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1 Introduction

The purpose of this work is to give a quick and basic introduction to the
quantization of semisimple Lie groups, specifically compact and complex
semisimple Lie groups, from the point of view of unitary representation
theory.

It is an extraordinary fact that the simple Lie algebras over C can be
completely classified. The complete list consists of:

• four infinite families, denoted An, Bn, Cn and Dn (n ∈ N), corre-
sponding to the classical matrix groups SL(n + 1,C), SO(2n + 1,C),
Sp(n,C) and SO(2n,C), respectively,

• five exceptional Lie algebras, corresponding to the exceptional simple
Lie groups denoted E6, E7, E8, F4 and G2.

In the 1980s, Russian mathematical physicists discovered that the uni-
versal enveloping algebra of sl2(C) admits a q-deformation, or quantiza-
tion, as a Hopf algebra Uq(sl2), with q ∈ C× being a complex param-
eter [Skl85, KR81]. This led to an explosion of discoveries of quantum
groups, most notably the quantized enveloping algebras of Drinfeld and
Jimbo [Dri87, Dri88, Jim86], and then the quantized algebras of functions
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on matrix groups of Reshetikhin, Takhtajan and Faddeev [FRT89] and
Woronowicz [Wor87b, Wor87a]. For a complete account of the beginning
of such discoveries see the excellent historical notes at the ends of the chap-
ters in [KS97].

The moral to be taken from their discoveries is the following: semisim-
ple Lie groups all come with quantum deformations, and these quantum
deformations can be observed from multiple perspectives. It is natural to
explore these quantizations for numerous reasons, the most obvious being
(1) with a view to applications in physics, as their origin from the theory of
the R-matrix, integrable systems and Yang Mills theories clearly shows, and
(2) with the hope to learn more about the classical Lie groups from which
they emanate, deepening our understanding of their representation theory.

For simplicity, in these notes we will concentrate almost entirely on the
rank-one simple Lie algebra sl2(C) and its associated compact and complex
Lie groups, SU(2) and SL(2,C). Nonetheless, the results we recount can all
be extended to higher-rank compact and complex semisimple groups if one
is willing to invest in the structure theory of semisimple groups and their
somewhat more complicated quantum analogues.

Perhaps the biggest gap in the present state of quantized semisimple
Lie groups is the question of quantizing noncompact real groups, such as
SL(n,R) or SU(p, q) from the point of view of operator algebras. Progress
is being made [KK03, DC11, CT21b], but there are still many issues to be
uncovered.

2 Quantized enveloping algebras

In this section we briefly recap a few facts on semisimple Lie algebras and
we introduce the quantization of their enveloping algebras, together with
some standard facts about their representation theory.

2.1 Semisimple Lie Algebras

We begin with a brief introduction to semisimple Lie algebras, sending the
reader to [Var74], [Kna02], [Hel01] for the full account. We assume the
reader is familiar with the notion of Lie algebra and Lie group and their
adjoint representations, denoted, as usual, with ad and Ad respectively.

A complex Lie algebra g is semisimple if the bilinear form (Cartan-Killing
form)

(X,Y ) := tr(ad(X)ad(Y ))
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is non degenerate. Complex semisimple Lie algebras are direct sums of
simple ones, namely Lie algebras with no non trivial ideals (excluding the
one-dimensional abelian Lie algebra C). Simple Lie algebras are completely
classified and they either belong to the infinite families:

An = sln+1(C), Bn = so2n+1(C), Cn = spn(C), Dn = so2n(C)

or the so called exceptional Lie algebras:

G2, F4, E6, E7, E8.

As usual, sln(C) denotes the complex special linear Lie algebra, son(C)
the complex orthogonal Lie algebra and spn(C) the complex symplectic Lie
algebra.

The index of the Lie algebras in the above notation represents its rank,
namely the dimension of any of its Cartan subalgebras, or CSAs, which
are, by definition, maximal abelian subalgebras consisting of semisimple
elements. The CSAs are all isomorphic. Once we fix h a CSA of a complex
simple Lie algebra g, by diagonalizing its action on g via the bracket we
obtain the root space decomposition of g:

g = h⊕
⊕

α∈∆

gα (1)

where gα = {X ∈ g | [H,X] = α(H)X, ∀H ∈ h}. The non zero α ∈ h∗

appearing in (1) are called roots and their set ∆ is called the root system
of g. It plays a key role in the above mentioned classification result: two
simple Lie algebras are isomorphic if and only if they have the same root
system.

If g is a real Lie algebra we call

gC = g⊗
R

C

its complexification. If gC is semisimple, we say that g is semisimple.

We define the universal enveloping algebra of a (real or complex) Lie
algebra g as:

U(g) := T (g)/I, I = 〈[X,Y ]−X ⊗ Y + Y ⊗X | X,Y ∈ g〉

where T (g) denotes the tensor algebra over g and I is the two sided ideal
generated by all elements of the given form. Thus U(g) is an associative
algebra and there is a one to one correspondence between the representations
of g and the representations of its universal enveloping algebra.

Let us look at an interesting example.
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Example 2.1. Consider the real Lie algebra so(3), that is the Lie algebra
of skew symmetric matrices:

so(3) = {A ∈M3(R) |A = −At}

where M3(R) denotes the 3× 3 real matrices. It is generated both as vector
space and as a Lie algebra by the matrices X = E23−E32, Y = −E13+E31,
Z = −E12 + E21. We leave as a simple exercise to the reader to verify that

[X,Y ] = Z, [Y,Z] = X, [Z,X] = Y

This real Lie algebra is isomorphic to the special unitary Lie algebra of skew
hermitian matrices:

su(2) = {A ∈M2(C) |A = −A∗}

where A∗ = A
t
. For instance, a Lie algebra isomorphism is obtained by

X 7→
1

2

(
0 i
i 0

)
, Y 7→

1

2

(
0 −1
1 0

)
, Z 7→

1

2

(
i 0
0 −i

)
,

As one can readily check:

sl2(C) = su(2) ⊗
R

C

where sl2(C) is the Lie algebra of 2 × 2-matrices with zero trace. For this
complexified Lie algebra, rather than use the basis X,Y,Z above, it is better
to use the basis

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

The elements H, E and F have brackets:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (2)

The universal enveloping algebra is the complex associative algebra gener-
ated by the elements H, E, F subject to the relations (2), where they are
interpreted as commutator brackets, i.e.,

U(sl2) = 〈H,E,F |HE−EH = 2E, HF−FH = −2F, EF−FE = H〉 (3)

As is common, we are writing U(sl2) to denote U(sl2(C)), with the base field
assumed to be C unless otherwise specified.
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2.2 Quantized enveloping algebras

Around 1980, physicists studying quantum scattering theory, notably Kul-
ish, Reshetikin [KR81] and Sklyanin [Skl85] observed that a variant of the
enveloping algebra U(sl2) appears when finding solutions to matrix equa-
tions which arise in the quantum inverse scattering method. Informally,
this quantized enveloping algebra can be presented as follows:

Uq(sl2) = 〈H,E,F | [H,E] = 2E, [H,F ] = −2F, [E,F ] = [H]q〉 (4)

The only change from the classical enveloping algebra U(sl2) in Equation
(3) is the replacement of H by the expression [H]q, which remains to be
explained. Before we get to this, we need to introduce q-numbers.

Observation 2.2. Let q be a real positive number and let a ∈ C. We
define:

[a]q =
qa − q−a

q − q−1

In the special case where a is a natural number, one can readily see that
this is a Laurent polynomial in q:

[a]q = qa−1 + qa−3 + . . . q−a+1

As q tends to 1 we have [a]q −→ a.
These q-numbers have some properties resembling the integers, for in-

stance:
[a− b]q[a+ b]q = [a]2q − [b]2q .

On the other hand, of course, [a]q + [b]q 6= [a+ b]q.

With this definition in hand, we wish to make sense of the formal ex-
pression

[H]q =
qH − q−H

q − q−1
,

where H is an element of an algebra.

Observation 2.3. There are three different ways to achieve this, according
to one’s preferences:

1. By means of a formal power series in q = eh, where h is an indeter-
minate. In this point of view, we define Uq(sl2) to be an algebra over
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the ring of formal power series C[[h]], with generators E,F,H, and we
write

[H]q =
ehH − e−hH

eh − e−h
,

where ehH denotes the usual exponential power series:

1 + hH +
1

2!
h2H2 + · · ·

This point of view is favored by algebraists and those working in formal
deformation theory. We will not use it.

2. By functional calculus, after representing the algebra generated by E,
F and H in a suitable Hilbert space. Once H is realized as a self-

adjoint operator on a Hilbert space, the expression [H]q = qH−q−H

q−q−1 ,
makes perfect sense.

This approach is less satisfactory from a formal point of view, since it
requires an implicit understanding of the representation theory of the
algebra Uq(sl2) prior to giving its rigorous definition.

3. By replacing the generator H by a new generator K = qH and its
inverse K−1 = q−H . In this solution, we must alter the list of relations
in Equation (4) to eliminate any reference toH. We thus define Uq(sl2)
as the associative algebra generated by E, F and K±1 and subject to
the relations:

KEK−1 = q−1E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
(5)

The following observation, whose proof we leave to the reader, explains
why the first two relations in (5) are the appropriate replacements of the
first two relations in (4).

Observation 2.4. Fix q > 0. Let H and X be operators on a finite dimen-
sional Hilbert space, with H self-adjoint, and let λ ∈ R. The following are
equivalent:

1. [H,X] = λX

2. qHXq−H = qλX for any q > 0. Here qH is understood as an operator
defined via functional calculus, using qH = ehH with h = ln(q).
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2.3 Representations of Uq(g)

We are interested in the finite dimensional representations of the quantized
universal enveloping algebra Uq(g), g = sl2(C) introduced in our previous
section.

Since H is semisimple (i.e. diagonalizable), it acts diagonally on U(g)
with real spectrum. Notice that this fact is immediately generalized to
the case of a CSA h of a complex simple Lie algebra, since h consists of
commuting semisimple elements.

We now focus on the quantization of U(g).

Definition 2.5. We say that a finite dimensional complex representation of
Uq(g) is integrable if qH acts diagonally with spectrum consisting of positive
real numbers.

We have the following classification result, mimicking a corresponding
classical result, i.e. in the case q = 1, which can be found for example in
[Var74] Ch. 4.

Theorem 2.6. Every finite dimensional integrable representation of Uq(g)
is isomorphic, for a suitable m ∈ 1

2N to

V (m) = span{vm, vm−1, . . . v−m}

with

Hvµ = 2µvµ, Fvµ = vµ−1, Evµ = [m− µ]q[m+ µ+ 1]qvµ+1

for all µ, with the convention vµ = 0 if µ /∈ {m,m− 1, . . . ,−m}.

We call m,m− 1 . . . the weights of the representation and vm, vm−1, . . .
are weight vectors.

Remark 2.7. Note that we are using the convention that our weights are
representated half integers1, µ ∈ 1

2N. This is reflected in the factor of 2µ
in the action of H given in the theorem, and it will have consequences in
certain formulas to follow. There is an equally common convention where it
is the whole integer value 2µ ∈ N which is called the weight.

