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We present here the first numerical test of symplectic quantization, a new approach to quantum
field theory introduced in [1, 2]. Symplectic quantization is characterized by the possibility to
sample quantum fluctuations of relativistic fields by means of a deterministic dynamics generated
by Hamilton-like equations, the latter evolving with respect to an additional time parameter τ .
In the present work we study numerically the symplectic quantization dynamics for a real scalar
field in 1+1 space-time dimensions and with λϕ4 non-linear interaction. We find that for λ ≪ 1 the
Fourier spectrum of the two-point correlation function obtained numerically reproduces qualitatively
well the shape of the Feynman propagator. Within symplectic quantization the expectation over
quantum fluctuations is computed as a dynamical average along the trajectories parametrized by
the intrinsic time τ . As a numerical strategy to study quantum fluctuations of fields directly in
Lorentzian space-time, we believe that symplectic quantization will be of key importance for the
study of non-equilibrium relaxational dynamics in quantum field theory and the phenomenology of
metastable bound states with very short life-time, something usually not accessible by numerical
methods based on Euclidean field theory.
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I. INTRODUCTION

Since its invention by Kenneth Wilson [3], lattice field
theory had an enormous development [4, 5] as a method
to handle non-perturbative problems in quantum field
theory, in particular concerning the theory of strong
interactions with problems such as the estimate of
hadronic masses [6] or heavy ions collisions [7]. Never-
theless, despite its great achievements, any numerical
approach to quantum field theory on the lattice retains
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a major limitation: any importance sampling protocol
is well defined only for Euclidean field theory, which
in turn is obtained by Wick-rotating real time into
imaginary time. This standard procedure allows to
transform the Feynman path integral, characterized
by the oscillating factor exp(iS[ϕ]/ℏ), S[ϕ] being the
action of the field theory considered and ϕ a generic
quantum field, into a normalizable probability density
exp(−SE [ϕ]/ℏ), with ℏ playing the same role of temper-
ature in the Boltzmann weight of statistical mechanics.
The mapping to imaginary time is therefore necessary
to set up any importance sampling numerical protocol
to study the quantum fluctuations of fields. But while
on the one hand Wick rotation from real to imaginary
time is the main trick to allow a numerical approach,
on the other hand it also represents the main limitation
of all numerical approaches to quantum field theory. In
particular, the use of Euclidean field theory prevents
to represent on the lattice any process or phenomenon
intrinsically related to the causal structure of space-time,
in particular all processes on the light cone, which is
not even defined in Euclidean field theory. It turns out
that the probability density exp(−SE [ϕ]/ℏ) works as
an “equilibrium” measure for quantum fluctuations: for
instance it allows to reproduce with extreme precision
the physics of stable/equilibrium bound states of strong
interactions [6] while it does not allow to study the
metastable resonances with short lifetimes, like for
instance tetraquark or pentaquark states [8, 9], or
the dynamics of scattering processes with a strong
relativistic character, namely processes with a different
number of degrees of freedom in ⟨IN| and |OUT⟩ states.
It is for this reason that we believe it is of crucial interest
the possibility to test numerically any new proposal for
a quantum field theory formulation which allows first to
define and then to study the dynamics of quantum fields
fluctuations directly in Minkowski space-time.
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An interesting idea in this direction, namely the pro-
posal of a functional approach to field theory which
is well defined from the probabilistic point of view in
Lorentzian space-time, has been recently put forward by
one of us and goes under the name of “symplectic quan-
tization” [1, 2, 10]. According to this approach, for a
given quantum field ϕ(x), with x = (ct,x) a point in
four-dimensional space-time, one assumes a dependence
on an additional time parameter τ :

ϕ(x) → ϕ(x, τ), (1)

which controls the continuos sequence of quantum fluctu-
ations in each point of space-time. Theories with such an
additional time parameter are not a novelty, the whole
Parisi-Wu stochastic quantization approach being based
on this idea [11, 12]. The very simple idea of stochastic
quantization is to introduce a fictitious dynamics for the
quantum fluctuations of a Euclidean field theory. This
dynamics, following the analogy with statistical mechan-
ics, is the one of a Langevin equation for the field ϕ(x, τ):

dϕ

dτ
= − δSE [ϕ]

δϕ(x, τ)
+ η(x, τ), (2)

where SE [ϕ] is the Euclidean action and η(x, τ) is a
“white noise”, that is a stochastic process characterized
by its first moments

⟨η(x, τ)⟩ = 0

⟨η(x, τ)η(y, τ ′)⟩ = 2 ℏ δ(τ − τ ′)δ4(x− y). (3)

The Euclidean weight of field fluctuations comes along to
Langevin equation in the following manner. To a non-
linear stochastic equation for the field such as Eq. (2) it
is usually associated a linear equation for the probability
distribution of the field, the Fokker-Planck equation:

d

dτ
Pτ (ϕ) =

[
δ2

δϕ(x)2
+

δ

δϕ(x)
· SE [ϕ]

]
Pτ (ϕ)

= LFP[ϕ] ◦ Pτ (ϕ). (4)

The link with Euclidean field theory comes with the fact
that Eq. (4) admits a stationary solution, i.e., a distri-
bution Peq(ϕ) such that LFP ◦ Peq(ϕ) = 0, which reads
as:

Peq(ϕ) =
1

Z exp

(
−1

ℏ
SE [ϕ]

)
(5)

From the point of view of the Langevin dynamics
the probability density Peq(ϕ) is the one sampled at
stationarity for large values of τ . Within the stochastic
quantization approach, Euclidean multipoint correlation
functions are therefore obtained as the infinite-time
limit of equal-time multipoint correlations computed
along the stochastic dynamics, in such a way that in
practice both the specific “trajectory” of the noise

η(x, τ) and the additional time τ play really the role
of dummy auxiliary variables which disappear from
the final result. The presence of the additional time τ
therefore did not stimulate any conceptual discussion
on its interpretation, being it regarded just a sort of
“computational trick”. Therefore, while on the one
hand stochastic quantization had the merit of intro-
ducing the key idea of an additional time controlling
the sequence of quantum fluctuations, often referred
to in the literature as “fictitious time” [11], on the
other hand it did not trigger a substantial conceptual
advance on the foundations of quantum field theory,
being such time just an auxiliary variable and being
all transients in the dynamics regarded just as unphysical.

