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Nonlinear spintronics, which combines nonlinear dynamics and spintronics, opens a new route
for controlling spins and spin dynamics beyond conventional spintronics based on linear responses.
Strongly correlated electron systems, which can have large nonlinear responses, are promising can-
didates for nonlinear spintronics. In this paper, we focus on the nonlinear Edelstein effect (NEE), a
generalization of the Edelstein effect, and study the impact of electron correlations on the NEE by
performing numerical calculations on a Hubbard model. We find that correlation effects can either
enhance or suppress the nonlinear response. We show that the enhancement and suppression of the
response are due to the real and imaginary components of the self-energy, respectively. Addition-
ally, we have explored the relationship between the NEE and photomagnetic or optomagnetic effects.
Our findings demonstrate that electron correlations can either enhance or suppress the optical spin
injection, depending on the light frequency, while always strengthening the inverse Faraday effect.

I. INTRODUCTION

Electric generation and control of spin degrees of free-
dom are central issues in modern spintronics [1–3]. A
typical technique is to utilize the linear Edelstein effect
(LEE) where an electric field E induces a nonequilibrium
spin density δs in noncentrosymmetric metals (δs ∝ E).
The LEE was first theoretically proposed in Refs. [4, 5]
and has experimentally been realized in GaAs [6–8]. Fur-
thermore, a spin torque driven by the LEE has theo-
retically been proposed in magnetic semiconductors [9–
11], and a current-induced domain inversion has been
observed in GaMnAs [12], which has triggered increased
attention to the LEE in the branch of spintronics.

Interestingly, the literature concerning the LEE deals
almost exclusively with noninteracting and weakly cor-
related electron systems such as topological insulators
[13–18], Weyl semimetals [19–22], and superconductors
[23–28]; only a few works have analyzed electron correla-
tions using Fermi liquid theory and dynamical mean-field
theory (DMFT) [29–32]. One reason is that conventional
spintronics has been based on linear responses. It has
been demonstrated in Ref. [33] that correlation effects
do not strongly affect linear DC conductivities. On the
other hand, large nonlinear conductivities have been re-
alized in strongly correlated electron systems (SCES) in
experiments [34–38] and numerical calculations [33, 39–
41]. Therefore, SCES would be one of the most promising
candidates for nonlinear spintronics.

In recent years, nonlinear responses have also been con-
sidered in the field of spintronics. Of particular interest
is the nonlinear Edelstein effect (NEE) [42–50], charac-
terized by δs ∝ E2. The NEE significantly influences the
spin response from the following three points. First, the
NEE has no restrictions on spatial inversion P. Since the
spin is an axial vector but the electric field is a polar vec-
tor, the LEE can only appear in noncentrosymmetric ma-
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terials. On the other hand, the NEE exists in centrosym-
metric systems, which account for approximately 80% of
all materials. Second, the NEE can also be observed in
semiconductors and insulators [49, 50]. Optical transi-
tions can generate a static spin density in the same way
as the bulk photovoltaic effect generates a static electric
polarization [51–53]. Thus, the NEE can be divided into
the current-induced NEE [42–45], which can be observed
in metals similarly to the LEE, and the light-induced
NEE [46–50], which also can be finite in semiconductors
and insulators. Note that we here define the static re-
sponse in nonmagnetic materials as the Edelstein effect
and the static response in magnets as the magnetoelec-
tric effect [54, 55] regardless of whether they are metals
or insulators. Third, the NEE can have a sizable magni-
tude despite its nonlinear nature. With a driving electric
field of E = 105 ∼ 107 V/m which is readily feasible in
an experiment [12], the strength of the NEE would ex-
ceed that of the LEE in transition metal dichalcogenides
[49] and common transition metals [42, 43].

The advantages of SCES for nonlinear responses com-
bined with the advantages of the NEE over the LEE have
the potential to make the NEE in SCES a new important
research target in spintronics. In this work, we study the
impact of electron correlations on the NEE by perform-
ing numerical calculations on a Hubbard model. We first
formulate the NEE at finite temperatures based on a di-
agrammatic approach [33, 56–59]. This formalism allows
us to derive equations using single-particle Green’s func-
tions whose self-energy includes correlation effects. We
then use DMFT [60] to obtain the self-energy, and an-
alyze the response functions of the NEE incorporating
electron correlations. Note that we do not consider the
orbital contribution by itinerant electrons, i.e., the or-
bital Edelstein effect [61–65] because there is an inherent
difficulty in defining the orbital angular momentum op-
erator in periodic crystals [66–68], and the spin contribu-
tion usually dominates the total magnetization [69, 70].

The rest of this paper is organized as follows: In Sec.
II, we introduce the formalism of the NEE to the sec-
ond order in an electric field. Section III presents the
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details of the Hubbard model, which we use to analyze
the NEE, and shows spectral functions of the model ob-
tained by DMFT. We then show numerical results of the
interaction dependence for the current-induced NEE and
the light-induced NEE in Sec. IV. The results show that
the effect of electron correlations on the NEE depends on
the form of the applied electric field. Specifically, corre-
lation effects can enhance the current-induced NEE but
can either enhance or suppress the light-induced NEE.
Section. V is devoted to discussing the results of the
previous section. In Secs. VA and VB, we reveal that
the enhancement and suppression originate from the real
and imaginary parts of the self-energy. Furthermore, we
explain how the real-part and imaginary-part effects con-
tribute to the light-induced NEE and to what degree they
affect it. In Sec. VC, we remark on the relationship be-
tween the light-induced NEE and photomagnetic or op-
tomagnetic effects studied in the field of magneto-optics.
We here focus on the optical spin injection [1, 71] for
the photomagnetic effects and the inverse Faraday effect
(IFE) [72, 73] for the optomagnetic effects and demon-
strate that electron correlations can either enhance or
suppress the optical spin injection depending on the light
frequency while strengthening the IFE regardless of it.
Finally, we summarize this work and give a future out-
look in Sec. VI.

II. FORMULATION

The spin density induced by an electric field is written
in the frequency domain as

⟨δŝα(ωΣ)⟩ =
∫
dω1

2π
ζ
(1)
α;β(ωΣ;ω1)E

β(ω1)2πδω1,ωΣ

+

∫
dω1

2π

dω2

2π
ζ
(2)
α;βγ(ωΣ;ω1, ω2)E

β(ω1)E
γ(ω2)2πδω1+ω2,ωΣ

+ · · · , (1)

where ζ
(n)
α;α1···αn(ωΣ;ω1, · · · , ωn) is the n-th order re-

sponse function, and Greek indices label Cartesian com-
ponents. ωΣ corresponds to the frequency of the gener-
ated spin response, and ωi corresponds to the frequency
of the electric field, E. In this study, we focus on the
static response (ωΣ = 0) recognized as the Edelstein ef-
fect. The first term on the right side of Eq. (1) represents
the LEE, while all other terms describe the NEE. In par-
ticular, the second-order NEE can be divided into two
cases:

ζ
(2)
α;βγ = lim

ω1,ω2→0
ζ
(2)
α;βγ(ωΣ;ω1, ω2), (2)

ζ
(2)
α;βγ(Ω) = ζ

(2)
α;βγ(0; Ω,−Ω), (3)

where Ω is the frequency of the incident light. Equations
(2) and (3) describe the current-induced NEE and the
light-induced NEE, respectively. We derive Eqs. (2) and
(3) based on the path integral Matsubara formalism as
shown below.

The unperturbed Hamiltonian of the system is

Ĥ(k) = Ĥ0(k) + Ĥint, (4)

where Ĥ0(k) is a noninteracting Hamiltonian, and Ĥint

is the two-particle interacting part of the Hamiltonian.
Throughout this paper, we suppose that there is only a
local interaction that does not depend on the momentum
k.
Next, we consider the interaction between carriers and

the electromagnetic field. We here assume the electric
dipole approximation under which the electromagnetic
field is approximated by a uniform electric field E(t).
This uniformity limits the gauge degree of freedom to
either the length or velocity gauge. We here adopt the
velocity gauge where we can treat the effect of the electric
field by rewriting Eq. (4) as

Ĥ(k) → Ĥ(k − q

ℏ
A(t))

= Ĥ(k) +

∞∑
n=1

1

n!