Proof. Existence. We define V (m) as above and then verify the relations in
(4), or equivalently (5). We leave this check as an exercise.

1In [Var74], what we call a weight vector of weight k is called a weight vector of weight
2k. All formulae in there have to be interpreted accordingly.
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Uniqueness. Assume we have a finite dimensional irreducible complex
representation V of Uq(g). Let m be the highest weight, i.e. half of the
eigenvalue of H with largest real part, and let vm be one of its eigenvectors.

We have the following important fact. If v ∈ V has weight λ then

HEv = [H,E]v + E(Hv) = 2Ev + E(2λv) = 2(λ+ 1)E.

Hence we have that Ev is a weight vector of weight λ+1. Similarly Fv is a
weight vector of weight λ− 1. The consequence of this observation is that

span{vm, vm−1, . . . v−m}

is invariant by the action of H, E and F . By the irreducibility hypothesis
it coincides with V .

As an exercise one can prove that

[E,F k+1] = [k + 1]q[H + k]qF
k. (6)

Since V is finite dimensional we must have F k+1vm = 0 for some k ∈ N, and
taking the smallest such k we have F kvm 6= 0. Since Evm = 0, we then have
[E,F k+1]vm = 0 and hence [H + k]qF

kvm = 0. Thus F kvm is in the kernel
of H + k, and since F kvm has weight m− k, this means 2(m− k) + k = 0,
or k = 2m. Therefore m ∈ 1

2N. Putting vm−k = F kvm, we obtain a basis
for V (m) with the stated actions of H and F . The action of E on the vµ
can be calculated from Equation (6).

We end this section with some remarks on Verma modules. For more
details see [Dix96].

Observation 2.8. Let now m ∈ C. Let us define a countably infinite
dimensional Uq(g) representation:

M(m) = span{vm, vm−1, vm−2 . . . }

subject to the action of H, E, F with exactly the same formulas as in The-
orem 2.6. This module is called the Verma module of highest weight M(m).
Notice that M(m) is not finite dimensional, nor necessarily irreducible.

One can show that if m 6∈ 1
2N+ iπh−1Z, then M(m) is irreducible. On

the other hand, if m ∈ 1
2N+ iπh−1Z, then M(m) is reducible and there is

an exact sequence:

0 −→M(−m− 1) →֒M(m) −→ V (m) −→ 0 (7)

This resolution of the irreducible finite dimensional modules V (m) by Verma
modules plays an important role in many parts of representation theory.
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3 Hopf algebras and quantum groups

In this section we introduce our main object of study: Hopf algebras. Hopf
algebras are the central algebraic objects in all approaches to quantum
groups. As we will see, quantized enveloping algebras, algebras of func-
tions on quantum groups, and convolution algebras of quantum groups will
all be modelled by Hopf algebras.

For more details on definitions and techniques see [Mon93, KS97].

3.1 Motivation: Some rough remarks on Pontryagin duality

In this subsection, which is not intended to be complete, we make some
general remarks on the duality between a given group, or more precisely its
group algebra, and the functions on such a group. We want to give some
hint to the so called Pontryagin duality, a deep result, which is a key tool
for our understanding of quantum geometry.

Consider the example of the Lie group R. Recall that the Fourier trans-
form gives an isomorphism between the algebra of functions on R with
pointwise multiplication, and the algebra of functions on R with convolu-
tion. To make this precise requires some careful analysis of the spaces of
functions. Several specific algebra isomorphisms are possible, for instance:

• the Schwartz space S(R) of rapidly decaying functions with pointwise
multiplication, and S(R) with convolution;

• the algebra of continuous functions vanishing at infinity C0(R) with
pointwise multiplication, and the group C∗-algebra C∗(R) with con-
volution;

• the Paley-Weiner-Schwartz isomorphism between functions onR which
extend analytically to C with certain growth conditions under point-
wise multiplication, and compactly supported distributions on R with
convolution;

• the Fourier algebra A(R) with pointwise multiplication, and the alge-
bra L1(R) with convolution.

Similar isomorphisms can be obtained between functions on the circle T

with pointwise multiplication, and functions on Z with convolution, or vice
versa, by using Fourier series instead of Fourier transforms.

These are examples of Pontryagin duality. We will not make explicit use
of Pontryagin duality in these notes, but it can be useful to motivate the
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constructions to follow. Let us develop this philosophy without going into
technical details.

Let G be a group. For the moment, we may consider a finite group, a
locally compact topological group, a Lie group, or a number of other types
of group.

As indicated above, a group admits two general types of algebras. The
first general type of algebra is “functions with pointwise multiplication”.
Some examples of this type:

• C(G), functions on a finite group,

• C0(G), continuous functions vanishing at infinity on a locally compact
group,

• O(G), regular functions on a linear algebraic group,

• C∞
c (G), smooth compactly supported functions on a Lie group,

• L∞(G), essentially bounded functions on a measured group.

The second type is “distributions with convolution”:

• C[G], the group ring of a finite group,

• L1(G), integrable functions on a locally compact topological group
(which identify as distributions upon multiplying with Haar measure),

• C∞
c (G), smooth compactly supported functions on a Lie group with

convolution (likewise),

• E ′(G), compactly supported distributions on a Lie group,

• C∗(G), the group C∗-algebra of a locally compact group.

• vN(G), the von Neumann algebra of a locally compact group,

• U(g), the universal enveloping algebra of a Lie algebra (which are
distributions supported at the identity).

Remaining vague about the analytical details, let us denote any algebra of
the first kind by A(G) and any of the second kind as D(G). We will be more
concrete in the next section.

The reason why these two types of algebras exist is a consequence of the
functoriality of functions and distributions with respect to the fundamental

10



operations of a topological group. Recall that C-valued functions are con-
travariant objects. For instance, if φ : M → N is a smooth map between
manifolds, then we can pull back smooth C-valued functions from N to M :

φ∗ : C∞(N) → C∞(M); f 7→ φ∗f = f ◦ φ.

On the other hand, distributions are covariant objects, since they are dual
to smooth functions. Explicitly, if we write (u, f) for the pairing between a
distribution u ∈ E ′(M) and a smooth function f ∈ C∞(M), then we have a
pushforward map defined by

φ∗ : E
′(M) → E ′(N); (φ∗u, f) := (u, φ∗f)

for u ∈ E ′(M), f ∈ C∞(N).
Now consider the case where M is a group. The pointwise products

and convolution products of the various algebras listed above all arise by
applying the functorial operations to two basic structural maps on a group:

Mult : G×G→ G; (g, h) 7→ gh (the group law)

Diag : G→ G×G; g 7→ (g, g) (the diagonal embedding).

The diagonal embedding is a greatly underestimated map. We shall see its
crucial role in Pontrjagin duality shortly.

These basic structural maps induce products by push-forward and pull-
back:

Mult∗ : D(G)⊗D(G) ∼= D(G×G) → D(G) (convolution)

Diag∗ : A(G)⊗A(G) ∼= A(G×G) → A(G) (pointwise multiplication).

The isomorphisms here will require using some completed tensor product
⊗ which will depend heavily upon the categories of “functions” and “dis-
tributions” in which one is working. Since we are deliberately avoiding the
analytical details in this section, we will not address this issue here.

This point of view reveals that the algebras A(G) and D(G) should also
have coproducts, i.e. maps in the reverse direction:

Diag∗ : A(G) → A(G×G) ∼= A(G)⊗A(G),

Mult∗ : D(G) → D(G×G) ∼= D(G)⊗D(G).

Thus A(G) and D(G) will be bialgebras, and more specifically Hopf algebras
(see below for definitions). Again, for infinite groups, the technicalities of the
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tensor product may require us to add some qualifying adjectives—multiplier
Hopf algebras, for instance.

The principle of Pontrjagin duality is that one should be able to exchange
the roles of the two algebras A(G) and D(G). For instance, for the group
G = R we discussed various instances of algebra isomorphisms of the general
form A(R) ∼= D(R) for different examples of pointwise algebras A(R) and
convolution algebras D(R). We say that R is its own Pontryagin dual,
and write R̂ = R. Similarly, there are various isomorphisms of the form
A(T) ∼= D(Z), giving the Pontryagin duality T̂ = Z.

It is natural to ask whether Pontryagin duality applies more generally.
To begin with, we could formally define an algebra A(Ĝ) := D(G) without
giving any concrete meaning to the symbol Ĝ. If we are lucky, we will be
able to realize this algebra A(Ĝ) as the algebra of functions on some concrete
topological group Ĝ.

However, this strategy relies on the categories of algebras D(G) andA(G)
being the same, which is not the case. The fundamental obstruction is that
the pointwise algebras A(G) are always abelian, whereas the convolution
algebras D(G) are abelian only if G is. Let us spell this out.

The properties of the algebras A(G) and D(G) are inherited from prop-
erties of Diag and Mult, respectively. For instance, the associativity of D(G)
comes from the associativity of Mult,

Mult ◦ (Mult× id) = Mult ◦ (id×Mult) : (g, h, k) 7→ ghk,

while the associativity of A(G) comes from the co-associativity of Diag,

(Diag × id) ◦ Diag = (id× Diag) ◦ Diag : g 7→ (g, g, g).

Similarly, A(G) is always abelian, since Diag is always co-commutative in
the sense that if S : (g, h) 7→ (h, g) denotes the flip map on G×G, we have

S ◦Diag = Diag,

On the other hand, D(G) is abelian only if Mult is abelian, that is, only if

Mult ◦S = Mult.

If we hope to have a coherent theory of Pontrjagin duality, we must make
one of the following choices:

1. Restrict attention to abelian groups for which Mult is commutative.
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2. Define “non co-abelian groups” for which Diag is not cocommutative.

The second strategy, appropriately interpreted, leads to the definition of a
quantum group. The specific technical details will depend upon the category
of classical groups one is trying to mimic, but will in every case require the
notion of Hopf algebra.

3.2 Hopf algebras

Let us make some of the last section more concrete. Here is the quick defini-
tion of a Hopf algebra, which is spelled out in more detail in the Appendix
A.

Definition 3.1. AHopf algebra overC is a complex vector spaceA equipped
with five maps:

• An associative product µ : A⊗A → A,

• A coassociative coproduct ∆ : A → A⊗A,

• A unit 1 ∈ A, realized also as a unit map i : C → A; z 7→ z1,

• A counit map ε : A → C, satisfying (id⊗ ε) ◦∆ = id = (ε⊗ id) ◦∆,

• An invertible antipode S : A → A, verifying the antipode identity

µ ◦ (S ⊗ id) ◦∆ = i ◦ ε = µ ◦ (id ⊗ S) ◦∆.

The coproduct and counit should be unital algebra homomorphisms, or
equivalently the product and unit are counital coalgebra homomorphisms.
The antipode is automatically an algebra and coalgebra antihomomorphism.

