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In cavity magnomechanical systems, magnetic excitations couple simultaneously with mechanical
vibrations and microwaves, combining the tunability of the magnetization, the long lifetimes
of mechanical modes and the whole measurement toolbox of microwave systems. Such hybrid
systems have been proposed for applications ranging from thermometry to entanglement generation.
However, backaction noise can hinder the measurement of the mechanical vibrations, potentially
rendering such applications infeasible. In this paper, we investigate the noise introduced in a
mechanical mode of a cavity magnomechanical system in a one-tone drive scheme and propose
a scheme for realizing backaction evasion measurements of the mechanical vibrations. Our proposal
consists of driving the microwave cavity with two tones separated by twice the phonon frequency
and with amplitudes balanced to generate equal numbers of coherent magnons. We demonstrate
that different configurations of such a scheme are possible and show that drives centered around
the lower frequency magnon-microwave polariton in a triple resonance scheme add the minimum
imprecision noise in the measurement, even though such configuration is not the most robust to
imperfections.

I. INTRODUCTION

One of the most iconic features of quantum mechanics
is the disturbance of a system due to measurements
[1]. The random nature of quantum measurements
performed in a system of interest via an apparatus
implies the addition of measurement noise to the
system to be probed [2], which can hinder applications
such as sensing. Backaction evasion (BAE) schemes
often rely on engineering a Hamiltonian, which is
quantum non-demolition (QND) in an observable of
the system to be measured. This means that the
measurement of such an observable does not disturb
its evolution. The price to be paid is strong noise
contamination in non-commuting observables. Such
engineered interaction can be realized in hybrid systems
architecture, a prominent example being the BAE scheme
for measuring mechanical vibration in optomechanical
systems [3–8]. Other examples include electromechanical
systems [9–11], atomic ensembles coupled to mechanical
resonators [12], Bose-Einstein condensates [13], and
superconducting qubits coupled to microwave cavities
[14].

Cavity magnomechanical systems have recently
emerged as a promising platform for quantum
technologies [15, 16]. In such systems, a magnetic
element, usually made of yttrium iron garnet, is loaded
into a microwave cavity, as we depict in Fig. 1. The
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magnetic excitation (magnons) couple simultaneously to
the microwaves (via magnetic dipole coupling) and to
the elastic vibrations of the material (via magnetoelastic
effects) [15, 17–19]. Such a system allows the drive and
measurement of phonons via the microwave resonator
while retaining the tunability of the magnons. Among
the potential applications proposed for such systems
are the generation of entangled states [20–22], the
generation of squeezing of magnons and phonons via
magnon nonlinearities [23, 24], noise-based thermometry
[25] and microwave-to-optical frequency conversion [26].

Due to a frequency mismatch, the coupling between
magnons and phonons in cavity magnomechanical
systems resembles that of an optomechanical system [15,
19]. Consequently, the mechanical oscillator experiences
dynamical backaction [15, 27], namely, a frequency shift
and modified decay due to its interaction with the
magnons. Different from its optomechanical counterpart,
magnons hybridize with microwaves, changing some
characteristics of dynamical backaction. Recently, it
was experimentally shown [28] that (classical) dynamical
backaction can be evaded in such systems by judiciously
choosing the microwave drive frequency. Nevertheless,
up to date, there is no (quantum) BAE scheme tailored
for cavity magnomechanical systems, a feature that could
allow further applications of such systems at the quantum
level, for instance, the measurement of entangled states
that can be engineered in such systems [20, 29].

In this paper, we propose a scheme for evading
quantum backaction in a cavity magnomechanical
system. We first characterize the magnomechanical
noise introduced in the phonon mode in a one-tone
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FIG. 1. (a) Schematic depiction of a cavity magnomechanical
system: magnetic excitations (blue) couple simultaneously to
a microwave mode (red) and mechanical vibrations (black).
The cavity can be driven and the output is used to probe the
mechanics. The system is described by a model of interacting
bosonic modes subject to dissipation. (b) The two-tone
driving scheme that yields a backaction evasion measurement
of the mechanics. Magnons and microwaves form hybrid
modes with frequencies ω±. The two drives ϵ± must be
separated by twice the phonon frequency ωb. Centering the
tones around the lower hybrid mode frequency yields the
minimum added noise in the measurement of the mechanics.

setup, in correspondence with the recent experiments
in which dynamical backaction is evaded. We then
propose a scheme inspired by BAE schemes in opto
and electromechanics [3, 4, 9] in which a two-tone
drive applied to the microwave cavity realizes a QND
Hamiltonian for a phonon quadrature. Our scheme
requires that the tone frequencies are separated by
twice the phonon frequency, as shown in Fig. 1(b), and
the amplitudes of the drives have to be balanced to
generate the same number of coherent magnons. The
tone frequency separation provides a modulation of the
magnomechanical force, which in turn yields a quantum
non-demolition Hamiltonian involving one quadrature of
the phonon mode [1]. We study the robustness of the
system to imperfections of the parameters and quantify
the noise added to the measurement of the mechanics.
We show that for drives centered around the hybrid
magnon-microwave modes frequency, the imprecision
noise can go below the standard quantum limit. The
drawback is that the BAE is less robust to imperfections,
for example, slight deviations in the drive frequencies,
for such configurations. Two-tone drive schemes have
been proposed for magnomechanical systems to generate

squeezing [30, 31] and induce magnonic frequency combs
[32], and our scheme might allow future applications of
cavity magnomechanical systems that rely on quantum
features of the phonon mode.

This paper is structured as follows. In Section II we
present a brief description of a cavity magnomechanical
Hamiltonian, and calculate the backaction noise acting
on a quadrature of the phonon mode for a single tone
drive. We show in this section that the dynamical
backaction evasion point demonstrated in [28] does not
correspond to a quantum BAE point. In Section III we
present our BAE scheme, and quantify the noise that acts
on the quadrature conjugated to the BAE quadrature.
In section IV, we compute the imprecision noise added
to the measurement of the BAE quadrature via the
output of the microwave mode. Finally, we present our
conclusions and outline of the work in section V. We
present full formulas and some detailed derivations in the
appendix.

II. CAVITY MAGNOMECHANICS
HAMILTONIAN AND MAGNOMECHANICAL

BACKACTION NOISE

The cavity magnomechanical system depicted in Fig. 1
can be modelled with the following Hamiltonian [15, 19,
33]

Ĥ

ℏ
= ωcĉ

†ĉ+ ωmm̂
†m̂+ ωbb̂

†b̂

+ gmc
(
m̂†ĉ+ m̂ĉ†

)
+ g0mbm̂

†m̂
(
b̂† + b̂

)
+
Ĥdrive

ℏ
.

(1)

A microwave mode ĉ with frequency ωc couples to a
magnon mode m̂ with frequency ωm, which in turn
couples to a phonon mode b̂ with frequency ωb. The
magnon frequency ωm can be tuned by an applied
external field [34]. Magnons and microwaves couple via
magnetic dipole interaction, and in the limit of a magnet
with a volume smaller than the effective microwave
mode volume, the corresponding coupling rate between
the uniform magnon mode and a microwave mode gmc
depends on the intensity of the magnetic field at the
magnet’s positions and on the magnet volume Vm [35,
36]. Magnons and phonons, on the other hand, couple
via magnetoelastic effects [37], and the Hamiltonian
describing the interaction depends on the geometry of the
magnet and the relative frequency between the magnon
modes and the phonon modes [19]. Hereafter, we consider
exclusively the case in which the uniform magnon mode,
the Kittel mode, couples with a low-frequency phonon
mode [15, 27, 28]. The single-magnon magnomechanical
coupling g0mb depends on an overlap integral, which in
general scales with 1/

√
Vm [19, 33]. A more detailed

discussion and derivation of the coupling rates gmb,mc can
be found in [19, 33]. The last term of the Hamiltonian
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describes the microwave drive, which, for now, we assume
to be a single-tone coherent drive

Ĥdrive

ℏ
= i

√
κeϵD(ĉe

iωdt − ĉ†e−iωdt), (2)

with frequency ωD and amplitude ϵD =
√
P/ℏωd.

The open dynamics of the system is described by the
set of Heisenberg-Langevin equations

˙̂c =
(
−iωc −

κc
2

)
ĉ− igmcm̂−

√
κeϵDe

iωdt

+
√
κcĉin(t),

˙̂m =
(
−iωm − κm

2

)
m̂− igmcĉ

− ig0mbm̂
(
b̂+ b̂†

)
+
√
κmm̂In(t),

˙̂
b = −

(
iωb +

γb
2

)
b̂− ig0mbm̂

†m̂+
√
γbb̂In(t),

(3)

where {κc, κm, γb} are the microwave, magnon and
phonon linewidths respectively. The operators ĉIn, m̂In,
b̂In describe the noise acting in each mode. Typically,
microwave noise includes both intrinsic thermal noise
and noise from the input drive, while the magnon and
phonon noises are entirely thermal. The microwave-
magnon coupling can be stronger than both microwave
and magnon decay rates, generating a hybridization
between the modes [35, 38, 39]. In such a regime, two
magnon-microwave polaritons form at frequencies ω±.
We call the mode with frequency ω+ > ω− the upper
hybrid mode while the other is the lower hybrid mode.
In the case where the magnon mode is resonant with the
microwave mode ωm = ωc, the difference between the
hybrid modes frequencies is ∼ 2gmc. Throughout the
paper, we will consider exclusively the situation in which
magnons and microwaves are at resonance, corresponding
to maximum hybridization between the modes.

We consider parameters corresponding to experiments
in which a 3D microwave cavity is loaded with a YIG
sphere with radius ∼ 100µm. In this case, the magnon
and microwave frequencies are in the ∼ 10 GHz range,
while their decay is typically a few MHz. Typically,
gmc ∼ 10 MHz, with the possibility of reaching stronger
couplings by tuning the cavity design [35, 38, 39].
We consider phonon modes corresponding to elastic
vibrations of the sphere with frequencies in the 10 MHz
range, such as spherical modes [40]. The linewidths of
such modes depend on the specific design of the system.
In the first experiments [15], the magnetic sphere was
glued to a post, yielding higher phonon linewidths, while
in [27] the sphere was free to move inside a capillary, for
which the elastic vibrations exhibit higher quality factors.
Here, we consider the first situation, for which γb ∼ kHz.
The parameters used in the paper are summarized in
table I. The chosen drive amplitude ϵD corresponds
to a power ∼ 0.3 mW, which ensures a substantial
enhancement of the magnomechanical coupling while
keeping the system far from any unstable points [15, 27].