[ n∏
i=1

(− q
ℏ
Aαi(t)∂kαi

)
]
Ĥ(k), (5)

where E(t) = −∂A(t)/∂t, and q is the charge of the
carriers. We expand the powers of the vector potential
in a Taylor series to capture nonlinear responses in the
second line of Eq. (5).

Furthermore, we include an auxiliary term ĤB =
−B(t) · ŝ in Eq. (4) to obtain the spin response. B(t) is
the conjugate field of the spin ŝ and is taken to zero after
the variation. Note that one could derive similar formu-
lations for other physical quantities by replacing ŝ and

B(t) with the quantity of interest θ̂ and its conjugate

field, respectively. However, θ̂ must be a local operator
well-defined in periodic systems such as the spin operator
ŝ.
The partition function of the perturbed system is writ-

ten in the path integral formalism as

Z[A,B] =

∫
Dψ̄Dψexp

[
−S[A,B]

]
, (6)

where ψ̄ and ψ are fermionic creation and annihila-
tion operators, represented by Grassmann numbers, and
S[A,B] is the action of the system in imaginary time (τ),
which is described as

S[A,B] =

∫ β

0

dτ

[∑
λ,η

∫
dk

(2π)d
ψ̄kλ(τ)

{
(∂τ − µ)δλη

+Hλη
0 (k − q

ℏ
A(τ))−B(τ) · sλη

}
ψkη(τ) +Hint

]
, (7)

where d is the dimension of the system, µ the chemical
potential, and Xλη the matrix representation of an oper-
ator X̂. The expectation value of ŝ is expressed by the
functional derivative [74] as

⟨δŝα(τ)⟩ =
δ

δBα(τ)

∣∣∣∣
B=0

lnZ[A,B]. (8)
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We then expand Z[A,B] in powers of the vector potential
A(τ) and define the n-th order response function as the
coefficient to Aα1(τ1) · · ·Aαn(τn) which is given by

χ
(n)
α;α1···αn(τ ; τ1 · · · τn)

=
1

Z[0]

(
n∏

i=1

δ

δAαi(τi)

)
δ

δBα(τ)

∣∣∣∣∣
B=A=0

Z[A,B]. (9)

After taking the Fourier transformation to Matsubara
frequencies and performing an analytic continuation, we
can obtain the second-order response function expressed
by single-particle Green’s functions as

ζ
(2)
α;βγ(ωΣ;ω1, ω2) =

ℏ
(ω1 + iδ)(ω2 + iδ)

∫
dk

(2π)d

∫ ∞

−∞

dω

2πi
f(ω)

× Tr

[
1

2

(
sαG

R(k, ω + ωΣ)Jβγ(k)G
R−A(k, ω) + sαG

R−A(k, ω)Jβγ(k)G
A(k, ω − ωΣ)

)
+ sαG

R(k, ω + ωΣ)Jβ(k)G
R(k, ω + ω2)Jγ(k)G

R−A(k, ω) + sαG
R(k, ω + ω1)Jβ(k)G

R−A(k, ω)Jγ(k)G
A(k, ω − ω2)

+ sαG
R−A(k, ω)Jβ(k)G

A(k, ω − ω1)Jγ(k)G
A(k, ω − ωΣ)

]
+
[
(β, ω1) ↔ (γ, ω2)

]
, (10)

where f(ω) = (1+exp(βℏω))−1 is the Fermi distribution
function, GR/A(k, ω) a retarded/advanced Green’s func-
tion, Jα1···αn

(k) = (q/ℏ)n∂kα1
· · · ∂kαn

H0(k) a current

operator, and GR−A = GR − GA.
[
(β, ω1) ↔ (γ, ω2)

]
corresponds to an interchange of these indices and fre-
quencies. Furthermore, we use that the n-th order re-
sponse function is defined as the coefficient relating the
spin response to Eα1(ω1) · · ·Eαn(ωn), which is given by

ζ
(n)
α;α1···αn(ωΣ;ω1 · · ·ωn)

= χ
(n)
α;α1···αn(ωΣ;ω1 · · ·ωn)/

n∏
j=1

i(ωj + iδ). (11)

because

E(ωj) = i(ωj + iδ)A(ωj), (12)

where δ > 0 is an adiabatic factor for the external field
and is taken to zero after the calculation. Note that we

ignore vertex corrections in the occurring many-particle
Green’s function, which enables us to describe the re-
sponse function as a product of single-particle Green’s
functions. The details of the derivation are given in
Appendix A. Correlation effects are taken into account
through the self-energy ΣR/A(ω) of the Green’s function,
GR/A(k, ω) = (ℏω−H0(k)+µ−ΣR/A(ω)+ iη)−1, where
η > 0 is an adiabatic factor of the Green’s function.
Throughout this paper, we ignore the momentum depen-
dence of the self-energy by using the DMFT approxi-
mation [60]. Thus, ignoring vertex corrections does not
break the generalized Ward identity [75]. On the other
hand, if the self-energy includes momentum dependence,
the inclusion of vertex corrections is necessary to satisfy
the generalized Ward identity.
We can calculate the current-induced NEE and the

light-induced NEE from Eq. (10). For the current-
induced NEE, however, it is necessary to correctly an-
alyze the divergence that occurs in the low-frequency re-
gion. If we correctly take the DC limit (ω1, ω2 → 0), we
can rewrite Eq. (10) as

ζ
(2)
α;βγ = −2ℏ

∫
dk

(2π)d

∫ ∞

−∞

dω

2π

{(
−∂f(ω)

∂ω

)
Im

(
Tr

[
sα
∂GR(k, ω)

∂ω
Jβ(k)G

R(k, ω)Jγ(k)G
A(k, ω)

+
1

2
sα
∂GR(k, ω)

∂ω
Jβγ(k)G

A(k, ω)

])
− f(ω)Im

(
Tr

[
sα

∂

∂ω

(
∂GR(k, ω)

∂ω
Jβ(k)G

R(k, ω)

)
Jγ(k)G

R(k, ω)

+
1

2
sα
∂2GR(k, ω)

∂ω2
Jβγ(k)G

R(k, ω)

])}
+ (β ↔ γ), (13)

which is derived in Appendix B. We note that for the
light-induced NEE, an expression similar to Eq. (10) has

been derived using the Keldysh formalism [48]. Further-
more, we can reproduce the results of the semiclassical
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FIG. 1. (a) Top and side views of the model. Green solid
arrows show the lattice vectors, and orange solid arrows show
the vectors connecting between the NN sites. (b) Energy dis-
persion of the KMH model at U = 0 for (t, tR) = (0.1, 0.01).
The solid lines show the dispersion for tso = 0.1 and the
dashed lines for tso = 0.0.

approach [42, 55] and the reduced density matrix formal-
ism [50] by taking the weak-scattering limit in Eqs. (10)
and (13) , which is given in Appendices C and D.

III. MODEL AND METHOD

A. Model

We here consider a Kane-Mele-Hubbard (KMH) model
defined on a buckled two-dimensional honeycomb lattice,
which is shown in Fig. 1(a). The Hamiltonian is

Ĥ = −t
∑
⟨ij⟩,σ

ĉ†iσ ĉjσ + itso
∑

⟨⟨ij⟩⟩,σσ′

νij ĉ
†
iσσ

z
σσ′ ĉjσ′

− itR
∑

⟨⟨ij⟩⟩,σσ′

µij ĉ
†
iσ(σ × dij)

z
σσ′ ĉjσ′ + U

∑
i

n̂i↑n̂i↓,

(14)

where the noninteracting part is based on a Kane-Mele
model [42, 76–78] and belongs to the D3d point group.

Here, ĉ†iσ and ĉiσ are creation and annihilation opera-

tors of electrons with spin σ =↑, ↓ at site i, n̂iσ = ĉ†iσ ĉiσ
is the number operator, and

∑
⟨ij⟩ and

∑
⟨⟨ij⟩⟩ are the

sum over the nearest neighbor (NN) and next-nearest
neighbor (NNN) sites, respectively. The first term is
the NN hopping with hopping strength t. The second
term is an intrinsic spin-orbit coupling (SOC) with cou-
pling strength tso between NNN electrons, where σz

σσ′ is
the z component of the Pauli matrix and νij = +(−) if
the electron moves counterclockwise (clockwise) around
a hexagon. The third term is the Rashba SOC with cou-
pling strength tR between NNN electrons, where dij is
the unit vector pointing from j to i, and µij = +(−) for
the A (B) site. This term originates in the lattice buck-
ling, which causes the symmetry reduction from D6h to
D3d. A visualization of the lattice is shown in Fig. 1(a).
The last term is a Hubbard-like on-site interaction with
interaction strength U .