We shall use Sweedler notation for the coproduct:

∆(X) = X(1) ⊗X(2), (8)

where the right-hand side is a formal notation to designate a finite sum of
elementary tensor products

∑
iX(1),i ⊗X(2),i ∈ A⊗A.

The following examples show that finite dimensional Hopf algebras can
be used to give rigorous definitions of algebras of both types from the pre-
vious section, A(G) and D(G), in the case where G is a finite group.
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Let G be a finite group, with the following five structural maps

Mult : G×G→ G, group law

Diag : G→ G×G, diagonal embedding

e : {1} → G, inclusion of the unit

q : G→ {1}, quotient to the unit

s : G→ G, inverse.

Example 3.2. The algebra C(G) of complex-valued functions on G is a
Hopf algebra with structural maps defined by pull-back:

(µ,∆, i, ε, S) = (Diag∗,Mult∗, q∗, e∗, s∗).

This is the Hopf algebra of “functions with pointwise multiplication”.

Example 3.3. The dual space C(G)∗ is a Hopf algebra with structural
maps defined by push-forward:

(µ,∆, i, ε, S) = (Mult∗,Diag∗, e∗, q∗, s∗).

Morally, this is the Hopf algebra of “distributions with convolution”.

Example 3.2 is commutative and Example 3.3 is cocommutative. There
are examples of finite dimensional Hopf algebras which are neither commu-
tative nor cocommutative. But we will be interested in infinite dimensional
examples.

3.3 Quantized enveloping algebras as quantum groups

In this section we present an example of a quantized enveloping algebra as
a Hopf algebra. We begin with the classical case.

Example 3.4. Let g be a complex Lie algebra. The universal enveloping
algebra U(g) is a Hopf algebra where the coproduct, counit and antipode
are defined on generators X ∈ g by

∆(X) = X ⊗ 1 + 1⊗X, ε(X) = 0, S(X) = −X.

It is an exercise to show that these are precisely the maps Diag∗, q∗
and s∗, if the elements of U(g) are viewed as distributions supported at the
identity.
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After Kulish and Reshetikhin [KR81] discovered the quantized envelop-
ing algebras Uq(sl2), Sklyanin [Skl85] observed that it is also a Hopf algebra.
Thus quantum groups were born.

For the purpose of these notes, we call quantum group a Hopf algebra
which is related, typically by a deformation parameter q as above, to either
the universal enveloping algebra, or the function algebra (Sec. 4), or the
convolution algebra (Definition 4.7) of an algebraic group.

Theorem 3.5 (Sklyanin). The quantized enveloping algebra Uq(sl2) with
generators E,F,K±1 and relations (5) is a Hopf algebra when equipped with
the q-deformed maps

∆(E) = E ⊗ qH + 1⊗E, ∆(F ) = F ⊗ 1 + q−H ⊗ F, ∆(qH) = qH ⊗ qH ,

ε(E) = ε(F ) = 0, ε(qH) = 1,

S(E) = −Eq−H , S(F ) = −qHF, S(qH) = q−H .

Observation 3.6. The formulas for ∆(qH), ε(qH) and S(qH) follow from
the classical formulas

∆(H) = H ⊗ 1 + 1⊗H, ε(H) = 0, S(H) = −H,

via functional calculus, in the same way as in Observation 2.3 — exercise
for the reader. In this sense, it is reasonable to say that the generator H is
undeformed in Uq(sl2). On the other hand, the formulas for E and F are
q-deformed, and putting q = 1 recovers the classical formulae.

3.4 Real structures and compact quantum groups

A real structure on a quantum group is encoded by a ∗-structure. To un-
derstand why this is the case, let us begin with the classical case.

Let K be a real Lie group, with real Lie algebra k. For simplicity we
take K to be compact here.

A unitary representation of K is a continuous homomorphism π : K →
U(V ) from K to the unitary operators on a complex Hilbert space V , which
we will assume is finite dimensional. By differentiating π at the identity,
we obtain a Lie algebra homomorphism from k to the Lie algebra u(V ) of
skew-Hermitian operators on V . This is again denoted by π.

Note that the Lie algebra representation π : k → u(k) is a real linear
map. As usual, it is far preferable to work with complex linear maps, since
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spectral theory in complex vector spaces is better behaved. We are therefore
led to define the complex linear extension of π. Specifically, if we write

g = kC = k⊗R C

for the complexification of k, then we can extend π by complex linearity to
a complex Lie algebra homomorphism

π : g → u(V )C = End(V ).

As is the habit in this subject, we continue to denote this complexified
representation by the same letter π. Finally, we can extend this complex
Lie algebra morphism by universality to a complex algebra homomorphism
from the universal enveloping algebra,

π : U(g) → End(V ). (9)

It is this notion of representation that is most easily carried over to the
quantized enveloping algebras Uq(g).

Note, though, that a homomorphism of this kind could also be obtained
from a different starting point. Let G denote the complex Lie group whose
Lie algebra is g. Suppose that σ : G → End(V ) is a holomorphic (not
unitary) representation of G on V . We can pass to the complex derivative
of σ at the identity and then extend to a complex algebra representation

σ : U(g) → End(V ). (10)

This suggests the question: how can we distinguish a holomorphic rep-
resentation (10) of g from a unitary representation (9) of k, once we have
passed to the associated representation of U(g)? The answer is that unitary
representations of k have one further piece of structure. Namely, since we can
distinguish the real linear subspace k inside g, we can define a ∗-involution
on g:

∗ : X 7→

{
−X if X ∈ k,

X if X ∈ ik.
(11)

This definition is motivated by the fact that under any unitary representa-
tion of K, elements of k will act as skew-Hermitian operators.

The involution (11) is a complex antilinear anti-homomorphism of g,
meaning

(λX)∗ = λX∗,

[X,Y ]∗ = [Y ∗,X∗]
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for all λ ∈ C and X,Y ∈ g. It extends to a complex antilinear algebra
antihomomorphism ∗ of U(g). That is, U(g) becomes a ∗-algebra.

When U(g) is equipped with the involution ∗ of (11), we will denote
it instead by UR(k), to signify the fact that we are regarding it as the
complexification of the enveloping algebra of a real Lie group K, and not as
the enveloping algebra of the complex Lie group G.

Example 3.7. Consider the example of k = su(2). As discussed in Example
2.1, the complexification of k is g = sl2(C). The standard basis elements
E,F,H of sl2(C) do not belong to the real Lie subalgebra su(2). If we write
them in terms of elements of su(2), we have

E =

(
0 1
0 0

)
= −Y − iX, F =

(
0 0
1 0

)
= Y − iX,

H =

(
1 0
0 −1

)
= −2iZ,

where

X =
1

2

(
0 i
i 0

)
, Y =

1

2

(
0 −1
1 0

)
, Z =

1

2

(
i 0
0 −i

)
,

form an R-basis for su(2). Applying the ∗-operation of (11), we get

E∗ = Y − iX = F, F ∗ = −Y − iX = E, H∗ = −2iZ = H

This real structure, which distinguishes UR(su(2)) from U(sl2), can be
generalized to define the quantization UR

q (su(2)), as we will now explain.
We start with the definition of a real structure on a general Hopf algebra.

Definition 3.8. AHopf ∗-algebra is a Hopf algebra equipped with a conjugate-
linear involution ∗ which is an algebra anti-automorphism and coalgebra
automorphism.

Proposition 3.9. The quantized enveloping algebra Uq(sl2) is a Hopf ∗-
algebra when equipped with the involution defined by

E∗ = qHF, F ∗ = Eq−H , H∗ = H.

Remark 3.10. Note that, when considering the generator qH , the relation
H∗ = H is equivalent to (qH)∗ = qH . Recall that we are only considering
positive real values of q.
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We will write UR
q (su(2)) for Uq(sl2) equipped with this real structure.

With this in hand, a unitary representation of the quantum group Kq

should be understood to mean an integrable ∗-representation of the ∗-Hopf
algebra UR

q (k). The following proposition shows that, as in the classical case,
all of the irreducible Uq(g)-modules V (m) of Theorem 2.6 can be realized as
unitary Kq-representations.

Proposition 3.11. Each of the irreducible representations V (m) of Uq(g),
withm ∈ 1

2N, admits an inner product such that it becomes a ∗-representation
of UR

q (k).

3.5 Operations on Hopf algebra representations

One of the significant advantages of Hopf algebras is that we can define
tensor products of their representations. There is no reasonable way to define
the tensor product V ⊗W of two representations of a general associative
algebra A. However, if A is a Hopf algebra, we can use the coproduct
∆ : A → A⊗A to define

X(v ⊗ w) := X(1)v ⊗X(2)w, (X ∈ A, v ∈ V, w ∈W ). (12)

We are again using Sweedler notation, see Equation (8).
Moreover, the counit allows us to define a trivial representation of A on

C:
Xz := ǫ(X)z, (X ∈ A, z ∈ C).

It is a simple exercise using the axioms of a Hopf algebra to show that
C⊗ V ∼= V ∼= V ⊗C as representations.

Finally, the antipode lets us define a contragredient representation on
V ∗, by

Xη = S(X)tη := η ◦ S(X), (X ∈ A, η ∈ V ∗),

where the superscript t denotes transpose.

4 Quantized algebras of functions

In this section we introduce the quantized algebras of functions of a complex
semisimple group G and its maximal compact subgroups K. We elucidate
the theory as always for G = SL(2,C) and K = SU(2), though it can be
formulated in full generality (see [KS97]).
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4.1 The algebra of polynomial functions on Gq

Given a vector field on a manifold M , or more generally a scalar-valued
differential operator on M , we can obtain a linear functional on C∞(M) by
applying it and evaluating at a point. When the manifold is a connected
algebraic group G, we can look at the Lie algebra g of left invariant vector
fields on G. We then have a duality of Hopf algebras between the left invari-
ant differential operators, which are identified with the universal enveloping
algebra U(g), and the algebraic functions on G, O(G):

U(g)×O(G) −→ C, (13)

X, f 7→ (X, f) :=
d

dt

∣∣∣∣
0

f(exp(tX)) for X ∈ g.

The term duality of Hopf algebras refers to the fact that the product of
U(g) and coproduct of O(G) are dual maps with respect to this pairing, and
vice-versa, see Observation 4.4 as well as [Kas95, Ch.1] and our Appendix
A for more details.

Remark 4.1. Abstractly, this duality comes from the fact that the coprod-
uct on U(g) and product on O(G) are given by Diag∗ and Diag∗, respectively,
according to the general philosophy of Section 3.1. Similarly, the product
on U(g) and coproduct on O(G) are given by Mult∗ and Mult∗, respectively.

We thereby obtain an embedding O(G) →֒ U(g)∗. This embedding is
injective by the fact that algebraic functions O(G) are determined by their
jets at the identity.

We now turn to the quantum setting and realize, with the same phi-
losophy, the quantized algebra of algebraic functions on a group G as a
subspace of Uq(g)

∗ with a Hopf algebra structure. In these notes we are
taking g = sl2(C), but if we had defined Uq(g) for other semisimple Lie
algebras g, the same definition would apply.