To characterize the quantum noise driving the phonon
mode in a magnomechanical system, we linearize the
Hamiltonian in Eq. (1), which in a frame rotating at the
drive frequency ωd reads

ĤL

ℏ
= −∆cĉ

†ĉ− ∆̃mm̂
†m̂+Ωbb̂

†b̂+ gmc(m̂
†ĉ+ m̂ĉ†)

+ (g∗mbm̂+ gmbm̂
†)(b̂† + b̂),

(4)
where gmb = g0mbm̄, with m̄ the coherent steady-state
magnon amplitude given by

m̄ =
igmc

√
κeϵD(

i∆c − κc
2

) (
i∆m − κm

2

)
+ g2mc

. (5)

The linearization procedure was discussed in detail, for
example, in [25, 27, 33]. The dynamics of the fluctuations
ĉ, m̂ and b̂ can be described by a set of linear Heisenberg-
Langevin equations, which in the frequency domain are
given by [41]

χ−1
c [ω]ĉ[ω] = −igmcm̂[ω] +

√
κcξ̂c[ω],

χ−1
m [ω]m̂[ω] = −igmb(b̂[ω] + b̂†[ω])

− igmcĉ[ω] +
√
κmξ̂m[ω],

χ−1
b [ω]b̂[ω] = −i(g∗mbm̂[ω] + gmbm̂

†[ω])

+
√
γbξ̂b[ω],

(6)

where the susceptibilities are

χc,m[ω] =
1

−i(ω +∆c,m) + κc,m/2
,

χb[ω] =
1

−i(ω − ωb) + γb/2
,

(7)

and in what follows, we consider exclusively thermal noise
for the fluctuations, such that

⟨ξ̂i[ω]ξ̂i[ω′]⟩ = ⟨ξ̂†i [ω]ξ̂
†
i [ω

′]⟩ = 0,

⟨ξ̂†i [ω]ξ̂i[ω
′]⟩ = 2πniδ(ω + ω′),

⟨ξ̂i[ω]ξ̂†i [ω
′]⟩ = 2π(ni + 1)δ(ω + ω′),

(8)

where nc,m,b are the thermal occupancies of the
respective baths. The equations (6) can be solved for
b̂[ω] giving

χ̃−1
b [ω]b̂[ω] = −if̂BA[ω] +

√
γbξ̂b[ω] + iΣb[ω]b̂

†[ω]. (9)

The last term of the above equation is a counter-rotating
term that we will discard. We assess the effects of this
term in the appendix.

The magnomechanical coupling has two main
implications for the phonon dynamics in such a linear
framework. First, the phonon susceptibility χb[ω]
is modified to χ̃b[ω], corresponding to a dynamical
backaction change of the phonon frequency and
linewidth. Such an effect can be exploited, for instance,
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TABLE I. Typical parameters of a cavity magnomechanical system consisting of a magnetic sphere loaded in a 3D microwave
cavity, as described by the Hamiltonian in Eq. (1) and the Heisenberg-Langevin equations Eqs. (3).

Parameter Symbol Value
Microwave mode frequency ωc 2π × 10 GHz
Magnon mode frequency ωm ∼ ωc (tunable)
Phonon mode frequency ωb 10−3ωc

Microwave intrinsic decay rate κc 2× 10−4ωc

Magnon mode decay rate κm 10−4ωc

Phonon intrinsic decay rate γb 10−7ωc

Magnon-microwave coupling rate gmc ∼ 10−3ωc (different cases will be considered)
Magnomechanical vacuum coupling rate g

(0)
mb 10−12ωc

Microwave drive amplitude ϵD 2.8× 104ω
1/2
c

to cool down or amplify the mechanics depending on the
drive detuning. The effective phonon susceptibility is
given explicitly by

χ̃−1
b [ω] = χ−1

b [ω]− iΣb[ω], (10)

where the phonon self-energy Σb[ω] reads

Σb[ω] = i|gmb|2 (Ξm[ω]− Ξ∗
m[−ω]) , (11)

which in turn is given in terms of the modified magnon
susceptibility

Ξ−1
m [ω] = χ−1

m [ω] + g2mcχc[ω]. (12)

The effective mechanical susceptibility can be written as

χ̃−1
b [ω] = −i(ω − ω̃b) +

γ̃b
2
, (13)

where the effective frequency and linewidths are

ω̃b = ωb − Re[Σb[ω]],

γ̃b = γb + 2Im[Σb[ω]]
(14)

Dynamical backaction effects have been theoretically and
experimentally explored in cavity magnomechanics in
Refs. [15, 25, 27, 28, 33]. Second, the magnomechanical
coupling drives the phonon mode with the backaction
noise term f̂BA[ω] given explicitly by

f̂BA[ω] = g∗mbξ̂BA[ω] + gmbξ̂
†
BA[ω], (15)

where

ξ̂BA[ω] = Ξm[ω](
√
κmξ̂m[ω]− igmc

√
κcχc[ω]ξ̂c[ω]). (16)

Dynamical backaction can be evaded by a careful
choice of the drive frequency. In fact, for magnons at
resonance with microwaves (ωm = ωc) one can show
that Σb[ω] = 0 for a drive on resonance with the
microwave mode, i.e., ∆c,m = 0. This can also be
understood as a balance between Stokes and anti-Stokes
scattering processes from the magnon-microwave hybrid
modes [28]. Such a dynamical backaction evasion was

recently demonstrated in [28]. In contrast, backaction
noise does not necessarily vanish, thus even if the phonon
mode has no modification in its damping due to the
magnomechanical coupling, the backaction noise f̂BA

can still drive the mechanical motion in addition to the
thermal noise described by ξ̂b. To quantify such an effect,
we consider the mechanical noise spectral density [2]

Sxx[ω] =

∫ ∞

−∞

dω′

2π
⟨x̂b[ω]x̂b[ω′]⟩, (17)

where

x̂b[ω] =
b̂[ω] + b̂†[ω]√

2
. (18)

Sxx[ω], which for brevity we call simply the noise
spectrum, has units of inverse frequency and gives the
position noise spectrum of the mechanical vibration via
x2ZPFSxx[ω], where xZPF are the zero-point fluctuations of
the phonon mode. For a magnomechanical system, xZPF

depends on the elastic coefficients of the material as well
as the particular mode profile of the elastic vibrations
[33]. The noise spectrum Sxx quantifies the ability of the
mechanical oscillator to absorb and emit phonons into
its environment [5]. In fact, for an oscillator in thermal
equilibrium

S(0)
xx [ω] = γb

[
(nb + 1)|χb[ω]|2 + nb|χb[−ω]|2

]
. (19)

The integral of the noise spectrum, which we indicate by
Ixx, gives the expectation value ⟨x̂2⟩. For an oscillator in
thermal equilibrium, it reads [5]

I(0)xx ≡
∫ ∞

−∞

dω

2π
S(0)
xx [ω] = ⟨x̂2⟩ = nb +

1

2
. (20)

Another important quantity to be discussed throughout
the paper is the symmetrized noise spectrum

S̄(0)
xx [ω] =

S
(0)
xx [ω] + S

(0)
xx [−ω]

2

= γb

(
nb +

1

2

)(
|χb[ω]|2 + |χb[−ω]|2

)
.

(21)
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(a)

(b)

Triple resonance scheme

Dynamical backaction evasion scheme

Frequency 
(a.u.)

Frequency 
(a.u.)

FIG. 2. Different cavity magnomechanics schemes. The
lorentzians indicate the resonance frequency and linewidths
of the hybrid modes as they would be measured, e.g. via
transmission. Relevant mechanical sidebands are indicated as
small lorentzians (a) Triple resonance scheme: the magnon-
microwave coupling gmc is half of the phonon frequency.
The blue (red) sideband of the lower (upper) hybrid mode
coincides with the upper (lower) hybrid mode frequency.
(b) Dynamical backaction evasion scheme: the magnon-
microwave coupling is equal to one phonon frequency. In this
scheme, the sidebands of the hybrid modes coincide.

Specifically, at zero temperature and for a high-quality
factor oscillator ωb ≫ γb

S̄(0)
xx [ωb] =

2

γb
. (22)

The backaction noise f̂BA drives the phonon mode and
modifies its noise spectral density. In fact, from Eq. (9)
we obtain

Sxx[ω] = S(D)
xx [ω] + S(BA)

xx [ω]. (23)

The first term in Eq. (23) reads

S(D)
xx [ω] = γb

[
(nb + 1)|χ̃b[ω]|2 + nb|χ̃b[−ω]|2

]
, (24)

which has a form similar to the uncoupled noise spectral
density S

(0)
xx but with the modified susceptibility χ̃b.

Such a term includes only the dynamical backaction
modifications of the phonon linewidth and frequency.
The term S

(BA)
xx [ω] is the backaction noise contribution

due to the magnon-microwave hybrid modes driving the

phonon quadrature x, and it is given by

S(BA)
xx [ω] = κcg

2
mc|gmbFBA[ω]|2|χc[ω]|2

[
|Ξm[−ω]|2nc

+ |Ξm[ω]|2(nc + 1)
]

+ γm|gmbFBA[ω]|2
[
|Ξm[−ω]|2nm

+ |Ξm[ω]|2(nm + 1)
]
,

(25)
where

FBA[ω] = χ̃b[ω]− χ̃∗
b [−ω]. (26)

Both dynamical backaction and the backaction noise
driving the mechanics modify ⟨x̂2⟩.

We quantify the effects of the backaction noise by
comparing the symmetrized noise spectrum S̄xx[ω] with
Eq. (21). Specifically, we consider two experimentally
relevant cavity magnomechanics driving schemes. The
first one is for a separation of the hybrid modes matching
the phonon frequency, realized by setting gmc = ωb/2.
In this case, the blue mechanical side-band of the
lower hybrid mode coincides with the higher hybrid
mode frequency, allowing the tune of a triple resonance
condition: scattering between the hybrid modes via a
phonon becomes very efficient. This regime was explored,
for instance, in [27] and can be used to heat (amplify) or
cool (damp) the phonon mode via dynamical backaction.
The second scheme is obtained by setting gmc = ωb, such
that the blue mechanical side-band of the lower hybrid
mode coincides with the red mechanical side-band of the
higher hybrid mode. In this case, it is possible to balance
scattering to and from both hybrid modes by tuning
the drive detuning, allowing dynamical backaction to be
evaded, as experimentally demonstrated in [28]. We call
this scheme the dynamical backaction evasion scheme.
We depict both schemes in Fig. 2.