Before introducing explicitly the symplectic quantiza-
tion formalism let us mention, among the previous devel-
opments of stochastic quantization, the one which moved
towards a similar direction, namely the use of a deter-
ministic dynamics in auxiliary time to sample quantum
fluctuations [13]. The crucial novelty of this generalized
Hamiltonian dynamics, introduced to overcome the nu-
merical difficulties in the implementation of lattice gauge
theory with fermions [13], was the presence of conjugated
momenta proportional to the rate of variation of fields
with respect to τ . On the basis of the equivalence be-
tween the Euclidean measure of Eq. (5) and a correspond-
ing microcanonical one, it was noted that a deterministic
dynamics of the kind

d2ϕ

dτ2
= − δSE [ϕ]

δϕ(x, τ)
(6)

was leading to the same asymptotic probability distri-
bution of fields of the stochastic dynamics in Eq. (2),
with the major computational advantage of being more
suited to parallel updates of the variables, something
particularly useful in the case of the non-local bosonic
actions obtained from the integration of fermionic
variables [5]. The introduction of canonical conjugated
momenta of the quantum fields with respect to the
intrinsic time was throughly discussed in [14], also in
this case within the Euclidean field theory framework.

The innovative proposal of symplectic quantization
as reported in [1, 2] is that the correct sampling of
quantum fluctuation in a Lorentzian space-time can be
only achieved in a sort of generalized microcanonical
ensemble, built by adding the above mentioned conju-
gated momenta with respect to the intrinsic time τ to
the relativistic action with Minkowski signature. This
intuition has been strongly inspired from the evidence
that in statistical mechanics there are physically impor-
tant situations where only the microcanonical ensemble
is well defined [15, 16], namely physical phenomena
which cannot be described within the canonical ensemble.

In the present work we show how to sample the
quantum fluctuations of a relativistically invariant scalar
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field theory in 1+1 coordinate space-time dimensions by
studying a generalized Hamiltonian dynamics in the in-
trinsic time τ , showing that a stationary regime can be
reached where the correct measure of the Feynman prop-
agator is obtained: this is an unprecedented result in the
whole literature of lattice field theory.

II. SYMPLECTIC QUANTIZATION: FROM
DYNAMICS TO ENSEMBLE AVERAGES

Let us summarize here the main steps for the deriva-
tion of the symplectic quantization dynamics. First of all,
inspired by the stochastic quantization approach [11, 12],
we assume that quantum fields ϕ(x, τ) depend on an ad-
ditional time variable τ which parametrizes the dynamics
of quantum fluctuations in a given point of Minkowski
space-time. Since for a relativistic quantum field theory
the ambient space includes observer’s time, necessarily
the intrinsic time τ must be a different variable, as thor-
oughly discussed in [1, 2]. The symplectic quantization
approach to field theory assumes, consistently with the
existence of an intrinsic time τ , the existence of conju-
gated momenta of the kind

π(x, τ) ∝ ϕ̇(x, τ), (7)

which can be obtained as follows. First, we introduce a
generalized Lagrangian of the kind

L(ϕ, ϕ̇) =
∫

ddx

[
1

2c2s
ϕ̇2(x) + S[ϕ]

]
, (8)

where cs is in natural units a dimensionless parameter,
and S[ϕ] is the standard action for a quantum field, e.g.,

S[ϕ] =

∫
ddx

(
1

2
∂µϕ(x)∂

µϕ(x)− V [ϕ(x)]

)
=

∫
ddx

[
1

2

(
∂ϕ

∂x0

)2

− 1

2

d∑
i=1

(
∂ϕ

∂xi

)2

− V [ϕ(x)]

]
(9)

where the potential is, for instance

V [ϕ] =
1

2
m2ϕ2 +

1

4
λϕ4. (10)

By means of a Legendre transform one then passes to the
Hamiltonian:

H[ϕ, π] =
1

2

∫
ddx c2s π2(x)− S[ϕ]

=

∫
ddx

[
c2s
2
π2(x)− 1

2

(
∂ϕ

∂x0

)2

+
1

2

d∑
i=1

(
∂ϕ

∂xi

)2

+ V [ϕ]

]

=

∫
ddx

[
c2s
2
π2(x) +

1

2
ϕ ∂2

0ϕ−
d∑

i=1

ϕ ∂2
i ϕ+ V [ϕ]

]
(11)

For simplicity we will assume cs = 1 from here on. From
Eq. (11) we have that, within the symplectic quantization

approach, the dynamics of quantum fluctuations is the
one governed by the following Hamilton equations:

ϕ̇(x) =
δH[ϕ, π]

δπ(x)

π̇(x) = −δH[ϕ, π]

δϕ(x)
, (12)

from which one gets

ϕ̈(x, τ) = −∂2
0ϕ(x, τ) +

d∑
i=1

∂2
i ϕ(x, τ)−

δV [ϕ]

δϕ(x, τ)
. (13)

At this stage one can legitimately wonder how a classical
deterministic theory can account for quantum fluctua-
tions. Let us notice that in the expression of the gener-
alized Hamiltonian H[ϕ, π] we can recognize a “general-
ized potential energy” V[ϕ], corresponding to the original
relavistic action, and a “generalized kinetic energy” K[π],
namely the quadratic part related to the new conjugated
momenta:

H[ϕ, π] = K[π] + V[ϕ]
(14)

V[ϕ] = −S[ϕ]

K[π] =
1

2

∫
ddx π(x). (15)

The “classical” (in the traditional sense) solution for
the field correspond to minima of the new generalized
potential V[ϕ], whereas the quantum fluctuations are
naturaly sampled along the generalized Hamiltonian
dynamics, where the initial value of H[ϕ, π] is constant
but the potential energy, namely S[ϕ], fluctuates.

