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A FROBENIUS INTEGRABILITY THEOREM FOR PLANE FIELDS

GENERATED BY QUASICONFORMAL DEFORMATIONS

SLOBODAN N. SIMIĆ

Abstract. We generalize the classical Frobenius integrability theorem to plane fields of class C
Q,

a regularity class introduced by Reimann [Rei76] for vector fields in Euclidean spaces. A C
Q vector

field is uniquely integrable and its flow is a quasiconformal deformation. We show that an a.e.

involutive C
Q plane field (defined in a suitable way) in R

n is integrable, with integral manifolds of

class C
1.

1. Introduction

Frobenius’s integrability theorem is a fundamental result in differential topology and gives a

necessary and sufficient condition for a smooth plane field (i.e., a distribution) to be tangent to a

foliation. The result has been generalized to Lipschitz plane fields in [Sim96] and [Ram07]. The goal

of this paper is to further extend Frobenius’s theorem to a regularity class weaker than Lipschitz.

In [Rei76], Reimann introduced this new regularity class for vector fields and showed that it is

situated between Lipschitz and Zygmund. We will call the vector fields in this class Q-vector fields, or

of class CQ (see the definition below). Reimann proved that a Q-vector field is uniquely integrable

and that each time t map of its flow is quasiconformal. That is, the flow is a quasiconformal

deformation.

1. Definition. A continuous vector field f : Rn → R
n is called a Q-vector field or of class CQ if

‖f‖Q = sup

∣
∣
∣
∣

〈a, f(x+ a)− f(x)〉

|a|2
−

〈b, f(x+ b)− f(x)〉

|b|2

∣
∣
∣
∣
<∞,

where the supremum is taken over all x ∈ R
n and |a| = |b| 6= 0.

Let

‖f‖Z = sup
x,y∈Rn,y 6=0

|f(x+ y) + f(x− y)− 2f(x)|

|y|

and

‖f‖L = sup
x 6=y

|f(x)− f(y)|

|x− y|

denote the Zygmund and Lipschitz seminorms of f : Rn → R
n.

The following properties were shown in [Rei76]:

(1) ‖f‖Z ≤ 4 ‖f‖Q ≤ 8 ‖f‖L. Thus every Lipschitz vector field is of class CQ. In dimension

one, we have ‖f‖Z = ‖f‖Q .

(2) If f is a Q-vector field and n ≥ 2, then f is Frechét differentiable a.e., its classical partial

derivatives coincide with its weak derivatives and are locally integrable.
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(3) If f : Rn → R
n is a Q-vector field and n ≥ 2, then the differential equation ẋ = f(x) is

uniquely integrable, and for every t, the time t map of its flow is ec|t|-quasiconformal, for

some c > 0.

Recall also:

2. Definition. A homeomorphism h : U → V between open sets in R
n is said to be K-quasiconformal

(K-qc) if the following conditions are satisfied:

(a) h is absolutely continuous on almost every line segment in U parallel to the coordinate axes;

(b) h is differentiable a.e.;

(c) 1
K ‖Dh(x)‖n ≤ |detDh(x)| ≤ K m(Dh(x))n, for a.e. x ∈ U ,

where, for a linear map A, m(A) denotes the ”minimum norm” of A:

m(A) = min{|Av| : |v| = 1}.

The following characterization of Q-vector fields was proved in [Rei76] (cf., Theorem 3):

3. Theorem. A continuous vector field f : Rn → R
n (n ≥ 2) is of class CQ if and only if:

(a) f has distributional derivatives which are locally integrable.

(b) |f(x)| = O(|x| log |x|), as |x| → ∞.

(c) The anticonformal part Sf of the derivative of f is essentially bounded, where

Sf =
1

2
[Df + (Df)T ]−

1

n
Trace(Df)I.

Let X and Y be vector fields of class CQ. Since both are a.e. differentiable, we can define their

Lie bracket in the usual way:

[X,Y ] = DX(Y )−DY (X).

Alternatively,

[X,Y ]u = X(Y u)− Y (Xu),

for every C∞ function u : Rn → R.