We show in Fig. 3a comparison between the noise
spectrum for the triple resonance and the dynamical
backaction schemes for red and blue detunings, ∆c =
−gmc, and gmc. At the phonon frequency, the
symmetrized noise spectrum, for ωb ≫ γb, reads

S̄xx[ωb] = S̄(0)
xx [ωb]

γb
γ̃b

+ S̄(BA)
xx [ωb], (27)

and if the parameter regime is such that γb < γ̃b,
i.e., if dynamical backaction increases the phonon
linewidth (magnomechanical cooling), it is possible
that S̄xx[ωb] < S̄

(0)
xx [ωb], as is the case of Fig. 3(a).

Otherwise, for the parameters used, at blue detuning,
the phonon linewidth is significantly reduced, which
implies a sharper symmetrized spectrum, as the one in
Fig. 3(b). Otherwise, the effects of backaction noise
in the dynamical backaction evasion scheme, shown in
Figs. 3(c,d), are less evident than in the triple resonance
configuration: they are relevant in a narrower frequency
range, and consist mostly of a frequency shift of the
phonon resonance.
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(c) (d)

(a) (b)

FIG. 3. Symmetrized noise spectrum around the phonon
frequency for the triple resonance (a,b) and the dynamical
backaction evasion (c,d) schemes and both red and blue
detunings. The gray line depicts the noise spectrum for
an uncoupled oscillator S̄

(0)
xx , the dashed lines depict the

contribution due to dynamical backaction S̄
(D)
xx (dashed lines),

and the continuous line represents the total noise spectrum
including the backaction noise S̄

(BA)
xx (see Eq. (23)). The

shaded areas are a visual guide for the contributions of the
different components of the noise spectrum. Plots for zero
temperature and other parameters as in Table I.

At zero detuning, the magnomechanical self-energy
vanishes irrespective of the scheme. In this case,
S̄
(D)
xx = S̄

(0)
xx , (see equation 24), and any difference

in the mechanics noise spectrum is due to quantum
backaction. We show such a situation in Fig. 4 for the
dynamical backaction evasion regime, and note that the
difference between S̄xx and the uncoupled value S̄

(0)
xx

at zero detuning increases as the drive power or the
magnomechanical coupling increase.

To quantify the amount of noise introduced at a
given detuning, we now study the ratio between the
integral of the total noise spectrum and its value for an
uncoupled oscillator in thermal equilibrium. We show the
comparison of Ixx with I(0)xx in Fig. 5 for different phonon
bath occupancies and for both the triple resonance and
the dynamical backaction evasion scheme. The plots in
Figs. 5(a,b) show sharp peaks at ∆c = ±gmc, which
in both cases correspond to driving at the hybrid mode
frequencies. At zero detuning Fig. 5c shows that Ixx >
I
(0)
xx , which indicates, as anticipated by the results in

Fig. 4, the presence of backaction noise even in a situation
where dynamical backaction is evaded. At higher phonon
temperatures Ixx < I

(0)
xx depending on the detuning

FIG. 4. (a) Symmetrized noise spectrum for gmc = ωb
and ∆c = 0 (dynamical backaction evasion regime) for
frequencies around the phonon frequency. The gray curve
depicts the noise spectrum for an uncoupled oscillator, while
the continuous magenta line corresponds to the total noise
spectrum, including the backaction noise contribution S̄

(BA)
xx

(see Eq. (23)). The shaded areas are a visual guide for
the contributions of the different components of the noise
spectrum. Plots for zero temperature and other parameters
as in Table I.

regime, which is associated with backaction cooling of
the mechanics.

To end this section, we emphasize that the results
presented here consider a rotating wave approximation
(RWA) in which the last term in Eq. (9) is discarded.
In the appendix, we present the full formulas, including
such counter-rotating terms. All the results hold exactly
for zero detuning since, in this case, the self-energy,
which multiplies all counter-rotating terms, vanishes.
The discarded counter-rotating terms can induce small
corrections in Ixx [27], but as we show in the appendix,
such corrections are still small enough to be safely
discarded.

III. SCHEME FOR BACKACTION EVASION

The backaction noise can be eliminated from a
quadrature of the phonon mode by considering a
microwave drive containing two tones. In such a scheme
the amplitude quadrature x̂(t) = (e−iωbtb̂+eiωbtb̂)/

√
2 of

the phonon field will be a BAE quadrature, completely
free of noise due to the coupling to magnons at all times.
The drive term to be included in the magnomechanical
Hamiltonian is

Ĥdrive

ℏ
= i

√
κe(ϵ−e

−iδt + ϵ+e
iδt)eiωdtĉ+H.c. (28)

This term describes two coherent tones applied to the
microwave mode with frequencies ωd ± δ. To linearize
the corresponding equations of motion, we again move
to a rotating frame at the central drive frequency ωd and
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(a) (b)

(c)

FIG. 5. Ratio the integral of noise spectrum and its value for
an uncoupled oscillator at thermal equilibrium for (a) gmc =
ωb/2 (triple resonance scheme), and (b) gmc = ωb (dynamical
backaction evasion scheme), as a function of the microwave-
drive detuning ∆c. (c) The ratio between the effective
temperature defined by the integral of the noise spectrum
and its value for an uncoupled oscillator at zero detuning as a
function of the phonon occupancy nb. Parameters as in Table
I.

make the ansatz ĉ = ĉ0+ ĉ+e
−iδt+ ĉ−e

iδt and m̂ = m̂0+
m̂+e

−iδt + m̂−e
iδt. We show the full set of equations for

the expectation values ⟨ôi⟩ = oi (o = m, c, and i = 0,±)
in the appendix. The steady-state solutions ōi are

c̄0 = m̄0 = 0,

c̄± =

√
κeϵ±

(
i(∆m ± δ)− κm

2

)(
i(∆m ± δ)− κm

2

) (
i(∆c ± δ)− κc

2

)
+ g2mc

,

m̄± =
igmc

√
κeϵ±(

i(∆m ± δ)− κm
2

) (
i(∆c ± δ)− κc

2

)
+ g2mc

.

(29)

We have assumed that the single-magnon
magnomechanical coupling is small, so we can ignore it
in obtaining the mean-field steady-state solutions. The
detunings with respect to the central drive frequency are
given by ∆c,m = ωd − ωc,m, which we call from now on
just detunings.

We linearize the two-tone drive Hamiltonian by
considering fluctuations around the steady-state given by
Eqs. (29): α̂ = δα̂ + ᾱ+e

−iδt + ᾱ−e
iδt for α = c,m. We

drop the deltas indicating the fluctuations and keep only
the quadratic terms of the Hamiltonian. In an interacting

(a)

Frequency 
(a.u.)

Frequency 
(a.u.)

(b)

FIG. 6. Frequency configuration for the double drive
backaction evasion scheme. (a) General framework: the two
tones have to be separated by twice the phonon frequency
and the drive amplitudes ϵ± have to satisfy Eq. (34). The
hybrid mode splitting can be arbitrary; (b) one particular
configuration in which the mode splitting is set to the triple
resonance scheme. In this case, the tones are centered around
the lower hybrid mode. The high frequency tone drives
simultaneously the blue sideband of the lower hybrid mode
and the upper hybrid mode. As we will show in Section IV,
such a configuration yields the minimum imprecision noise in
the measurement of the BAE quadrature via the microwave
output.

frame with respect to ωbb̂†b̂, the Hamiltonian reads

Ĥ
(2)
L

ℏ
= −∆cĉ

†ĉ−∆mm̂
†m̂+ gmc

(
m̂†ĉ+ m̂ĉ†

)
+ eiδt

(
g−m̂

† + g∗+m̂
) (
b̂e−iΩbt + b̂†eiΩbt

)
+ e−iδt

(
g+m̂

† + g∗−m̂
) (
b̂e−iΩbt + b̂†eiΩbt

)
,

(30)

where we have defined g± = g0mbm̄±.
Since δ is positive, the interacting terms are resonant

provided that δ = ωb, in other words, if the two tones
are separated by twice the phonon frequency as we
schematically shown in Fig. 6. With this choice, a QND
Hamiltonian for a phonon quadrature can be obtained by
an appropriate choice of the magnomechanical coupling
rates g± = |g±|eiϕ± . If coupling rates have the same
modulus,

|g−| = |g+| = G, (31)

we get after some algebraic manipulations

ĤQND

ℏ
= −∆cĉ

†ĉ−∆mm̂
†m̂+ gmc

(
m̂†ĉ+ m̂ĉ†

)
+G

(
eiφm̂† + e−iφm̂

) (
eiψ b̂† + e−iψ b̂

)
,

(32)
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where φ = (ϕ+ + ϕ−)/2 and ψ = (ϕ+ − ϕ−)/2. The
above Hamiltonian is QND with respect to the phonon
quadrature

x̂b,ψ =
eiψ b̂† + e−iψ b̂√

2
, (33)

meaning that the above quadrature is completely
unaffected by the coupling to the magnons and by any
measurement process done in the magnon-microwave
part of the system. This quadrature is thus a BAE
quadrature.

The requirement set in Eq. (31) corresponds to |m̄+| =
|m̄−|; in other words, the drives induce the same amount
of coherent magnons. Such a requirement implies the
following relation between the drive amplitudes

|ϵ+|
|ϵ−|

=
|
(
i(∆m + ωb)− κm

2

) (
i(∆c + ωb)− κc

2

)
+ g2mc|

|
(
i(∆m − ωb)− κm

2

) (
i(∆c − ωb)− κc

2

)
+ g2mc|

.

(34)
We note that only at zero detuning ∆m = ∆c = 0, the
above equation implies an equal amplitude of both drives
|ϵ−| = |ϵ+|. The phase ψ is given by the relative phase
of the magnon steady-state solutions

ψ =
arg [m̄+]− arg [m̄−]

2
, (35)

which can be tuned by, for example, a relative phase
between the drive amplitudes ϵ±.