Having defined the above deterministic dynamics,
Eq. (13), for the quantum fluctuations of the field ϕ(x, τ),
one can then legitimately wonder how this functional for-
malisms connects to the standard one, for instance to the
standard Feynman path-integral formulation of quantum
field theory. The connection between the dynamic ap-
proach of symplectic quantization and the Feynman path
integral comes by means of an ergodic hypothesis on the
Hamiltonian dynamics in Eq. (12): if we assume that this
dynamics samples at long time τ the constant generalized
energy hypersurface with uniform probability [1, 2], then
we can associate to the dynamics of Eq. (12) the following
measure:

ρmicro[ϕ(x)] =
1

Ω(A)
δ (A−H[ϕ, π]) , (16)

where Ω(A) is a sort of microcanonical partition function

Ω(A) =

∫
DϕDπ δ (A−H[ϕ, π]) , (17)
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with Dϕ =
∏

x dϕ(x) and Dπ =
∏

x dπ(x) the standard
notation for functional integration. From the above par-
tition function we can define the microcanonical adimen-
sional entropy of symplectic quantization:

Σsym(A) = lnΩ(A) (18)

The ergodicity assumption for the symplectic quantiza-

tion dynamics amounts to say that, considering O[ϕ(x)]
a generic observable of the quantum fields, symplectic
quantization can be related to the standard path-integral
formulation of field theory by claiming that for generic
initial conditions the following equivalence between aver-
ages holds:

lim
∆τ→∞

1

∆τ

∫ ∆τ

τ0

dτ O[ϕ(x, τ)] =

∫
DϕDπ ρmicro[ϕ(x)] O[ϕ(x)], (19)

where τ0 is a large enough time for the system to have
reached stationarity and “lost memory” of initial condi-
tions. How to relate then the microcanonical partition
function in Eq. (17) to the path integral? It is quite in-
tuitive to understand that the two expression must be
related by some sort of statistical ensemble change. The
crucial point of this change of ensemble, how stressed
already in [1], is that the microcanonical partition func-
tion Ω(A) is built on the conservation of a non-positive
quantity, the generalized Hamiltonian H[ϕ, π]. The lat-
ter from the point of view of physical dimensions is an
action and therefore takes both arbitrarily large positive
and negative values due to the negative sign in front of
the coordinate-time derivative term in the second line of
Eq. (11). The absence of positive definiteness for the
generalized Hamiltonian H[ϕ, π], which is the true rela-
tivistic signature of the theory, is what forbids a stan-
dard change of ensemble with a Laplace transform, that
is customary in statistical mechanics when passing from
microcanonical to canonical ensemble. The only integral
transform which allows us to map formally the ensemble
where H[ϕ, π] is constrained to the one where it is free to
fluctuate is the Fourier transform. It is by Fourier trans-
forming the microcanonical partition function Ω(A) that
one obtains straightforwardly the Feynman path integral:

Z(z) =

∫ ∞

−∞
dA e−izA Ω(A)

=

∫
Dϕ Dπ e−

i
2 z

∫
ddx π2(x)+izS[ϕ]

= N (z)

∫
Dϕ eizS[ϕ], (20)

where z is a variable conjugated to the action and in the
second line of Eq. (20) we have integrated out momenta
thanks to the quadratic dependence on them, contribut-
ing the infinite normalization constant N (z), which is
typical of path integrals. Finally, if we fix z = ℏ−1 into
the last line of Eq. (20) we have the Feynman path inte-
gral:

Z(ℏ) =
∫ ∞

−∞
dA e−iA/ℏ Ω(A) ∝

∫
Dϕ e

i
ℏS[ϕ]. (21)

The one above is to our knowledge the first derivation
from first principles of the Feynman path-integral for-
mula in the context of a more extended framework. We
could say that this larger framework is the statistical me-
chanics of action-preserving systems, opposed to the sta-
tistical mechanics of energy-preserving systems, which is
the standard one. And it is precisely the fact that sta-
tistical ensembles are built on the conservation of a non
positive-defined quantity, which is the true landmark of
the relativistic nature of the theory, that determines the
fact that locally we can only access complex probability
amplitudes and not real probabilities. From the perspec-
tive of symplectic quantization the replacement at the
local level of probabilities with probability amplitudes is
therefore a direct consequence of special relativity and
a wise use of statistical ensembles. To better under-
stand this statement let us consider an unrealistic sit-
uation where the symplectic action (generalized Hamil-
tonian) H[ϕ, π] was positive definite. In this case one
could change ensemble with Laplace rather than Fourier
transform,

Z(µ) =

∫ ∞

0

dA e−µA Ω(A) ∝
∫

Dϕ eµS[ϕ], (22)

leading to a theory which is perfectly equivalent to stan-
dard statistical mechanics in the canonical ensemble:
locally there is a probability density for the field con-
figuration, ρ(ϕ) ∝ eµS[ϕ]. Let us notice that the factor
ρ(ϕ) is intuitively well defined as a local probability
density because for typical configuration of the field, far
from those corresponding to ultrarelavistic particles, the
relativistic action is usually negative S[ϕ] < 0.