Definition 4.2. Let V be a finite dimensional representation of a quantized
enveloping algebra Uq(g). We define a matrix coefficient of V to be an the
element of the dual Uq(g)

∗ of the form

〈η| · |ξ〉V : X 7→ (η,Xξ), X ∈ Uq(g), ξ ∈ V, η ∈ V ∗

We denote such matrix coefficient as 〈η| · |ξ〉V .
We define the quantized algebra of functions O(Gq) as the subspace of

Uq(g)
∗ consisting of the matrix elements of all finite-dimensional integrable

representations of Uq(g).
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From the definition, it is not clear why this is an algebra. In fact, it is
not even immediately clear why this is a linear subspace of Uq(g). Linearity
follows from the fact that

〈η| · |ξ〉V + 〈η′| · |ξ′〉W = 〈η ⊕ η′| · |ξ ⊕ ξ′〉V⊕W .

The other Hopf algebra operations will come from other operations on the
Uq(g)-representations V and W , as the following theorem shows.

Theorem 4.3. Let the notation be as above. Then O(Gq) is a Hopf algebra
with multiplication µ and comultiplication ∆ given as follows:

〈η1| · |ξ1〉V 〈η2| · |ξ2〉W = 〈η2 ⊗ η1| · |ξ2 ⊗ ξ1〉V⊗W , (14)

∆(〈η| · |ξ〉V ) =
∑

i

〈η| · |ei〉V ⊗ 〈ei| · |ξ〉V , (15)

where {ei} and {ei} are bases of V and V ∗ respectively with ei(ej) = δij .
The unit and counit are given by

1 = 〈1| · |1〉C, ǫ(〈η| · |ξ〉V ) = (η, ξ),

where C denotes the trivial representation of Uq(g) given by the counit of
the quantized enveloping algebra ǫ : Uq(g) → C = End(C). We omit the
definition of the antipode, which is defined in terms of the contragredient
representation, see [KS97] or [VY20, §3.10].

We will omit the proof of this theorem, although it is not particularly
difficult if we take inspiration from the notion of dual Hopf algebras, see Ap-
pendix A. In fact, the quantum groups Uq(g) and O(Gq) fall into the general
philosophy of Pontryagin duality described in Section 3.1, as explained in
the following observation, whose details are left to the reader.

Observation 4.4. Let us denote the pairing of Uq(g) and O(Gq) by

Uq(g)×O(Gq) → C; (X, 〈η| · |ξ〉V ) = 〈η,Xξ〉.

We extend this to a pairing between Uq(g) ⊗ Uq(g) and O(Gq) ⊗O(Gq) by
(X ⊗ Y, a ⊗ b) = (X, a)(Y, b). Then the Hopf algebra operations on Uq(g)
and O(Gq) are skew-dual to one another in the sense that, for all X,Y ∈ g,
a, b ∈ O(Gq),

(∆X, b⊗ a) = (X, ab), (X ⊗ Y,∆a) = (XY, a), (16)

(1Uq(g), a) = ε(a), (X, 1O(Gq)) = ε(X),

(S(X), a) = (X,S(a)).
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We have included the relation between the antipodes in this list, although the
explicit definition of the antipode onO(Gq) was not specified in Theorem 4.3.
In fact, this last relation can be taken as a definition of S(a) for a ∈ O(Gq)
and one can check that it satisfies the antipode relation.

The pairing
Uq(g)×O(Gq) −→ C

is in analogy with the differential action of vector fields on functions de-
scribed in (13). Specifically, if g is the Lie algebra of a classical Lie group G,
and V is a finite-dimensional representation of V , then we can alternatively
interpret a matrix coefficient 〈η| · |ξ〉V as a function

〈η| · |ξ〉V : G 7→ (η, πV (g)ξ),

and then we have (X, a) = d
dt

∣∣
0
a(etx) for a = 〈η|·|ξ〉V ∈ O(G) andX ∈ U(g).

This defines the algebra of polynomial functions on the quantum group
Gq = SLq(2,C), viewed as a complex algebraic variety.

4.2 Compact Quantum Groups

In the classical case, the algebra O(G) is isomorphic to the O(K), where K
is the maximal compact subgroup. This is because any complex polynomial
on G is determined by its restriction to K, and any polynomial on K ex-
tends holomorphically to G. But as we have seen previously in Section 3.4,
the polynomials on K admit an additional ∗-operation, given by complex
conjugation. This too has an analogue in the quantum case.

Theorem 4.5. The Hopf algebra O(Gq) becomes a Hopf ∗-algebra when
equipped with the involution determined by duality with UR

q (k) as follows:

(X, a∗) := (S−1(X)∗, a),

where the ∗-structure on UR
q (k) is that given in Proposition 3.9.

The proof is an exercise using the axioms of a Hopf ∗-algebra.

Let us look more carefully at the example of g = sl2(C).

Example 4.6. We specialize to K = SU(2) and its complexification G =
SL(2,C). The polynomial algebra, O(Gq) is spanned by the matrix co-
efficients 〈η| · |ξ〉V (m), where the representations V (m) are those defined in
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Section 2.3 withm ∈ 1
2N. The subspace of matrix coefficients of a given rep-

resentation V (m) is equal to (End(V (m)))∗ as a matrix coalgebra, meaning
it comes with the matrix coproduct (15). We get

O(Gq) =
⊕

m∈ 1

2
N

(End(V (m))∗ (17)

as a direct sum of coalgebras. The product on O(Gq) is more complicated
in this picture since it depends upon the decomposition of tensor products
into direct sums of irreducibles, see (14).

The representation V (1) is generating for the set of finite dimensional
representations of Uq(g), in the sense that every V (m) is a subrepresentation
of a tensor power V (1)⊗m. As a consequence, the matrix coefficients for V (1)
are algebra generators of O(Gq).

We remark that Woronowicz [Wor87a] discovered the quantized function
algebra O(SL(2,C)) by experimentation. He denoted the generators by

α = 〈v
1

2 | · |v 1

2

〉, β = −qγ∗ = 〈v
1

2 | · |v− 1

2

〉,

γ = 〈v−
1

2 | · |v 1

2

〉, δ = α∗ = 〈v−
1

2 | · |v− 1

2

〉,

where (v
1

2 , v−
1

2 ) is the dual basis of V (1)∗ to (v 1

2

, v− 1

2

) ∈ V (1). These

generators satisfy the relations

αβ = qβα, αγ = qγα, βδ = qδβ, γδ = qδγ, βγ = γδ,

αδ − qβγ = δα − qβγ = 1

For more details see [KS97, Ch.4].

4.3 The convolution algebra polynomials on Kq

As suggested by the discussion of Subsection 3.1, the quantized enveloping
algebra UR

q (k) is not the only possible model for a convolution algebra dual to
the function algebra O(Kq). Indeed, given the decomposition of O(Kq) into
finite dimensional subspaces, which we saw in Equation (21), it is natural
to make the following definition.

Definition 4.7. We define the algebra of polynomial densities on O(Kq)
as:

D(Kq) =
⊕

m∈ 1

2
N

End(V (m)). (18)

The product is defined entrywise.
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This space D(Kq) has a canonical pairing with O(Kq) given by applying
the natural pairing in each of the components. Concretely, this amounts to

End(V (m))× End(V (m))∗ → C; (x, 〈η| · |ξ〉V (m)) 7→ (η, xξ).

Moreover, D(Kq) can be endowed with Hopf ∗-algebra operations by using
exactly the same skew-duality relations as we had for Uq(g) in Example 4.4,
with one technical caveat which we mention shortly.

For x, y ∈ D(Kq) and a, b ∈ O(Kq), we define

(∆x, b⊗ a) = (x, ab), (x⊗ y,∆a) = (xy, a), (19)

(1Dq(g), a) = ε(a), (x, 1O(Gq)) = ε(x),

(S(x), a) = (x, S(a)), (x∗, a) = (x, S(a)∗).

The technical caveat is that the coproduct ∆ will have image not in the ten-
sor product D(Kq)⊗D(Kq), but in the multiplier algebra of this. With these
operations, D(Gq) is a multiplier Hopf ∗-algebra. We will not define multi-
plier Hopf algebras here, although they are a relatively simple generalisation
of Hopf algebras. For details see [VD94, VD98] or [VY20, Ch.2].

To give a quick idea of why multipliers are necessary, note that the unit
for D(Kq) is given by

1 =
∏

m∈ 1

2
N

IV (m),

which belongs in the direct product of the End(V (m)), not the direct sum as
in (18). Thus 1 is not an element of the algebra D(Kq), but it is a multiplier
of D(Kq).

The family of representations of UR
q (k) on each V (m) yields an embed-

ding

UR

q (k) →֒
∏

m∈ 1

2
N

End(V (m)).

In this way, the quantized enveloping algebra UR
q (k) is a ∗-subalgebra of

the multiplier algebra of D(Kq). The algebras UR
q (k) and D(Kq) play very

similar roles in the theory of quantized compact semisimple Lie groups, with
the main difference being that in a typical ∗-representation on a Hilbert
space, elements of UR

q (k) act as unbounded operators, whereas elements of
D(Kq) act boundedly.
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5 The Peter Weyl theorem for a compact semisim-

ple quantum group

A fundamental problem in unitary representation theory of a group is the
following: How does the regular representation of G decompose into irre-
ducible components? In the case of a compact group K, the solution is
given by the famous Peter-Weyl decomposition of L2(K) in terms of matrix
coefficients of irreducible unitary representations.

This problem also makes sense for quantum groups, at least if they have
a real structure. In this section, we will describe the analogue of the Peter-
Weyl theorem in the case of a quantized compact semisimple Lie group,
specifically SUq(2).

5.1 Haar Measure

In order to get started, we need the notion of Haar measure.

Definition 5.1. Let A(G) be a Hopf algebra. A left-invariant integral on
A(G) is a linear functional φ : A(G) → C such that for all a ∈ A(G),

a(1)φ(a(2)) = φ(a)1

Similarly, a right-invariant integral satisfies φ(a(1))a(2) = φ(a)1.
If moreover A(G) is a ∗-Hopf algebra and if φ is positive definite in the

sense that 〈a, b〉 := φ(a∗b) is an inner product on A(G), then we say that φ
is a left (or right) invariant Haar integral.

For instance, if G is a compact semisimple Lie group and A(G) is the
algebra of polynomial functions, then integration against Haar measure is a
bi-invariant Haar integral.

There is a q-analogue of this Haar integral on any q-deformed compact
semisimple Lie group. As usual we will concentrate only on Kq = SUq(2).

Theorem 5.2. The linear functional φ : O(Kq) −→ C defined by

1. φ(〈1 | · | 1〉V (0)) = 1,

2. φ(〈η | · | ξ〉V (m)) = 0, for all m 6= 0 and all ξ ∈ V (m), η ∈ V (m)∗.

is a left- and right-invariant Haar integral on O(Kq).

The analogous formula works for any compact semisimple quantum group:
see [KS97, Ch.11].
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Using the left-invariant Haar integral φ, we can define a Hilbert space
L2(Kq) as the completion of O(Kq) with respect to the inner product

〈f, g〉 = φ(f∗g) (f, g ∈ O(Kq)).