Unlike dynamical backaction evasion, the quantum
nondemolition Hamiltonian does not require the
detunings to vanish. Nevertheless, to obtain Eq. (32)
we have adopted a RWA for discarding terms rotating
at twice the phonon frequency. In this case, even at
zero detuning, this RWA is not exact, and we discuss
and evaluate the effects of the counter-rotating terms
at zero detuning in the appendix. We show that, for
the parameters considered here, the corrections that
the counter-rotating terms introduce in the integral of
the mechanics noise spectrum is ∼ 10−4, and therefore
constitute a small correction that can be safely ignored.
At finite detunings, the analysis is more involved, but we
expect that the same conclusion still holds.

A. BAE phonon noise spectrum: orthogonal
quadrature

In the last section, we have shown that a careful tuning
of the two tones frequencies and amplitudes yields a QND
Hamiltonian for the phonon quadrature (33). In turn, the
conjugated quadrature

p̂b,ψ =
i
(
eiψ b̂† − e−iψ b̂

)
√
2

, (36)

will be driven by the magnon-microwave noise. To
quantify how much noise is dumped into p̂b,ψ, we

calculate its noise spectrum. We start with the
Heisenberg-Langevin equations for the phonon operator
in the frequency domain, which reads(

χ−1
b [ω]− iΣb[ω]

)
e−iψ b̂[ω] = ieiψΣb[ω]b̂

†[ω]

−iGeiφξ̂†BA[ω]− iGe−iφξ̂BA[ω] +
√
γbξ̂b[ω],

(37)

where, because now we are in an interacting frame of the
phonon mode, the susceptibility χb is given by

χb[ω] =
1

−iω + γb
2

. (38)

The phonon self-energy Σb is given by Eq. (11) with the
substitution gmb → G, and the backaction noise operator
ξ̂BA is given by Eq. (16). We then get the following
equations for the BAE quadrature and its canonical
conjugated quadrature

χ−1
b [ω]x̂b,ψ[ω] =

√
γbξ̂xb,ψ [ω],

χ−1
b [ω]p̂b,ψ[ω] =

√
γbξ̂pb,ψ [ω]− 2Gξ̂BA,xφ [ω]

+ 2Σb[ω]χb[ω]ξ̂xb,ψ [ω].

(39)

The noise quadratures are defined as the other
quadratures. As expected from the Hamiltonian in
Eq. (32), the equation for x̂b,ψ has no magnon-microwave
noise. Otherwise, the non-BAE quadrature p̂b,ψ[ω]
has two contributions in addition to thermal noise:
the backaction noise Gξ̂BA,xφ [ω] and the “dynamical
backaction” noise Σb[ω]χb[ω]ξ̂xb,ψ [ω]. In the case
where both tones are perfectly centered around the
magnon/microwave frequency, the last term vanishes.

The BAE quadrature noise spectrum is just the
spectrum of an uncoupled oscillator at thermal
equilibrium

Sxx[ω] =

∫
dω′

2π
⟨x̂b,ψ[ω]x̂b,ψ[ω′]⟩

= S(0)[ω] =
γb(nb +

1
2 )

ω2 +
γ2
b

4

,
(40)

while, at zero detuning (∆m = ∆c = 0) the non-BAE
quadrature noise spectrum is

Spp[ω] =

∫
dω′

2π
⟨p̂b,ψ[ω]p̂b,ψ[ω′]⟩

= S(0)[ω] + S(BA)
pp [ω].

(41)

On top of the thermal noise S(0)[ω] the quadrature is
subjected to backaction noise S(BA)

pp [ω] given by

S(BA)
pp [ω] = 4

G2|Ξm[ω]|2

ω2 +
γ2
b

4

[
κm

(
nm +

1

2

)
+ g2mcκc|χc[ω]|2

(
nc +

1

2

)]
.

(42)
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(a)

(b)

FIG. 7. Ratio between the uncertainty in the non-BAE
quadrature p̂ψ and the reference value for an uncoupled
oscillator in thermal equilibrium (a) as a function of the
detuning between the central frequency of the two-tones
and the microwave frequency for the triple resonant scheme
and the dynamical backaction evasion scheme, and (b) as
a function of the magnon-microwave coupling for different
values of ∆c. Plots for zero temperature and all parameters
as in Table I.

For ∆m ̸= ∆c ̸= 0, the non-BAE noise spectrum has
further contributions due to the self-energy term, the last
term in Eq. (39). We show the full formula for Spp[ω]
in the appendix. To compute the effects of backaction
noise in the non-BAE quadrature of the phonon mode,
we compute the integral of the noise spectrum

Ipp =

∫
dω

2π
Spp[ω]. (43)

We take the value for an uncoupled oscillator of the same
frequency at thermal equilibrium value as a reference

I(0)pp =

∫
dω

2π
S(0)[ω] = nb +

1

2
. (44)

In Fig. 7, we show the ratio Ipp/I
0
pp as a function

of the detuning ∆c, and as a function of the
magnon-microwave coupling. Different magnomechanics
schemes yield different peaks in the added noise for
the non-BAE quadrature. For the triple resonance
scheme, we notice maxima of Ipp for detunings
∆c = (−3ωb/2,−ωb/2, ωb/2), while for the dynamical
backaction evasion scheme the maxima are at ∆c =
(−2ωb,−ωb, 0, ωb). We can understand the position of
these peaks by considering the hybrid mode formation
in each case. For example, in the case of the highest

peak shown in Fig. 7(a), since gmc = ωb/2, the magnon-
microwave hybrid modes are located at ωc ± ωb/2. The
red sideband of the upper hybrid mode coincides with
the frequency of the lower hybrid mode, and the blue
sideband of the lower hybrid mode coincides with the
frequency of the higher hybrid mode. When the detuning
is set at ∆c = −ωb/2, the high-frequency drive is at the
frequency of the upper hybrid mode, driving it and the
blue sideband of the lower hybrid mode while the low-
frequency drive is at the red sideband of the lower hybrid
mode.

We should notice that the above analysis was
performed considering a RWA. As we pointed out in the
Appendix, the inclusion of discarded terms does break
the BAE nature of the scheme, and, as a consequence,
modifications of the noise spectrum of the quadrature p̂ψ
and its integral are expected.

B. Deviations from the quantum backaction
evasion requirements

There are two requirements for BAE: the two tones
applied to the microwave have to be separated by 2δ =
2ωb, and the amplitude of the tones has to be such that
equation (34) is satisfied. Nevertheless, it might be hard
to achieve such requirements perfectly in practical setups.
We quantify how deviations from those requirements
impact the effectiveness of BAE in the setup by studying
Ixx when the quantum backaction evasion conditions are
not met. We show all the formulas for the noise spectrum
in the appendix and focus here on evaluating the results.

First, we consider an imperfect frequency difference δ,
but assume that the drive amplitudes satisfy Eq. (34).
The result for the integral Ixx as a function of δ is
shown in Fig. 8 for both the triple resonance (a) and the
backaction evasion (b) setups, and at zero temperature.
The triple resonance case at zero detuning exhibits the
smallest difference from the uncoupled value, while the
same scheme at ∆c = gmc (tones centered around the
upper hybrid mode) adds more noise to the quadrature.
The deviations from the BAE condition become relevant
for |δ − ωb| > γb/2, and thus, mechanical modes with
larger dissipation rates should be more robust for the
BAE scheme. We emphasize that at zero detuning
∆c = 0, i.e., there is no dynamical backaction and
any modification of the phonon noise is due entirely to
quantum backaction.

In Fig. 9, we show the case where the drive amplitudes
do not satisfy the relation set in Eq. (34), but the
frequency difference between the tones is 2δ = 2ωb. In
this case, we consider deviations of the lower frequency
drive amplitude |ϵ−| from the BAE value |ϵ0| given by
Eq. (34). Similar to the previous case, deviations from
the backaction evasion regime are more prominent for
the triple resonance scheme and tones centered around
the lower hybrid mode frequency. Furthermore, we
notice that the deviations from the uncoupled position



10

(a)

(b)

Half of the tone's frequency separation

FIG. 8. Integral of the position noise spectrum Ixx = ⟨x̂2
b,ψ⟩

as a function of half of the tone’s frequency separation δ for
(a) the triple resonance scheme gmc = ωb/2 and (b) for the
dynamical backaction evasion scheme gmc = ωb. Plots for
zero temperature and all parameters as in Table I.

uncertainty I(0)xx are approximately linear with the drive
amplitude. Another prominent feature is that for |ϵ−| >
|ϵ0|, the quadrature fluctuations Ixx go below the value
of the zero-point fluctuations, indicating squeezing of the
quadrature. Mechanical squeezing induced by a two-tone
magnon drive was theoretically studied in [30] and the
induced microwave squeezing in a two-tone drive setup
was recently investigated in [31].

IV. MICROWAVE OUTPUT SPECTRUM

We now turn our attention to the measurement of the
BAE quadrature via the output microwave signal. For
this, we consider the standard input-output relation

ĉout[ω] = ξ̂c[ω]−
√
κcĉ[ω], (45)

where we have assumed that the only source of input
noise is thermal. We then consider the noise spectrum of
the output quadrature

x̂out,θ[ω] =
eiθ ĉ†out[ω] + e−iθ ĉout[ω]√

2
, (46)

given by

Sθθ[ω] =

∫
dω′

2π
⟨x̂out,θ[ω]x̂out,θ[ω′]⟩. (47)

(a)

B
A
E

(b)

B
A
E

FIG. 9. Integral of the position noise spectrum Ixx = ⟨x̂2
b,ψ⟩

as a function of the lower frequency drive amplitude |ϵ−| for
(a) the triple resonance scheme gmc = ωb/2 and (b) the
dynamical backaction evasion scheme gmc = ωb. In these
plots the tones frequency difference is set at 2δ = 2ωb. Plots
for zero temperature and all parameters as in Table I.

The symmetrized version of (47) consists of dips
associated with the hybrid modes response. On top
of such spectrum, there will be a Lorentzian centered
around ω = 0, which is the signal of the BAE quadrature.
In fact, for frequencies in an interval close to zero, we can
write

Sθθ[ω] = |Gx,θ[ω]|2
[
S(0)[ω] +

4nimp,θ

γb

]
, (48)

where nimp,θ is an effective number of quanta added to
the measurement of the mechanical spectrum due to the
imprecision noise. Since the scheme is BAE, there is
no noise added by backaction. The explicit expression
for the coefficient Gx,θ[ω], representing the measurement
gain, and the added number of quanta nimp,θ is given in
the appendix.

