Given that the Arad-Rubinstein game is a static game, it is natural to check if

dominance relationships between strategies might help to narrow down the set

of equilibria (e.g., Kohlberg and Mertens, 1986).

Recall that a pure strategy si ∈ S for player i ∈ {A,B} is weakly dominated

by another pure strategy ŝi ∈ S if (i) πi(si, s−i) ≤ πi(ŝi, s−i) for every pure

strategy s−i ∈ S, and (ii) there exists at least one pure strategy s−i ∈ S for

the opponent such that πi(si, s−i) < πi(ŝi, s−i). Thus, a pure strategy is weakly

dominated by another pure strategy if it never yields a greater payoff than the

other strategy, but a strictly lower payoff than the other strategy against at least

one pure strategy of the opponent.

It turns out that the elimination of dominated strategies by pure strategies

is entirely ineffective for small α.

Proposition 4. Suppose that α < 2
K
. Then, no pure strategy in Bα(N,K) is

weakly dominated by any other pure strategy.

Proof. See the Appendix.

The condition in the proposition is satisfied, in particular, in the Arad-Rubinstein

game. There, given that identical choices of pure strategies by the two players

lead to ties in all battlefields, α = 0 implies that the diagonal entries of the

payoff matrix are all zero. In contrast, all of the off-diagonal entries of the

payoff matrix are positive because at least one battlefield is won by each player

if strategies differ. Therefore, no pure strategy is weakly dominated by any other

pure strategy if α = 0. This idea of the proof generalizes in a straightforward

way to positive but sufficiently small α.12

12However, the conclusion of Proposition 4 need not hold for standard tie-breaking. As we
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Corollary 3. In the Arad-Rubinstein game, there are no strategies that are

weakly dominated by a pure strategy.

Proof. Immediate from Proposition 4.

6. Adaptive learning

We have seen above that the traditional game-theoretic analysis of the Arad-

Rubinstein game is bound to remain inconclusive. Although a small number

of pure strategies could be categorized as “bad,” the concept of Nash equilib-

rium, even after applying standard refinements, is not sufficiently stringent to

derive a meaningful reference point for empirical work. In this section, we there-

fore approach the problem of making a theory-led prediction from a different

perspective, viz. by determining the implications of long-run adaptive learning.

The biggest obstacle to a simulation of long-run adaptive learning in a Colonel

Blotto game is the size of the strategy space. The number of pure strategies in

the Arad-Rubinstein game is

|S| =

(
125

5

)
= 234′531′275.

To be able to obtain results within a reasonable time frame, we decided to exploit

the symmetry of the game. Technically, this amounts to considering the set of

pure strategies in the corresponding Colonel Lotto game. Thereby, the size of

the strategy space reduces to 436′140 pure strategies.13

For adaptive learning, we assumed that players follow fictitious play (Brown,

1949; Robinson, 1951).14 Thus, after an initial period of play, each player con-

are going to show in Section 8, a pure strategy may be weakly dominated by another pure
strategy if α = 1.

13Details on the computation of the number of strategies are provided in the Appendix.
14For the computation of equilibrium, more efficient algorithms are available (see, e.g., Ah-

madinejad et al., 2019). However, our aim here is the simulation of a learning process.
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siders the empirical frequency distribution of prior play as the best predictor for

future play. In our simulation, players interacted over 50 million rounds. The

learning algorithm has been implemented in Matlab. The computations were

conducted on a NEMA cluster, which is a high-performance SGI Altix UV2000

system, equipped with 4TBs of main memory and 96 physical CPU cores. The

operating system was Unix.