In momentum space, the noninteracting part is given
by

Ĥ0 =
∑
k,σ

(η(k)ĉ†kAσ ĉkBσ + h.c.)

+
∑

k,ss,σσ′

g(k) · σσσ′τzss′ ĉ
†
ksσ ĉks′σ′ , (15)

where Ψ̂k = (ĉkA↑, ĉkA↓, ĉkB↑, ĉkB↓)
t is the basis with

the momentum k and spin σ =↑, ↓ on two sublattices
s = A,B, and σ(τ ) is the Pauli matrix for the spin (sub-
lattice) degrees of freedom. The coefficients are defined
as

η(k) = −t
∑3

i=1e
ik·di , (16)

gx(k) =
√
3tR(sink · a1 + sink · a2), (17)

gy(k) = −tR(sink · a1 − sink · a2

+ 2 sink · (a1 − a2)), (18)

gz(k) = 2tso(sink · a1 − sink · a2

− sink · (a1 − a2)), (19)

where a1 = (
√
3a/2, 3a/2) and a2 = (−

√
3a/2, 3a/2)

are the lattice vectors, d1 = (
√
3a/2, a/2), d2 =

(−
√
3a/2, a/2), and d3 = (0,−a) are the vectors connect-

ing between the NN sites, and a is the lattice constant.
Equation (16) is responsible for a linear dispersion at
the K and K ′ points (Dirac points) similar to graphene.
Equations (17)∼(19) are the sublattice-dependent anti-
symmetric SOC in locally noncentrosymmetric systems
[31, 76, 79–81] whose site symmetry lacks P symmetry,
while global P symmetry is preserved by interchanging
the sublattice. Specifically, Eq. (19) is the SOC that
opens a gap at the Dirac points, shown in Fig. 1(b).
Equations (17) and (18) are the Rashba SOC appearing
in systems where the site symmetry is denoted by the
noncentrosymmetric point group C3v, while global sym-
metry belongs to the centrosymmetric point group D3d.
In numerical calculations, we use the following param-

eters: (t, tso, tR, T ) = (0.1, 0.01, 0.01, 0.001), where T is
the temperature. Then, we set the Planck constant, the
charge of carriers, the Boltzmann constant, and the lat-
tice constant to unity; ℏ = q = kB = a = 1. Further-
more, we use a basis that satisfies the Bloch equation

Ĥ0(k) |un(k)⟩ = εn(k) |un(k)⟩ , (20)

where |un(k)⟩ is the periodic part of the Bloch state, and
εn(k) is the eigenvalue labeled by the crystal momentum
k in the first Brillouin zone (BZ). The index n = (n, in)
corresponds to a band n and the spinor index in = 1, 2.
The matrix representation of an operator X̂ under this
basis becomes

Xnm(k) = ⟨un(k)|X̂|um(k)⟩ =
[
U(k)−1XU(k)

]nm
,

(21)

where U(k) is the unitary matrix diagonalizing the non-
interacting Hamiltonian H0(k), and X is the matrix rep-

resentation under the basis Ψ̂k. As a specific example,
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(a) (b)

FIG. 2. (a) Spectral functions for different interaction
strengths U/t from 0 ∼ 8 at half-filling. Note that only the
positive region is shown because of the particle-hole symme-
try. (b) Spectral functions in the electron-doped regime for
different U/t from 0 ∼ 12. We set the electron density to
⟨n⟩ = 1.097. For both cases, we use η = 0.001 in Eq. (25).
We note that during the self-consistent cycle, we use larger
values to improve the convergence, i.e., (a) η = 0.01 and (b)
η = 0.02.

the spin operator becomes

snm(k) =
ℏ
2

[
U(k)−1

(
σ 0
0 σ

)
U(k)

]nm
, (22)

where σ is the Pauli matrix for each sublattice. In the
following, we will often omit the k-index of an operator
X(k) to enhance the readability.

B. Dynamical mean-field theory

DMFT maps the original lattice problem onto a self-
consistent quantum impurity problem [60]. This mapping
is performed by calculating the local Green’s function

G(ω) =

∫
dk

(2π)d

[
ℏω −H0(k) + µ− Σ(ω) + iη

]−1

.

(23)

In this description, the coupling of the quantum impurity
to a bath of conduction electrons, g(ω), is given as

g−1(ω) = G−1(ω) + Σ(ω). (24)

To find the self-consistent solution of the KMH model,
we proceed in the following way. We first prepare a self-
energy as an initial value and solve the quantum im-
purity problem, defined by g−1(ω) in Eq. (24). Then,
calculating the local Green’s function, Eq. (23), and us-
ing Eq. (24), we obtain an improved g(ω). This self-
consistent cycle is repeated until convergence is achieved.
Here, we use the numerical renormalization group [82, 83]
to solve this quantum impurity problem and to calculate
the self-energy.

The spectral function is defined via the Green’s func-
tion as

A(ω) = − 1

π

∫
dk

(2π)d
ImGR(k, ω). (25)

We show spectral functions of the KMH model at half-
filling and in the electron-doped regime in Figs. 2(a) and
2(b), respectively. As the interaction increases, the peaks
in the spectral function are gradually suppressed, and the
spectral weight is continuously transferred to higher en-
ergies. On the other hand, the peak position moves closer
to the Fermi energy because of the renormalization of the
band structure. This is the characteristic behavior of cor-
related electron systems. In the following, we calculate
the current-induced NEE in the electron-doped regime
and the light-induced NEE at half-filling. We note that
the current-induced NEE vanishes at half-filling because
the system is an insulator.

IV. RESULTS

We first consider the symmetry constraints of the NEE.
The NEE tensor obeys the following symmetry transfor-
mation rule:

ζ
(2)
α′;β′γ′ = det(R)Rα′αRβ′βRγ′γζ

(2)
α;βγ (26)

where R is a point group operation. Then, we divide
this response tensor into the symmetric component Sα;βγ

and the antisymmetric component Aα;βγ regarding the
incident electric fields, by defining

Sα;βγ = (ζ
(2)
α;βγ + ζ

(2)
α;γβ)/2, (27)

Aα;βγ = (ζ
(2)
α;βγ − ζ

(2)
α;γβ)/2. (28)

The symmetric part has already been clarified in Ref.
[42], which states that the KMH model belonging to
D3d allows for the following symmetric components:
Sx;yy = Sy;xy = −Sx;xx. The antisymmetric part in-
cludes Ax;xy = Ay;xy = 0 and a nonvanishing compo-
nent, Az;xy.
While the current-induced NEE is a symmetric ten-

sor, the light-induced NEE can be further classified as
the responses under linearly polarized light (LPL) and

(a) (b)

FIG. 3. Magnitude of the calculated current-induced NEE
over (a) U/t and (b) 1/Z. The orange and blue lines in panel
(a) indicate the contributions of the Fermi surface terms and
the Fermi sea terms, respectively. The dashed line in panel

(b) corresponds to ζ
(2)
x;yy = Z−1ζ

(2),free
x;yy .
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(a) (b) (c)

FIG. 4. Calculated LPL-induced NEE over (a) Ω and (b) Ω/Z for different interaction strengths. (c) Interaction dependence

of the peak height at Ω/Z = 0.15. The dashed line corresponds to η
(2)
x;yy(Ω/Z) = Z−1η

(2),free
x;yy (Ω/Z) at Ω/Z = 0.15 where

η
(2),free
x;yy = η

(2)
x;yy at U/t = 0.0.

circularly polarized light (CPL). According to Ref. [81],
since the electric field in the frequency domain satisfies
E(Ω) = E∗(−Ω), we can extract the LPL and CPL com-
ponents from the light-induced NEE

⟨δŝα⟩ =
∫
dΩ

2π
ζ
(2)
α;βγ(Ω)E

β(Ω)Eγ(−Ω). (29)

The LPL component can be expressed as

⟨δŝα⟩LPL =

∫
dΩ

2π
η
(2)
α;βγ(Ω)L

βγ(Ω), (30)

where we define

Lβγ(Ω) = Re
{
Eβ(Ω)

[
Eγ(Ω)

]∗}
, (31)

η
(2)
α;βγ(Ω) =

1

2
Re
{
ζ
(2)
α;βγ(Ω) + ζ

(2)
α;γβ(Ω)

}
. (32)

Similarly, the CPL component can be expressed as

⟨δŝα⟩CPL =

∫
dΩ

2π
εβγδξ

(2)
α;βγ(Ω)C

δ(Ω), (33)

where we define

C(Ω) =
i

2
E(Ω)×E∗(Ω), (34)

ξ
(2)
α;βγ(Ω) =

1

2
Im
{
ζ
(2)
α;βγ(Ω)− ζ

(2)
α;γβ(Ω)

}
. (35)

Thus, η
(2)
α;βγ(Ω) is a symmetric tensor, and ξ

(2)
α;βγ(Ω) is an

antisymmetric tensor.

