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ABSTRACT

Crystal structures are indispensable across various domains, from
batteries to solar cells, and extensive research has been dedicated
to predicting their properties based on their atomic configurations.
However, prevailing Crystal Structure Prediction methods focus on
identifying the most stable solutions that lie at the global minimum
of the energy function. This approach overlooks other potentially
interesting materials that lie in neighbouring local minima and have
different material properties such as conductivity or resistance to
deformation. By contrast, Quality-Diversity algorithms provide a
promising avenue for Crystal Structure Prediction as they aim to
find a collection of high-performing solutions that have diverse
characteristics. However, it may also be valuable to optimise for
the stability of crystal structures alongside other objectives such as
magnetism or thermoelectric efficiency. Therefore, in this work, we
harness the power of Multi-Objective Quality-Diversity algorithms
in order to find crystal structures which have diverse features and
achieve different trade-offs of objectives. We analyse our approach
on 5 crystal systems and demonstrate that it is not only able to
re-discover known real-life structures, but also find promising new
ones. Moreover, we propose a method for illuminating the objective
space to gain an understanding of what trade-offs can be achieved.
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1 INTRODUCTION

Inorganic crystal structures are pervasive in our everyday lives,
forming the foundation of materials used in industries as diverse
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Figure 1: Left: Illustration of crystal structure: atoms and
molecules are arranged in a repeated, ordered pattern. Right:
The crystal structure energy landscape is rugged with several
local optima. Relaxation is a form of local optimisation that
brings solutions toward local optima.

as electronics, pharmaceuticals, and energy storage. Consequently,
advancements in materials science could have revolutionary effects
across a wide variety of sectors. For instance, in the electronics
industry, the discovery of novel crystal structures could lead to the
development of more efficient semiconductors and superconductors,
enabling faster and more energy-efficient electronic devices [28].
Crystal Structure Prediction (CSP) is an optimisation problem
that aims to predict stable atomic arrangements within crystalline
materials. Traditionally, computational techniques for CSP have
focused on finding the global minimum of the energy function,
assuming that the crystal structure with the lowest energy is the
most stable. Existing methods, such as genetic algorithms [30],
random search [8], and particle swarm optimization [9], employ
various search strategies to locate this global minimum. While these
methods have made significant contributions to the field, they often
overlook potentially valuable regions of the objective space and
may miss relevant meta-stable structures in local optima [19].
Consider carbon as an illustrative example. The most stable car-
bon crystal is graphite, characterised by its layered hexagonal struc-
ture. However, there are numerous alternative carbon allotropes,
such as diamonds, nanotubes, and fullerenes, each possessing dis-
tinct properties with immense technological potential. Traditional
CSP methods often fail to explore these alternative structures, as
they are solely aimed at finding the lowest energy state.
Quality-Diversity (Qp) algorithms [12], primarily used in evolu-
tionary robotics and optimization [11], have recently emerged as a
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promising approach for addressing CSP challenges [41]. oD algo-
rithms aim to discover not only the single best solution but instead
a large collection of different, yet high-quality, solutions across the
search space. This approach has many advantages in the context
of CSP. Firstly, seeking a collection of solutions could lead to the
discovery of multiple local optima, each potentially representing
unique and interesting materials. Discovering a multitude of crystal
structures not only enhances our understanding of materials but
could also provide a valuable reservoir of options for synthesis.
In particular, synthesising materials under laboratory conditions
can often prove challenging [28], so having alternative candidate
solutions offers researchers greater flexibility and choice. Finally,
since the energy landscape of CSP is typically rugged [19], having
a collection of solutions could aid exploration, as diverse solutions
can serve as stepping stones to navigate and escape local optima
effectively [18, 35].

Recently, Wolinska et al. [41] applied the well-established map-
ELITES algorithm to the CSP problem by using domain-specific mu-
tation operators and graph neural-networks as surrogate models
for evaluating potential crystal structures. The authors demonstrate
that, by using this approach, Qb algorithms are capable of discov-
ering a wide variety of crystal structures [41]. Excitingly, their
method was not only able to discover structures known by material
scientists, but also to discover some promising new structures.