Figure 1: Rank-order analysis

The support of the learned mixed strategy in the Colonel Lotto game con-

sisted of |S0| = 11′008 pure strategies. Table I shows the nine most likely pure

strategies in the learned mixed strategy and compares their respective rank in the

learned strategy (column “Nash rank”) to the rank found by Arad and Rubin-

stein (2012, Table 9). As can be seen, the rankings are related. Specifically, eight

out of the top-9 ordered strategies appearing in the Arad-Rubinstein data are

among the top-30 unordered Nash strategies (the exception being the rather odd

strategy (120, 0, 0, 0, 0, 0)′). Moreover, the modal strategy (20, 20, 20, 20, 20, 20)′

is identical between the two rankings. As for Arad and Rubinstein’s (2012) “win-

ning strategy” (31, 31, 31, 23, 2, 2)′, it appears at position 47 in the creation of

new best responses during the fictitious-play process and later ends up at Nash

18



rank 272. These observations intuitively square with the iterative reasoning ex-

planation, and suggest that further inquiry of the relationship between learning

and iterative reasoning in multidimensional decision problems might be worth to

be pursued.

7. Extensions

This section offers several extensions. We first discuss the case of an odd number

of battlefields (Subsection 7.1), then the case where n is not divisible by K

(Subsection 7.2), next payoff-inequivalent equilibria (Subsection 7.3), and finally

the possibility of pure strategy Nash equilibria (Subsection 7.4).

7.1 Odd number of battlefields

If the number of battlefields is odd so that Assumption 1 is violated, then it

is no longer feasible to partition the set of battlefields into pairs. As a result,

the equilibrium analysis is complicated substantially. However, using a result of

Dziubiński (2017), the conclusion of Proposition 1 can be shown to hold even

if Assumption 1 is dropped. Specifically, even if K is odd, there still exists a

mixed strategy that induces uniform marginals on every battlefield. As space

limitations make it impossible to replicate the original arguments, we confine

ourselves to an illustrative example.15

Example 3. Consider the Colonel Blotto game Bα(6, 3), where α ∈ [0, 2]. Then,

15Further background on this example is provided in the Appendix.
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the mixed strategy σi given by

σi
(
si
)

=



1

10
if si ∈ Sa,

1

20
if si ∈ Sb,

0 otherwise,

where

Sa =


2

2
2

 ,

3
3
0

 ,

3
0
3

 ,

0
3
3

 ,

4
1
1

 ,

1
4
1

 ,

1
1
4

 ,

Sb =


4

2
0

 ,

4
0
2

 ,

2
4
0

 ,

2
0
4

 ,

0
4
2

 ,

0
2
4

 .

induces uniform marginals and is a symmetric equilibrium strategy.

Generalizing the construction underlying Example 3, we obtain the following

result.

Proposition 5. The conclusion of Proposition 1 continues to be true if Assump-

tion 1 is dropped.

Proof. See the Appendix.

7.2 N is not divisible by K

Assumption 2, which has been assumed in the main strand of the analysis, re-

quires that N is divisible by K. We can relax this assumption somewhat, as

illustrated by the following example

Example 4. Impose Assumption 3. Then, in Bα(6, 4), the mixed strategy that

randomizes uniformly over the set

Sσi =




0
3
0
3

 ,


1
2
1
2

 ,


2
1
2
1

 ,


3
0
3
0


 ,
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is a symmetric equilibrium strategy.

It is not hard to convince oneself that the logic of the example, or equivalently,

the proof of Proposition 1, extends to any game in which K = 2 · L is even and

N is divisible by L, which is the number of pairs of battlefields.16

7.3 Payoff-inequivalent equilibria

In the constant-sum model, all equilibria yield the same payoff. This is not the

case with flexible tie-breaking, however. To understand why, let Um
O and Um

E

denote uniform marginals on the odd and even numbers between 0 and 2m, re-

spectively. As shown by Hart (2008, Thm. 7), any pair of strategies that induce

marginals in the convex hull of {Um
O , Um

E } is an equilibrium in B1(N,K). In par-

ticular, any strategy profile σ = (σi, σ−i), where σi
k = Um

O and σ−i
k = Um

E for every

battlefield k, is an asymmetric equilibrium in B1(N,K). But any such profile

remains an equilibrium for α ∈ [0, 1], because inefficient tie-breaking makes de-

viations less attractive. Moreover, given the absence of ties, equilibrium payoffs

are K/2 for both players, which is different from the expression in Proposition

1. Similarly, every mixed strategy σi, where σi
k = Um

O or σi
k = Um

E for every

battlefield k is a symmetric equilibrium strategy in B1(N,K). Since deviations

make ties less likely, these profiles remain equilibria for α ∈ [1, 2].