As in the classical case the Hilbert space L2(Kq) admits two represen-
tations of Kq, called the left and right regular representations. To specify
these representations, recall from Section 3.4 that we must take the point of
view that a unitary representation of the quantum group Kq is given by a
∗-representation of the quantized enveloping algebra UR

q (k).

Proposition 5.3. There are left and right actions of UR
q (k) on O(Kq) de-

fined by

X⊲f = (X, f(2))f(1), f⊳X = (X, f(1))f(2),

respectively, for X ∈ UR
q (k) and f ∈ O(Kq), where the pairing (,) is as in

Obs. 4.4).

Let us define the left and right regular representations of UR
q (k) onO(Kq)

by
ρ(X)f = X⊲f, λ(X)f = f⊳S(X). (20)

Note that in the definition of λ we are using the standard trick of turning a
right representation into a left representation by using the inverse, or rather
the antipode. These are ∗-representations in the sense that

〈ρ(X∗)f, g〉 = 〈f, ρ(X)g〉, 〈λ(X∗)f, g〉 = 〈f, λ(X)g〉,

for all X ∈ UR
q (k) and f, g ∈ O(Kq). The proof of this, and of Proposition

5.3, is a nice exercise in manipulating the Hopf ∗-algebra axioms and the
properties of the Haar integral. Note that we can also define these represen-
tations for the convolution algebra D(Kq) by simply replacing X ∈ UR

q (k)
with x ∈ D(Kq) throughout the above formulas.

We can also use the Haar integral to define the Fourier transform.

Theorem 5.4. The linear map

F : A(Kq) → D(Kq); a 7→ â := φ( · a),

is a linear isomorphism.
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We call this linear isomorphism the Fourier transform.

The many properties of the Fourier transform can be found in [VY20,
Ch.2]. For instance, as in the classical case, Fourier transform intertwines
the product in D(Kq) with the convolution product in A(Kq), which is
defined by

a ∗ b := φ(S−1(b(1))a) b(2).

5.2 The Peter-Weyl Theorem

We can now describe the decomposition of the regular representation given
by the Peter-Weyl Theorem, or equivalently the Schur Orthogonality Rela-
tions, which describes the decomposition of the left and right regular repre-
sentation on L2(Kq) into irreducible components.

Before we go to its statement, we recall that L2(Kq) comes equipped
with a UR

q (k) ⊗ UR
q (k)-representation, given by the left and right regular

representations:

(X ⊗ Y ) · f = λ(X)ρ(Y )f, (X,Y ∈ UR

q (k), f ∈ L2(Kq)),

Next, let us write L2
q(V (m)) for the finite dimensional matrix algebra

End(V (m)) equipped with the twisted Hilbert-Schmidt inner product

〈T1, T2〉L2
q(V (m)) =

1

dimq V (m)
Tr(T ∗

1 T2πm(qH))),

where dimq V (m) := Tr(πm(qH)) is called the q-dimension of the represen-
tation V (m). We equip this space with the representation of UR

q (k)⊗UR
q (k)

given by
(X ⊗ Y ) · T = πm(X)Tπm(S(Y )).

Theorem 5.5. (Peter-Weyl/Schur Orthogonality) Let Kq = SUq(2), q ∈
(0,∞). We have an isometric isomorphism of unitary Kq×Kq-representations:

L2(Kq) ∼=
⊕

m∈ 1

2
N

L2
q(V (m)). (21)

The isometric isomorphism is given by f 7→
⊕
πm(f̂), which is to say that

for all f ∈ O(Kq) we have

〈f, g〉L2(Kq) =
∑

m∈ 1

2
N

1

dimq V (m)
Tr(πm(f̂)∗πm(ĝ)πm(qH)),

and this map intertwines the UR
q (k) ⊗ UR

q (k)-representations.
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The family of functionals m 7→ 1
dimq V (m) Tr( · q

H) can be understood as

the noncommutative Plancherel measure on the unitary dual of Kq. The
Peter-Weyl Theorem above can be generalized to any compact quantum
group, see [KS97, Ch.11].

6 Quantized complex semisimple Lie groups and

their representations

In this section, we will discuss the unitary representation theory of the quan-
tization Gq of a complex semisimple Lie group G. This necessarily means
that we will be considering the complex group G as a real Lie group, since
unitary representations are not holomorphic maps.

6.1 Complex semisimple groups as real Lie groups

We must begin by describing the real structure of the complex semisimple
group G in a way that is appropriate for the q-deformation process. This
story, in the context appropriate for operator algebras and unitary represen-
tation theory, begins the seminal work of Podleś and Woronowicz [PW90] on
the group SLq(2,C), although related ideas had been investigated by Drin-
feld previously [Dri87, Dri88]. The key construction is the Drinfeld double,
or dually the Woronowicz double, which were introduced in the above cited
articles and which we will describe shortly.

Let us mention that the situtation for general real semisimple Lie groups
is far more delicate. With the exception of the quantum group SUq(1, 1), the
analytic q-deformations of noncompact non-complex semisimple Lie groups
remain very poorly understood. For information about SUq(1, 1) see [KK03,
DC11] and references within. Recent advances can also be found in [CT21b,
CT21a].

Let us consider, therefore, a complex semi-simple Lie group G. To main-
tain our concrete approach, we will take G = SL(2,C).

Since we are interested in the unitary representation theory of G rather
than the finite dimensional holomorphic representations which we briefly
mentioned in Section 3.4, we will not be interested in a quantum analogue
of the complex enveloping algebra U(g), but rather in a quantum analogue of
the enveloping algebra UR(gC) of the complexified Lie algebra gC = g⊗RC.
Since g is already a complex Lie algebra, taking its complexification may
lead to some confusion.
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As a vector space we have

gC ∼= g⊕ g.

It turns out that this is true also as an isomorphism of complex Lie algebras,
although the map which institutes the Lie algebra isomorphism is perhaps
not immediately obvious. We will return to this point shortly. Instead, we
will begin with the philosophy of the quantum double.

The Iwasawa decomposition says that G can be decomposed as a product
of real Lie groups

G ∼= K ⊲⊳ AN, (22)

where

• K is the maximal compact subgroup,

• A is the subgroup of diagonal matrices with strictly positive entries,

• N is the subgroup of unipotent upper triangular matrices

(
1 z
0 1

)
.

The bowtie in (22) signifies the fact that K and AN are both Lie subgroups
but neither is a normal subgroup. Nonetheless, the product map

K ×AN → G; (k, an) 7→ kan

is a diffeomorphism, as is the flipped map AN ×K → G. As a consequence,
we have exchange relations

kan = a′n′k′,

where a′n′ and k′ can be calculated as functions of k and an.
We want to quantize this setting. The philosophy for this is referred to

as the quantum duality principle (see [Gav07] and refs therein). It is not
necessary to understand this principle for what follows, since the quantum
group SLq(2,C) will be defined concretely in terms of generators and re-
lations. But the principle is interesting, so we will take a short informal
detour to sketch out the idea.

6.2 The Quantum Duality Principle and the Drinfeld double

The subgroups K and AN of G are subgroups of equal dimension and both
admit natural Poisson Lie-group structures. A Poisson structure on a Lie
group k is given by a bivector field Π. Linearising Π at the identity element
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gives a linear map deΠ : k → k ∧ k. Moreover, the axioms of the Poisson
bivector turn out to correspond exactly to the fact that deΠ is the dual of a
Lie bracket [ · , · ] on the dual space k∗. This yields Drinfeld’s equivalence of
categories between simply connected Poisson Lie groups and Lie bialgebras.

In the example of k = su(2), it turns out that the dual Lie algebra
structure on k∗ is isomorphic to an. Accordingly, we say that the groups K
and AN are Poisson dual.

The quantum duality principle states that, upon quantization, Poisson
duality is replaced by Pontryagin duality. That is, the appropriate quantum
analogue of the Poisson dual AN is the Pontryagin dual K̂q. In terms of
Hopf ∗-algebras, this means

O(ANq) = O(K̂q) = D(Kq) and D(ANq) = D(K̂q) = O(Kq).

The above discussion justifies the following definition. As we said above,
this definition could also be understood independently of the quantum du-
ality principle.

Definition 6.1. Let G = SL(2,C) (or any other simply connected complex
semisimple Lie group). We define the space of regular distributions on Gq

to be
D(Gq) = D(Kq ⊲⊳ ANq) := D(Kq)⊗O(Kq).

We equip D(Gq) with the twisted product

(x ⊲⊳ a)(y ⊲⊳ b) = (y(1), a(1)) xy(2) ⊲⊳ a(2)b (S(y(3)), a(3)), (23)

where we use the Sweedler notation (1 ⊗ ∆)∆(a) = a(1) ⊗ a(2) ⊗ a(3), etc
and we denote with x ⊲⊳ a elements in D(Gq). We also equip D(Gq) with
the untwisted coproduct

∆(x ⊲⊳ a) = (x(1) ⊲⊳ a(1))⊗ (x(2) ⊲⊳ a(2)). (24)

Some remarks on this definition may be helpful. Firstly, the pairings on
the left and right of the right-hand side of Equation (23) are just complex
numbers, placed on the left and the right for purely aesthetic reasons. If we
use the embeddings

D(Kq) →֒ D(Gq), x 7→ x ⊲⊳ 1,

D(ANq) = O(Kq) →֒ D(Gq), a 7→ 1 ⊲⊳ a,

to identify D(Kq) and O(Kq) as subalgebras of D(Gq), then the product law
(23) can be seen as an exchange relation:

ay = (y(1), a(1)) y(2)a(2) (S(y(3)), a(3)), (25)
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which is analogous to the exchange relation for elements of K and AN in
G. Further, these identifications allow us to define an antipode and star
operations on D(Gq), via

S(xa) = S(a)S(x), (xa)∗ = a∗x∗, (26)

followed by the exchange relation (25). The antipodes and involutions on
the right-hand sides of the equations (26) are those of O(Kq) and D(Kq),
respectively.

On the other hand, the untwisted coproduct (24) corresponds to the clas-
sical diffeomorphism G ∼= K × AN as a Cartesian product, since morally,
it corresponds to the decomposition C0(G) = C(K) ⊗ C0(AN) as a ten-
sor product of C∗-algebras. To summarize all of this in the language of
noncommutative topology, the quantum group Gq is a Cartesian product

Gq = Kq × K̂q, but with a twisted group law.
Finally, we define a unit and counit on D(Gq) by

1 = 1 ⊲⊳ 1 ∈ M(D(Kq))⊗O(Kq)),

ǫ = ǫ⊗ ǫ : x ⊲⊳ a 7→ ǫ(x)ǫ(a).

Theorem 6.2. The space D(Gq) defined above, equipped with the given
product, coproduct, unit, counit, antipode and involution is a multiplier ∗-
Hopf algebra.