We have just shown how the standard path-integral
formulation can be recovered, on the basis of an ergod-
icity assumption, from the symplectic quantization dy-
namics approach and which is the role played by ℏ within
this, let us say, change of ensemble. At the same time it
is not only legitimate but also necessary to wonder if and
how there is a quantization constraint involving ℏ which
can be imposed directly on the microcanonical ensemble
of symplectic quantization. The indication coming from
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the stochastic quantizationn framework is that ℏ must
play a role analogous to that of temperature. Therefore,
as suggested in [10], we believe that the most natural
assumption for the role of ℏ in the symplectic quantiza-
tion formalism is to be analogous to the microcanonical
temperature:

1

ℏ
=

dΣsym(A)

dA (23)

Although satisfactory conceptually and formally consis-
tent, a definition of ℏ as in Eq. (23) is very difficult to
implement in practice. For this reason we will resort
in this paper to another more trivial but effective way
to impose the quantization constraint in the symplec-
tic quantization dynamics, the one analogous to the way
which is customarly used to assign the temperature in
the contex a microcanonical molecular dynamics. Usu-
ally, if we have N degrees of freedom and we wish the
system to be on the fixed energy hypersurface such that
T−1 = ∂S(E)/∂E, we simply assign initial conditions
such that the total energy is E = NkBT : here we follow
the same strategy. In particular, counting as “degrees of
freedom” the number of components in reciprocal space
of the Fourier transform of the fields, i.e., π(k) and ϕ(k),
in order to set at ℏ the typical scale of generalized en-
ergy for each mode we can choose initial conditions in
the ensemble characterized at stationarity by the follow-
ing condition:

⟨π∗(x)π(y)⟩ = ℏ
2
δ(4)(x− y), (24)

where the angular brackes indicates intrinsic time average
along the symplectic quantization dynamics:

⟨π∗(x)π(y)⟩ = lim
∆τ→∞

1

∆τ

∫ ∆τ

τ0

dτ π(x, τ)π(y, τ) (25)

The last equation can be rewritten for a discretized
d-dimensional space-time lattice with lattice spacing a,
as for instance is the case for the numerical simulations
which we are going to discuss here:

⟨π∗(xi)π(xj)⟩ =
ℏ
2

δij
ad

, (26)

where δij is the Kronecker delta. By Fourier transforming
Eq. (24) it is then straightforward to get

⟨π∗(k)π(k)⟩ = ℏ
2
, (27)

so that in Fourier space the “kinetic” contribution coming
from each degree of freedom to the total action amounts
to ℏ/2. The relation in Eq. (27) can be also applied to the
discretized momenta usually considered for a numerical
simulation on the lattice:

⟨π∗(ki)π(ki)⟩ =
ℏ
2

∀ i. (28)

This will be the sort of quantization constraint which will
be applied to all our numerical simulations, choosing ini-
tial conditions which are compatible with that. Since we
have chosen to work with natural units we will replace
ℏ = 1 everywhere in the above formulas. Suitable ini-
tial conditions to expect something such as Eq. (28) at
stationarity is for instance the following:

|π∗(ki; τ = 0)|2 = ℏ ∀ i, (29)

which will be used for all simulations presented in this
work.

III. SIMULATION DETAILS

The deterministic dynamics of symplectic quantiza-
tion can be defined for both Euclidean and Minkowski
metric: to validate the new approach we have tested
both scenarios. In order to do that we have discretized
the Hamiltonian equations of motion, writing them in a
general form where the nature of the metric is specified
by the variable s = {0, 1}. All equations are written in
natural units ℏ = c = 1.

In the present work we have considered a 1 + 1 lat-
tice with either Euclidean or Minkowski metric, which
we denote as Γ:

Γ :

{
x : xµ = anµ , nµ = −N

2
, ...,

N

2
µ = 0, 1

}
.

(30)

Due to the finite size of the simulation grid momenta are
also discretized:

pµ =
2π

a

kµ
N

|pµ| <
π

a
, (31)

where µ = 0, 1, kµ ∈ [−N/2, N/2], L = Na is the lat-
tice side and a is the lattice spacing. The discretized
Hamiltonian of symplectic quantization reads then as

H[ϕ, π] =
1

2

∑
x∈Γ

[
π(x)2 − (−1)s

1

a2
ϕ(x)∆(0)ϕ(x)

− 1

a2
ϕ(x)∆(1)ϕ(x) +m2ϕ2(x) +

λ

4
ϕ4(x)

]
, (32)

where the symbol ∆(µ)ϕ(x) denotes the discrete one-
dimensional Laplacian along the µ-th coordinate axis:

∆(µ)ϕ(x) = ϕ(x+ aµ) + ϕ(x− aµ)− 2ϕ(x). (33)

We have used a general expression in Eq. (32), which,
depending on the value chosen for the integer index
s = {0, 1}, describes a theory with Euclidean, s = 0,
or Minkowskian, s = 1, metric. From the expression of
the Hamiltonian in Eq. (32) we have that the force acting
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on the field on a two-dimensional lattice is:

F [ϕ(x)] = −δH[ϕ, π]

δϕ(x)
=

=
(−1)s

a2
∆(0)ϕ(x) +

1

a2
∆(1)ϕ(x)−m2ϕ(x)− λϕ3(x),

(34)

so that the equation of motion for the field itself is:

dϕ(x, τ)

dτ2
= F [ϕ(x, τ)]. (35)

Equations (34),(35) define the Hamiltonian dynamics
which we have studied numerically using the leap-
frog algorithm, a symplectic algorithm described in
Appendix A, which guarantees the conservation of
(generalized) energy at the order O(τ2).