7.4 Equilibria in pure strategies

Pure-strategy Nash equilibria, both symmetric and asymmetric, are feasible if

parameters are outside of the usual range. For instance, if the payoffs from

ties are sufficiently high (i.e., if α is close to or exceeds 2), then the Colonel

Blotto game transforms into a coordination game with numerous symmetric pure

strategy equilibria.

16We have not attempted to go beyond that case, however.
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Proposition 6. If α ≥ 2·(K−1)
K

, then every pure strategy si ∈ S is a symmetric

Nash equilibrium strategy in Bα(N,K).

Proof. See the Appendix.

The pathological outcome indicated by Proposition 6 in cases where α is exces-

sively large provides support for our Assumption 3, a premise upheld throughout

the main analysis.

Asymmetric pure strategy equilibria may emerge when the number of re-

sources, N , is small relative to the number of battlefields (and Assumption 3

is in place). Specifically, if 2N ≤ K, adversaries can easily avoid conflict by

dividing the set of battlefields between them.

8. Supplementary section: Implications for the standard model

Our analysis has also led to new insights for the Colonel Blotto game with stan-

dard tie-breaking. These concern the characterization of the set of “good strate-

gies (Subsection 8.1), a refinement concept (Subsection 8.2), and the effectiveness

of weak dominance (Subsection 8.3).

8.1 “Good” strategies in the standard model

Combining Proposition 2 with a result by Dziubiński (2017), the conclusion can

be considerably sharpened in the constant-sum case.

Corollary 4. Impose Assumptions 1 and 2. Then, an arbitrary pure strategy si

is used with positive probability in some equilibrium of B1(N,K) if and only if

sik ≤ 2N
K

for every battlefield k.

Proof. See the Appendix.
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8.2 Refinement

Let σeven and σodd denote mixed strategies with marginals uniform on the even

and odd integers within {0, . . . , 2m}, respectively. As shown by Hart (2008),

under Assumptions 1 and 2, (i) such strategies exist and (ii) any convex combi-

nation of such strategies is an equilibrium strategy in B1(N,K).

Proposition 7. Impose Assumptions 1 through 3. Then, the only type of strategy

that remains an equilibrium strategy for all values of α in a neighborhood of α = 1

has uniform marginals.

Proof. See the Appendix.

These observations suggest a simple form of equilibrium selection in finite Colonel

Blotto games with standard tie-breaking. The fact that the asymmetric equilib-

rium (σeven, σodd) breaks down for α > 1 is an indication that this equilibrium

is not very robust in the standard model of Hart (in addition to being difficult

to coordinate upon, given the asymmetry of the strategy profile). Similarly, the

fact that (σeven, σeven) and (σodd, σodd) equilibria break down for α < 1 is an indi-

cation that those equilibria are not very robust either, which might explain why,

in the standard model, any equilibrium with uniform marginals, i.e., without

parity considerations, is intuitively more plausible than any of the other feasible

combinations.

8.3 Weak dominance

The following example shows that weak dominance may actually eliminate strate-

gies in the Colonel Blotto game with standard tie-breaking.

Example 5. In B1(120, 6), the pure strategy (120, 0, 0, 0, 0, 0)′ is weakly domi-

nated by (115, 1, 1, 1, 1, 1)′.
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Details can be found in the Appendix. Example 5 shows that the condition on

α imposed in Proposition 4 cannot be simply dropped.17

9. Conclusion

While the equilibrium analysis of discrete Blotto games is mathematically ap-

pealing, it falls short in explaining the observations from applied economic re-

search. Consequently, beyond merely characterizing the set of Nash equilibria, it

becomes imperative to pinpoint “reasonable” choices within the expansive strat-

egy set. As suggested by our simulation analysis, exploring the limit points of

adaptive learning processes might offer a promising avenue to address this issue.