The construction in Definition 6.1 can be generalized to any dual pair of
Hopf algebras (or multiplier Hopf algebras), and is called the Drinfeld double.
This is not the construction made by Podleś and Worowicz in [PW90], but
rather is the dual of it. The Woronowicz double is used to define the algebra
of functions

O(Gq) := O(Kq)⊗D(Kq),

equipped with a twisted coproduct and untwisted pointwise multiplication.
See [PW90] or [VY20, §4.2.4 & §4.4] for more details.

We can also define the quantized enveloping algebra UR
q (sl2(C)) by

UR

q (g) := UR

q (k) ⊲⊳ O(Kq),

with operations given by exactly the same rules as for D(Gq) in Definition
6.1, but replacing x, y ∈ D(Kq) with X,Y ∈ UR

q (k).
Note the important appearance of R in the notation here. This is to

signify that UR
q (g) is to be thought of as the quantized enveloping algebra of

the complexification of g = sl2(C), equipped with a real structure, i.e. with
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an involution ∗, which permits us to study the unitary representation theory
of SLq(2,C) as described in Section 3.4. The algebra UR

q (g) should not be
confused with the smaller algebra Uq(g), which is just the enveloping algebra
UR
q (k) without its ∗-structure, and is only useful for studying holomorphic

representations of SLq(2,C).
Thus UR

q (g) is a Hopf ∗-algebra, whose elements are multipliers of D(Gq).

It follows that modules2 for D(Gq) are also modules for UR
q (g), and vice-

versa.

6.3 Representation theory of SLq(2,C)

In the philosophy of quantum groups, unitary representations of Gq =
SLq(2,C) correspond to ∗-representations of the convolution algebra D(Gq).
Since D(Gq) = D(Kq) ⊲⊳ O(Kq), it follows that a representation π of D(Gq)
on a vector space H amounts to

• a representation π of D(Kq) on H;

• a representation π of O(Kq) on H

• a compatibility condition between these representations determined by
the exchange relation (25), namely for any x ∈ D(Kq), a ∈ O(Kq),

π(a)π(x) = (x(1), a(1)) π(x(2))π(a(2)) (S(y(3)), a(3)), (27)

Remark 6.3. A representation of D(Kq) can equivalently be described via
the dual notion of a corepresentation of O(Kq). We will not seriously develop
the theory of corepresentations here, for details see [KS97, Ch.11], but let
us make some quick remarks. Given a representation of D(Gq) in the above
sense, one can define a map on H,

π̌ : H → O(Kq)⊗H; ξ 7→ ξ(−1) ⊗ ξ(0) (Sweedler notation)

which is dual to the representation π of D(Kq) in the sense that

π(x)ξ = (S(x), ξ(−1))ξ(0),

for all x ∈ D(Kq), ξ ∈ H. Then the compatibility condition between the
representations π of D(Kq) and O(Kq) transforms to the Yetter-Drinfeld
condition

(π(a)ξ)(−1) ⊗ (π(a)ξ)(0) = a(1)ξ(−1)S(a(3))⊗ π(a(2))ξ(0).

2Strictly speaking, we should qualify this by taking essential modules for the multiplier
Hopf algebra D(Gq). For details, see [VY20].
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For details, see [KS97, §13.1.3] and [VY20, Ch.6.2].

The following is a crucial example of a D(Gq)-representation.
Fix a pair of parameters (µ, λ) ∈ 1

2Z×C. Recall that elements µ ∈ 1
2Z

correspond to integral weights of Kq. Concretely, this means that associated
to µ there is a character χµ of the Cartan subalgebra

Uq(h) = span{qnH | n ∈ Z} ⊂ Uq(sl2)

given by χµ : H 7→ 2µ, or more rigorously by

χµ : qH 7→ q2µ. (28)

This character is a ∗-homomorphism, so in fact should be seen as a unitary
character of UR

q (t) ⊂ UR
q (su(2)), where t denotes the Cartan subalgebra of

the real Lie algebra su(2). The fact that µ ∈ 1
2Z means that, classically, µ

integrates to a group character of the diagonal torus subgroup T ⊂ SU(2).
With this character, we define the set of χµ-equivariant functions on Kq,

Γ(Eµ) = {f ∈ O(Kq) | f(1)(H, f(2)) = 2µf}.

Remark 6.4. This is the q-analogue of the space of sections of the induced
line bundle Eµ = K×T Cµ, on the symmetric space K/T , where Cµ denotes
the one dimensional representation given by the character χµ.

Put Hµ,λ = Γ(Eµ). We equip space this first with the left-regular repre-
sentation of D(Kq) as in Equation (20):

πµ,λ(x)f = f⊳S(x) = (S(x), f(1))f(2).

Next, we add a representation of O(Kq) on Hµ,λ by the twisted adjoint
action:

πµ,λ(a)f = (q(λ+1)H , a(0)) a(1)fS(a(3))

Remark 6.5. Note from this formula that two representations πµ,λ and πµ,λ′

are in fact identical if λ− λ′ ∈ 2πi
log qZ = i~−1Z, where we put ~ = log(q)/2π.

Therefore, instead of taking our parameters (µ, λ) ∈ 1
2Z ×C, we may take

them to be in 1
2Z× hq where we put

hq = C/i~−1Z.

The following theorem states that the above representations of D(Kq)
and O(Kq) do indeed define a representation of SLq(2,C) on Hµλ, via

πµ,λ(x ⊲⊳ a) = πµ,λ(x)πµ,λ(a), (x ∈ D(Kq), a ∈ O(Kq)).

It is called the principal series representation of parameter (µ, λ) ∈ 1
2Z×hq.
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Theorem 6.6. Let the notation be as above.

1. The representations πµ,λ of D(Kq) and O(Kq) are compatible in the
sense of Equation (27). Thus, Hµ,λ is a representation of D(Gq),
although not necessarily a ∗-representation.

2. The representations extend continuously to the norm closure Hµ,λ of
Hµ,λ in L2(Kq).

3. The principal series representation πµ,λ is unitary, i.e., it is a ∗-
representation of D(Gq), if and only if the parameter λ is purely imag-
inary, meaning λ ∈ itq where tq = R/~−1Z.

4. The representation πµ,λ is irreducible if and only if

±λ 6∈ |µ|+ iπh−1Z+N×

In particular, the unitary representations are always irreducible.

5. Two irreducible principal series representations Hµ,λ and Hµ′,λ′ are
equivalent if and only if (µ, λ) = ±(µ, λ).

Remark 6.7. Item 3 in the above theorem concerns only the representation
on Hµ,λ with its inner product inherited from L2(Kq). It may be the case
that the representation on Hµ,λ becomes unitary when equipped with a
different inner product. This is the case for the complementary series of
representations. The complementary series representations will not play a
role in what follows, so we will ignore them here. For details, see [VY20,
§6.10]

As elsewhere, these results all have analogues for a general complex
semisimple Lie group G. The parameter space becomes P× hq, where P is
the integral weight lattice and hq = h/i~−1Q∨ with Q∨ being the coroot lat-
tice. The condition for equivalence in the final point is replaced by requiring
the pairs (µ, λ) and (µ′, λ′) to be in the same orbit of the Weyl group on the
parameter space.

For proofs of these facts, see Ch.6 of [VY20]. The case of SLq(2,C) is
dealt with in Sections 6.7 and 6.10.

7 The Plancherel formula for a complex semisim-

ple quantum group

In Section 5, we discussed the problem of decomposing the regular rep-
resentation of the compact quantum group Kq into a direct sum of irre-
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ducibles. The same question can be posed for the decomposition of the
complex semisimple quantum group Gq. In this case, and in the classical
counterpart for G, the decomposition of L2(G) is no longer a direct sum
but a direct integral. This is called the problem of the Plancherel measure
because the solution relies on finding a measure on the set of irreducible
unitary representations of G or Gq. The result generalizes the Plancherel
Theorem for the group R, stating that Fourier transform is an isometric iso-
morphism on L2(R) with respect to an appropriate rescaling of the Lebesgue
measure.

In the classical case, the Plancherel measure for complex semisimple Lie
groups was found by Harish-Chandra. In this section, we will discuss the
analogue of Harish-Chandra’s theorem for the quantized complex semisimple
Lie groups, particularly SLq(2,C).

7.1 The classical Plancherel formula for SL(2,C)

Recall that a Lie group G is called unimodular, if the right and left invariant
Haar measures coincide. This is a property shared by all semisimple complex
groups.

We define an inner product 〈 · , · 〉 on C∞
c (G) as usual by

〈f, g〉 =

∫

x∈G
f(x)g(x) dx

so that the completion of C∞
c (G) with respect to this measure is L2(G).

The group SL(2,C) has a family of irreducible unitary representations
Hµ,λ, called the unitary principal series representations, which are induced
from unitary characters the Borel subgroup B = TAN of invertible upper
triangular matrices. They are indexed by (µ, λ) ∈ 1

2Z × a∗ in a manner
analogous to the Gq-representations in Theorem 6.6. We omit the definition
here, since our real interest is the quantum group analogue. Recall also
that any unitary representation π : G → U(H) can be integrated to a
representation of the convolution algebra C∞

c (G) by the formula

π(u) =

∫

g∈G
u(x)π(g) dg ∈ B(H). (29)

We also recall that the Hilbert space L2(H) of Hilbert-Schmidt operators
is defined as the set of operators on Hof finite norm with respect to the inner
product

〈S, T 〉 = Tr(S∗T ).
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It is a fact that for every f ∈ C∞
c (G), the integrated principal series repre-

sentation πµ,λ(f) is a Hilbert-Schmidt operator, for every (µ, λ) ∈ 1
2Z× a∗.

Theorem 7.1 (Plancherel Theorem for SL(2,C)). Let G = SL(2,C). The
space L2(G) decomposes as a direct integral of G×G representations

L2(G) ∼=

∫ ⊕

(µ,λ)∈ 1

2
Z×a∗

L2(Hµ,λ) dm(µ, λ), (30)

where the Plancherel measure is

dm =
1

2
|µ + iλ|2 dµ dλ,

with dµ being counting measure on 1
2Z and dλ Lebesgue measure on a∗ ∼= R.

More explicitly, if f, g ∈ C∞
c (G), then

〈f, g〉L2(G) =

∫

(µ,λ)
Tr(πµ,λ(f)

∗πµ,λ(g)) dm(µ, λ).

The isomorphism (30) intertwines the G×G-representations, where (g, h) ∈
G×G acts

• on L2(G) by the left and right regular representations λ(g)ρ(h) and

• on L2(Hµ,λ) by T 7→ πµ,λ(g)Tπµ,λ(h
−1).

This is the basic case of a more general Plancherel Theorem for all
semisimple Lie groups—one of the crowning achievements of Harish-Chandra.

7.2 The Plancherel formula for SLq(2,C)

In 1999, Buffenoir and Roche [BR99] proved an analogue of this formula
for the quantum group SLq(2,C), which has more recently been generalized
to the q-deformations of all complex semisimple Lie groups [VY19]. As
previously mentioned, we do not currently know how to generalize this to
other non compact real semisimple groups, because we do not know how to
construct their q-deformations.