While this is an important advancement, using stability as the
sole objective does not allow optimisation of any other desired
objectives of the materials, such as magnetism or thermoelectric
efficiency. In order to find materials that are useful for downstream
applications, it would be extremely valuable to allow for the optimi-
sation of crystal structure stability in tandem with other objectives.
With this goal in mind, in this work, we apply Multi-Objective
Quality-Diversity algorithms to the field of CSP. Multi-objective
Quality-Diversity (MoQD) [23, 29, 33] is a new research effort that
aims to find diverse solutions that simultaneously optimise multiple
objectives. For CSP this allows us to not only find diverse crystalline
materials but also explore trade-offs and properties associated with
these crystal structures.

In this paper, we build upon the work of Wolinska et. al [41]
by applying Multi-Objective Quality-Diversity algorithms to Crys-
tal Structure Prediction. We evaluate our method on 5 different
crystal systems and demonstrate that our method is able to find a
large collection of crystal structures that have diverse conductiv-
ity properties and deformation-resistance, and that achieve vary-
ing trade-offs between stability and magnetism. Moreover, we
demonstrate that our approach is not only able to re-discover
known structures, but also uncover novel structures that may
surpass these known materials. Finally, we illustrate how our ap-
proach can be used to illuminate the search space, highlighting
the possible trade-offs and properties that crystal structures can
exhibit. All of our work is fully containerised and is available at:
https://github.com/adaptive-intelligent-robotics/ MOQD-CSP.

2 BACKGROUND
2.1 Crystal Structures

Crystals are three-dimensional arrangements of atoms or molecules,
characterised by a repeating pattern (see Figure 1) [38]. The entire
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crystal structure can be summarised by its unit cell, which is the
smallest repeating structural component of the crystal [31]. The
positions of atoms in the unit cell collectively define the crystal’s
stability and properties.

Finding novel crystal structures experimentally in a laboratory
setting can be a technically challenging, resource-intensive and
time-consuming task. To overcome these challenges, computational
methods have become an indispensable tool for finding new mate-
rials. These techniques leverage the power of computers to explore
the vast search space of possible crystal structures, assessing their
stability through an energy function (see Figure 1). The energy
function calculates the total energy of a given atomic arrangement
within a crystal, taking into account the interactions between atoms,
including their bond lengths and angles. In essence, it quantifies
the stability of a crystal structure based on the relative positions
of its constituent atoms. The aim of Crystal Structure Prediction
(CSP) is to find structures which lie at the global minimum of this
energy function and are therefore highly stable.

Computing the energy function of a crystal structure is not al-
ways a straightforward task. In most applications, to accurately
predict crystal structures, researchers often employ Density Func-
tional Theory (DFT) calculations [3]. DFT calculations estimate the
properties of materials based on quantum mechanical principles
and, while they are highly accurate, they are also computationally
expensive, requiring significant computational resources and time.
To address this, surrogate models [14] have emerged as an alterna-
tive approach for approximating the energy function. These surro-
gate models aim to reduce the computational burden by providing
quick and cost-effective approximations of the energy landscape.
While surrogate models offer efficiency gains, they introduce the
challenge of accuracy and reliability, as their predictions may not
always align perfectly with the true energy values.

The CSP problem is inherently challenging due to the vast high-
dimensional space of possible atomic configuration and ruggedness
of the energy landscape [19]. Given the complexities of both exper-
imental and computational approaches, crystal structure prediction
remains a challenging and critical problem.

2.2 Quality-Diversity Algorithms

Traditional optimisation methods aim to find a single, high-quality
solution, in contrast, the objective of Quality-Diversity (QD) optimi-
sation algorithms is to find a set of solutions that are both diverse
and high-performing. In gD, a solution is characterised by a fitness
score f and a feature vector d. The feature vector characterises
some aspect of interest of the solution. For example, in robotic
locomotion the feature vector could reflect the gait of the robot
[11, 33] or in video game level design this could be the number of
enemy characters [24]. The objective of @D is to find a collection of
solutions which have diverse feature vectors and high fitness.

In the family of oD optimisation methods, Multi-dimensional
Archive of Phenotypic Elites (MAP-ELITES) is a simple yet powerful
algorithm used successfully in several prior works [23, 29, 33]. In
MAP-ELITES, the feature space is discretised into a grid composed
of cells. Each cell corresponds to a feature vector and stores the
solution characterised by the same feature. The algorithm begins
with initialising the grid and placing randomly sampled solutions
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in the cells. At each iteration of the MAP-ELITES algorithm, the first
step consists of selecting a batch of solutions from the grid. Next,
copies of these solutions undergo variation to form offspring so-
lutions, which are evaluated to obtain the fitness scores and the
features. Finally, each new solution is added back to the grid if the
cell matching the solution’s feature vector is empty or if the exist-
ing solution within the cell is outperformed by the new solution.
By repeating this loop for a specified budget, the grid gradually
accumulates diverse and high-quality solutions. The performance
of MAP-ELITES algorithms can be assessed via the Qp-score which
is the sum of the fitness of the solutions in each cell.