For a discussion of properties of the Lie bracket in the setting of rough vector fields (i.e., Lipschitz

and below), see [CT21].

Plane fields of class CQ. We come to the question of how to define a plane field of class CQ. One

possibility is to use the usual route and say that E is class CQ if it is locally spanned by CQ vector

fields. This leads to some technical difficulties so instead we opt for a slightly stronger definition.

Let E be a continuous k-dimensional plane field on R
n and let p ∈ R

n be arbitrary. Let Hp be

an (n − k)-dimensional coordinate plane in R
n such that Ep is transverse to {p} × Hp ⊂ TpR

n.

Continuity of E implies the existence of a neighborhood U of p such that for every q ∈ U , Eq

remains transverse to {q} ×Hp ⊂ TqR
n. Let Kp be the k-dimensional coordinate subspace of Rn

complementary to Hp and denote by πp the orthogonal projection πp : R
n → Kp. Observe that for

every q ∈ U , the restriction of Dqπp to Eq is injective.

For an arbitrary vector field X on Kp with compact support in πp(U), define a lift X̂ of X to E

by

X̂q = (Dqπp|Eq
)−1(Xπ(q)),

for q ∈ U , and X̂q = 0, otherwise. This vector field is a section of E.
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4. Definition. A continuous k-dimensional plane field E on R
n is a Q-plane field or of class CQ, if

for every p, U,Hp, and X as above, the following holds: if X is C∞ and has compact support, then

its lift X̂ to E (defined as above) is a Q-vector field.

Note that if E is of class Cr (r ≥ 1) or Lipschitz, then lifts to E of C∞ vector fields are Cr or

Lipschitz, respectively.

5. Definition. A plane field of class CQ is said to be involutive if for every two CQ sections X,Y

of E, their Lie bracket [X,Y ] is an a.e. section of E; i.e.,

[X,Y ]p ∈ Ep,

for a.e. p.

Our main result is:

Frobenius Theorem. Let E be a k-dimensional plane field of class CQ on R
n. If E is involutive,

then E is integrable, in the following sense. For every p ∈ R
n, there exists a cubic neighborhood U =

(−ε, ε)n of 0 in R
n, a neighborhood V of p, and an almost everywhere differentiable homeomorphism

Φ : U → V

such that Φ maps slices (−ε, ε)k ×{const} to integral manifolds of E in V . Writing Ψ = Φ−1 : p 7→

x = (x1, . . . , xn), we have that the integral manifolds of E in V are the slices

xk+1 = constant, . . . , xn = constant.

Every integral manifold of E in V lies in one of these slices and is of class C1.

2. Preliminaries from the DiPerna-Lions-Ambrosio theory

We briefly recall some basic facts from the DiPerna-Lions-Ambrosio theory (cf., [Amb04, dL89])

of regular Lagrangian flows, which generalize the notion of a flow for “rough” vector fields. These

will be needed in the proof of the main result.

The basic idea of DiPerna-Lions-Ambrosio is to exploit (via the theory of characteristics) the

connection between the ODE ẋ = X(x), where X is a vector field, and the associated transport

PDE:
∂u

∂t
+X · ∇xu = 0,

for a function u = u(t, x).

A common definition of this generalized notion of a flow is the following.

6. Definition (Regular Lagrangian flows [CT21]). We say that φ : R × R
n → R

n is a regular

Lagrangian flow for a vector field X on R
n if:

(a) For a.e. (with respect to the 1-dimensional Lebesgue measure) t ∈ R and every measure

zero Borel set A ⊂ R
n, the set φ−1

t (A) has n-dimensional Lebesgue measure zero, where

φt(x) = φ(t, x).

(b) We have φ0 = identity and for a.e. x ∈ R
n, t 7→ φt(x) is an absolutely continuous integral

curve of X, i.e.,
d

dt
φt(x) = X(φt(x)).
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DiPerna, Ambrosio, and Lions showed that if X ∈ L∞ ∩BV has essentially bounded divergence,

then the regular Lagrangian flow of X exists and is unique. Regular Lagrangian flows are stable

in the following sense: if (Xk) is a sequence of smooth vector fields such that Xk → X strongly in

L1
loc, and (div(Xk)) is equibounded in L∞, then the flows φkt of Xk converge strongly to φt in L

1
loc,

for every t ∈ R.