However, it may not be the sole viable approach.

A. Appendix

This section contains proofs omitted from the body of the paper. The following

lemma prepares the proof of Proposition 1.

Lemma A.1 Impose Assumptions 2 and 3. Let σ = (σA, σB) be a mixed strategy

profile in Bα(N,K) such that σi induces uniform marginals for i ∈ {A,B}. Then,

σ is a Nash equilibrium.

Proof. Suppose that both players use the assumed mixed strategies that induce

uniform marginals. Then, the probability of a tie on any given battlefield is

1
2m+1

. Therefore, each player i’s expected payoff from σ = (σA, σB) equals

πi(σ) =
K

2
+ K · 1

2m + 1
· α− 1

2
=

K · (2N + αK)

4N + 2K
.

17The determination of the set of strategies that are iteratively undominated in the Colonel
Blotto game with standard tie-breaking is, however, beyond the scope of the present paper.
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Suppose that player i ∈ {A,B} deviates to a pure strategy si ∈ S. The mixed

strategy σ−i allocates every number of resources in {0, 1, 2, . . . , 2m} on every

battlefield k with the same probability of 1
2m+1

. If player i assigns strictly more

than 2m resources to a battlefield, her payoff from that battlefield is 1. If player

i assigns weakly less than 2m to battlefield k, then she overwhelms the opponent

on that battlefield with probability
sik

2m+1
and achieves a tie with probability

1
2m+1

. Hence, player i’s expected payoff from battlefield k is

πi
k

(
si, σ−i

)
= min{1,

sik
2m + 1

+
α

2
· 1

2m + 1
}.

It follows that

πi
(
si, σ−i

)
=

K∑
k=1

πi
k

(
si, σ−i

)
≤

K∑
k=1

(
sik

2m + 1
+

α

2
· 1

2m + 1

)
(A.1)

=
N

2m + 1
+

K · α
2 · (2m + 1)

=
K · (2N + αK)

4N + 2K
.

As both i and si were arbitrary, no player can raise her payoff by deviating from

σ = (σA, σB). Hence, σ is a Nash equilibrium, which completes the proof.

Proof of Proposition 1. The mixed strategy σi assigns every number of re-

sources sik ∈ {0, 1, . . . , 2m} to every battlefield k with the same probability 1
2m+1

.

Hence, σi induces uniform marginals. It therefore follows from Lemma A.1 that

σi is a symmetric equilibrium strategy.

Proof of Proposition 3. Consider an arbitrary pure strategy si that allocates

a positive number of units of the resource to K+ ∈ {1, . . . , K} battlefields and

zero units to the remaining battlefields. Then, player i’s expected payoff of si
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against an arbitrary pure strategy s−i satisfies the relationship

πi
(
si, s−i

)
≤ K+ · 1 + (K −K+) · α

2

=
α

2
·K +

2 − α

2
·K+. (A.2)

Consider now a deviation by player i to some mixed strategy σi that induces

uniform marginals. Proposition 1 provides an example of such a mixed strategy.

The following analysis is analog to the proof of Lemma A.1. If player −i assigns

strictly more than 2m units of the resource to battlefield k, then i’s payoff from

that battlefield is zero. If, however, player −i assigns weakly less than 2m to

battlefield k, then player i overwhelms her opponent on that battlefield with

probability
2m−s−i

k

2m+1
and achieves a tie with probability 1

2m+1
. Hence, player i’s

expected payoff from battlefield k is

πi
k

(
σi, s−i

)
= max{0,

2m− s−i
k

2m + 1
+

α

2
· 1

2m + 1
}.