The added quanta nimp,θ depends non-trivially on
the quadrature angle θ and can be minimized by a
judiciously chosen measured output quadrature. The
measurement scheme that yields a small amount of added
imprecision noise can be obtained by optimizing the
output quadrature angle. We indicate the angle that
minimizes nimp,θ for a given drive detuning and magnon-
microwave coupling as θopt. In Fig. 10, we show the
result for the corresponding optimal added quanta as a
function of the drive-detuning ∆c = ∆m for magnon-
microwave couplings ranging from ωb/2 (triple resonance)
to ωb (dynamical backaction evasion). The minimum
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(a)

(b)

Standard
Quantum Limit

At minimum 

FIG. 10. (a) Number of added quanta due to imprecision noise
for the optimal output quadrature as a function of the cavity-
drive detuning ∆c for magnon-microwave couplings ranging
from ωb/2 (red curve) to ωb (blue-dashed curve). The gray
curves correspond to intermediate values of gmc. The dotted
line indicates the standard quantum limit for added noise
nSQL
imp = 1/2. (b) Symmetrized microwave output spectrum at

the minimum of the added noise for gmc = ωb/2 and gmc = ωb.
The inset shows the noise spectrum in a narrow frequency
range around 0 corresponding to the BAE quadrature. Plots
for zero temperature and all parameters as in Table I.

added imprecision noise to the BAE measurement is
obtained in the triple resonance scheme for a detuning
set at the lower hybrid mode. In this case, the high-
frequency tone is at the higher hybrid mode, while the
lower-frequency tone is at the red mechanical sideband of
the lower hybrid mode. The optimal quadrature angle is
θopt ≈ −0.43π, which yields, for the parameters used
here, a minimum of added quanta of ∼ 10−3. This
point corresponds to the maximum signal-to-noise ratio,
as we can infer from Fig. 10(b), where we show the
symmetrized microwave output noise spectrum for the
optimal quadrature in both the triple resonance and the
dynamical backaction evasion schemes. The mechanical
signal peak is more pronounced when compared to the
background imprecision noise for the first case.

Under the assumption that the counter-rotating terms
appearing in the solutions for x̂ψ,b[ω] can be discarded
and for perfect detection efficiency, the imprecision
noise nimp can be made arbitrarily small by increasing
the driving amplitude, which is limited by the system
stability conditions. In such a perfect scenario, the
added quanta to the measurement can go below the
standard quantum limit (SQL), nSQL

imp = 1/2, for drives
centered around the hybrid modes. The imprecision

added noise, in this case, is mainly determined by the
thermal occupation of the magnon and microwave baths
and by the drives amplitudes, as such, nimp can be below
the SQL even at moderately high temperatures. The
RWA performed should hold in the ‘good cavity’ regime
κc,m < ωb and for weak magnomechanical couplings but,
analogously to standard optomechanical system [3], we
expect that such a scheme can cope with small deviations
from the perfect BAE measurement and still be able to
beat the standard quantum limit.

Finally, the added imprecision quanta depends on the
magnon/microwave bath occupancy and on the drive
power (see the Appendix). For the parameters we
considered here, the scheme is able to beat the SQL
for magnon/microwave bath occupancies up to a few
hundred quanta, while at weaker drive powers the bath
temperature has to be smaller. We notice, however,
that for magnon/microwave modes with ∼ 10 GHz
frequencies, a negligible occupancy can be attained at
a few hundreds of mK, which is routinely achieved in
cavity magnonic experiments [35, 42].

V. CONCLUSION

To summarize, we have characterized the quantum
noise added to mechanical vibrations in cavity
magnomechanical systems and proposed a two-tone drive
scheme to implement a backaction evasion measurement
of a mechanical quadrature. Different schemes for
backaction evasion are possible, and we have studied their
robustness to imperfections of the BAE requirements, as
well as the amount of noise added in relevant schemes on
the measurement via the output of the microwave mode.
The effectiveness of BAE in our proposal is more robust
to imperfections for a vanishing microwave detuning
(both tones centered at the microwave frequency).
Nevertheless, this case corresponds to the maximum
imprecision noise added to the measurement of the
BAE phonon quadrature. Otherwise, by centering the
tones around the hybrid magnon-microwave modes, even
though the scheme is less robust to imperfections, less
imprecision noise is added to the measurement. In fact, in
this case, it is possible to go below the standard quantum
limit.

Our results provide a potential route for measuring
phonons in cavity magnomechanical systems. For
instance, such a quantum backaction evasion scheme can
be used to perform quantum tomography of phonons
and validate the creation of entangled states proposed
in the literature. A more complete model should
include imperfect measurement efficiency as well as other
intrinsic features of cavity magnomechanical systems, in
particular magnetic nonlinearities and the unavoidable
coupling to high order Walker modes [33]. As we have
shown previously, both nonlinearities and the coupling
to several magnon modes change dynamical backaction,
and the same should be true for the quantum backaction
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studied here. Still, a double-drive BAE scheme should
be possible, with small modifications due to the change
in the magnon and phonon frequencies stemming from
nonlinearities and the coupling to multiple magnon
modes, an analysis that we postpone to future work.
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APPENDIX

A. Backaction noise correlators

In the main text, we have defined the backaction noise ξ̂BA in eq. (16):

ξ̂BA[ω] = Ξm[ω](
√
κmξ̂m[ω]− igmc

√
κcχc[ω]ξ̂c[ω]). (1)

Throughout the paper, we consider that the magnon and microwave noises ξ̂c,m[ω] are thermal, with correlations
given in eqs. (8). We have then the following correlations for ξ̂BA:

⟨ξ̂BA[ω]ξ̂BA[ω
′]⟩ = ⟨ξ̂†BA[ω]ξ̂

†
BA[ω

′]⟩ = 0

⟨ξ̂BA[ω]ξ̂
†
BA[ω

′]⟩ = 2πΞm[ω]Ξ∗
m[−ω′]

(
κm(nm + 1) + g2mcκcχc[ω]χ

∗
c [−ω′](nc + 1)

)
δ(ω + ω′)

⟨ξ̂†BA[ω]ξ̂BA[ω
′]⟩ = 2πΞ∗

m[−ω]Ξm[ω′]
(
κmnm + g2mcκcχ

∗
c [−ω]χc[ω′]nc

)
δ(ω + ω′)

(2)

B. Effects of the counter-rotating term on the mechanics noise spectrum for a single tone drive

In section II, we have discarded a counter-rotating term in the solution for the phonon operator in frequency space.
We now asses the impact of this discarded term in the results presented in the main text.

The solution for the phonon operator obtained from the linearized Heisenberg-Langevin equation in frequency space,
Eq. (9), reads

χ̃−1
b [ω]b̂[ω] = −if̂BA[ω] +

√
γbξ̂b[ω] + iΣb[ω]b̂

†[ω]. (3)

The counter-rotating term induces squeezing which depends on the “bare“ self-energy Σb[ω]. For the dynamical
backaction evasion scheme, i.e., for gmc = ωb and ∆c = 0, such counter-rotating term has no effect since in such
parameter regime Σb[ω] = 0. In any case, the full solution for the phonon operator in frequency domain is given by

χ−1
b,eff [ω]b̂[ω] = −iFBA[ω]f̂BA[ω] +

√
γbξ̂b[ω] + i

√
γbΛ[ω]ξ̂

†
b [ω]. (4)

The effective phonon susceptibility including the counter-rotating term is

χ−1
b,eff [ω] = χ−1

b [ω]− iΣb[ω]

(
1− iΣb[ω]

χ−1,∗
b [ω] + iΣb[ω]

)
. (5)

The pre-factor of the backaction noise term f̂BA is given by

FBA[ω] = 1− iΛ[ω]

Λ[ω] =
Σb[ω]

χ−1,∗
b [ω] + iΣb[ω]

.
(6)

With those modifications of the phonon susceptibility and the pre-factors of the noise terms, the position noise
spectrum reads

Sxx[ω] = S(D)
xx [ω] + S(BA)

xx [ω], (7)

where now the dynamical backaction term S
(D)
xx [ω] reads

S(D)
xx [ω] = γb

[
(nb + 1)|Fb[ω]|2 + nb|Fb[−ω]|2

]
Fb[ω] = χb,eff [ω]− χ∗

b,eff [−ω]Λ∗[−ω].
(8)

Compared with the contribution without the counter-rotating term, given in Eq. (24), the effective susceptibility is
substituted by the new effective susceptibility plus a term related to the squeezing induced by the counter-rotating
term. The backaction noise contribution reads

S(BA)
xx [ω] = κcg

2
mc|gmbFBA[ω]|2|χc[ω]|2

[
|Ξm[−ω]|2nc + |Ξm[ω]|2(nc + 1)

]
+ γm|gmbFBA[ω]|2

[
|Ξm[−ω]|2nm + |Ξm[ω]|2(nm + 1)

]
,

(9)
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where now the function FBA[ω] reads

FBA[ω] = FBA[ω]χb,eff [ω]− F ∗
BA[−ω]χ∗

b,eff [−ω]. (10)

Similar to the dynamical backaction term, the difference is the modification of the effective phonon susceptibility plus
a term related to squeezing.

All the corrections due to the counter-rotating term appearing in equation (9) have the phonon self-energy Σb[ω]
as a pre-factor. For the case where magnons and microwaves are in resonance and a zero detuned drive ∆c = 0, the
phonon self-energy vanishes and the full formulas shown here coincide with the simplifyied versions given in the main
text. In the case where dynamical backaction is present, the counter-rotating terms induce small corrections in the
quantities that we have studied in the main text.

In Fig. 1, we show the difference between the full symmetrized noise spectrum and the noise spectrum shown in the
main text, for the triple resonance and the dynamical backaction evasion schemes and drive detunings ∆c = ±gmc,
corresponding to the situations studied in the main text in Fig. 3. For a red detuned drive and both schemes, the
maximum difference between the noise spectra is ∼ 10−6 the reference value S(0)

xx [ωb], 5 orders of magnitude smaller
than the difference between the noise spectrum computed in the main text and the uncoupled position noise spectrum.
Otherwise, the counter-rotating terms introduce a difference ∼ 10% with respect to the reference value for a blue
detuned drive in the triple resonance scheme, nevertheless, the difference itself is 4 order of magnitude smaller than
the peaks. Moreover, such a difference is relevant in a frequency range narrower than the other cases.

