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A FROBENIUS INTEGRABILITY THEOREM FOR PLANE FIELDS
GENERATED BY QUASICONFORMAL DEFORMATIONS

SLOBODAN N. SIMIC

ABSTRACT. We generalize the classical Frobenius integrability theorem to plane fields of class C',
a regularity class introduced by Reimann [Rei76] for vector fields in Euclidean spaces. A C? vector
field is uniquely integrable and its flow is a quasiconformal deformation. We show that an a.e.
involutive C'? plane field (defined in a suitable way) in R™ is integrable, with integral manifolds of

class C*.

1. INTRODUCTION

Frobenius’s integrability theorem is a fundamental result in differential topology and gives a
necessary and sufficient condition for a smooth plane field (i.e., a distribution) to be tangent to a
foliation. The result has been generalized to Lipschitz plane fields in [Sim96] and [Ram07]. The goal
of this paper is to further extend Frobenius’s theorem to a regularity class weaker than Lipschitz.

In [Rei76], Reimann introduced this new regularity class for vector fields and showed that it is
situated between Lipschitz and Zygmund. We will call the vector fields in this class Q-vector fields, or
of class C% (see the definition below). Reimann proved that a Q-vector field is uniquely integrable
and that each time t map of its flow is quasiconformal. That is, the flow is a quasiconformal
deformation.

1. Definition. A continuous vector field f : R® — R" is called a Q-vector field or of class C? if

(0, f(x+a) = f(z)) (b f(x+b)— fz))

where the supremum is taken over all x € R™ and |a| = |b] # 0.
Let
d z,y€R™ y#0 |y|
and
x fe—
1, — sup ) = 1)
THY |$ - y|

denote the Zygmund and Lipschitz seminorms of f : R™ — R".
The following properties were shown in [Rei76]:

(D) Ifllz < 4llfllg < 8| fll,- Thus every Lipschitz vector field is of class C?. In dimension
one, we have |[f]l; =[/fllg-
(2) If f is a Q-vector field and n > 2, then f is Frechét differentiable a.e., its classical partial

derivatives coincide with its weak derivatives and are locally integrable.
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(3) If f: R"™ — R™is a Q-vector field and n > 2, then the differential equation & = f(z) is

clt|

uniquely integrable, and for every ¢, the time ¢ map of its flow is e“‘-quasiconformal, for

some ¢ > 0.

Recall also:

2. Definition. A homeomorphism h : U — V between open sets in R™ is said to be K -quasiconformal
(K -qc) if the following conditions are satisfied:
(a) h is absolutely continuous on almost every line segment in U parallel to the coordinate axes;
(b) h is differentiable a.e.;
(¢) % |Dh(z)||" < |det Dh(z)| < K m(Dh(z))", for a.e. x €U,

where, for a linear map A, m(A) denotes the "minimum norm” of A:
m(A) = min{|Av| : |v| = 1}.
The following characterization of Q-vector fields was proved in [Rei76] (cf., Theorem 3):

3. Theorem. A continuous vector field f : R™ — R™ (n > 2) is of class C if and only if:

(a) f has distributional derivatives which are locally integrable.
(b) [f (@) = O(|z|log |z|), as |z — oo.
(¢) The anticonformal part Sf of the derivative of f is essentially bounded, where

Sf = %[D F+ (DT - %Trace(D NI

Let X and Y be vector fields of class C?. Since both are a.e. differentiable, we can define their
Lie bracket in the usual way:
[X,Y]=DX(Y)—- DY (X).
Alternatively,
(X, Y]u=X(Yu)—Y(Xu),
for every C*° function v : R” — R.

For a discussion of properties of the Lie bracket in the setting of rough vector fields (i.e., Lipschitz
and below), see [CT21].

Plane fields of class C?. We come to the question of how to define a plane field of class C?. One
possibility is to use the usual route and say that F is class C? if it is locally spanned by C% vector
fields. This leads to some technical difficulties so instead we opt for a slightly stronger definition.

Let E be a continuous k-dimensional plane field on R™ and let p € R™ be arbitrary. Let H,, be
an (n — k)-dimensional coordinate plane in R™ such that E, is transverse to {p} x H, C T,R".
Continuity of E implies the existence of a neighborhood U of p such that for every ¢ € U, E,
remains transverse to {¢} x H, C T,R". Let K, be the k-dimensional coordinate subspace of R"
complementary to H, and denote by 7, the orthogonal projection 7, : R" — K. Observe that for
every g € U, the restriction of Dy, to E, is injective.

For an arbitrary vector field X on K, with compact support in m,(U), define a lift X of X to E
by

Xq = (Dq7p|Eq)_1(X7r(q)),

for ¢ € U, and Xq = 0, otherwise. This vector field is a section of E.
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4. Definition. A continuous k-dimensional plane field E on R™ is a Q-plane field or of class C<, if

for every p,U, H,,, and X as above, the following holds: if X is C*° and has compact support, then
its lift X to E (defined as above) is a Q-vector field.