A. Current-induced NEE

Figure 3(a) shows the interaction dependence of the
current-induced NEE, where we separately show the con-
tributions of the Fermi surface terms (orange line) and
the Fermi sea terms (blue line) in Eq. (13). The current-
induced NEE requires time-reversal (T ) symmetry break-
ing because the spin is odd but an electric field is even

under T . Dissipation due to impurity scatterings can
fulfill this role in nonmagnetic materials. However, the
dissipation does not appear in the Fermi sea term be-
cause the electrons below the Fermi surface are not free
to move. Thus, the contribution of the Fermi sea terms
becomes zero, as shown in Fig. 3(a), and we ignore these
terms in the following. One can see that the response en-
hances quadratically in the weakly correlated region and
linearly in the strongly correlated region with increas-
ing the interaction. Furthermore, we replot the results in
Fig. 3(b) by replacing the horizontal axis with the inverse
of the renormalization factor

Z =

(
1− 1

ℏ
∂ReΣ(ω)

∂ω

∣∣∣∣
ω=0

)−1

, (36)

where Z−1 > 1 for correlated electron systems. The
dashed line represents

ζ(2)x;yy = Z−1ζ(2),freex;yy , (37)

where ζ
(2),free
x;yy = ζ

(2)
x;yy at U/t = 0.0. The shape of the

response follows the dashed line, which is consistent with
previous results showing that the renormalization effect

FIG. 5. Calculated CPL-induced NEE over Ω/Z for different
interaction strengths.
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(a) (b) (c)

FIG. 6. Frequency-resolved response functions at U/t = 6 for (a) the current-induced NEE, (b) the LPL-induced NEE
(Ω/Z = 0.15), and (c) the CPL-induced NEE (Ω/Z = 0.20). The black and orange lines indicate contributions of the full
Green’s function and the coherent part of the Green’s function, respectively.

enhances the nonlinear DC conductivity by Z−1 com-
pared to the noninteracting system [33, 41].

B. Light-induced NEE

Next, we focus on the light-induced NEE. First, we
show the interaction dependence of the LPL-induced
NEE in Fig. 4(a). There is a single peak in the spectrum
where the NEE becomes maximal. As the interaction in-
creases, the peak position shifts toward the low-frequency
region, gradually enhancing the peak strengths. To an-
alyze the influence of the renormalization, we use the
renormalized frequency Ω/Z to focus on the same inter-
band transitions, which is shown in Fig. 4(b). We see
that electron correlations also enhance the contribution
from these interband transitions. However, the magni-
tudes are not enhanced by the factor of Z−1, as visible
in Fig. 4(c), which shows the magnitude of the peak at
Ω/Z = 0.15 over the renormalization parameter. It is
clearly visible that the LPL-induced NEE does not fol-
low a linear behavior as Z−1.
More interesting is the interaction dependence of the

CPL-induced NEE, shown in Fig. 5. There are three
peaks whose peak positions imply contributions from in-
terband transitions around K, M , and Γ points (of the
BZ) in ascending order [see Fig. 1(b)]. Interaction effects
are different for these peaks: the peak at the lowest fre-
quency is enhanced by interactions, while the peaks at
higher energies are suppressed.

V. DISCUSSION

Based on the results of the previous section, we first an-
alytically show that the renormalization effect enhances
the current-induced NEE by Z−1, similar to the non-
linear DC conductivity, in Sec. VA. Furthermore, we
discuss the weak degree of enhancement for the light-

induced NEE. Then, we explain the complex frequency
dependence exhibited by the CPL-induced NEE in Sec.
VB. Finally, we note that the light-induced NEE is
closely related to the photomagnetic and optomagnetic
effects in Sec. VC.

A. Origin of the increased response and differences
in the degree of enhancement

The current-induced response is mainly generated at
the Fermi energy (ω = 0). The self-energy can be ex-
panded in the vicinity of the Fermi energy as

ΣR(ω) ∼ ReΣR(0) + ℏω
∂ReΣR(ω)

ℏ∂ω

∣∣∣∣
ω=0

+ iImΣR(0).

(38)

This expansion allows us to divide the Green’s function
into a coherent part GR

coh and an incoherent part GR
inc as

GR(ω) = GR
coh(ω) +GR

inc(ω), (39)

GR
coh(ω) =

Z

ℏω − Zε′(k) + iΓ
, (40)

where ε′(k) = ε(k) − µ + ReΣ(0) and Γ = −ZImΣ(0).
The coherent part expresses a quasiparticle with energy
ε′(k) and lifetime ℏ/Γ. We note that Γ is very small in
our calculations. Supposing that the Green’s function
can be expressed only by its coherent part and that Γ is
sufficiently small, we can describe the Green’s function
as

GR(ω) = GR,free(Z−1ω), (41)

where GR,free is the Green’s function of the noninteract-
ing system. Following the same procedure as Ref. [33],
we can find

ζ
(2)
α;βγ ≃ Z−1ζ

(2),free
α;βγ , (42)
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(a) (b)

(c) (d)

FIG. 7. CPL-induced NEE calculated by including or neglecting the imaginary part of the self-energy. The upper panels show
the NEE including the imaginary part for (a) the diagonal part and (b) the off-diagonal part. The lower panels show the NEE
neglecting the imaginary part for (c) the diagonal part and (d) the off-diagonal part.

which states that the renormalization effect enhances the
current-induced NEE by Z−1. Obviously, this is an effect
of the real part of the self-energy. On the other hand, the
expansion of Eq. (38) is not valid for the light-induced
NEE due to the frequency dependence of the self-energy.
Nevertheless, we cannot explain the increased response
for the light-induced NEE without the renormalization
effect. Therefore, to evaluate the contribution of the co-
herent part, we calculate the frequency-resolved response

function ζ
(2)
α;βγ(ω) which is given as

ζ
(2)
α;βγ =

∫
dω

2π
F (ω)ζ

(2)
α;βγ(ω), (43)

where F (ω) = −∂f(ω)/∂ω for the current-induced NEE
and F (ω) = f(ω) for the light-induced NEE.
Figure 6(a) shows the frequency-resolved response

function for the current-induced NEE, comparing the re-
sponse induced by the full Green’s function (black line)
with the response induced by the coherent part of the
Green’s function (orange line). The contribution of the
coherent part near the Fermi energy is identical to the to-
tal contribution. On the other hand, for the light-induced
NEE, the comparisons in Figs. 6(b) and 6(c) between the
responses induced by the full Green’s function and its co-
herent part demonstrates that the coherent part overesti-
mates the response. Thus, the light-induced NEE is not

as strongly enhanced as the current-induced NEE due to
the frequency dependence of the self-energy.