2.3 Multi-Objective Optimisation
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Figure 2: The Pareto Front represents the set of different
trade-offs on objectives. The hypervolume reflects the area
between points on the Pareto Front and a reference point.

Multi-objective optimisation considers the problem of maximis-
ing a set of different, and often conflicting, objectives at once. Con-
cretely, given a solution x € X and an objective f : X — R, the
problem is formalised as mea{{)((fl (), oy fre(x)).

X

In reality, for most problems, achieving a solution that maximises
all objectives simultaneously is often unattainable. Consequently,
the aim becomes identifying the set of solutions which achieve the
best possible trade-offs on the set of objectives, known as the Pareto
front (see Figure 2). A solution belongs to the front if it scores
at least as high as the other solutions on the front on all of the
objectives, and outperforms them on at least one objective [20].
Solutions that belong to the front are called Pareto optimal.

The performance of multi-objective optimisation is often as-
sessed via the hypervolume metric which reflects the area of space
between points on the front and a fixed reference point r [4] (see
Figure 2). Pareto Fronts that contain solutions that are more evenly
distributed and higher-performing on each objective will have a
higher hypervolume [20].

2.4 Multi-Objective Quality-Diversity

Multi-Objective Quality-Diversity (MoQD) aims to generate a di-
verse set of high-performing solutions that maximise a combination
of k different objectives f = [fi, f2, ...f]. Multi-Objective MAP-
Elites (MoME) [33], a well-established MmoQD algorithm, achieves
this by storing a Pareto Front of solutions in each grid cell. The
algorithm flow closely matches that of MAP-Elites with one crucial
distinction: after evaluating a new solution and identifying its cor-
responding cell based on its feature, the solution is placed into the
cell only if it Pareto-dominates the other existing solutions in that
cell. The objective of MoQD algorithms is to find an approximation
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of the Pareto Front in each cell that has the best set of trade-offs
and therefore maximum hypervolume. Hence, the performance of
MoQD algorithms is assessed by the sum of the hypervolumes of
all the Pareto Front approximations in the grid, referred to as the
MOQD-sCORE. This objective translates to finding the best possible
trade-offs across the set of objectives for each feature of interest.

Since the Pareto Front can contain infinitely many solutions, in
order to control the memory costs and allow for parallelisation,
previous works in MOQD use a fixed maximum size for the Pareto
Front [23, 33]. Prior works in the field of mo@D build upon the
MOME algorithm and have applied it to policy learning robotics
tasks and environments. However, to the best of our knowledge,
no other Mo@D works have been applied to CSP.

3 RELATED WORKS

3.1 Crystal Structure Prediction

Within the field of Crystal Structure Prediction, recent advance-
ments have been heavily influenced by the growing availability of
crystallographic databases [22]. For example, data-mining meth-
ods analyse these large databases with the aim to uncover insights
for predicting new structures [13]. Deep learning methods, on the
other hand, harness the power of neural networks to extract fea-
tures from high-dimensional crystallographic data [36]. Addition-
ally, generative models such as auto-encoders [10] and generative
adversarial networks [25] have emerged as a creative means to pro-
duce entirely new crystal structures. While these learning-based
approaches leverage extensive data sources, they may also be biased
towards these databases and therefore could be potentially limited
for the discovery of entirely novel crystal structures.

Other efforts in CSP have been driven by evolutionary algorithms
(EAs) [30]. These algorithms work by generating new structures
through genetic-like operators and gradually improving the struc-
tures over multiple iterations by retaining those which are most
promising. Most of the work in applying EAs to CSP has been
focused on injecting domain knowledge into the evolutionary pro-
cess. For example, some works explore using alternative crystal
representations to reduce the complexity of the search space [1, 34]
while others introduce specialised variation operators which, for
example, preserve crystal symmetries [19, 27, 28].