If X is of class CQ, each time t-map φt of its flow (in the usual sense) is K-quasiconformal for

some K, hence preserves sets of Lebesgue measure zero (see [Kos09]). Thus {φt} is the regular

Lagrangian flow of X.

7. Lemma. Let X is a CQ vector field with divergence in L∞ and denote by {φt} its flow. Then

‖Dφt‖L∞ <∞, for each t, i.e., φt is Lipschitz.

Proof. We follow [CT21]. Assume for a moment that X is smooth. Then by Liouville’s Theorem,

d

dt
detDφt(x) = div(X)(φt(x)) · detDφt(x),

which implies, via Gronwall’s inequality that

exp(−T ‖div(X)‖L∞) ≤ detDφt(x) ≤ exp(T ‖div(X)‖L∞), (1)

for all T > 0 and −T ≤ t ≤ T . Thus ‖detDφt‖L∞ <∞, for each t.

To make this work for a CQ vector field X, consider detDφt as a density, and take the mollifica-

tions Xε of X (see, e.g., [Eva98]); let φεt be the flow of Xε. By the stability of regular Lagrangian

flows, we have

detDφεt
∗
⇀ detDφt

as ε → 0 in L∞, which again yields (1). Since φt is also K-quasiconformal, it follows (see part (c)

in Def. 2) that

‖Dφt‖L∞ ≤ K1/n ‖detDφt‖
1/n
L∞ <∞,

for −T ≤ t ≤ T , as desired. In particular, for any essentially bounded vector field Y , ‖Dφt(Y )‖L∞ <

∞, for −T ≤ t ≤ T . �

The following corollary is a consequence of Theorem 1.1 in [CT21] and Lemma 7.

8. Corollary. Let X,Y be bounded Q-vector fields with essentially bounded divergence, and let

Φ = {φt}, Ψ = {ψt} be their flows. Then the following statements are equivalent:

(a) Φ and Ψ commute as flows, i.e.,

φt ◦ ψs(x) = ψs ◦ φt(x),

for a.e. x ∈ R
n and all s, t ∈ R.

(b) [X,Y ] = 0, almost everywhere.

3. Proof of the main result

The proof is a generalization of the standard proof for the smooth case, which can be found in,

say, Lee [Lee13]. We will show that locally E admits a frame consisting of commuting CQ vector

fields, the composition of whose flows then defines the desired coordinate system.
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Assume that E is an involutive k-dimensional plane field of class CQ and let p = (p1, . . . , pn) ∈ R
n

be an arbitrary point. Without loss we can assume that Ep is transverse to the subspace of TpR
n

spanned by
∂

∂xk+1

∣
∣
∣
∣
p

, . . . ,
∂

∂xn

∣
∣
∣
∣
p

.

Let π : Rn → R
k × {0} be the projection (x1, . . . , xn) 7→ (x1, . . . , xk,

n−k
︷ ︸︸ ︷

0, . . . , 0). Then there exists a

neighborhood W of p such that for every q ∈ W , Dqπ is injective when restricted to Eq. Let U be

a neighborhood of p such that U ⊂W .

Let β : Rk → R be a C∞ bump function such that 0 ≤ β ≤ 1, β = 1 on π(U), and β = 0 on the

complement of π(W ). For 1 ≤ i ≤ k, set

Vi = β
∂

∂xi
.

Then Vi is a C∞ vector field on R
n with compact support in π(U). Denote its lift to E via π by

Xi; i.e.,

Xi(q) = (Dqπ|Eq)
−1(Vi(π(q)).

Since E is of class CQ, Xi is also C
Q. Moreover, on U , we have

π∗([Xi,Xj ]) = [π∗(Xi), π∗(Xj)] = [Vi, Vj ] =

[
∂

∂xi
,
∂

∂xj

]

= 0.