B. Complex frequency dependence exhibited by
the CPL-induced NEE

We analyze the CPL-induced NEE by using the Bloch
basis and Eq. (22). We first divide Eq. (10) into
the diagonal part (∝ snnα (k)) and the off-diagonal part
(∝ snmα (k)). Figures 7(a) and 7(b) show the contribu-
tion of the diagonal and off-diagonal parts to the CPL-
induced NEE, respectively. Although the main contribu-
tion comes from the diagonal part, the response from the
off-diagonal part is also finite. Most importantly, elec-
tron correlations enhance the off-diagonal response, while
the response from the diagonal part is only enhanced for
small frequencies. We note that the diagonal response is
an intraband effect that depends on an extrinsic scatter-
ing time, while the off-diagonal part is an interband effect
that is intrinsic and only depends on the light frequency,
which can be confirmed in Eq. (54) in Ref. [50]. Further-
more, the LPL-induced NEE is also an interband effect,
as seen in Eq. (53) in Ref. [50]. Therefore, a reduction
of the lifetime due to electron correlations can suppress
the dissipative response, such as the diagonal part of the
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CPL response. To investigate this hypothesis, we recal-
culate the CPL-induced NEE by effectively excluding the
imaginary part of the self-energy reflecting dissipation.

Figure 7(c) shows the result for the diagonal part.
The second peak is indeed enhanced when neglecting the
imaginary part of the self-energy, which indirectly shows
that the imaginary part of the self-energy suppresses the
response. Besides the suppression by the imaginary part,
the diagonal part can be enhanced by the real part of
the self-energy, which creates a complex frequency depen-
dence. For example, the first peak in the low-frequency
region is enhanced because the renormalization effect of
the real part exceeds the imaginary part. On the other
hand, for the peaks at larger frequencies, the suppression
by the imaginary part is stronger [see Fig. 7(a)].

Furthermore, the frequency dependence of the real part
of the self-energy can explain why the position of the low-
frequency peak shifts to smaller frequencies. In partic-
ular, the renormalization effect is weaker for larger fre-
quencies. Together with the imaginary part of the self-
energy, this leads to a shift in the peak position for large
interaction strengths [compare Figs. 7(a) and 7(c)]. On
the other hand, the off-diagonal response does not include
a strong effect of the imaginary part of the self-energy.
Comparing between Fig. 7(b) and 7(d), we see that the
real part of the self-energy is sufficient to explain the
NEE.

C. Relationship between the light-induced NEE
and photomagnetic or optomagnetic effects

The photomagnetic and optomagnetic effects are non-
thermal phenomena where light changes the magnetic
properties of a material but does not involve the heat-
ing of electrons by the laser pulse [73]. The photomag-
netic effects depend on the absorption of photons and are
related to the optical spin injection [1, 71]. The optomag-
netic effects do not require the absorption of photons but
instead are referred to as the IFE [72] and the inverse
Cotton-Mouton effect (ICME) [84].

The optical spin injection, which is sometimes called
the optical orientation, generates a finite spin expecta-
tion value of the electrons by transferring the angular
momentum of the photons during an optical excitation
with CPL. The optical spin injection, for example, has
been used for exciting the persistent spin helix in semi-
conductor quantum wells [85, 86]. Using the band repre-
sentation [49, 50, 87], we can show that the diagonal part
of the CPL-induced NEE corresponds to the optical spin
injection. Therefore, we can conclude that electron cor-
relations can either enhance or suppress the optical spin
injection depending on the light frequency, as shown in
Fig. 7(a).

On the other hand, the IFE and ICME generate an
effective magnetic field under CPL and LPL, respectively,
which can be described following Ref. [49] as

Hγ
IFE ∝ aαβγ

{
Eα(Ω)[Eβ(Ω)]∗ − Eβ(Ω)[Eα(Ω)]∗

}
, (44)

Hγ
ICME ∝ bαβγδM

δ
{
Eα(Ω)[Eβ(Ω)]∗ + Eβ(Ω)[Eα(Ω)]∗

}
,

(45)

where HIFE/ICME is the effective magnetic field for the
IFE/ICME, M is a DC magnetization, and aαβγ and
bαβγδ are phenomenological parameters. The IFE and
ICME look at the same effects as the light-induced NEE
in the sense that the spin can be controlled by an effec-
tive magnetic field. These responses require T -breaking
elements similar to the current-induced NEE.
For the LPL-induced NEE, energy dissipation associ-

ated with interband transitions plays the role of the T -
breaking element, which allows us to observe this effect
even in nonmagnetic materials (M = 0). On the other
hand, the ICME is finite only in magnets (M ̸= 0) from
Eq. (45). This is because the ICME is an equilibrium
phenomenon, while the LPL-induced NEE is a nonequi-
librium response. Therefore, from this study, we can-
not conclude whether electron correlations can enhance
or suppress the ICME. The ICME must be analyzed in
magnets to study the relationship between the ICME and
electron correlations.
Unlike LPL, CPL creates a T -symmetry breaking ex-

ternal field because the helicity of the light changes under
T . In other words, both the IFE and the CPL-induced
NEE are active in nonmagnetic materials. Notably, the
IFE corresponds to the off-diagonal part of the CPL-
induced NEE because the off-diagonal part is nonzero
even in the nonresonant-frequency region (Ω/Z ≪ 0.10),
as shown in Fig. 7(b), which shows that it does not de-
pend on the absorption of photons. Therefore, we can
conclude from Fig. 7(b) that electron correlations can
enhance the IFE regardless of the light frequency.

VI. SUMMARY AND FUTURE OUTLOOK

We have derived a formalism for the nonlinear Edel-
stein effect (NEE) with a full quantum mechanical ap-
proach and analyzed the impact of electron correla-
tions on the current-induced NEE and the light-induced
NEE by performing numerical calculations on a Hubbard
model. The light-induced NEE is further classified as the

TABLE I. Response characteristics on the NEE to incident
electric fields: The real and imaginary parts of the self-energy
can enhance (↗) or suppress (↘) the NEE, respectively.
“✓/×” indicates whether the effect exists or not. We use
“✓⧹” if the effect is possible but not as large as “✓”.

Self-energy
Effect on

Current-induced Light-induced
the response

LPL CPL

Real ↗ ✓ ✓⧹ ✓⧹
Imaginary ↘ × × ✓
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responses under linearly polarized light (LPL) and circu-
larly polarized light (CPL). We have found that electron
correlations can either enhance or suppress nonlinear re-
sponses. The enhancement of the response is due to the
renormalization effect, which originates in the real part of
the self-energy. On the other hand, the suppression can
only occur in dissipative responses and depends on the
imaginary part of the self-energy. In other words, the real
part of the self-energy enhances the NEE, and the imagi-
nary part suppresses it. Specifically, the current-induced
NEE and the LPL-induced NEE include only the real-
part effect, while the CPL-induced NEE includes both
real-part and imaginary-part effects because it has a dis-
sipative intraband contribution. However, we found that
the light-induced NEE is not as strongly enhanced as the
current-induced NEE due to the frequency dependence
of the self-energy. Finally, table I summarizes the effects
of the self-energy on different types of the NEE.

In this work, we have systematically analyzed the light-
induced NEE which includes photomagnetic or optomag-
netic effects as specific cases. Notably, the obtained for-
mulas are based on Green’s functions, which allows us
to investigate these effects in strongly correlated electron
systems (SCES). We have focused on the optical spin
injection for the photomagnetic effects, and the inverse
Faraday effect (IFE) and the inverse Cotton-Mouton ef-
fect (ICME) for the optomagnetic effects. The opti-
cal spin injection is the diagonal response of the CPL-
induced NEE, and it can be either enhanced or sup-
pressed depending on the light frequency due to the

competition between the real-part and imaginary-part ef-
fects. On the other hand, the IFE is the off-diagonal re-
sponse, which is enhanced because of the absence of the
imaginary-part effect. We stress that the above analyses
focused on insulators. The light-induced NEE in metals
has the other intraband effect originating from the Fermi
surface contribution [50]. Therefore, the IFE in metals
would show a more complex behavior. In addition, we
have not discussed the impact of electron correlations on
the ICME in this study because it is an equilibrium phe-
nomenon that is inactive in nonmagnetic materials, while
the LPL-induced NEE is a nonequilibrium phenomenon
that is active even in them. We will leave these open
questions as future work.
Recently, T. Kodama et al. have experimentally de-

tected the current-induced nonlinear magnetoelectric ef-
fect on Pt-Py bilayers [88]. Their study suggests that
one can experimentally capture the current-induced NEE
in SCES. In addition, the equations formulated in this
study enable quantitative evaluation by combining first-
principles calculations with dynamical mean-field theory,
which will give material platforms for “strongly corre-
lated spintronics” mediated by nonlinear responses.
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APPENDIX A: DERIVATION OF THE RESPONSE FUNCTION BASED ON THE PATH INTEGRAL
MATSUBARA FORMALISM

The derivation of Eq. (10) in the main text consists of four main steps. We also derive the first-order response
function for reference and omit

∫
dk/(2π)d.