We shall see that the q-deformed Plancherel formula is remarkably simi-
lar to Harish-Chandra’s formula in Theorem 7.1 above. To state it, we need
the Haar integral on SLq(2,C). Let us write G = SL(2,C) and K = SU(2),
as before.

We have already defined Haar measure φ on the compact quantum group
SUq(2), see Theorem 5.2. We now define Haar measure on ANq = K̂q and
on Gq.
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Theorem 7.2. 1. The quantum group

O(K̂q) = D(Kq) ∼=
⊕

m∈ 1

2
N

EndV (m),

which is dual to O(Kq), has a right-invariant Haar integral ψ̂ defined
by

ψ̂ : x =
⊕

m

xm 7→
∑

m∈ 1

2
N

dimq V (m)Tr(xmπm(q−H)).

2. The quantum group O(Gq) = O(Kq)⊗O(K̂q) which is dual to D(Gq)
has a two-sided Haar integral Φ defined by

Φ(a⊗ x) = φ(a)ψ̂(x).

As usual, the Haar integral Φ lets us define an inner product on O(Gq)
by

〈f, g〉 = Φ(f∗g),

and we denote the completion by L2(Gq). We also have the Fourier trans-
form,

F : O(Gq) → D(Gq), f 7→ f̂ = Φ( · f).

If π is a ∗-representation of D(Gq) and f ∈ O(Gq), then the analogue of

the classical integrated representation (29) is the operator π(f̂). In fact,
this would be a more accurate notation also for the classical notion of (29),
since f 7→ π(f) defines a representation of the convolution algebra of smooth
densities not the pointwise algebra of smooth functions.

Finally, we need a twisted variant of the Hilbert-Schmidt operators, sim-
ilar to that which appeared in the Peter-Weyl formula for Kq, Theorem 5.5.
Suppose π is a ∗-representation of D(Gq) on a Hilbert space H whose restric-
tion to D(Kq) is integrable, so that π(qH) is a positive unbounded operator.
We define L2

q(H) to be the set of operators on H of finite norm with respect
to the inner product

〈S, T 〉 = Tr(STπ(q−H)).

Remark 7.3. The unbounded operator π(q−H) in this formula is called the
Duflo-Moore operator. Hilbert-Schmidt norms twisted by a Duflo-Moore
operator can appear in the Plancherel formula for classical groups if the
group is not unimodular. Here, the quantum group SLq(2,C) is unimodular,
but a Duflo-Moore operator is nonetheless necessary.
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Theorem 7.4 (Plancherel Theorem for SLq(2,C)). Let Gq = SLq(2,C).
The space L2(Gq) decomposes as a direct integral of D(Gq) ⊗ D(Gq)-repre-
sentations

L2(Gq) ∼=

∫ ⊕

(µ,λ)∈ 1

2
Z×itq

L2
q(Hµ,λ) dmq(µ, λ), (31)

where the Plancherel measure is

dmq =
1

2
|[µ + iλ]q|

2 dµ dλ,

with dµ being counting measure on 1
2Z and dλ being Lebesgue measure on

the circle tq ∼= R/~−1Z. More explicitly, if f, g ∈ C∞
c (G), then

〈f, g〉L2(G) =

∫

(µ,λ)
Tr(πµ,λ(f̂)

∗πµ,λ(ĝ)πµ,λ(q
−H)) dmq(µ, λ). (32)

The isomorphism (31) intertwines the D(Gq) ⊗ D(Gq)-representations,
where u⊗ v ∈ D(Gq)⊗D(Gq) acts

• on L2(G) by the left and right regular representations, (u ⊗ v) : f 7→
(S(u), f(1))f(2)(v, f(3)) and

• on L2
q(Hµ,λ) by (u⊗ v) : T 7→ πµ,λ(u)Tπµ,λ(S(v)).

7.3 Proof of the Plancherel Formula, part I

We will finish these notes with a very rough outline of the proof of the
Plancherel Theorem above. The first thing to note is that, under the Fourier
transform, the Haar integral of O(Gq) transforms to the counit of D(Gq),
since for f ∈ O(Gq),

Φ(f) = f̂(1) = ǫ(f̂).

Therefore, if we put u = f̂∗ĝ ∈ D(Gq), the desired Plancherel formula (32)
becomes

ǫ(u) =

∫

(µ,λ)∈ 1

2
Z×itq

Tr(πµ,λ(u)πµ,λ(q
−H)) dmq(µ, λ). (33)

It now suffices to consider the case

u = |vi〉〈v
j | ⊗ 〈vk| · |vl〉 ∈ EndV (m)⊗ (EndV (m′))∗, (34)

where vi is a standard basis vector for V (m), vj a dual basis vector, and
similarly vl ∈ V (m′) and vk ∈ V (m′)∗. In this notation, |vi〉〈v

j | denotes the
rank-one operator v 7→ 〈vj |v〉vi belonging to End(V (m)).
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With such an element u, an explicit calculation can be carried out to
simplify the right-hand side of (33). We will omit this calculation and simply
state that the result comes to

∫

(µ,λ)∈ 1

2
Z×itq

Tr(πµ,λ(u)πµ,λ(q
−H)) dmq(µ, λ)

= Tr(π0,−1(ũ))−Tr(π1,0(ũ)), (35)

where π0,−1 and π1,0 are the principal series representations of Theorem
6.6 and ũ is some explicit element of D(Gq) related to u via the antipodes
of O(Kq) and D(Kq). For the details of this calculation, see Section 6 of
[VY19].

Remark 7.5. The analogous calculation can be carried out for a general
complex semisimple quantum group Gq. The result comes to

∑

w∈W

(−1)|w|Tr(π−w.0,−w.0−2ρ(ũ)), (36)

where W is the Weyl group of g, |w| denotes the Bruhat length of w ∈W , ρ
is the half-sum of the positive roots and w.λ = w(λ+ ρ)− ρ is the ρ-shifted
Weyl group action.

The alternating sum of traces in (35) and (36) is reminiscent of the Lef-
schetz trace formula, and indeed it is this that will lead to the equality (33),
passing via the Bernstein-Gelfand-Gelfand complex. This is the remaining
piece of the puzzle.

7.4 Harish-Chandra bimodules

Our goal is to convert the study of unitary representations, which is rather
difficult, into the study of Verma modules, which is more algebraic and in
principle simpler.

Consider first the case of the classical group G = SL(2,C). As already
mentioned several times—see Sections 3.4 and 6—we begin by linearizing
and complexifying the problem, thus obtaining C-linear representations of
the complexified Lie algebra, gC = g ⊗R C, where g is complex to begin
with.

At this point, we observe that we have an isomorphism of complex Lie
algebras,

gC ∼= g⊕ gop; X 7→ (X,X
t
) (for X ∈ g), (37)
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where X
t
is the conjugate transpose of X. This in turn induces an algebra

isomorphism
U(gC) ∼= U(g)⊗ U(g)op. (38)

As a consequence, the usual procedure of converting a unitary representa-
tion H of G into a complex-linear representation of the complexified en-
veloping algebra U(gC) can be further modified by using (38) to obtain a
U(g)-bimodule structure on H. More precisely, since Lie algebra elements
act as unbounded operators, the associated U(g)-bimodule will be given by
the dense subspace H of K-finite vectors3 in H.

Next consider the embedding of k into g, corresponding to the inclusion of
the maximal compact subgroup K in G. Note that elements X ∈ k = su(2)

are skew-adjoint, X
t
= −X. Therefore, upon complexification we obtain an

embedding of kC into gC ∼= g ⊕ gop which, according to Equation (37), is
given by

X 7→ (X,−X) (for X ∈ k). (39)

Thus, the action of X ∈ kC on the U(g)-bimodule H is given by

v 7→ X ·v − v ·X. (40)

We can extend the action (40) by universality to U(kC). This motivates
the following notation.

Definition 7.6. Let H be a U(g)-bimodule. For X ∈ U(kC), and v ∈ H,
we write

X⊲v = X(1) · v · S(X(2)),

and call this the adjoint action of U(g) on H.

Note that this definition may also cause confusion, since U(kC) ∼= U(g)
as an algebra. Therefore the bimodule H is now equipped with three actions
of U(g):

• a left action, denoted by X ·v,

• a right action, denoted by v ·X,

• an adjoint action of U(kC) ∼= U(g), denoted by X⊲v,

3A vector v in H is K-finite if π(K)v is a finite dimensional subspace. For such
vectors, the map g 7→ π(g)v is always smooth, so the derived representation of U(gC) is
well-defined.
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all of which come naturally from the unitary representation of G on H, as
well as its restriction to the maximal compact K. These three actions are
compatible in the sense that

X ·v = (X(1)⊲v) ·X(2), (41)

as one can readily check from Definition 7.6.
As a technical point, note also that since K is compact, any unitary

representation of K decomposes into a direct sum of finite dimensional rep-
resentations. Therefore, the adjoint action of U(k) is a locally finite represen-
tation, meaning that for any v ∈ H, its image U(kC)⊲v is a finite dimensional
subspace of H. This is typically not true of the other two actions of U(g).

To summarize all of the above manipulations, any unitary representation
H of G gives rise to a U(g)-bimodule H equipped in addition with a locally
finite “adjoint” action of U(g) which is compatible in the sense of Equation
(41). Such objects, with a few added technical considerations, are called
Harish-Chandra bimodules.

Amazingly, this whole procedure can be q-deformed. This is the result of
deep work due to Joseph and Letzer, see [Jos95]. One notable technicality
is that the algebra Uq(g) will occasionally have to be replaced by its locally
finite part FUq(g) for the adjoint action, whereas in the classical case FU(g)
and U(g) coincide. For the non-expert, this technicality can be ignored, but
we will keep it in our notation for accuracy.

The q-analogue of the isomorphism gC ∼= g ⊕ g, or its extension to the
enveloping algebra (38), is as follows.

Theorem 7.7. There is an algebra morphism

ι : UR

q (g) := UR

q (k) ⊲⊳ O(Kq) →֒ Uq(g)⊗ Uq(g)
op,

with image
((id ⊗ S)∆Uq(g)).(FUq(g)⊗ 1)

or equivalently,
((id ⊗ S)∆Uq(g)).(1 ⊗ FUq(g)).

To explain this theorem, the first component (id⊗S)∆Uq(g) in the image
corresponds to the embedding of the compact part kC in g ⊕ gop that we
saw in Equation (39), and indeed the morphism ι restricted to the compact
part UR

q (k) ⊆ UR
q (g) is given by

ι : X 7→ (id⊗ S)∆(X)
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The other components, with FUq(g) in the first or second leg, correspond
to the components g and gop that we saw in Equation (37). The action of
ι on O(Kq) is given in terms of the so-called l-functionals, but we will not
present the details here.

Taking inspiration from the classical case above suggests that the fol-
lowing definition will be useful. The final conditions in this definition are
technical points which we will not develop.

Definition 7.8. A quantum Harish-Chandra bimodule is an FUq(g)-bimodule
H equipped with an adjoint action⊲of Uq(g), which is compatible with the
bimodule structure in the following sense

X · v = (X(1) → v) ·X(2), (42)

for all X ∈ Uq(g) and v ∈ H, and such that

1. the adjoint action is locally finite,

2. the right FUq(g)-action is finitely generated,

3. the right FUq(g)-action has annihilator of finite codimension.