A key challenge of using EAs for CSP arises from the costly na-
ture of evaluating crystal structures. Therefore some methods aim
to optimise a surrogate energy model rather than rely on resource-
intensive DFT calculations. While these models provide fast esti-
mates of the energy landscape, they come with inherent reliability
concerns. However, recent works have greatly enhanced the accu-
racy of surrogate models by training them to be conservative in
their estimates [34] or leveraging ensemble techniques [28].

3.2 Quality-Diversity for Crystal Structure
Prediction

Despite the progress made in CSP, there remains a notable gap in
the CSP literature. Most existing methods primarily focus on find-
ing the global minimum of the energy function, largely overlooking
the exploration of diverse crystal structures and their associated
properties. In a recent study by Wolinska et al. [41], the Map-Elites
algorithm (see section Section 2.2) was applied to CSP, resulting



GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

in the discovery of a diverse range of crystal structures, including
both known materials and promising new configurations. While
this represents a significant advancement, this work only focused
on finding stable crystal structures and disregarded other objectives
for properties of the material, such as the toughness and hardness.
On the other hand, other works have used multi-objective evolu-
tionary algorithms [1] to find such trade-offs, but do not include
specific diversity-maintenance mechanisms which facilitate the
discovery of diverse structures. In contrast, our approach utilises
Multi-Objective Quality-Diversity algorithms, allowing us to not
only uncover diverse crystalline materials but also explore the as-
sociated trade-offs and properties within these crystal structures.
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Figure 3: MOME-X for CSP method overview. At each iteration,
solutions are selected from the grid and undergo domain-
specific variation. We then perform a fixed number of relax-
ation steps. The new solution is evaluated via a surrogate
model and added back to the archive if it belongs to the Pareto
Front of the cell corresponding to its feature.

4.1 Overview

In this section we present our method, as visualised in Figure 3).
Overall, our method adheres the general flow of the MoME algo-
rithm which maintains a Pareto Front in each cell of a MAP-ELITES
grid: at each iteration, solutions are selected from the grid, undergo
variation and are added back to the grid if they belong to the corre-
sponding Pareto Front. However, we also utilise the crowding-based
selection and addition exploration mechanisms from MOME-PGX
[23], hence we term the approach moME-x. These crowding-based
mechanisms are employed in order to improve exploration and
ensure the maintenance of different trade-offs (see Section 4.3).

In order to apply MOME-X to the CSP problem, following Wolinksa
et. al [41], we inject domain knowledge into the evolutionary pro-
cess. Further details are provided in subsequent sections.

4.2 Initialisation

As explained in Section 3.1, crystal structures can be defined by
their unit cell, which corresponds to the smallest repeating con-
figuration of atoms. Therefore, many works in CSP use the unit
cell parameters as the genotype within the evolutionary process
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[19, 41]. The unit cell parameters comprise: 3 lattice parameters
a, b, ¢ which describe the length of the bounding box of the unit cell,
3 parameters «, 8, y which describe the angles of this bounding box
and 3 X(N —1) parameters that describe the (x, y, z) co-ordinates of
each of the atoms in the unit cell, where N is the number of atoms
in the unit cell. However, one significant challenge in CSP is the
dimensionality of the search space: there are approximately 10V
distinct structures for a structure with N atoms. Of these arrange-
ments, many candidates may not achieve the intricate symmetrical
properties that crystal structures must obey for stability. Therefore,
if we were to initialise the population of structures randomly, it is
highly likely that this would result in highly unstable structures
which would be hard for the optimisation process to bootstrap from.
To address this, evolutionary algorithms may prefer to generate an
initial population using domain-specific heuristics to ensure that
the initial candidates are realistic structures [19, 41]. We choose to
use the pyxtal package [17] to create initial candidates. The pyx—
tal package generates structures that conform to the permissible
symmetries within a specific crystal system.

4.3 Crowding-based Exploration

After generating the initial candidate structures, the algorithm
enters the main algorithmic flow: at each iteration solutions are se-
lected from the grid, mutated and evaluated for potential re-addition
to the MAP-ELITES grid. In this work, we incorporate crowding-based
selection and addition mechanisms, first introduced in MOME-PGX
[23]. At each iteration, after selecting a Pareto Front from the grid
with uniform probability, a solution from this front must be selected
for variation. The crowding-based selection operator biases the se-
lection of solutions which lie in sparser regions of the Pareto Front
which encourages exploration across all objectives. Similarly, the
crowding-based addition mechanism is used to encourage a uniform
spread of solutions on the Pareto Front of each cell. In particular,
since each cell’s Pareto Front has a fixed maximum size, if a new
solution is added to the front of a cell which is already at maximum
capacity another solution must be replaced. In the moME algorithm,
arandom solution from the front is replaced, which could result in a
loss of coverage of the objective space and a decrease in MOQD score.
By contrast, the crowding-based addition operator ensures that the
solutions which would provide the most even distribution across
the Pareto Front are kept in each cell, ensuring that the best set of
possible trade-offs are achieved. We refer the interested reader to
the MOME-PGX paper [23] for more details about these operators.