(a) (b)

(c) (d)

FIG. 1. Difference between the full noise spectrum and the noise spectrum not including the counter-rotating term discarded in
Eq. (9) for frequencies around the phonon frequency. (a,b) for the triple resonance scheme, (c,d) for the dynamical backaction
evasion scheme. Plots for zero temperature nb = nc = nm = 0 and other parameters as in Table I.

We show the effects of the counter-rotating term in the integral of the mechanics noise spectrum Ixx in Fig. 2. The
ratio between the integral of the full noise spectrum and the integral of the noise spectrum shown in the main text
is shown as a function of the detuning, and we see that the largest difference is for detunings at the hybrid modes
±gmc. The maximum difference to the value with the RWA is ∼ 10−5. This difference is also two orders of magnitude
smaller than the ratio of effective and uncoupled temperature at zero detuning. We also notice that the corrections
are approximately independent from the phonon bath occupancy nb.
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(a) (b)

FIG. 2. Ratio between the integrals of the mechanics noise spectra with and without the discarded counter-rotating term for
(a) the triple resonance scheme and (b) the dynamical backaction evasion scheme. Parameters as in Table I.

C. Heisenberg-Langevin equations for two-tones drive

The cavity magnomechanics Hamiltonian with the two-tones drive given in Eq. (28) reads:

Ĥ

ℏ
= ωcĉ

†ĉ+ ωmm̂
†m̂+ ωbb̂

†b̂

+ gmc
(
m̂†ĉ+ m̂ĉ†

)
+ g0mbm̂

†m̂
(
b̂† + b̂

)
+ i

√
κe(ϵ−e

−iδt + ϵ+e
iδt)eiωdtĉ+H.c..

(11)

To obtain the semiclassical steady-state we move to an interacting frame rotating with ωdĉ†ĉ+ωdm̂
†m̂ and make the

ansatz ĉ = ĉ0 + ĉ+e
−iδt+ ĉ−e

iδt and m̂ = m̂0 + m̂+e
−iδt+ m̂−e

iδt. Within a mean field approximation, the equations
for the expectation values of each bosonic operator reads

ċ0 =
(
i∆c −

κ

2

)
c0 − igmcm0,

ċ± =
(
i(∆c ± δ)− κ

2

)
c± − igmcm± −

√
κeϵ±,

ṁ0 =
(
i∆m − γ

2

)
m0 − igmcc0 − ig0mb(m−b+m+b

∗),

ṁ+ =
(
i(∆m + δ)− γ

2

)
m+ − igmcc+ − ig0mbm0b,

ṁ− =
(
i(∆m − δ)− γ

2

)
m− − igmcc− − ig0mbm0b

∗,

ḃ =

(
i∆b −

Γ

2

)
b− ig0mb(m

∗
0m+ +m∗

−m0).

(12)

We have discarded all terms ∝ e±2iδt. The steady-state is obtained by setting all time derivatives to zero and solving
the system of equations. In doing so, we assume the bare magnomechanical coupling g0mc small enough to be ignored
in the dynamics of the magnon and microwave amplitudes. Such a procedure gives Eqs. (29).

D. Solution for the phonon operator in the linearized two-tone driving scheme

We define δb = ωb− δ and σb = ωb+ δ. In an interacting frame rotating with ωbb̂†b̂, we have the following equation
for m̂[ω] as a function of phonon operators

m̂[ω] = −ig−Ξ[ω]
(
b̂[ω − δb] + b̂†[ω + σb]

)
− ig+Ξ[ω](b̂[ω − σb] + b̂†[ω + δb]) + ξ̂BA[ω], (13)

where the modified magnon susceptibility Ξ[ω] and the backaction noise ξ̂BA[ω] have the same formula as in the single
drive case. The equation for the phonon operator reads

χ−1
b [ω]b̂[ω] = −ig−m̂†[ω + σb]− ig+m̂

†[ω + δb]− ig∗−m̂[ω + δb]− ig∗+m̂[ω + σb] +
√
γbξ̂b[ω]. (14)
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Notice that in this frame χb[ω] = (−iω + γb/2)
−1.

Eliminating the magnon operator in favor of the phonon operators gives

χ−1
b [ω]b̂[ω] = iΣb,T[ω]b̂[ω] + iΣb,T[ω]b̂

†[ω + 2ωb] + f1[ω]b̂[ω + 2δ] + f1[ω]b̂
†[ω + 2σb]

+ f2[ω]b̂[ω − 2δ] + f2[ω]b̂
†[ω + 2δb]− ig+ξ̂

†
BA[ω + δb]− ig∗−ξ̂BA[ω + δb]

− ig−ξ̂
†
BA[ω + σb]− ig∗+ξ̂BA[ω + σb] +

√
γbξ̂b[ω],

(15)

In the above expression, the total phonon self-energy Σb,T[ω] is given by

Σb,T[ω] = Σb[ω] + Σb,CRT[ω], (16)

where the co-rotating contribution Σb[ω] is given by

Σb[ω] = i|g−|2Ξm[ω + δb]− i|g+|2Ξ∗
m[−ω − δb], (17)

which is similar to that obtained for the one tone drive case, while the counter-rotating contribution is

Σb,CRT[ω] = i|g+|2Ξm[ω + σb]− i|g−|2Ξ∗
m[−ω − σb]. (18)

The pre-factor functions f1,2[ω] are given by

f1[ω] = g−g
∗
+ (Ξ∗

m[−ω − σb]− Ξm[ω + σb]) ,

f2[ω] = g∗−g+ (Ξ∗
m[−ω − δb]− Ξm[ω + δb]) .

(19)

1. Mechanics noise spectrum in the BAE scheme

The BAE scheme requires that δb = 0 and |g+| = |g−| = G. Using the same notation of the main text g± = Gei±φ± ,
we obtain for the pre-factors

Σb,T[ω] = Σb[ω] + Σb,CRT[ω],

Σb[ω] = iG2 (Ξm[ω]− Ξ∗
m[−ω]) ,

Σb,CRT[ω] = iG2 (Ξm[ω + 2ωb]− Ξ∗
m[−ω − 2ωb]) ,

f1[ω] = −G2e−i(φ+−φ−) (Ξm[ω + 2ωb]− Ξ∗
m[−ω − 2ωb]) = ie−i(φ+−φ−)Σb,CRT[ω]

f2[ω] = −G2ei(φ+−φ−) (Ξm[ω]− Ξ∗
m[−ω]) = iei(φ+−φ−)Σb[ω].

(20)

and the phonon operator is given by

χ−1
b [ω]b̂[ω] = iΣb[ω]b̂[ω] + iΣb,CRT[ω]b̂[ω] + iΣb,T[ω]b̂

†[ω + 2ωb]

+ ie−2iψΣb,CRT[ω]
(
b̂[ω + 2ωb] + b̂†[ω + 4ωb]

)
+ ie2iψΣb[ω]

(
b̂†[ω] + b̂[ω − 2ωb]

)
− iGei(ψ+φ)ξ̂†BA[ω]− iGei(ψ−φ)ξ̂BA[ω]

− iGe−i(ψ−φ)ξ̂†BA[ω + 2ωb]− iGe−i(ψ+φ)ξ̂BA[ω + 2ωb] +
√
γbξ̂b[ω],

(21)

where we have explicitly separated rotating and counter-rotating contributions for the self-energy in the first term
and we have used the definitions. We have defined the phases ψ and ϕ as

ψ =
φ+ − φ−

2
,

φ =
φ+ + φ−

2
.

(22)
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After some algebraic manipulations, from eq. (21) we obtain the following equation for the quadrature x̂b,ψ defined
in eq. (33)
√
2χ−1

b [ω]x̂b,ψ[ω] =
√
2γbξ̂xb,ψ [ω]

+ iΣb,CRT[ω]e
−iψ b̂[ω]− iΣ∗

b,CRT[−ω]eiψ b̂†[ω]

+ ie−3iψΣb,CRT[ω]
(
b̂[ω + 2ωb] + b̂†[ω + 4ωb]

)
− ie3iψΣ∗

b,CRT[−ω]
(
b̂†[ω − 2ωb] + b̂[ω − 4ωb]

)
+ iΣb[ω]

(
eiψ b̂[ω − 2ωb]− e−iψ b̂†[ω + 2ωb]

)
− iGe−i(2ψ−φ)ξ̂†BA[ω + 2ωb] + iGei(2ψ−φ)ξ̂BA[ω − 2ωb]

− iGe−i(2ψ+φ)ξ̂BA[ω + 2ωb] + iGei(2ψ+φ)ξ̂†BA[ω − 2ωb].

(23)

All the terms on the right-hand side of the above equation besides the first one, are counter-rotating terms, either
becasue they are multiplied by Σb,CRT or because they are evaluated at twice a phonon frequency apart from the
frequency where the equation is evaluated. In general, one can further write an infinite set of linear for this quadrature
and its canonical conjugated p̂b,ψ, evaluated at frequencies ω ± 2nωb, where n is a positive integer.

If in addition to the other requirements we further impose that both drives are centered around the
magnon/microwave frequency, i.e., if the drive-detuning is zero, then as in the one-tone drive case Σb[ω] = Σb,CRT[ω] =
0. In this particular case:

√
2χ−1

b [ω]x̂b,ψ[ω] =
√
2γbξ̂xb,ψ [ω]

− iGe−i(2ψ−φ)ξ̂†BA[ω + 2ωb] + iGei(2ψ−φ)ξ̂BA[ω − 2ωb]

− iGe−i(2ψ+φ)ξ̂BA[ω + 2ωb] + iGei(2ψ+φ)ξ̂†BA[ω − 2ωb].

(24)

Since in this situation microwaves and magnons are at resonance, nm = nc. The noise spectrum of such quadrature
is then given by

Sxx,ψ[ω] =

∫
dω′

2π
⟨x̂b,ψ[ω]x̂b,ψ[ω′]⟩ = S

(0)
xx,ψ[ω] + S

(CRT)
xx,ψ [ω], (25)

where

S
(0)
xx,ψ[ω] = γb|χb[ω]|2

(
nb +

1

2

)
=
γb
(
nb +

1
2

)
ω2 +

γ2
b

4

, (26)

is the uncoupled noise spectrum, and

S
(CRT)
xx,ψ [ω] = |χb[ω]|2G2

(
nm +

1

2

)[
A[ω − 2ωb]

(
1− χ∗

b [ω − 4ωb]e
4iψ

χ∗
b [ω]

)

+A[ω + 2ωb]

(
1− χ∗

b [ω + 4ωb]e
−4iψ

χ∗
b [ω]

)]
,

(27)

where

A[ω] = |Ξm[ω]|2(κm + g2mcκc|χc[ω]|2). (28)

Notice that since the drive detuning ∆c = ∆m = 0 then A[ω] = A[−ω]. Furthermore χb[ω] = χ∗
b [−ω].