An important point for the study of this paper is the
definition of boundary conditions. We used two differ-
ent kind of boundary conditions for the simulations. For
all results on Euclidean lattice and for the study of dy-
namics stability with or without non-linear interaction
on Minkowski lattice, discussed respectively in Sec. IV
and in Sec. V, we have used standard periodic boundary
conditions on the lattice. Differently, in Sec. VI, aimed at
studying the free propagation of physical signals across
the lattice we used fringe boundary conditions [17], intro-
duced with the purpose of mimiking the existence of an
infinite lattice outside the simulation grid. Fringe bound-
ary conditions are realized considering a larger lattice,
which we denote as Γf , where the subscript “f” is for
fringe, which is composed by the original lattice Γ plus
several additional layer of points which we denote as Γext,
in such a way that the fringe lattice is Γf = Γ+Γext. For
the fringe lattice one also considers periodic boundary
conditions, but the generalized Hamiltonian for points
belonging to Γ and to Γext is different. Namely, the fringe
lattice is characterized by the Hamiltonian:

Hf [π, ϕ] = Hext[π, ϕ] +H[π, ϕ], (36)

where H[π, ϕ] is the original discretized Hamiltonian of
the system, see Eq. 32, while Hext[π, ϕ] reads as

Hext[π, ϕ] =
1

2

∑
x∈Γ

[
π(x)2 +m2ϕ2(x) +

λ

4
ϕ4(x)

+ α

(
1

a2
ϕ(x)∆(0)ϕ(x)− 1

a2
ϕ(x)∆(1)ϕ(x)

)]
, ,

(37)

where the coefficient α is very small, α ≪ 1. This
choice of boundary conditions allows us to have a free
propagation of signals across the boundary layer of
Γ, our true simulation lattice, but the signal is then
stronlgy damped when going across Γext, the “external”
boundary layer before making sort of interference at
the periodic boundaries at the border of Γext. This

choice of boundary conditions allows us not only to deal
with an overall system which is still Hamiltonian (apart
from small corrections scaling as 1/L), but also to have
quite satisfactory results for the study of the Feynman
propagator, as shown in Sec. VI.

We have done all simulations for a lattice with side
L = 128, lattice spacing a = 1.0 and using an integra-
tion time-step δτ = 0.001. According to the discussion
in the previous section, we have fixed the energy scale
by choosing initial conditions such that each degree of
freedom in Fourier space carries a “quantum” of energy
ℏ = 1. We have therefore assigned an initial total energy
equal to L ·L = 16384 for all simulations. Since we have
studied both linear and non-linear interactions, in order
to set precisely the initial value of the energy, we started
all simulations with:

|ϕ(k; 0)|2 = 0 ∀ k

|π(k; 0)|2 = 1 ∀ k. (38)

IV. EUCLIDEAN PROPAGATOR

Our first test of the symplectic quantization approach
consists in the study of its deterministic dynamics in the
case of a two-dimensional Euclidean lattice, showing that
it provides the correct two-point correlation function,
also consistently with the results of stochastic quantiza-
tion. For the simulation on the Euclidean lattice we have
used simple periodic boundary conditions, since all cor-
relation functions decay exponentially with the distance
and there should be no signals propagating underdamped
across the system.
Let us then recall here how the expectation values over
quantum fluctuations of fields are computed within the
symplectic quantization approach dynamics. If we indi-
cate with ϕH(x, τ) the solutions of the Hamiltonian equa-
tions of motion written in Eq. (35), we have that the ex-
pectation value of a generic n-point correlation function
can be computed as follows:

⟨ϕ(x1), . . . , ϕ(xn)⟩ =

= lim
∆τ→∞

1

∆τ

∫ τ0+∆τ

τ0

dτ ϕH(x1, τ) . . . ϕH(xn, τ), (39)

where τ0 is a large enough time, for which the system has
reached equilibrium and forgot any detail on the initial
conditions of the dynamics. For a free field theory the
propagator on a two-dimensional lattice take the simple
form:

G̃(p; a) =

[
4

a2
sin2

(
ak0
2

)
+

4

a2
sin2

(
ak1
2

)
+m2

]−1

(40)
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Figure 1. Real part of the two-point correlation function
Fourier spectrum (Euclidean propagator) for a λϕ4 theory in
d = 2 euclidean dimensions. Numerical value from the in-
teracting theory with nonlinearity λ = 0.001, lattice spacing
a = 1.0, lattice side L = 128, mass m = 3.0.

If we define the Fourier component of the field as

ϕ̂(k, τ) =
a2

2π

∑
x∈Γ

e−i(k0x0+k1x1) ϕ(x, τ), (41)

we can then write the Fourier spectrum of the two-point
correlation function, according to the discretized-time
version of Eq. (39), as the following dynamical average:

G(k) = ⟨ϕ̂∗(k)ϕ̂(k)⟩ =
1

∆τ

M∑
i=0

ϕ∗(k, τ0 + δτi)ϕ(k, τ0 + δτi), (42)

where δτi = i·δτ . For the Euclidean lattice we have stud-
ied the lattice dynamics with the parameters and initial
conditions given at the end of Sec. III, considering, in
addition, value of mass m = 3.0 and nonlinearity coeffi-
cient λ = 0.001: the numerical value of the propagator in
Fourier space perfectly reproduces the expected dumbell
shape, as shown in Fig. [1]. We have also checked that
the two-point correlation function exhibits in real space
the typical exponential decay C(x) ∼ e−mx.

V. MINKOWSKI LATTICE: LINEAR AND
NON-LINEAR THEORY

The numerical and analytical study of the free field
theory in 1+1 Minkowski spacetime presents a new prob-
lem with respect to the Euclidean space: the dynamics of
quantum fluctuations for the linear non-interacting the-
ory in the symplectic quantization approach turns out to
be unstable. This can be recognized immediately from
the free field equations in the continuum.
In the case of a purely quadratic potential V [ϕ] = 1

2m
2ϕ2,

the explicit solution of Eq. (13) can be obtained by ex-
ploiting the translational symmetry of space-time, which
allow to Fourier transform the equations:

ϕ̈(k, τ) + ω2
k ϕ(k, τ) = 0, (43)

with

ω2
k = |k|2 +m2 − k20. (44)

The general solution of Eq. (43) can be then written in
terms of the initial conditions as

ϕ(k, τ) = ϕ(k, 0) cos(ωkτ) +
ϕ̇(k, 0)

ωk
sin(ωkτ) ∀ ω2

k > 0

ϕ(k, τ) = ϕ(k, 0) cosh(zkτ) +
ϕ̇(k, 0)

zk
sinh(zkτ) ∀ ω2

k < 0,

(45)

where

izk =
√
ω2
k. (46)