First, we express the response functions in terms of Matsubara Green’s functions. The response functions can be
expressed by functional derivatives as

χ
(1)
α;β(τ ; τ1) =

1

Z[0]

δ

δAβ(τ1)

δ

δBα(τ)

∣∣∣∣
B=A=0

Z[A,B] (A1)

=
∑

λ,η,σ,ρ

⟨ψ̄λ(τ)s
λη
α ψη(τ)ψ̄σ(τ1)J

σρ
β ψρ(τ1)⟩ , (A2)

χ
(2)
α;βγ(τ ; τ1, τ2) =

1

Z[0]

δ

δAγ(τ2)

δ

δAβ(τ1)

δ

δBα(τ)

∣∣∣∣
B=A=0

Z[A,B] (A3)

=− δ(τ1 − τ2)
∑

λ,η,σ,ρ

⟨ψ̄λ(τ)s
λη
α ψη(τ)ψ̄σ(τ1)J

σρ
βγψρ(τ1)⟩

+
∑

λ,η,σ,ρ,µ,ν

⟨ψ̄λ(τ)s
λη
α ψη(τ)ψ̄σ(τ1)J

σρ
β ψρ(τ1)ψ̄µ(τ2)J

µν
γ ψν(τ2)⟩ , (A4)

where ⟨X⟩ = Z[0]−1
∫
Dψ̄DψXe−S[0] is the functional integral over the action without external fields. Using Wick’s

theorem and neglecting vertex corrections, we can write these many-particle Green’s functions as products of single-
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particle Green’s functions and obtain

χ
(1)
α;β(τ ; τ1) = −

∑
λ,η,σ,ρ

sληα ⟨−ψη(τ)ψ̄σ(τ1)⟩ Jσρ
β ⟨−ψρ(τ1)ψ̄λ(τ)⟩ , (A5)

χ
(2)
α;βγ(τ ; τ1, τ2) = δ(τ1 − τ2)

∑
λ,η,σ,ρ

sληα ⟨−ψ̄η(τ)ψσ(τ1)⟩ Jσρ
βγ ⟨−ψ̄ρ(τ1)ψλ(τ)⟩

+
∑

λ,η,σ,ρ,µ,ν

(
sληα ⟨−ψη(τ)ψ̄σ(τ1)⟩ Jσρ

β ⟨−ψρ(τ1)ψ̄µ(τ2)⟩ Jµν
γ ⟨−ψν(τ2)ψ̄λ(τ)⟩+

[
(β, τ1) ↔ (γ, τ2)

])
. (A6)

Note that the other terms vanish because they are proportional to the expectation value of a current operator without
an applied electric field.
Second, we take the Fourier transformation and derive the response functions in terms of the Matsubara frequencies

as follows:

χ
(1)
α;β(iωn; iωn) =− 1

β

∑
ωl

Tr
[
sαG (iωl + iωn)JβG (iωl)

]
, (A7)

χ
(2)
α;βγ(iωn + iωm; iωn, iωm) =

1

β

∑
ωl

Tr

[
1

2
sαG (iωl + iωn + iωm)JβγG (iωl)

+ sαG (iωl + iωn + iωm)JβG (iωl + iωm)JγG (iωl)

]
+
[
(β, iωn) ↔ (γ, iωm)

]
, (A8)

where ωl = (2l + 1)π/β is a Fermionic Matsubara frequency, and ωn = 2nπ/β and ωm = 2mπ/β are Bosonic
Matsubara frequencies which originate from photons. Here, we define G (τ − τ ′) = ⟨−ψ(τ)ψ̄(τ ′)⟩, and use G (τ) =

β−1
∑

l G (iωl)e
−iωlτ and

∫ β

0
ei(ωn−ωm)τ = βδnm.

Third, we perform the sum over the Matsubara frequencies by using the identity β−1
∑

lX(iωl) = −
∮
C

dz
2πif(z)X(z)

where
∮
C
represents paths only around the poles of the Fermi distribution function f(z) = (eβz +1)−1 avoiding poles

of X(z), as shown in Fig. 8(a). Since each path can be transformed within a regular region [Fig. 8(b)], the response
functions can be calculated by

χ
(1)
α;β(iωn; iωn) =

∫ ∞

−∞

dε

2πi
f(ε)

× Tr
[
sαG (ε+ iωn)Jβ(G (ε+ iη)− G (ε− iη)) + sα(G (ε+ iη)− G (ε− iη))JβG (ε− iωn)

]
, (A9)

χ
(2)
α;βγ(iωn + iωm; iωn, iωm) = −

∫ ∞

−∞

dε

2πi
f(ε)

× Tr

[
1

2

(
sαG (ε+ iωn + iωm)Jβγ(G (ε+ iη)− G (ε− iη)) + sα(G (ε+ iη)− G (ε− iη))JβγG (ε− iωn − iωm)

)
+ sαG (ε+ iωn + iωm)JβG (ε+ iωm)Jγ(G (ε+ iη)− G (ε− iη)) + sαG (ε+ iωn)Jβ(G (ε+ iη)− G (ε− iη))JγG (ε− iωm)

+ sα(G (ε+ iη)− G (ε− iη))JβG (ε− iωn)JγG (ε− iωn − iωm)

]
+
[
(β, iωn) ↔ (γ, iωm)

]
. (A10)

Here, we use f(ε− iωn) = f(ε− iωn − iωm) = f(ε) and iωn, iωm ≫ iη.
Fourth, we perform the analytic continuation by iωn → ℏω1+ iη, iωm → ℏω2+ iη. By using that analytic functions

in the upper/lower plane become the retarded/advanced Green’s functions, we can describe the response functions as

χ
(1)
α;β(ω1;ω1)

=

∫ ∞

−∞

dε

2πi
f(ε)Tr

[
sαG

R(ε+ ℏω1)Jβ(G
R(ε)−GA(ε)) + sα(G

R(ε)−GA(ε))JβG
A(ε− ℏω1)

]
, (A11)

χ
(2)
α;β,γ(ωΣ;ω1, ω2)

= −
∫ ∞

−∞

dε

2πi
f(ε)

{
1

2
Tr
[
sαG

R(ε+ ℏωΣ)Jβγ(G
R(ε)−GA(ε)) + sα(G

R(ε)−GA(ε))JβγG
A(ε− ℏωΣ)

]
+Tr

[
sαG

R(ε+ ℏωΣ)JβG
R(ε+ ℏω2)Jγ(G

R(ε)−GA(ε)) + sαG
R(ε+ ℏω1)Jβ(G

R(ε)−GA(ε))JγG
A(ε− ℏω2)

+ sα(G
R(ε)−GA(ε))JβG

A(ε− ℏω1)JγG
A(ε− ℏωΣ)

]}
+
[
(β, ω1) ↔ (γ, ω2)

]
, (A12)
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FIG. 8. (a) Locations of the poles (×) of f(z) and the integral paths (blue curves) around them. Each integral path does not
span different regions of the analyticity of X(z). (b) Integral paths used to sum over the Matsubara frequencies. Each integral
path is along the real axis at a distance of ±iη from the analytical boundary of X(z). Note that these paths correspond to the
case of a second-order response function as X(z).

where ωΣ = ω1 + ω2. Using ζ
(2)
α;β,γ(ωΣ;ω1, ω2) = χ

(2)
α;β,γ(ωΣ;ω1, ω2)/i(ω1 + iδ)i(ω2 + iδ) and changing the argument

from ε to ω by ε = ℏω, we can derive Eq. (10) in the main text.