4.4 Mutations

The use of traditional genetic algorithm Ga variation operators
poses a significant challenge in CSP since many of these opera-
tors have the potential to disrupt these symmetrical properties of
crystal structures. To address this issue, numerous works in CSP
employ domain-specific mutation operators [1, 19, 28, 41], which
are tailored to preserve these essential symmetries. In our research,
we adopt two domain specific variation operators from the Atomic
Simulation Environment, ase package [26]: 1) strain mutations,
capable of compressing or expanding crystal structures, and 2) per-
mutation mutations, which facilitate the rearrangement of atoms
of distinct types within the structure. While alternative variation
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operators are available [1, 26-28], an extensive study of alternative
choices is beyond the scope of this work. Moreover, previous stud-
ies have demonstrated that these selected operators are effective,
especially when initiated from well-structured starting points [19].

4.5 Relaxation

Despite the use of domain-specific variations operators tailored
to CSP, there remains the potential to inadvertently disrupt the
structural crystal symmetries when applying mutations. To mitigate
this challenge, after the application of mutation operators, we apply
relaxation [2]. As illustrated in Figure 1, relaxation is a form of
local optimisation, leveraging the energy function’s gradient to
guide the solution towards its nearest local optima while preserving
critical symmetrical properties. The gradient of the energy function
represents the force on each of the atoms and minimising the force
by moving toward a local optimum leads to a more stable structure.
Relaxation is a highly effective procedure for preventing the
generation of redundant crystal structures, making it a prevalent
practice in CSP methodologies [1, 19, 28, 30, 41]. However, since
relaxation is a form of local optimisation it requires performing ad-
ditional energy function evaluations. Therefore, this process comes
with a computational cost and reduces the overall budget of evalu-
ations typically available in evolutionary algorithms. To manage
the computational budget, we apply a fixed number of relaxation
steps to each offspring solution. Then we use a surrogate model to
estimate the force on the atoms of the offspring solution and apply
a loose filtering system: if the force is still very high after these
relaxation steps, it is removed from the offspring candidates.

4.6 Evaluating Solutions

Evolutionary algorithms typically require evaluating many thou-
sands of solutions at each iteration. In the context of CSP, accurate
energy calculations could be achieved through DFT. However, the
sheer volume of evaluations typically needed in evolutionary algo-
rithms makes this approach prohibitively expensive. To address this
challenge, our method employs pre-trained neural networks [5-
7, 14], trained on extensive materials databases as surrogate models
for evaluating the fitness and features of solutions. Although these
models are less accurate compared to DFT, we contend that this
limitation is manageable for several reasons.

Firstly, recent advancements in deep learning have demonstrated
a trend towards improving neural network accuracy in various
fields, including CSP. Indeed, recent works which employ tech-
niques such as ensemble training [28] and conservative loss func-
tions [34] have already facilitated enhanced surrogate model accu-
racy. Thus, we anticipate that these models will continue to improve
and will soon be a competitive alternative to DFT calculations.

Secondly, we hope that future work could extend our method
as a tool for fine-tuning surrogate models through active-learning
strategies, following a similar approach to GNoME [28]. For exam-
ple, we found that the surrogate model predicted some solutions
to have a negative fitness, which is not feasible in real-life. In this
work, we simply filtered out these unrealistic solutions. However,
future works could re-evaluate these out-of-distribution solutions
via DFT and then using them as training examples to further refine
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the surrogate model. While this lies beyond the scope of our present
work, it offers an intriguing avenue for future CSP research.

5 EXPERIMENTAL SET UP

5.1 Experiments

We evaluate our method on 5 crystal systems: Carbon (C), Silicon
(Si), Silicon Carbide (SiC), Silicon Dioxide (SiO2) and Titanium Diox-
ide (TiO3). For each of the systems, we use the following features:

(1) The band gap [37] reflects the energy required to move an elec-
tron from the valence band to the conduction band and therefore
is an indication of the conductivity of a material. We estimate
the band gap via the "MEGNet-MP-2019.4.1-BandGap—
mfi" model from the Materials Graph Library, matgl [5].