Without any loss of generality and consistently with what
we have done numerically on the lattice, one can consider
the following initial conditons:

ϕ(k, 0) = 0

ϕ̇(k, 0) = 1, (47)

so that the general time-dependent solution reads as

ω2
k > 0 =⇒ ϕ(k, τ) =

sin(ωkτ)

ωk

ω2
k < 0 =⇒ ϕ(k, τ) =

sinh(zkτ)

zk
. (48)

Rewriting the generalized Hamiltonian in Fourier space
we have

H[ϕ, π] =
1

2

∫
ddk

(
|π(k)|2 + ω2

k |ϕ(k)|2
)
, (49)

so that, by plugging into it the time-dependent solutions
we have:

ω2
k > 0 =⇒

H[ϕ(τ), π(τ)] =
1

2

∫
ddk

[
cos2(ωkτ) + sin2(ωkτ)

]
ω2
k < 0 =⇒

H[ϕ(τ), π(τ)] =
1

2

∫
ddk

[
cosh2(zkτ)− sinh2(zkτ)

]
.

(50)

Considering the expressions in Eq. (50) we realize that,
despite the conservation of the symplectic quantization
Hamiltonian, it exists an infinite set of momenta,
namely all k’s with ω2

k < 0, such that the “potential”
and “kinetic” part of the generalized energy in Eq. (49),
namely K[ϕ, π] and V[ϕ, π], both diverge exponentially
with τ . This fact presents two problems, one conceptual
and the second numerical. The conceptual problem
is represented by the fact that, irrespectively to the
behaviour of moments π(k, τ), which might also be
regarded as unphysical auxiliary variables, we have that
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L = 128, with initial conditions π(k; 0) = 1 and ϕ(k; 0) = 0
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vs τ for a scalar theory with a small self-interaction term,
λ = 0.001, and with m = 1.0, a = 1.0, L = 128, with initial
conditions π(k; 0) = 1 and ϕ(k; 0) = 0 for all k’s. Oscillations
are of order δt.

also the contribution to generalized potential energy
V[ϕ, π] (corresponding in practice to the relativistic
action) of an infinite amount of field modes ϕ(k, τ)
diverges exponentially with τ . This divergence of the
field amplitude is clearly unphysical: interpreting in fact
as “particles” the modes of the free field, this would
correspond to infinite growth of the action of an isolated
particle, which is clearly not observed in the real world.

At the same time, attempting to study numerically
the free-field dynamics on Minkowski lattice, the
leap-frog algorithm, which proceedes alternating the

update of kinetic and potential energy, cannot handle
the situation where the overall energy is conserved but
the two contributions diverge. Eventually, due to the
accumulation of numerical errors, total energy starts
to diverge exponentially as well with elapsing time, see
Fig. 2 and the discussion below.

Since in the present section we are just interested in
the stability of the theory, irrespectively of a realistic
study of signals propagation across the lattice, we have
considered for symplicity periodic boundary conditions.
Let us remark that these conditions would not be
appropriate for a more realistic study of two-point
correlation functions with Minkowski metric, since in
this case we would like to probe the causal structure of
space-time: a signal excaping from the lattice at +ct
cannot appear back at −ct. For a similar reason even
fixed boundary conditions would not be appropriate.

Using periodic boundary conditions we have checked
numerically that the simplectic quantization dynamics of
a free scalar field suffers from the pathology which can be
conjectured already from the exact solution: after a cer-
tain time the whole energy starts to grow exponentially
with τ . In Fig. [2] we present the results of simulations
of the free-field with Minkowski metric, all the parame-
ters declared at the end of Sec. III and m = 1.0, show-
ing a clear evidence of the exponential divergence with
τ . What seemed a good solution to both the conceptual
and numerical shortcomings of the free theory has been
to consider that the physically relevant theory is only the
interacting one: physical fields are always in interactions
and the “free-field theory” is just an approximation, with
some internal inconsistencies which are revealed by the
symplectic quantization approach. Let us for instance
consider a potential of the kind

V [ϕ] =
1

2
m2ϕ2 +

1

4
λϕ4, (51)

for which the equations of motions in the continuum read
as

ϕ̈(x, τ) =

− ∂2
0ϕ(x, τ) +

d∑
i=1

∂2
i ϕ(x, τ)−mϕ(x, τ)− λϕ3(x, τ).

(52)

Clearly, due to the non-linear term in Eq. (52), it
is not possibile anymore to diagonalize the equations
in Fourier space, so that both the sin/cos and the
sinh/cosh solutions cannot be taken into account as a
reference. Yet to be proven mathematically, the stability
of Eq. (52) is a quite delicate problem, since in general
for many Fourier components the equations are linearly
unstable. The intuition suggests that for each point of
space-time x the cubic force acts as a restoring term
which prevents the amplitude ϕ(x, τ) to grow without
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Figure 4. Behaviour of the time averaged harmonic
Eharm(k, τ) and kinetic Ekin(k, τ) energies for two different
choices of k, corresponding respectively to small (top panel)
and large (bottom panel) scales. Non-linearity coefficient is
λ = 0.001 and lattice parameters are with m = 3.0, a = 1.0,
L = 128, with initial conditions π(k; 0) = 1 and ϕ(k; 0) = 0
for all k’s. For this choice of parameters there are no unstable
modes, i.e. for all k’s we have ω2

k > 0.

bounds. This intuition has been confirmed, up to the
accuracy of our analysis, from our numerical results.
By using periodic boundary conditions, the parameters
and initial conditions declared at the end of Sec. III,
setting the non-linearity coefficient λ = 0.001 we find
that the energy is no more divergent. The system
relaxes to a stationary state with oscillations of order
|E(t)− E0|/E0 = O(δτ), as is shown in Fig. 5.