Note that if E is of class C" (r > 1) or Lipschitz, then lifts to E of C'*° vector fields are C" or
Lipschitz, respectively.

5. Definition. A plane field of class C© is said to be involutive if for every two C? sections X,Y
of E, their Lie bracket [X,Y] is an a.e. section of E; i.e.,

(X,Y], € E,,
for a.e. p.
Our main result is:

Frobenius Theorem. Let E be a k-dimensional plane field of class C? on R™. If E is involutive,
then E is integrable, in the following sense. For every p € R™, there exists a cubic neighborhood U =
(—e,e)™ of 0 in R™, a neighborhood V' of p, and an almost everywhere differentiable homeomorphism

®:.U—-V
such that ® maps slices (—e,e)* x {const} to integral manifolds of E in V. Writing ¥ = &~ : p s
x = (x1,...,Ty,), we have that the integral manifolds of E in V are the slices
Tk4+1 = constant, ..., z, = constant.

Every integral manifold of E in V lies in one of these slices and is of class C".

2. PRELIMINARIES FROM THE DIPERNA-LIONS-AMBROSIO THEORY

We briefly recall some basic facts from the DiPerna-Lions-Ambrosio theory (cf., [Amb04, dL89])
of regular Lagrangian flows, which generalize the notion of a flow for “rough” vector fields. These
will be needed in the proof of the main result.

The basic idea of DiPerna-Lions-Ambrosio is to exploit (via the theory of characteristics) the
connection between the ODE & = X (x), where X is a vector field, and the associated transport

PDE:

ou
— 4+ X -Vyu=0,
8t+ U

for a function u = u(t, x).
A common definition of this generalized notion of a flow is the following.

6. Definition (Regular Lagrangian flows [CT21]). We say that ¢ : R x R — R" is a regular
Lagrangian flow for a vector field X on R™ if:
(a) For a.e. (with respect to the 1-dimensional Lebesque measure) t € R and every measure
zero Borel set A C R", the set (bt_l(A) has n-dimensional Lebesgue measure zero, where
ou(r) = 61, 7).
(b) We have ¢y = identity and for a.e. x € R", t — ¢y(x) is an absolutely continuous integral
curve of X, i.e.,

d
Soulw) = X (én(a))
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DiPerna, Ambrosio, and Lions showed that if X € L°° N BV has essentially bounded divergence,
then the regular Lagrangian flow of X exists and is unique. Regular Lagrangian flows are stable
in the following sense: if (Xj) is a sequence of smooth vector fields such that X — X strongly in
Ll , and (div(Xy)) is equibounded in L, then the flows #F of X}, converge strongly to ¢; in Ll .
for every t € R.

If X is of class C%, each time t-map ¢; of its flow (in the usual sense) is K-quasiconformal for
some K, hence preserves sets of Lebesgue measure zero (see [Kos09]). Thus {¢;} is the regular

Lagrangian flow of X.

7. Lemma. Let X is a C9 vector field with divergence in L™ and denote by {¢;} its flow. Then
D]l e < 00, for each t, i.e., ¢ is Lipschitz.

Proof. We follow [CT21]. Assume for a moment that X is smooth. Then by Liouville’s Theorem,

< det Doy() = div(X)(6u(x)) - det Dy (),

which implies, via Gronwall’s inequality that
exp(—T'[|div(X)|| ) < det Dgy(2) < exp(T [|div(X)]| ), (1)

for all T'> 0 and =7 < ¢ <T. Thus ||det D¢||; o < o0, for each t.

To make this work for a C'9 vector field X, consider det D¢, as a density, and take the mollifica-
tions X° of X (see, e.g., [Eva9d8]); let ¢7 be the flow of X¢. By the stability of regular Lagrangian
flows, we have

det DF = det Doy

as € — 0 in L°°, which again yields (1). Since ¢ is also K-quasiconformal, it follows (see part (c)
in Def. 2) that

|Dr]| oo < KM™ [[det D] < oo,
for —T' <t < T, as desired. In particular, for any essentially bounded vector field Y, || D¢ (Y)|| ;0o <
oo, for —T <t <T. O

The following corollary is a consequence of Theorem 1.1 in [CT21] and Lemma 7.

8. Corollary. Let X,Y be bounded Q-vector fields with essentially bounded divergence, and let
O = {¢¢}, U= {4} be their flows. Then the following statements are equivalent:

(a) ® and U commute as flows, i.e.,

¢t © 1/15(96) = 1/15 o ¢t(x)a

for a.e. x € R and all s,t € R.
(b) [X,Y] =0, almost everywhere.