(2) The shear modulus [42] of a material quantifies its resistance to
deformation under shear stress, providing information about
its stiffness and ability to withstand forces. We estimate the
shear modulus using the "1ogG_MP_2018" model from the
Materials Graph Network Library (MEGNet) [6, 7].

The aim of the method is to find crystal structures which are di-
verse in their band gap and shear modulus, and are high-performing
on a set of objectives. In this work, for all systems, we consider the
following objectives [41]:

(1) The stability of the crystal structure, which we quantify via the
energy function, is estimated by CHGNet [15]. The objective is
to minimise the total energy of the crystal structure, reflecting
the configuration that represents the most stable state for the
crystal. The stability of a structure is actually assessed by its
value on the energy function, with more negative values being
more stable. For simplicity, we take the negative energy as
fitness and seek to maximise this.

(2) We also use CHGNet to estimate the magnetic moment of the
structures. The magnetic moment is a vector quantity that char-
acterises magnetic moment associated with each atom in a crys-
tal lattice. We combine the moments for each atom into a single
magnetism score, known as the total magnetic moment. For
simplicity, we refer to the total magnetic moment as magnetism
henceforth.

We note that the choice of objectives in this work serve as a start-
ing point for applying MmoQD to CSP. Future research avenues could
explore additional material properties such as toughness and hard-
ness [1]. Alternatively, we might consider using the uncertainty of
an ensemble of the surrogate model predictions as a meta-objective,
enabling optimisation for both stability and the confidence in that
stability prediction. These possibilities illustrate the flexibility and
potential for expanding the objectives within the MmoQD framework
to enhance crystal structure discovery.

5.2 Baselines

We evaluate our method, MOME-X, against three MAP-ELITES base-
lines: 1) ME-ENERGY 2) ME-MAGNETISM and 3) ME-SUM. Each of these
baselines corresponds to applying the MAP-ELITES algorithm to CSP,
optimising for stability of structures, magnetism of structures and
an additive sum of the two respectively. We use the same mutation
operators, initialisation and relaxation procedures for all of the
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Figure 4: Median performance of 15 seeds, the shaded regions show the inter-quartile range.

baselines and MmoME-x. However, it should be noted that a straight-
forward comparison between MOME algorithms and MAP-ELITES
algorithms is non-trivial, since MAP-ELITES algorithms store at most
one solution per cell whereas MOME algorithms can store several. In
particular, if we use an archive tessellated into ¢ cells for MOME-X,
each with a maximum Pareto Front length p, MOME-x could have
a maximum population size of ¢ X p. Therefore, for fairness, in all
MAP-ELITES baselines we tessellate the archive into ¢ X p cells.

On the other hand, calculating MoQD metrics on grids with differ-
ent tessellation sizes would also not be a fair comparison. Therefore,
to report metrics for the baselines, we also maintain passive MOME
archives alongside the main MAP-ELITES archives [23, 33]. At each it-
eration, all of the solutions from the MAP-ELITES archives are added
to these passive MOME archives using the normal Pareto Front ad-
dition rules. The passive archives are then used to calculate and
report metrics, but do not interact with the main algorithm flow.

5.3 Hyperparameters

For MOME-X, we use an archive with a CVT tessellation [39] of 200
cells, each with a maximum Pareto Front length of 10. Therefore,
for MAP-ELITES baselines we use a CVT tessellation of 2000 cells.
We run all experiments for a total of 5000 evaluations, selecting 100
solutions from the grid at each iteration. For all systems, we consider
structures with 24 atoms, with an initial unit cell volume of 450 A3
and ratio of covalent radii of 0.4. For multi-atom systems (SiC, SiOz,
TiO2) we apply strain and permutation mutation operators with
equal probability and for single-atom systems (Si, C) we only apply
strain mutation operators. After applying the variation operators
we use 100 relaxation steps and filter out solutions with a force
greater than 1.0 eV/A. We use a reference point of [0, 0] to calculate
the hypervolume. Each experiment was repeated for 15 replications.

6 RESULTS
6.1 Multi-Objective Quality-Diversity Results

We first evaluate MOME-X against the MAP-ELITES baselines using
the following MOQD metrics:

(1) MmoQD-scoRE: the sum of the hypervolumes of each Pareto Front

of the MOME archive. This metric aims to reflect whether our ap-

proach is able to find solutions which are diverse in the feature

space, that achieve different trade-offs on each of the objectives

(see Section 2.4).