Two examples will be of crucial importance.

Example 7.9. Let H be any ∗-representation of D(Gq) and hence of UR
q (g).

Let H ⊆ H be the locally finite part for the action of the subalgebra UR
q (k).

Then H inherits the structure of a quantum Harish-Chandra bimodule via
the morphism ι.

In particular the principal series representations give rise to quantum
Harish-Chandra bimodule structures on Hµ,λ.

Example 7.10. Let M,N be Verma modules for Uq(g) as in Observation
2.8, or more generally letM,N be modules in category O (see [Jos95, VY20]
for the definition of quantum category O). We equip the space Hom(M,N)
with

• left and right actions of Y,Z ∈ FUq(g) given by

(Y · φ · Z)(m) = Y · (φ(Z ·m)),

for φ ∈ Hom(M,N), m ∈M ;

• an adjoint action of X ∈ UR
q (k) ∼= Uq(g) given by

(X⊲φ)(m) = X(1) · (φ(Ŝ(X(2)) ·m).
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Now put H = FHom(M,N), the locally finite part of Hom(M,N) with re-
spect to the adjoint action. ThenH is a quantum Harish-Chandra bimodule.
At least for the compatibility condition (42), this is an easy check.

Inspired by similar results for classical groups, Joseph and Letzter ob-
served that the above two examples are isomorphic in many cases. In partic-
ular, as the next theorem shows, the unitary principal series representations
can be realized as FHom(M,N) for appropriate modules M and N . We
recall from observation 2.8 that we defined the Verma module M(m) with
any highest weight m ∈ C. There is also a notion of dual Verma module
M(m)∨, which we will not detail here, see [VY20, §5.1.2].

Theorem 7.11 (Joseph-Letzter). Let (µ, λ) ∈ 1
2Z× itq. Then, as quantum

Harish-Chandra bimodules,

Hµ,λ
∼= FHom(M(ℓ),M(r)∨)

where µ = ℓ− r, λ = −ℓ− r − 1.

In fact, with some caveats, Joseph and Letzter’s isomorphism defines an
equivalence of categories between certain subcategories of category O and
of quantum Harish-Chandra bimodules. To be specific, let us fix ℓ = 0. Let
O0 denote the subcategory of category O in which all weights appearing are
integral. In particular, O0 contains the irreducible integrable Uq(g)-modules
V (m), as well as all of the Verma modulesM(m) appearing in the projective
resolution (7) of V (m), and also their dual modules M(m)∨.

Joseph and Letzter prove that the map

N 7→ FHom(M(ℓ), N) (43)

is an exact functor from O0 to the category of quantum Harish-Chandra
bimodules. This means that if we apply the functor (43) to dual of the
resolution (7) of the trivial representation

0 → V (0) →M(0)∨ →M(−1)∨ → 0,

then we obtain a short-exact sequence of quantum Harish-Chandra bimod-
ules, and hence a resolution of the trivial representation of UR

q (g) by prin-
cipal series representations:

0 → C → H0,−1 → H1,0 → 0. (44)
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Remark 7.12. This resolution of the trivial representation by principal se-
ries representations generalizes to all quantized complex semisimple groups.
It is called the geometric Bernstein-Gelfand-Gelfand resolution and is a
quantum analogue of a well-studied differential complex on flag varieties,
see for instance [ČSS01].

The BGG complex has seen various applications in the noncommutative
geometry of quantum groups, see for instance [HK07b, VY15, BS23].

7.5 Proof of the Plancherel Formula, part II

Now we can complete the proof of the Plancherel formula. The principal
series representations appearing in the geometric BGG resolution (44) are
precisely those which appear in the reduction of the Plancherel formula,
Equation (35). Since the maps are morphisms of UR

q (g)-representations,
and hence D(Gq)-representations, they intertwine the action of ũ on each.
The Lefschetz trace principle implies that the alternating sum of the traces
is zero:

ǫ(ũ)− Tr(π0,−1(ũ)) + Tr(π1,0(ũ)) = 0.

From the definition of ũ, which we have elided (see eq (35)), one easily
obtains ǫ(ũ) = ǫ(u). Therefore, the integral (35) is equal to ǫ(u). This
proves the formula (33) and hence the Plancherel formula.

The above proof works equally well for the q-deformations of all complex
semisimple Lie groups. The projective resolution (7) of the finite dimensional
integral module V (m) by Verma module has a generalization in higher rank,
called the algebraic Bernstein-Gelfand-Gelfand resolution [BGG75]. The
Verma modules which appear in the BGG resolution are those which have
highest weights in the ρ-shifted Weyl group orbit of m:

0 → · · · →
⊕

w∈W
ℓ(w)=k

M(w.m) → · · · →M(m) → V (m) → 0.

In the quantum case, this result is due to Heckenberger and Kolb [HK07a].
We can then take the dual of this resolution in category O, and apply

Joseph and Letzter’s functor as Equation (44). This yields the geometric
Bernstein-Gelfand-Gelfand complex which we mentioned in Remark 7.12.
The principal series representations which arise in the geometric Bernstein-
Gelfand-Gelfand resolution of the trivial representation are again precisely
those that appear in the integral calculation (36). Therefore an application
of the Lefschetz trace principal once again completes the proof.
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A Hopf Algebras

In this section we recap some key definitions regarding Hopf algebras. For
more details see [FL15, Mon93].

Let k = R,C be our ground field.

Definition A.1. We say that A is a Hopf algebra if it has the following
properties:

1. A is an algebra (not necessarily commutative), that is, there are linear
maps, the multiplication µ : A⊗A −→ A and the unit i : k −→ A such
that the following diagrams commute

A⊗ k
id⊗i

−−−−→ A⊗A

∼=

y
yµ

A
id

−−−−→ A

k ⊗A
i⊗id

−−−−→ A⊗A

∼=

y
yµ

A
id

−−−−→ A

A⊗A⊗A
µ⊗id

−−−−→ A⊗A

id⊗µ

y
yµ

A⊗A
µ

−−−−→ A

A morphism φ : A −→ B of two algebras, with multiplication µA and
µB and unit iA and iB respectively, is a linear map such that

µB ◦ (φ⊗ φ) = φ ◦ µA, φ ◦ iA = iB .

2. A is a coalgebra, that is, we can define two linear maps called comul-
tiplication ∆ : A −→ A⊗A and counit ǫ : A −→ k with the following
properties:

A⊗A
id⊗ǫ

−−−−→ A⊗ k

∆

x
x∼=

A
id

−−−−→ A

A⊗A
ǫ⊗id

−−−−→ k ⊗A

∆

x
x∼=

A
id

−−−−→ A

A⊗A
∆⊗id
−−−−→ A⊗A⊗A

∆

x
xid⊗∆

A
∆

−−−−→ A⊗A
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A morphism φ : A −→ B of two coalgebras, with comultiplication ∆A,
∆B and counit ǫA, ǫB respectively, is a linear map such that

(φ⊗ φ)◦∆A = ∆B◦φ, ǫB◦φ = ǫA .

3. The multiplication µ and the unit i are coalgebra morphisms.

4. The comultiplication ∆ and the counit ǫ are algebra morphisms.

5. A is equipped with a bijective linear map S : A −→ A called the
antipode such that the following diagrams commute:

A⊗A
S⊗id
−−−−→ A⊗A

∆

x
yµ

A
i◦ǫ

−−−−→ A

A⊗A
id⊗S
−−−−→ A⊗A

∆

x
yµ

A
i◦ǫ

−−−−→ A

(Conditions 3 and 4 are equivalent).

A Hopf algebra morphism is a linear map φ : A→ B which is a morphism
of both the algebra and coalgebra structures of A and B and in addition it
commutes with the antipodes

SB ◦ φ = φ ◦ SA ,

where SA and SB denote, respectively, the antipodes in A and B.

If A satisfies only the first four properties is called a bialgebra.

Bialgebras do not necessarily have an antipode, but if an antipode exists
it is unique.

Let A be a coalgebra with comultiplication ∆ : A→ A⊗A and consider
the linear map

A⊗A
σ

−−−−→ A⊗A

a⊗ b −−−−→ b⊗ a .
(45)

We say that A is cocommutative if

∆ = σ ◦∆ .

In the same way, if A is an algebra with multiplication µ : A × A → A, we
can express the commutativity condition as

µ = µ ◦ σ .
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We will say that a Hopf algebra is commutative or cocommutative if the
underlying algebra and coalgebra structures are so.

Let A be a coalgebra with comultiplication ∆ and counit ǫ. We say that
a subspace I ⊂ A is a coideal if

∆(I) ⊂ I ⊗A+A⊗ I, ǫ(I) = 0 .

If A is a Hopf algebra, we say that I ⊂ A is a Hopf ideal if I is an ideal of
the algebra structure, a coideal of the coalgebra structure and

S(I) ⊂ I .

One can check immediately that in that case the algebra A/I inherits nat-
urally a Hopf algebra structure from A.

The square of the antipode of a Hopf algebra, S2, is an isomorphism of
Hopf algebras. However, it is not true in general that S2 = id. For the cases
in which the Hopf algebra is commutative or cocommutative, then we have
that S2 = id.

Let A be an algebra with multiplication µ : A⊗A→ A and unit i : k →
A. Let us consider its dual space A∗. Then, the dual maps

A∗ µ∗

−−−−→ (A⊗A)∗

a −−−−→ µ∗(α) = α ◦ µ ,

A∗ i∗
−−−−→ k

α −−−−→ i∗(α) = α ◦ i ,

define on A∗ a coalgebra structure, provided we can identify (A ⊗ A)∗ ∼=
A∗ ⊗A∗. If A is finite dimensional, this is always the case. The concepts of
algebra and coalgebra are then seen to be dual concepts. This prompts the
following definition:

Definition A.2. We say that the two Hopf algebras H andH ′ are in duality
with each other if we have a non degenerate pairing 〈 , 〉 : H × H ′ −→ k
satisfying the properties:

〈uv, x〉 = 〈u⊗ v,∆′(x)〉, 〈u, xy〉 = 〈∆(u), x⊗ y〉,

〈1, x〉 = ǫ′(x), 〈u, 1〉 = ǫ(u) ,

〈S(u), x〉 = 〈u, S′(x)〉 for u, v ∈ H, x, y ∈ H ′ .

∆, ǫ, S and ∆′, ǫ′, S′ denote the comultiplication, counit and antipode in H
and H ′ respectively. �
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In the algebra community, it is typical to frame Pontryagin duality in
terms of dually paired Hopf algebras. In the C∗-algebra community, it is
more common to describe it in terms of skew-paired Hopf algebras, as we
have presented in Observation 4.4. The difference is that with a skew-
pairing, the coalgebra structure on H is replaced by its opposite via the flip
map (45), which leads us also to use the inverse of the antipode S−1 on H ′.
For details, see [KS97, §1.2.4 & §8.2.1].
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