In Fig. 3 we compute the effects of the counter-rotating terms in the QND quadrature noise spectrum by evaluating
its integral and comparing it with the value for a resonator in thermal equilibrium. We notice that, for the chosen
parameters, in the worst case, the corrections introduced by the CRTs does not exceed 4 10−4I

(0)
xx , which is around

two orders of magnitude smaller than the same quantity evaluated for the single drive case shown in Fig. 5. In this
two-tone case, the CRTs would add a negligible amount of noise when compared to the noise added by quantum
backaction in the single-tone case at zero detuning. We also notice that errors introduced by the CRTs are typically
an order of magnitude smaller than the error introduced by imperfections on BAE conditions, see section IIIB.

In the case where the detunings do not vanish, the analysis of the effects of counter-rotating terms is more involving.
The position quadrature operator is given by Eq. (23), which depends on the phonon operators b̂(†)[ω ± 2ωb] and
b̂(†)[ω±4ωb]. As mentioned above, one then has to solve an infinite system of linear equations, which can be truncated
at a given order. We postpone such an analysis to a future work, but we expect that, as in the case ∆m = ∆c = 0,
the corrections due to discarded counter-rotating terms are small.
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FIG. 3. Ratio between the integral of the noise spectrum of the BAE quadrature including the counter-rotating terms and its
value without counter-rotating terms, for both the triple resonance and the dynamical backaction evasion schemes. Parameters
as in Table I.

2. Momentum noise spectral density

For the case where both drives are not centered around the magnon/microwave frequency, from Eq. (39) we get for
the noise spectrum of the momentum quadrature

Spp[ω] = S(0)[ω] + S(D)
pp [ω] + S(BA)

pp [ω] + S(DBA)
pp [ω]. (29)

The terms S(0)[ω] and S
(BA)
pp [ω] are defined in the main text in Eqs.(40) and (42) respectively. The additional

contributions are S(D)
pp [ω], a term that comes from the phonon noise and depends on the phonon self-energy, given by

S(D)
pp [ω] =

4|Σb[ω]|2

ω2 +
γ2
b

4

(
nb +

1

2

)
, (30)

while the second backaction noise contribution S(DBA)
pp [ω] is given by

S(DBA)
pp [ω] = −

2
√
γbIm[χb[ω]Σb[ω]]

ω2 +
γ2
b

4

. (31)

3. Position noise spectrum: deviations from the BAE setup

Starting with the full solution for b̂[ω] given in Eq. (15), we drop any term that has an argument containing σb and
solve the set of equations for b̂[ω] and b̂†[ω]. This yields

χ−1
b,eff [ω]b̂[ω] = ig∗+B[ω]ξ̂BA[ω]− ig∗−ξ̂BA[ω + δb] + ig−B[ω]ξ̂†BA[ω]

− ig+ξ̂
†
BA[ω + δb] +

√
γbξ̂b[ω] +

√
γbB[ω]ξ̂†b [ω + 2δb],

(32)

where we have defined the auxiliary function

B[ω] = f2[ω]

χ−1
b [ω + 2δb] + iΣ∗

b [−ω − 2δb]
. (33)

The effective phonon susceptibility χ−1
b,eff [ω] is given by

χ−1
b,eff [ω] = χ−1

b [ω]− iΣb[ω]− f∗2 [−ω − 2δb]B[ω]. (34)

The self-energy term Σb[ω] is given in Eq. (17), while the function f2[ω] was defined in Eq. (19).
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Before proceeding, we define the following functions

χBA[ω] = g−χb,eff [ω]B[ω]e−iψ − g+χ
∗
b,eff [−ω]B∗[−ω]eiψ,

χ+[ω] = g+χb,eff [ω],

χ−[ω] = g∗−χb,eff [ω],

χB[ω] = B[ω]χb,eff [ω],
C(1)[ω] = |Ξm[ω]|2

[
κm(nm + 1) + g2mcκc|χc[ω]|2(nc + 1)

]
,

C(2)[ω] = |Ξm[−ω]|2
[
κmnm + g2mcκc|χc[−ω]|2nc

]
.

(35)

The phase ψ is defined as in the BAE case:

ψ =
arg[g+]− arg[g−]

2
. (36)

We can then calculate the position noise spectrum

Sxx[ω] =

∫
dω′

2π
⟨x̂b,ψ[ω]x̂b,ψ[ω′]⟩ = S(D)

xx [ω] + S(BA)
xx [ω]. (37)

As in the previously studied cases, the first term contains contributions due to dynamical backaction, and is given by

S(D)
xx [ω] =

[
|χb,eff [ω]|2 + |χB[−ω]|2 + χb,eff [ω]χB[−ω − 2δb]e

−2iψ + χ∗
b,eff [ω − 2δb]χ

∗
B[−ω]e2iψ

] γb(nb + 1)

2

+
[
|χb,eff [−ω]|2 + |χB[ω]|2 + χ∗

b,eff [−ω]χ∗
B[ω − 2δb]e

2iψ + χb,eff [−ω − 2δb]χB[ω]e
−2iψ

] γbnb
2

,
(38)

The quantum backaction term S
(BA)
xx [ω] is given explicitly by

S(BA)
xx [ω] =

[
|χBA[−ω]|2 + χ∗

BA[−ω]χ∗
−[ω − δb]e

iψ − χ∗
BA[−ω]χ+[−ω − δb]e

−iψ] C(1)[ω]

2

+
[
|χBA[ω]|2 + χBA[ω]χ−[−ω − δb]e

−iψ − χBA[ω]χ
∗
+[ω − δb]e

iψ
] C(2)[ω]

2

+
[
|χ−[ω]|2 + χ−[ω]χBA[−ω − δb]e

−iψ − χ−[ω]χ+[−ω − 2δb]e
−2iψ

] C(1)(ω + δb)

2

+
[
|χ−[−ω]|2 + χ∗

−[−ω]χ∗
BA[ω − δb]e

iψ − χ∗
−[−ω]χ∗

+[ω − 2δb]e
2iψ
] C(2)[ω − δb]

2

+
[
|χ+[−ω]|2 − χ∗

+[−ω]χBA[−ω + δb]e
iψ − χ∗

+[−ω]χ∗
−[ω − 2δb]e

2iψ
] C(1)[ω − δb]

2

+
[
|χ+[ω]|2 − χ+[ω]χ

∗
BA[ω + δb]e

−iψ − χ+[ω]χ−[−ω − 2δb]e
−2iψ

] C(2)[ω + δb]

2
.

(39)

One can check that under the BAE conditions δb = 0 and |g+| = |g−| = G, each term in brackets in the above
expression vanishes, and those in Eq. (38) simplify to |χb[ω]|2.

E. Output microwave spectrum

Here we show the formulas not displayed in the main text for the output microwave spectrum. We consider
exclusively the case where the BAE conditions are met. From the Heisenberg-Langevin equations, we obtain the
following solution for the microwave operator as a function of the noises and the BAE phonon quadrature

χ−1
c [ω]ĉ[ω] = −

√
2GgmcΞm[ω]eiϕx̂b,ψ[ω]− igmcξ̂BA[ω] +

√
κcξ̂c[ω]. (40)

Recall that the “backaction“ noise term ξ̂BA[ω] has a component ξ̂c[ω], see Eq. (16). We now consider the standard
input-output relation for the reflection of the microwave mode and assume that the only source of input noise is
thermal, such that

ĉout[ω] = ξ̂c[ω]−
√
κcĉ[ω]. (41)
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We then compute the output quadrature

x̂out,θ[ω] =
eiθ ĉ†out[ω] + e−iθ ĉout[ω]√

2

= Gx,θ[ω]x̂b,ψ[ω] + Am;θ[ω]ξ̂m[ω] + Ac;θ[ω]ξ̂c[ω]

+ A∗
m;θ[−ω]ξ̂†m[ω] + A∗

c;θ[−ω]ξ̂†c [ω].

(42)

The coefficients appearing in the above expression are

Gx,θ[ω] =
√
κcGgmc

[
χc[ω]Ξm[ω]ei(ϕ−θ) + χ∗

c [−ω]Ξ∗
m[−ω]e−i(ϕ−θ)

]
,

Am;θ[ω] = igmc

√
κcκm
2

χc[ω]Ξm[ω]e−iθ,

Ac;θ[ω] =
(
1− κc

χc[ω]

χm[ω]
Ξm[ω]

)
e−iθ√

2
.

(43)

The correlation noise spectrum between two of such quadratures is given by

Sθθ′ [ω] =

∫
dω′

2π
⟨x̂out,θ[ω]x̂out,θ′ [ω′]⟩, (44)

and then the self-correlation, obtained for θ = θ′ reads explicitly

Sθθ[ω] = |Gx,θ[ω]|2S(0)[ω]

+ |Am,θ[ω]|2(nm + 1) + |Am,θ[−ω]|2nm
+ |Ac,θ[ω]|2(nc + 1) + |Ac,θ[−ω]|2nc.

(45)

In order to obtain the noise added to the measurement of S(0)[ω] we write

Sθθ[ω] = |Gx,θ[ω]|2
[
S(0)[ω] + Simp[ω]

]
, (46)

where

Simp[ω] =
1

|Gx,θ[ω]|2
[
|Am,θ[ω]|2(nm + 1) + |Am,θ[−ω]|2nm + |Ac,θ[ω]|2(nc + 1) + |Ac,θ[−ω]|2nc

]
. (47)

We notice now that, at ω = 0

Sθθ(0) = |Gx,θ(0)|2
[
S(0)(0) + Simp(0)

]
= |Ax,θ(0)|2

2

γb

[
2nb + 1 +

γb
2
S
(0)
imp(0)

]
.