ENERGY-QD-SCORE: the sum of the energy scores of all solutions

in the archive. This is what the ME-ENERGY baseline is explicitly

trying to maximise.

(3) MAGNETISM-QD-SCORE: the sum of the magnetism scores of
all solutions in the archive. This is what the ME-MAGNETISM
baseline is explicitly trying to maximise.

(2

~

We verify the statistical significance of our results by reporting
the p-value from a Wilcoxon signed-rank test [40] using a Holm-
Bonferroni correction [21].

Firstly, Figure 4 shows that MOME-x outperforms or matches
the performance of all of the baselines across all of the metrics
in all of the systems. Crucially, this shows that MoME-x is able
to find the largest selection of possible trade-offs of stability and
magnetism for varying band-gaps and shear-moduli. Interestingly,
MOME-X outperforms (p < 0.03) all baselines on the MOQD-SCORE
for single-atom systems (C, Si) but matches the performance of
ME-SUM on multi-atom systems (SiC, TiOg, SiOz). This suggests
that scalarisation of the objectives may not always achieve a wide
variety of possible trade-offs.

Figure 4 shows also that MOME-X also outperforms (p < 0.03) all
other baselines on the ENERGY-QD-SCORE and MAGNETISM-QD-SCORE.
This is a particularly intriguing result, given that these metrics are
what ME-ENERGY and ME-MAGNETISM are respectively explicitly
aiming to maximise. This corroborates previous observations that
simultaneously optimising over several objectives may provide
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Figure 5: Archive plot for Silicon Carbide, colour coded to show the maximum magnetism fitness in each cell. Different plots
show different threshold levels for the minimum stability of solutions.

helpful stepping stone solutions that aid exploration and, in turn,
can help to maximise each objective separately [23]. Additionally,
we observe that MOME-X also outperforms ME-SUM on these metrics.
This could suggest that ME-SUM succeeds in finding solutions that
are balanced across the two objectives, but is less able to find so-
lutions that are high-performing on each objective separately and
therefore provides fewer possible trade-offs for each cell.

Finally, we note two further metrics that can be used to asses
MoQD performance: the COVERAGE and the GLOBAL-HYPERVOLUME
[23, 33]. The COVERAGE is the proportion of cells in the archive that
have at least one solution and aims to assess whether the algorithm
can find solutions that are diverse in the feature space. The GLOBAL-
HYPERVOLUME is the hypervolume of the Pareto Front of all the
solutions from the entire archive and aims to assess the multi-
objective performance of the algorithm, when disregarding the
solutions’ features. We find that these metrics are similar for most
algorithms so report the results in Appendix A. We note that this
result is expected since all baselines are designed to find solutions
cover the feature space and the global Pareto Front is attained by
most methods. However, we emphasise that only MoME-x was able
to solve the combinatorial problem of finding the best Pareto Front
for each feature, as reflected in its high MOQD-SCORE.

6.2 Illumination

In Section 6.1 we demonstrated that MOME-X surpasses all MAP-
ELITES baselines across various MoQD metrics, highlighting its abil-
ity to discover an extensive collection of diverse crystal structures
which achieve distinct trade-offs of stability and magnetism. How-
ever, we recognise that in many CSP applications, the importance
of these objectives may not be equal. Therefore, in order to further
understanding what trade-offs are possible, in this section we intro-
duce a visualisation method that portrays the levels of magnetism
that are attainable for varying degrees of stability.

To construct this representation, we first computed the mini-
mum and maximum stability scores within the entire archive of one
replication. Then, we visualise the archive, colour-coded according
to the highest magnetism score that is achieved by solutions for
varying degrees of interpolation between this minimum and max-
imum stability. For example, a 90% interpolation shows the best
possible magnetism scores in each cell for solutions which achieve
at least 90% of the maximum stability of the entire archive.