APPENDIX B: DC LIMIT

We first expand the single-particle Green’s function and the Fermi distribution function for small frequencies as
follows:

GR/A(ω + ω1) ≃ GR/A(ω) +
∂GR/A(ω)

∂ω
ω1, (B1)

GR/A(ω + ω1 + ω2) ≃ GR/A(ω) +
∂GR/A(ω)

∂ω
(ω1 + ω2) +

∂2GR/A(ω)

∂ω2
ω1ω2, (B2)

f(ω + ω1) ≃ f(ω) +
∂f(ω)

∂ω
ω1. (B3)

Using these equations, we can rewrite Eq (10) as

ζ
(2)
α;βγ(ω1 + ω2;ω1, ω2) =

ℏ
ω1ω2

∫ ∞

−∞

dω

2πi

{
A0(ω) +A1(ω)ω1 +A′

1(ω)ω2 +A2(ω)ω1ω2 +O(ω3
i )
}
, (B4)

where each component is given by

A0(ω) =

∫
dk

(2π)d
f(ω)Tr

[
1

2

(
sαG

R(ω)JβγG
R(ω)− sαG

A(ω)JβγG
A(ω)

)
+ sαG

R(ω)JβG
R(ω)JγG

R(ω)− sαG
A(ω)JβG

A(ω)JγG
A(ω)

]
+ (β ↔ γ), (B5)

A1(ω) =

∫
dk

(2π)d

(
∂f(ω)

∂ω

)
Tr
[
sαG

R(ω)JβγG
A(ω) + sαG

R(ω)JβG
A(ω)JγG

A(ω) + sαG
R(ω)JγG

R(ω)JβG
A(ω)

]
+

∫
dk

(2π)d
f(ω)

{
Tr

[
sα
∂GR(ω)

∂ω
JβγG

R(ω) + sα
∂GR(ω)

∂ω
JβG

R(ω)JγG
R(ω)

+ sα
∂GR(ω)

∂ω
JγG

R(ω)JβG
R(ω) + sαG

R(ω)Jγ
∂GR(ω)

∂ω
JβG

R(ω)

]
+ c.c.

}
, (B6)

A′
1(ω) = A1(ω;β ↔ γ), (B7)

A2(ω) =

∫
dk

(2π)d

(
∂f(ω)

∂ω

){
Tr

[
sα
∂GR(ω)

∂ω
JβG

R(ω)JγG
A(ω) +

1

2
sα
∂GR(ω)

∂ω
JβγG

A(ω)

]
− c.c.

}
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+

∫
dk

(2π)d
f(ω)

{
Tr

[
sα

∂

∂ω

(
∂GR(ω)

∂ω
JβG

R(ω)

)
JγG

R(ω) +
1

2
sα
∂2GR(ω)

∂ω2
JβγG

R(ω)

]
− c.c.

}
+(β ↔ γ).

(B8)

Here, we use (GR)† = GA when calculating c.c.. By using the following relation derived from the generalized Ward
identity,

(q/ℏ)∂kα
GR/A(k, ω) = GR/A(k, ω)Jα(k)G

R/A(k, ω), (B9)

Eqs. (B5) and (B6) become

A0(ω) =
q2

ℏ2

∫
dk

(2π)d
f(ω)∂kγ

∂kβ
Tr
[
sα(G

R(k, ω)−GA(k, ω))
]
, (B10)

A1(ω) =
q

ℏ

∫
dk

(2π)d

{(
∂f(ω)

∂ω

)
∂kγ

Tr
[
sαG

R(k, ω)Jβ(k)G
A(k, ω)

]
+ f(ω)

(
∂kγTr

[
sα
∂GR(k, ω)

∂ω
Jβ(k)G

R(k, ω)

]
+ c.c.

)}
. (B11)

Eqs. (B10) and (B11) vanish because they can be written as an integration over a derivative. Therefore, a divergence
does not occur even if we take the DC limit, and A2(ω) determines the current-induced NEE.

APPENDIX C: BAND REPRESENTATION FOR THE DC LIMIT

In this section, we derive the band representation for the DC limit by taking the weak-scattering limit. We define
the Green’s function of the n-th band as

GR/A
n (k, ω) =

1

ℏω − εn(k)± iη
, (C1)

where η is the scattering rate. Here, we shift the integral variable ω and include the chemical potential µ into the
Fermi distribution function; f(ω) = (1 + eβ(ℏω−µ))−1. Note that the weak scattering means that the scattering rate
is sufficiently small compared to the kinetic energy of electrons, 1/β, the energy of incident photons, ℏω1, and the
interband energy, εn − εm.
When we perform the partial integrals in Eq. (13), we ignore the Fermi sea terms, and Eq. (13) becomes

ζ
(2)
α;βγ =2ℏ

∑
n,m,l

∫
dk

(2π)d

∫ ∞

−∞

dω

2π

(
−∂f(ω)

∂ω

)
Im

(
snmα (k)

∂GR
m(k, ω)

∂ω
Jml
β (k)GR

l (k, ω)J
ln
γ (k)GR−A

n (k, ω)

+
1

2
snmα (k)

∂GR
m(k, ω)

∂ω
Jmn
βγ (k)GR−A

n (k, ω)

)
+ (β ↔ γ). (C2)

Furthermore, we divide ζ
(2)
α;βγ as

ζ
(2)
α;βγ = 2ℏ2q2

∫
dk

(2π)d

(
ζ
(2),A
α;βγ (k) + ζ

(2),B
α;βγ (k) + ζ

(2),C
α;βγ (k) + ζ

(2),D
α;βγ (k) + ζ

(2),E
α;βγ (k)

)
+ (β → γ), (C3)

where each component is given by

ζ
(2),A
α;βγ (k) =

1

2

∑
n

∫ ∞

−∞

dω

2π

(
−∂f(ω)

ℏ∂ω

)
Im
[
snnα

∂GR
n (ω)

∂ω
vnnβγG

R−A
n (ω)

]
, (C4)

ζ
(2),B
α;βγ (k) =

∑
n

∫ ∞

−∞

dω

2π

(
−∂f(ω)

ℏ∂ω

)
Im
[
snnα

∂GR
n (ω)

∂ω
vnnβ GR

n (ω)v
nn
γ GR−A

n (ω)
]
, (C5)

ζ
(2),C
α;βγ (k) =

∑
n,m
m̸=n

∫ ∞

−∞

dω

2π

(
−∂f(ω)

ℏ∂ω

)
Im
[
snnα

∂GR
n (ω)

∂ω
vnmβ GR

m(ω)vmn
γ GR−A

n (ω)
]
, (C6)
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ζ
(2),D
α;βγ (k) =

∑
n,m
m̸=n

∫ ∞

−∞

dω

2π

(
−∂f(ω)

ℏ∂ω

)
Im
[
snmα

∂GR
m(ω)

∂ω
vmn
β GR

n (ω)v
nn
γ GR−A

n (ω)
]
, (C7)

ζ
(2),E
α;βγ (k) =

1

2

∑
n,m
m̸=n

∫ ∞

−∞

dω

2π

(
−∂f(ω)

ℏ∂ω

)
Im
[
snmα

∂GR
m(ω)

∂ω
vmn
βγ G

R−A
n (ω)

]
,

+
∑
n,m,l

m ̸=n,l ̸=n

∫ ∞

−∞

dω

2π

(
−∂f(ω)

ℏ∂ω

)
Im
[
snmα

∂GR
m(ω)

∂ω
vml
β GR

l (ω)v
ln
γ G

R−A
n (ω)

]
. (C8)

where vα1···αn(k) = q−nJα1···αn(k) is a velocity operator. If we perform a partial integral on ζ
(2),B
α;βγ (k), Eq. (C5)

becomes

ζ
(2),B
α;βγ (k) =

1

2

∑
n

∫ ∞

−∞

dω

2π

(∂2f(ω)
ℏ∂ω2

)
Im
[
snnα GR

n (ω)v
nn
β GR

n (ω)v
nn
γ GR−A

n (ω)
]
. (C9)

Assuming the weak-scattering limit yields

GR−A
n (ω) =

−2iη

(ℏω − εn)2 + η2
∼ −2πi

ℏ
δ(ω − εn/ℏ), (C10)

where δ(x) is the Dirac delta function. Performing frequency integrals using this equation, we find

ζ
(2),A
α;βγ (k) = − 1

2η2

∑
n

Re(snnα vnnβγ )
(
−∂fn
∂εn

)
, (C11)

ζ
(2),B
α;βγ (k) =

1

2η2

∑
n

Re(snnα vnnβ vnnγ )
(∂2fn
∂ε2n

)
, (C12)