It follows that

πi
(
σi, s−i

)
=

K∑
k=1

πi
k

(
σi, s−i

)
≥

K∑
k=1

(
2m− s−i

k

2m + 1
+

α

2
· 1

2m + 1

)
=

NK

2N + K
+

α

2
· K2

2N + K
. (A.3)

A straightforward calculation shows that the right-hand side of equation (A.3)

strictly exceeds the right-hand side of equation (A.2) if and only if

K+ < K∗ ≡ 2

2 − α
· NK(1 − α)

2N + K
.

In particular, in that case, πi (σi, s−i) > πi
k (σi, s−i), for any s−i ∈ S. Thus, si is

never a best response if K+ < K∗. This proves the proposition.
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Proof of Corollary 4. (if) Immediate from Proposition 2. (only if) This fol-

lows from Dziubiński (2017, Cor. 2). For the reader’s convenience, we offer a di-

rect proof. Consider a mixed-strategy equilibrium σ∗ = (σA,∗, σB,∗) in B1(N,K).

To provoke a contradiction, suppose that there is some player i ∈ {A,B} and

some pure strategy si in the support of σi,∗ such that sik > 2m for some battlefield

k. As equilibrium strategies in two-person constant-sum game are interchange-

able (Osborne and Rubinstein, 1994, p. 23), σi,∗ is a best response also to the

mixed strategy σ−i = σi identified in Proposition 1. Moreover, since the bid

vector si is chosen with positive probability in the mixed strategy σi,∗, the pure

strategy si is likewise a best response to σ−i. But from sik > 2m for some

battlefield k, inequality (A.1) in the proof of Lemma A.1 is strict, so that that

πi
(
si, σ−i

)
<

K · (2N + αK)

4N + 2K
= πi

(
σi, σ−i

)
.

Thus, si is not a best response to σ−i after all. The contradiction proves the

assertion.

Proof of Proposition 4. By contradiction. Suppose that s is a pure strategy

that is weakly dominated by another pure strategy ŝ. In Bα(N,K), the diagonal

entries of the payoff matrix correspond to an outcome with K ties and are,

therefore, equal to K · α
2
. In particular, this is the payoff of ŝ against itself.

However, as ŝ is necessarily different from s, the strategy s bids strictly higher

than ŝ on at least one battlefield. Therefore, the payoff of s against ŝ is at

least one. Under the assumption made, this is strictly higher than K · α
2
. The

contradiction shows that no pure strategy can be weakly dominated by any other

pure strategy.

The following lemma is used in the proof of Proposition 5.

27



Lemma A.2 (Dziubiński, 2017) Suppose that Assumption 2 holds and that

K is odd. Then, there exists a mixed strategy σi such that σi
k = Um for every

battlefield k ∈ {1, . . . , K}.

Proof. See Dziubiński (2017, Proposition 2).

Proof of Proposition 5. By Lemma A.2, we find a uniform strategy for each

player even if Assumption 1 fails to hold. As Assumption 1 is not imposed in

Lemma A1, the pair of strategies constitutes a Nash equilibrium in Bα(N,K).

This proves the claim.

Details on Example 3. We will construct a battlefield-symmetric uniform equi-

librium strategy. Let p411 etc. denote the respective probability that a player

chooses the pure strategies (4, 1, 1)′ etc. Then, accounting for symmetries, p411 =

p141 = p114, etc. Moreover, any solution to the system
1 0 0 0 2
0 0 2 2 0
0 1 2 0 2
2 0 2 0 0
0 0 0 1 2




p411
p222
p123
p330
p420

 =


1
5
1
5
1
5
1
5
1
5


induces uniform marginals. Restricting attention to solutions that yield nonneg-

ative probabilities, the general solution is given by
p411
p222
p123
p330
p420

 = (1 − λ)


1
10
1
10

0
1
10
1
20

 + λ


1
15

0
1
30
1
15
1
15

 ,

where λ ∈ [0, 1] is arbitrary. The solution shown in the body of the paper

corresponds to λ = 0.