(48)

We then define the added quanta to the measurement due to the imprecision noise as

nimp,θ =
γb
4
Simp,θ(0). (49)

Since for frequencies ω close to zero we have Simp[ω] ≈ Simp(0), we can write

Sθθ[ω] = |Gx,θ[ω]|2
[
S(0)[ω] +

4nimp,θ

γb

]
. (50)

We note that, for schemes that break the BAE conditions, the phonon quadrature will include a backaction noise
term, which then correlates with the imprecision noise.

The imprecision noise for a given angle θ is below the standard quantum limit provided that nimp,θ < 1/2. For
magnons at resonance with microwaves, the bath occupancy of such modes nm,c has to satisfy

nm,c <
|Gx,θ[0]|2

γb(|Am,θ[0]|2) + |Ac,θ[0]|2)
− 1

2
. (51)

The maximum occupancy of the magnon/microwave baths for beating the SQL depends on the gain factor |Gx,θ[0]|2,
which scales linearly with the drive power. In general, strong drive powers allow to beat the SQL at higher bath
occupancies, while smaller phonon decays also allow higher nc,m. We should nevertheless notice that the typical
temperature required for having a negligible occupancy of the magnon/microwave bath is of a few hundreds of mK,
a condition attainable routinely in cavity magnonics experiments.
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1. Brief comparison with the single tone drive case

We can obtain the output noise spectrum for the case of a single tone drive by following the same procedure presented
above for the single-tone drive case using the frequency domain Heisenberg-Langevin equation shown in Sec. II. The
result for the output noise spectrum Sθθ[ω], define in the same way as in the backaction evasion framework, is given
in this case by

Sθθ[ω] = |Gx,θ[ω]|2
[
S(D)
xx [ω] + S(BA)

xx [ω] + Simp[ω] + Scorr[ω]
]
. (52)

In the above expression S(D)
xx and S(BA)

xx are given by Eqs. (24) and (25) respectively. The gain term Gx,θ[ω] is given as
in Eq. (43) with G→ |gmb| and ϕ = arg[gmb]. The imprecision noise Simp[ω] is given by (47). Finally the correlation
noise Scorr[ω] comes from correlations between the backaction noise terms appearing in the solution for x̂b[ω] and the
imprecision noise terms.

Comparing this expression with what was obtained in the backaction evasion case we notice the presence of bakcation
and correlation noises as well as a change in the bare phonon noise due to dynamical backaction, as described by S(D)

xx .
In analogy with the previous case, we have the number of added quanta to the measurement given by

nadd = nimp + nBA + ncorr, (53)

where

nimp =
γ̃b
4
Simp[ωb],

nBA =
γ̃b
4
S(BA)
xx [ωb],

ncorr =
γ̃b
4
Scorr[ωb].

(54)

As in typical linear systems, backaction noise prevents the measurement to go bellow the standard quantum limit
nadd = 1/2 [2].

[1] V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, Quantum nondemolition measurements, Science 209, 547 (1980).
[2] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Introduction to quantum noise, measurement,

and amplification, Rev. Mod. Phys. 82, 1155 (2010).
[3] A. A. Clerk, F. Marquardt, and K. Jacobs, Back-action evasion and squeezing of a mechanical resonator using a cavity

detector, New J. Phys. 10, 095010 (2008).
[4] M. J. Woolley and A. A. Clerk, Two-mode back-action-evading measurements in cavity optomechanics, Phys. Rev. A 87,

063846 (2013).
[5] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86, 1391 (2014).
[6] Y. Yanay and A. A. Clerk, Shelving-style qnd phonon-number detection in quantum optomechanics, New Journal of Physics

19, 033014 (2017).
[7] B. D. Hauer, A. Metelmann, and J. P. Davis, Phonon quantum nondemolition measurements in nonlinearly coupled

optomechanical cavities, Phys. Rev. A 98, 043804 (2018).
[8] I. Shomroni, L. Qiu, D. Malz, A. Nunnenkamp, and T. J. Kippenberg, Optical backaction-evading measurement of a

mechanical oscillator, Nat. Commun. 10, 1 (2019).
[9] J. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk, and K. Schwab, Back-action-evading measurements of

nanomechanical motion, Nat. Phys. 6, 213 (2010).
[10] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Quantum nondemolition measurement of a

nonclassical state of a massive object, Phys. Rev. X 5, 041037 (2015).
[11] C. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, A. Clerk, M. Woolley, and M. Sillanpää, Quantum backaction

evading measurement of collective mechanical modes, Phys. Rev. Lett. 117, 140401 (2016).
[12] C. B. Møller, R. A. Thomas, G. Vasilakis, E. Zeuthen, Y. Tsaturyan, M. Balabas, K. Jensen, A. Schliesser, K. Hammerer,

and E. S. Polzik, Quantum back-action-evading measurement of motion in a negative mass reference frame, Nature 547,
191 (2017).

[13] E. Altuntaş and I. B. Spielman, Quantum back-action limits in dispersively measured bose-einstein condensates,
Communications Physics 6, 66 (2023).

[14] J. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,
Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting, Phys. Rev. A 74, 042318
(2006).

https://www.jstor.org/stable/1684296
https://doi.org/10.1103/RevModPhys.82.1155
https://iopscience.iop.org/article/10.1088/1367-2630/10/9/095010
https://doi.org/10.1103/PhysRevA.87.063846
https://doi.org/10.1103/PhysRevA.87.063846
https://doi.org/10.1088/1367-2630/aa6206
https://doi.org/10.1088/1367-2630/aa6206
https://doi.org/10.1103/PhysRevA.98.043804
https://doi.org/10.1038/nature22980
https://doi.org/10.1038/nature22980
https://doi.org/10.1038/s42005-023-01181-5
https://doi.org/10.1103/PhysRevA.74.042318
https://doi.org/10.1103/PhysRevA.74.042318


22

[15] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Cavity magnomechanics, Sci. Adv. 2, e1501286 (2016).
[16] B. Z. Rameshti, S. Viola Kusminskiy, J. A. Haigh, K. Usami, D. Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang,

G. E. Bauer, and Y. M. Blanter, Cavity magnonics, Phys. Rep. 979, 1 (2022).
[17] R. LeCraw, E. Spencer, and E. Gordon, Extremely low loss acoustic resonance in single-crystal garnet spheres, Physical

Review Letters 6, 620 (1961).
[18] E. G. Spencer and R. LeCraw, Magnetoacoustic resonance in yttrium iron garnet, Physical Review Letters 1, 241 (1958).
[19] C. Gonzalez-Ballestero, D. Hümmer, J. Gieseler, and O. Romero-Isart, Theory of quantum acoustomagnonics and

acoustomechanics with a micromagnet, Phys. Rev. B 101, 125404 (2020).
[20] J. Li, S.-Y. Zhu, and G. Agarwal, Magnon-photon-phonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121,

203601 (2018).
[21] J. Li and S. Gröblacher, Entangling the vibrational modes of two massive ferromagnetic spheres using cavity

magnomechanics, Quantum Sci. Tech. 6, 024005 (2021).
[22] Z.-Y. Fan, L. Qiu, S. Gröblacher, and J. Li, Microwave-optics entanglement via cavity optomagnomechanics, Laser &

Photonics Reviews n/a, 2200866 (2022).
[23] J. Li, Y.-P. Wang, J.-Q. You, and S.-Y. Zhu, Squeezing microwaves by magnetostriction, National Science Review 10,

nwac247 (2022).
[24] M.-S. Ding, L. Zheng, Y. Shi, and Y.-J. Liu, Magnon squeezing enhanced entanglement in a cavity magnomechanical

system, J. Opt. Soc. Am. B 39, 2665 (2022).
[25] C. A. Potts, V. A. S. V. Bittencourt, S. Viola Kusminskiy, and J. P. Davis, Magnon-phonon quantum correlation

thermometry, Phys. Rev. Appl. 13, 064001 (2020).
[26] F. Engelhardt, V. Bittencourt, H. Huebl, O. Klein, and S. V. Kusminskiy, Optimal broadband frequency conversion via a

magnetomechanical transducer, Phys. Rev. Appl. 18, 044059 (2022).
[27] C. A. Potts, E. Varga, V. A. S. V. Bittencourt, S. Viola Kusminskiy, and J. P. Davis, Dynamical backaction

magnomechanics, Phys. Rev. X 11, 031053 (2021).
[28] C. A. Potts, Y. Huang, V. A. S. V. Bittencourt, S. Viola Kusminskiy, and J. P. Davis, Dynamical backaction evading

magnomechanics, Phys. Rev. B 107, L140405 (2023).
[29] M. Amazioug, B. Teklu, and M. Asjad, Enhancement of magnon–photon–phonon entanglement in a cavity magnomechanics

with coherent feedback loop, Scientific Reports 13, 3833 (2023).
[30] W. Zhang, D.-Y. Wang, C.-H. Bai, T. Wang, S. Zhang, and H.-F. Wang, Generation and transfer of squeezed states in a

cavity magnomechanical system by two-tone microwave fields, Opt. Express 29, 11773 (2021).
[31] H. Qian, X. Zuo, Z.-Y. Fan, J. Cheng, and J. Li, Strong squeezing of microwave output fields via reservoir-engineered

cavity magnomechanics, Phys. Rev. A 109, 013704 (2024).
[32] Z.-X. Liu, J. Peng, and H. Xiong, Generation of magnonic frequency combs via a two-tone microwave drive, Phys. Rev. A

107, 053708 (2023).
[33] V. A. S. V. Bittencourt, C. A. Potts, Y. Huang, J. P. Davis, and S. Viola Kusminskiy, Magnomechanical backaction

corrections due to coupling to higher-order walker modes and kerr nonlinearities, Phys. Rev. B 107, 144411 (2023).
[34] D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Applications (Springer, New York, 2010).
[35] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. Goennenwein, High

cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids, Phys. Rev. Lett. 111, 127003 (2013).
[36] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Coherent coupling between a

ferromagnetic magnon and a superconducting qubit, Science 349, 405 (2015).
[37] E. Callen, Magnetostriction, J. Appl. Phys. 39, 519 (1968).
[38] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett.

113, 156401 (2014).
[39] C. A. Potts and J. P. Davis, Strong magnon–photon coupling within a tunable cryogenic microwave cavity, Appl. Phys.

Lett. 116, 263503 (2020).
[40] A. Eringen and E. Suhubi, Elastodynamics: Linear Theory (Academic Press, New York, 1975).
[41] In the following we use the Fourier transform (for ô = ĉ, m̂, b̂):
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