Having assessed the stability of the symplectic quan-
tization dynamics in the presence of non-linear interac-
tions and periodic boundary conditions, it is now time
to consider, keeping the non-linearity switched on, the
more physical case of fringe boundary conditions [17].
This procedure will allow us to sample numerically the
Feynman propagator for small non-linearity, as will be
discussed in the next section.
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Figure 5. Real part of the two-point correlation function
Fourier spectrum G(k0, k1) = ⟨ϕ∗(k0, k1)ϕ(k0, k1)⟩ (Feynman
propagator) for a λϕ4 theory in 1 + 1 space-time dimensions.
Top): theoretical value of the free propagator with lattice spac-
ing a = 1.0, lattice side L = 128, mass m = 3.0; Down):
numerical value from the interacting theory with the same pa-
rameters and nonlinearity λ = 0.001. Initial conditions are
set to ϕ(k; 0) = 0 and π(k; 0) = 1 for all k’s. For this choice
of parameters there are no unstable modes, i.e. for all k’s we
have ω2

k > 0.

VI. FEYNMAN PROPAGATOR: NUMERICAL
RESULTS

In the previous section we have shown how the
presence of non-linear interactions solves the instability
problem of the linear theory, still keeping periodic
boundary conditions. But periodic boundary conditions
are clearly unphysical, because one of the directions of
our lattice corresponds to ct, so that periodicity of the
boundaries is clearly meaningless. We need to devise a
strategy to mimick the free propagation of any kind of
signal across the boundaries as if outside there was an
infinitely large lattice. This strategy is provided by the
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use of fringe boundary conditions, introduced in Sec. III.

In this part of the paper we will therefore provide the
numerical evidence that for perturbative values of the
non-linearity coefficient λ we recover qualitatively the
correct shape of the free Feynman propagator.

The strategy is very simple: having set the coeffi-
cient of the non-linear interaction λ to a small but finite
value, λ = 0.001, we have runned the symplectic dynam-
ics with fringe boundary conditions until stationarity is
reached at a certain time, which we call τeq. Accord-
ing to the premises of Sec. II, where we assumed that at
long enough times the symplectic quantization dynam-
ics allows us to sample an equilibrium ensemble, we have
checked that equipartition between positional and kinetic
degrees of freedom is in fact reached. In Fig. 4 is shown
how, for two given choices of k = {k0, k1} (correspond-
ing respectively to small and large scales), we have that
Eharm(k, τ) and Ekin(k, τ) reach asymptotically a value
close to 1/2, starting respectively from Eharm(k, 0) = 0
and Ekin(k, 0) = 1, where the two energies are defined
respectively as

Eharm(k, τ) =
1

τ

∫ τ

0

ds
1

2
ω2
k|ϕ(k, s)|2

Ekin(k, τ) =
1

τ

∫ τ

0

ds
1

2
|π(k, s)|2. (53)

We have found that this standard equipartition condition
is fullfilled well when all k’s in the lattice are such that
ω2
k > 0, while the stationary state reached when a finite

fraction of the modes is such that ω2
k < 0 has less trivial

properties, which will be analised in further details
elsewhere.

Having thus assessed that the system reaches some
equilibrium/stationary state within some time τeq, we
have coputed for all times τ > τeq the Fourier spectrum
of the two-point correlation function G(k) = ⟨ϕ∗(k)ϕ(k)⟩
by averaging (quantum) fluctuations over intrinsic time.
That is, we have defined an interval ∆τ large enough and
we have computed

⟨ϕ∗(k)ϕ(k)⟩ = 1

∆τ

M∑
i=0

ϕ∗(k, τeq + τi)ϕ(k, τeq + τi), (54)

where τi = i · δτ and ∆τ = Mδτ .

In Fig. 5 we show (bottom panel) the result for the
Fourier spectrum of the two-point correlation function
obtained by setting all the parameters of the simula-
tion and the initial conditions as declared at the end of
Sec. III, apart from the value of the mass that is set here
at m = 3.0 in order to better appreciate the shape of
the propagator, and taking the value λ = 0.001 for the
non-linearity parameter. In order to compare our numer-
ical data at small non-linearity with the theory, we have
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Figure 6. Real space two-point correlation function for a λϕ4

theory in 1 + 1 space-time dimensions with fringe boundary
conditions, lattice spacing a = 1.0, lattice side L = 128, mass
m = 1.0 and nonlinearity λ = 0.001. Top): exponential decay
along the direction parallel to the x1 axis; Bottom): oscilla-
tions along the direction parallel to the x0 = ct axis.

also reported in the top panel of Fig.5 the theoretical
shape of the free Feynman propagator Gth(k0, k1) on a
discretized space-time grid in 1+1 dimensions, using for
the lattice the same parameters of the simulation, i.e.,
a = 1.0, m = 1.0, and L = 128, where Gth(k0, k1) reads
as

Gth(k0, k1) =

[
4

a2
sin2

(
ak0
2

)
− 4

a2
sin2

(
ak1
2

)
−m2

]−1

.

(55)

Let us stress the beautiful qualitative agreement be-
tween the theoretical prediction of the free propagator
and the numerical results: at variance with the Euclidean
propagator, which is a function decreasing monotonically
in all directions moving away from the origin (see Fig. 1
above), we find that the Feynman propagator sampled
numerically here has the characteristic shape of a saddle,
denoting a different behaviour between time-like direc-
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tions and space-like directions. This is the first and in-
controvertible strong evidence that the symplectic quan-
tization approach opens up new possibilities so far out
of reach within the Euclidean formulation of lattice field
theory. Even more clear is the signature of the causal
structure of space-time probed by means of the new ap-
proach if we look at the two-point correlation function in
real space. According to the theoretical predictions for
the free theory in the continuum one would expect un-
damped oscillations along the purely time-like directions
and an exponential decay along the purely space-like di-
rections for the Feynman propagator ∆F (x− y):