Proof of Proposition 6. Consider a symmetric profile s = (si, s−i) in pure

strategies, where si = s−i. The payoff to both players from s is equal to K · α
2
.
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As player i is unable to win on all the battlefields, the payoff for a deviating

player i is bounded from above by K − 1. Hence, K − 1 ≤ K · α
2
, which is

equivalent to the inequality in the statement of the proposition.

Counting the number of strategies. We start by noting that the number of

pure strategies does not depend on the tie-breaking rule. In general, as each pure

strategy si ∈ S in the Colonel Blotto game Bα(N,K) corresponds uniquely to a

finite sequence

1, . . . , 1︸ ︷︷ ︸
si1

, ∗, 1, . . . , 1︸ ︷︷ ︸
si2

, ∗, . . . , ∗, 1, . . . , 1︸ ︷︷ ︸
siN

,

where each “1” stands for a unit of the resource and the “∗” is a separator

between neighboring battlefields. Given that there are N units of the resource

to allocate and K − 1 separators, the number of pure strategies in Bα(N,K) is

|S| =

(
N + K − 1

K − 1

)
.

The number of pure strategies in the corresponding Colonel Lotto game, i.e.,

taking account of symmetries between battlefields, is given by p(N + K,K),

where p(N,K) denotes the number of partitions of N into exactly K parts.

Although a simple formula is unavailable, the recursive relationship

p(N,K) = p(N − 1, K − 1) + p(N −K,K)

with initial conditions p(N, 1) = 1 and p(N,K) = 0 if K > N allows computing

this number in specific examples (Gupta, 1970).

Proof of Proposition 7. The probability of a tie at any given battlefield is

zero in (σeven, σodd), and (σodd, σeven); similarly, the probability of a tie is m+1
2m+1

in (σeven, σeven), and m
2m+1

in (σodd, σodd). If player −i’s marginal is not uniform

and α > 1 (α < 1), then player i has the incentive to deviate to the parity that

is used more (less) often by −i.
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Details on Example 5. Let si = (120, 0, 0, 0, 0, 0)′. We start by claiming that

si never results in a payoff higher than 3 against any pure strategy s−i. Indeed,

if s−i
1 = 120, then player i’s payoff is 3. If, however, s−i

1 < 120, then player i wins

battlefield 1, loses at least one of the other five battlefields, and achieves at most

a tie on the remaining battlefields. Again, therefore, the payoff for player i from

choosing si cannot exceed 3, which proves the claim. We continue and claim

that si is weakly dominated by ŝi = (115, 1, 1, 1, 1, 1)′. For this, we check the

conditions in the definition of weak dominance. (i) To provoke a contradiction,

suppose that si yields a payoff strictly higher than ŝi against a given pure strategy

s−i. Then, si necessarily yields a payoff strictly higher than ŝi from the first

battlefield, meaning that s−i
1 ≥ 115. Hence, s−i assigns at most 5 units of the

resource to the remaining 5 battlefields. But each of those units can reduce the

payoff from strategy ŝi on battlefields 2 through 6 by at most 0.5 utils. Therefore,

in the situation considered, ŝi yields at least 2.5 units from battlefields 2 through

6. The exact value of 2.5 is only achieved when s−i
1 = 115, hence, the resulting

payoff is at least 3, as the first battlefield is also tied. When s−i
1 > 115, the payoff

from battlefields 2 through 6 is at least 3. As follows, player i’s payoff from using

ŝi is at least 3 for every opponent’s strategy where s−i ≥ 115, in conflict with

the presumption made above. (ii) Suppose that s−i = (119, 1, 0, 0, 0, 0)′. Then,

πi(si, s−i) = 3, while πi(ŝi, s−i) = 4.5. This proves the claim.
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Dziubiński, M. (2017). The spectrum of equilibria for the Colonel Blotto and the
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