Figure 5 shows an example of this plot for the MOME-xX run that
achieved the median MoQD score for Silicon Carbide (visualisations

for other crystal systems are provided in Appendix B). This visuali-
sation reveals when the minimum threshold for stability is lower,
the magnetism of solutions is higher. This highlights that there is
a genuine trade-off between the stability and magnetism of solu-
tions. However, Figure 5 also shows there are many solutions that
perform highly on both objectives, given that there are still many
solutions with high magnetism scores, even at high interpolation
levels of 85%, 90%, and 95%. Therefore, if the end-user is willing
to sacrifice some level of stability for a highly magnetic material,
Figure 5 suggests that there are crystal structures that would sat-
isfy this. We emphasise that this visualisation method, while used
to illustrate trade-offs between stability and magnetism, could be
adapted for exploring trade-offs with other objectives (as detailed
in Section 5) and finding solutions that achieve targeted properties.

6.3 Evaluation Against Reference Structures

While utilising MoQD metrics offers valuable insights into the per-
formance of MOME-X, we also wish to validate that our approach is
useful for the discovery of real-life crystal structures that could have
practical use in materials science applications. This approach is piv-
otal in confirming that our method is not just yielding solutions
that deceive the neural-network surrogate models but rather un-
covering genuinely realistic configurations. To accomplish this, we
cross-reference the structures found by each of the baselines against
those contained in the Materials Project Database [22], which is an
extensive database of approximately 150,000 materials. To verify
whether a solution found by an algorithm matches a real-life ref-
erence structure, we use the St ructureMatcher method from
the pymatgen [32]. This method provides a series of checks on
the unit-cell parameters to determine if there is a match. We con-
sider a solution to match the reference structure if it 1) is a match
according to the StructureMatcher and 2) lies in the same
centroid as the reference structure.

Table 1 shows the median number of reference structure matches
found by each of the algorithms. Interestingly, we find that MOME-x
is able to find more real-life structures than other baselines. We
hypothesise that this could be because optimising over several
objectives provides diverse stepping stone solutions that can aid
exploration and thus improve the discovery of realistic structures.

While it is promising to see that MOME-X is able to re-discover
real-life structures, we also wanted to verify whether any of the
other solutions found by the algorithm outperform these reference
structures, on either of the objectives. Figure 6 shows the archives of
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Table 1: Median number of reference structure matches

MOME-X ‘ ME-ENERGY ‘ ME-MAGNETISM ‘ ME-SUM

|
c | 30 | 2.0 | 2.0 | 20
Si | 60 | 2.0 | 3.0 | 30
Sic | 00 | 0.0 | 0.0 | 00
Siop | 70 | 10 | 3.0 | 30
TiO; | 40 | 20 | 2.0 | 10

the runs that score the median MoQD-sCORE in each of the systems.
The cells of the reference structures are colour coded according to
whether, for each structure, MOME-X finds a solution in the same cell
that outperforms the reference structure on either of the objectives.
In other words, Figure 6 visualises whether MOME-X is able to find
solutions that have similar features to the reference solutions, but
are either more stable or have higher magnetism. Excitingly, these
results show that MOME-x finds many promising structures that
could be better than the known reference materials.

While we note that it is likely that some of these structures could
score highly due to inaccuracies of the surrogate model, we argue
that this presents an opportunity for future research, rather than a
limitation of our method. Indeed, as explained in Section 4.6, we
believe that finding solutions which are able to fool the surrogate
model lays the foundation for a very interesting line of future re-
search which use these types of solutions as training examples to
improve surrogate models in CSP via active learning. This process
could be employed in an adversarial loop: surrogate models could
aid the discovery of novel crystal structures and then these struc-
tures could be re-assessed via DFT calculations and used to create

even better surrogate models. In summary, Figure 6 shows numer-
ous solutions that are either a) higher-performing than known
materials or b) could be used to improve surrogate model accuracy,
both of which are advantageous outcomes.

7 CONCLUSION

In this work, we applied Multi-Objective Quality-Diversity to Crys-
tal Structure Prediction. Using this approach, we were able to find a
range of crystal structures that achieved different trade-offs of mag-
netism and stability, and we proposed a method for visualising these
trade-offs. We found that MoME-x discovered more real-life struc-
tures than MAP-ELITES baselines and also had a higher performance
on the ENERGY-QD-SCORE and MAGNETISM-QD-SCORE, suggesting
that optimising over many objectives may improve exploration.
Finally, we explained how our method could fit into a larger frame-
work for active learning, and could be used to optimise for other
objectives such as toughness [19] or meta-objectives such as surro-
gate model uncertainty. Future work could consider improving the
efficiency of our method by using gradient-based mutation opera-
tors [16, 23]. Alternatively, we could apply our approach to similar
problems in other fields, such as the discovery of protein folds [43].
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