3. PROOF OF THE MAIN RESULT

The proof is a generalization of the standard proof for the smooth case, which can be found in,
say, Lee [Leel3]. We will show that locally E admits a frame consisting of commuting C% vector
fields, the composition of whose flows then defines the desired coordinate system.
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Assume that F is an involutive k-dimensional plane field of class C% and let p = (p1,...,p,) € R”
be an arbitrary point. Without loss we can assume that E, is transverse to the subspace of T, R™

spanned by
0 0
Oxprr|, oz, -
n—k
Let 7 : R* — R* x {0} be the projection (z1,...,z,) — (z1,... ,:Ek,m). Then there exists a

neighborhood W of p such that for every ¢ € W, D, is injective when restricted to E,. Let U be
a neighborhood of p such that U ¢ W.

Let 3: R¥ = R be a C°° bump function such that 0 < <1, 3 =1 on 7(U), and 8 = 0 on the
complement of w(W). For 1 < i <k, set

Vi= ﬁ

0x;
Then V; is a C* vector field on R™ with compact support in 7(U). Denote its lift to F via 7 by
X;; ie.,
Xi(a) = (Dgrls,) ™ (Vi(n(q).

Since F is of class C9, X; is also C?. Moreover, on U, we have

(X0 X)) = [ (6, m ()] = Vil = | 5| =0
By involutivity of E, [X;, X;] is a section of E a.e.. Since the restriction of D to E is injective, it
follows that [X;, X;] =0, a.e. on U.

9. Lemma. X; has essentially bounded divergence, for 1 <i <k.

Proof. Fix 1 <4 < k. It follows by construction of X; that on U we have:

for some continuous a.e. differentiable functions a; on U. Since X; is C9, S(X;) is essentially
bounded. It is easy to check that the (j, j)—component of S(X;) equals

" day
S(X;); =—— Z = ——dlv( i)-
" Dz

Thus the divergence of X; is essentially bounded. O

Denote the flows of X1,..., Xy by ¢1,...,¢F, respectively. By Corollary 8, they commute.
Define a map ® : R™ — R" by

@(,Z'l’, .- 7‘TTL) = ( ;151 O - (bl;k)(pl’ -y Py Pk+1 +$k+1, c oy Pn +$n)

Then @ is continuous and differentiable a.e.. We claim that there exists € > 0 such that the
restriction of ® to the cube C. = (—¢,¢)" is injective. Observe that were ® of class C'', this would
follow immediately from the Inverse Function Theorem.

Let € > 0 be small enough so that the closure of C. is contained in ®~1(U). We claim that & is
injective on the closure of C.. Assume that

CIJ(xl, . ,l'n) = (I)(yla s 7yn)7
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ie.,

((b:lclo' o ¢I;k)(p17 cee 7pk7pk+1+xk+17 o 7pn+xn) = ((ﬁzlﬂo' o ¢Zk)(pla cee 7pk7pk+1+yk+17 o 7pn+yn)7

for some (x1,...,%,), (Y1,.-.,yn) € Ce. Denote the flow of 9/0z; by 1i. Since 7 o ¢} = v o 7, by
projecting ®(x1,...,z,) and ®(yi,...,y,) via 7, we obtain

(¢i1 O~ wiﬂk)(ph s 7pk) = (¢;1 O ¢Iy€k)(p17 s 7pk)7

which implies that x; = y;, for 1 <i < k.
Thus

((b:lclo' o ¢I;k)(p17 o 7pk7pk+1+xk+17 o 7pn+xn) = (¢;‘lo' o ¢I;k)(p17 o 7pk7pk+1+yk+17 cee 7pn+yn)

which clearly implies x; = y;, for k + 1 < i < n. Therefore, ® is 1-1 on C.. By the continuity of ®
and compactness of C., it follows that ® : C. — ®(C.) is a homeomorphism.

Let S. be a slice (—¢,¢)* x {c¢} C C. (where ¢ € R* ) and let

a(t) = (xl(t)7 s ,.Z'k(t), C)
be an arbitrary C! path in S.. Then

W(t) = q)(Oé(t)) = qb;l(t) ©---0 Qslgzk(t) (CODSt).

The chain rule and commutativity of the flows ¢! implies that ~/(¢) is a linear combination of
X1, ..., Xk, hence tangent to E. Therefore, ®(S,) is an integral manifold of FE.

Since the tangent bundle of each integral manifold N of E is a continuous plane field (namely, E
restricted to N), it follows that N is a C' manifold. This completes the proof. O

Remark. The following questions would be of interest for further exploration:

(a) Does the main result still hold if a C? plane field is defined as locally spanned by C'? vector
fields with compact support?
(b) What can be said about foliations tangent to integrable C? plane fields?
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