∆F (x− y) =
1

(2π)2

∫
d2k

eik(x−y)

k2 −m2
, (56)

with

∆F (x− y) ∼ eim|x−y| for x− y || x0

∆F (x− y) ∼ e−m|x−y| for x− y || x1. (57)

Cleary, when the same correlation function is sampled on
a finite and discrete grid there will be finite-size effects
at play so that, for instance, also the oscillations along
the time-like direction will be slightly modulated by a
tiny exponential decay: this is precisely what we find in
numerical simulations. In Fig. [6] are shown, respectively
in top and bottom panels, the exponential decay along
the purely space-like direction and the oscillations along
the purely time-like direction, obtained for the following
choice of parameters: a = 1.0, L = 128, mass m = 1.0
and nonlinearity λ = 0.001. Let us notice that the value
of the mass which can be obtained from either the fit
of the exponential decay as C(∆x1) ∼ e−m∆x1 or the
oscillating part as C(∆x0) ∼ eim∆x0 is m ∼ 2.06± 0.04,
i.e., quite different from the value m = 1 put in the
Lagrangian. This effect, which we do not find for the
deterministic dynamics in Euclidean space-time, is most
probably a finite-size effect related to nature of the new
fringe boundary conditions adopted. We will devote our
next effort in the numerical investigation of symplectic
quantization to carefully study the finite-size effects
induced by fringe boundaries

VII. CONCLUSIONS AND PERSPECTIVES

In this work we have presented the first numerical test
of symplectic quantization, a new functional approach to
quantum field theory [1, 2] which allows for an impor-
tance sampling procedure directly in Minkowski space-
time. The whole idea, which parallels the one of stochas-
tic quantization, is based on the assumption that fields
has a dependence of an additional time parameter, the
intrinsic time τ , with respect to which conjugated mo-
menta π(x) are defined. Quantum fluctuations of the
fields are sampled by means of a deterministic dynamics

flowing along the new time τ , which controls the internal
dynamics of the system and is distinguished from the co-
ordinate time of observers and clocks. Such a dynamics is
generated by a generalized Hamiltonian where the origi-
nal relativistic action plays the role of a potential energy
part and therefore fluctuates naturally along the flow of
τ . This whole construction does not need any sort of ro-
tation from real to immaginary time to be consistent and
to efficiently allow the numerical sampling of field fluc-
tuations. Furthermore, under the hypothesis of ergodic-
ity, symplectic quantization allows to define a generalized
microcanonical ensemble which represents a probabilisti-
cally well defined functional approach to quantum field
theory and yields by means of a simple Fourier trans-
form the standard Feynman path integral, as discusse
thoroughly in [1, 10]. The main result of this paper has
been the evidence that the shape of the free Feynman
propagator can be efficiently sampled for a λϕ4 real the-
ory for a small value of λ. The next step along this work
programm will be a careful study of finite-size effects in-
duced by fringe boundary conditions and the test of the
symplectic quantization approach in the presence of non-
perturbative values of the nonlinearity λ.
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Appendix A: Numerical Algorithm

All numerical cacalculations in this paper have been
performed using a siplitting algorithm of second order,
which takes advance of the generalized Hamiltonian sep-
arability. Using the notation of Sec. II, the algorithm can
be characterized as a map

Ψδτ : ϕ(x, τ), π(x, τ) −→ ϕ(x, τ + δτ), π(x, τ + δτ),
(A1)

with the following structure

Ψδτ = Φ
δτ/2
K ◦ Φδτ

V ◦ Φδτ/2
K , (A2)

where Φ
δτ/2
K denotes the Hamiltonian flow of K[π], i.e.,

the flow of generalized momenta, while Φδτ
V denotes the

Hamiltonian flow of V[ϕ], i.e., the flow of generalized co-
ordinates (in this case, the field). In formulae, each time
step of the algorithm is represented by the following se-
quence of operations, to be realized for each point of x
of the lattice:

π(x, τ + δτ/2) = π(x, τ) +
δτ

2
· F [ϕ(x, τ)] ∀ x

ϕ(x, τ + δτ) = ϕ(x, τ) + δτ · π(x, τ + δτ/2) ∀ x

π(x, τ + δτ) = π(x, τ + δτ/2) +
δτ

2
· F [ϕ(x, τ + δτ)] ∀ x

(A3)

The splitting algorithm which we have just described is
usually known as the leapfrog algorithm, the name com-
ing from the fact the updated of generalized positions and
velocities takes place at interleaved time points. Given
E0 = H[ϕ(x, 0), π(x, 0)] and E(τ) = H[ϕ(x, τ), π(x, τ)],

1e− 05

0.0001

0.001

0.01

0.1

1

0.0001 0.001 0.01

∼ dτ 2

〈|E
(τ
)−

E
0
|

E
0

〉

δτ

FRINGE BOUNDARIES

Figure 8. Energy fluctuations δE(δτ) as a function of
the timestep δτ of the numerical algorithm in the case of
Minkowski metric and fringe boundary conditions. Energy
conservation at the algorithmic precision, i.e. δE(δτ) ∼ δτ2,
is fulfilled.

where ϕ(x, τ) and π(x, τ) are the numerical solutions
computed at τ , the leapfrog dynamics has the following
algorithmic bound on energy fluctuations

δE(δτ) = ⟨|E(τ)/E0 − 1|⟩ ∝ δτ2 (A4)

We have verified that the bound in Eq. (A4) is ful-
filled by the fluctuations of both the Hamiltonian E(τ) =
H[ϕ(x, τ), π(x, τ)] in the case of Minkowski metric with
periodic boundary conditions and the total Hamiltonian
(system + boundary layers) Hf [ϕ(x, τ), π(x, τ)] in the
case of fringe boundary conditions (See Eq. (36) and the
following discussion for the definition of Hf [ϕ, π]). In
Fig.7 and Fig.8 is shown the behavior of δE(δτ) as a
function of δτ respectively for the case of periodic and
fringe boundary conditions.
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