By involutivity of E, [Xi,Xj ] is a section of E a.e.. Since the restriction of Dπ to E is injective, it

follows that [Xi,Xj ] = 0, a.e. on U .

9. Lemma. Xi has essentially bounded divergence, for 1 ≤ i ≤ k.

Proof. Fix 1 ≤ i ≤ k. It follows by construction of Xi that on U we have:

Xi =
∂

∂xi
+

n∑

j=k+1

aj
∂

∂xj
,

for some continuous a.e. differentiable functions aj on U . Since Xi is CQ, S(Xi) is essentially

bounded. It is easy to check that the (j, j)-component of S(Xi) equals

S(Xi)jj = −
1

n

n∑

ℓ=k+1

∂aℓ
∂xℓ

= −
1

n
div(Xi).

Thus the divergence of Xi is essentially bounded. �

Denote the flows of X1, . . . ,Xk by φ1t , . . . , φ
k
t , respectively. By Corollary 8, they commute.

Define a map Φ : Rn → R
n by

Φ(x1, . . . , xn) = (φ1x1
◦ · · ·φkxk

)(p1, . . . , pk, pk+1 + xk+1, . . . , pn + xn).

Then Φ is continuous and differentiable a.e.. We claim that there exists ε > 0 such that the

restriction of Φ to the cube Cε = (−ε, ε)n is injective. Observe that were Φ of class C1, this would

follow immediately from the Inverse Function Theorem.

Let ε > 0 be small enough so that the closure of Cε is contained in Φ−1(U). We claim that Φ is

injective on the closure of Cε. Assume that

Φ(x1, . . . , xn) = Φ(y1, . . . , yn),
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i.e.,

(φ1x1
◦· · · φkxk

)(p1, . . . , pk, pk+1+xk+1, . . . , pn+xn) = (φ1y1◦· · ·φ
k
yk
)(p1, . . . , pk, pk+1+yk+1, . . . , pn+yn),

for some (x1, . . . , xn), (y1, . . . , yn) ∈ Cε. Denote the flow of ∂/∂xi by ψ
i
t. Since π ◦ φit = ψi

t ◦ π, by

projecting Φ(x1, . . . , xn) and Φ(y1, . . . , yn) via π, we obtain

(ψ1
x1

◦ · · ·ψk
xk
)(p1, . . . , pk) = (ψ1

y1 ◦ · · ·ψ
k
yk
)(p1, . . . , pk),

which implies that xi = yi, for 1 ≤ i ≤ k.

Thus

(φ1x1
◦· · · φkxk

)(p1, . . . , pk, pk+1+xk+1, . . . , pn+xn) = (φ1x1
◦· · · φkxk

)(p1, . . . , pk, pk+1+yk+1, . . . , pn+yn)

which clearly implies xi = yi, for k + 1 ≤ i ≤ n. Therefore, Φ is 1–1 on Cε. By the continuity of Φ

and compactness of Cε, it follows that Φ : Cε → Φ(Cε) is a homeomorphism.

Let Sc be a slice (−ε, ε)k × {c} ⊂ Cε (where c ∈ R
n−k) and let

α(t) = (x1(t), . . . , xk(t), c)

be an arbitrary C1 path in Sc. Then

γ(t) = Φ(α(t)) = φ1x1(t)
◦ · · · ◦ φkxk(t)

(const).

The chain rule and commutativity of the flows φit implies that γ′(t) is a linear combination of

X1, . . . ,Xk, hence tangent to E. Therefore, Φ(Sc) is an integral manifold of E.

Since the tangent bundle of each integral manifold N of E is a continuous plane field (namely, E

restricted to N), it follows that N is a C1 manifold. This completes the proof. �

Remark. The following questions would be of interest for further exploration:

(a) Does the main result still hold if a CQ plane field is defined as locally spanned by CQ vector

fields with compact support?

(b) What can be said about foliations tangent to integrable CQ plane fields?

References

[Amb04] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004), no. 2,

227–260.

[CT21] Maria Colombo and Riccardo Tione, On the commutativity of flows of rough vector fields, Journal de
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