ζ
(2),C
α;βγ (k) = − 1

η2

∑
n,m
m ̸=n

Im

[
isnnα

vnmβ vmn
γ

εnm + iη

](
−∂fn
∂εn

)
, (C13)

ζ
(2),D
α;βγ (k) =

1

η

∑
n,m
m̸=n

Im

[
snmα vmn

β

(εnm + iη)2
vnnγ

](
−∂fn
∂εn

)
, (C14)

ζ
(2),E
α;βγ (k) =

1

2

∑
n,m
m ̸=n

Im

[
i
snmα vmn

βγ

(εnm + iη)2

](
−∂fn
∂εn

)
+

∑
n,m,l

m ̸=n,l ̸=n

Im

[
i

snmα vml
β vlnγ

(εnm + iη)2(εnl + iη)

](
−∂fn
∂εn

)
, (C15)

where εnm = εn − εm and fn = f(εn) = (1 + eβ(εn−µ))−1. Furthermore, by expanding the powers of η in a Taylor
series up to the order O(η), Eqs. (C13)∼(C15) can be rewritten as

ζ
(2),C
α;βγ (k) = − 1

η2

∑
n,m
m ̸=n

Im

[
isnnα

vnmβ vmn
γ

ε2nm + η2
(εnm − iη)

](
−∂fn
∂εn

)
(C16)

= − 1

η2

∑
n,m
m ̸=n

Im

[
isnnα

vnmβ vmn
γ

εnm

(
1− η2

ε2nm

)
+ ηsnnα

vnmβ vmn
γ

ε2nm

](
−∂fn
∂εn

)
+O(η) (C17)

=
∑
n,m
m̸=n

{
− 1

η2
Re

[
snnα

vnmβ vmn
γ

εnm

]
+Re

[
snnα

vnmβ vmn
γ

ε3nm

]
− 1

η
Im

[
snnα

vnmβ vmn
γ

ε2nm

]}(
−∂fn
∂εn

)
+O(η), (C18)

ζ
(2),D
α;βγ (k) =

1

η

∑
n,m
m ̸=n

Im

[
snmα vmn

β

(ε2nm + η2)2
vnnγ (εnm − iη)2

](
−∂fn
∂εn

)
(C19)

=
∑
n,m
m̸=n

{
1

η
Im

[
snmα vmn

β

ε2nm
vnnγ

]
− 2Re

[
snmα vmn

β

ε3nm
vnnγ

]}(
−∂fn
∂εn

)
+O(η), (C20)
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ζ
(2),E
α;βγ (k) =

1

2

∑
n,m
m ̸=n

Im

[
i
snmα vmn

βγ

(ε2nm + η2)2
(εnm − iη)2

](
−∂fn
∂εn

)

+
∑
n,m,l

m ̸=n,l ̸=n

Im

[
i

snmα vml
β vlnγ

(ε2nm + η2)2(ε2nl + η2)
(εnm − iη)2(εnl − iη)

](
−∂fn
∂εn

)
(C21)

=
1

2

∑
n,m
m ̸=n

Re

[
snmα vmn

βγ

ε2nm

](
−∂fn
∂εn

)
+

∑
n,m,l

m̸=n,l ̸=n

Re

[
snmα vml

β vlnγ
ε2nmεnl

](
−∂fn
∂εn

)
+O(η). (C22)

Replacing η with ℏ/τ where τ is the relaxation time and classifying ζ
(2)
α;βγ into the order of τ , we can obtain

ζ
(2),τ2

α;βγ = q2τ2
∑
n

∫
dk

(2π)d
Re

[
snnα vnnβ vnnγ

(∂2fn
∂ε2n

)
+
(
snnα vnnβγ + 2

∑
m(̸=n)

snnα
vnmβ vmn

γ

εnm

)(∂fn
∂εn

)]
+ (β → γ) (C23)

=
2q2

ℏ2
τ2
∑
n

∫
dk

(2π)d
snnα ∂kβ

∂kγ
fn, (C24)

ζ
(2),τ
α;βγ = 2ℏq2τ

∑
n,m
m ̸=n

Im

[
snmα vmn

β

ε2nm
vnnγ

](
−∂fn
∂εn

)
−

�����������������

2ℏq2τ
∑
n,m
m ̸=n

Im

[
snnα

vnmβ vmn
γ

ε2nm

](
−∂fn
∂εn

)
+ (β → γ) (C25)

= −q2τ
∑
n,m
m ̸=n

2Im

[
snmα vmn

β

ε2nm

]
∂kγfn + (β → γ), (C26)

ζ
(2),τ0

α;βγ = ℏ2q2
∑
n,m
m̸=n

∫
dk

(2π)d
Re

[
snmα
ε2nm

(
vmn
βγ +

∑
l(̸=n)

2
vml
β vlnγ
εnl

)
+ 2snnα

vnmβ vmn
γ

ε3nm
− 4

snmα vmn
β

ε3nm
vnnγ

](
−∂fn
∂εn

)
+ (β → γ).

(C27)

Here, we use

ℏ−1∂kβ
vnnγ = vnnβγ +

∑
m(̸=n)

vnmβ vmn
γ + vnmγ vmn

β

εnm
, (C28)

to derive Eq. (C24) and drop the second term of Eq. (C25) because it cancels out with the term when the indices
are interchanged. The τ2 term and τ term are consistent with Eq. (68) in [50] and Eq. (7) in [42], respectively. As
for the τ0 term, the second and third terms in Eq. (C27) agree with the Fermi surface terms of Eq. (9) in [55].

APPENDIX D: BAND REPRESENTATION FOR FINITE FREQUENCIES

In this section, we derive the band representation for finite frequencies by taking the weak-scattering limit. We first
introduce the reduced density matrix (RDM) formalism in the velocity gauge and compare it with the result of taking
the weak-scattering limit in Eq. (10). Note that the RDM formalism in the length gauge is derived in Ref. [50].

1. RDM formalism in the velocity gauge

It is only necessary to consider the dynamics of the RDM ρ̂k(t) in the subspace Vk labeled by the crystal momentum
k instead of the full density matrix ρ̂(t) because we can express ρ̂(t) as the tensor product of the RDMs; ρ̂(t) =∏

k ⊗ρ̂k(t). The matrix representation of the RDM is

ρknm(t) = Tr
[
ρ̂(t)ĉ†kmĉkn

]
, (D1)

where ĉ†kn and ĉkn are fermionic creation and annihilation operators. According to the von Neumann equation

iℏ∂tρ̂(t) = [Ĥ(t), ρ̂(t)], the equation of motion for the RDM can be described as

iℏ∂tρknm(t) = Tr
[
ρ̂(t)[ĉ†kmĉkn, Ĥ(t)]

]
. (D2)
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We here assume Ĥ(t) = Ĥ0 + V̂ (t) where Ĥ0 and V̂ (t) are unperturbed and perturbed Hamiltonians by an external
field F , respectively which are described as

Ĥ0 =
∑
n

∫
dk

(2π)d
εknĉ

†
knĉkn, V̂ (t) =

∑
n,m

∫
dk

(2π)d
ĉ†knVknm(t)ĉkm. (D3)

By using the anticommutation relations

{ĉkn, ĉk′m} = {ĉ†kn, ĉ
†
k′m} = 0, {ĉkn, ĉ†k′m} = (2π)dδnmδ(k − k′), (D4)

Eq. (D2) becomes

(iℏ∂t − εnm)ρknm(t) = [V (t), ρk(t)]nm, (D5)

where [V (t), ρk(t)]nm =
∑

l(Vnl(t)ρklm(t) − ρknl(t)Vlm(t)). We here present a phenomenological treatment of the
scattering rate [89]. The scattering rate η is introduced by modifying Eq. (D5) to

(iℏ∂t − εnm)ρ
(p)
knm(t) =

p∑
q=0

[V (p−q)(t), ρ
(q)
k (t)]nm − ipηρ

(p)
knm(t), (D6)

where ρ
(p)
k and V (p) are O(|F |p). In other words, the scattering rate is multiplied by the perturbation order p of the

RDM. Furthermore, taking the Fourier transformation results in

(ℏω − εnm + ipη)ρ
(p)
knm(ω) =

∫
dω1

2π

dω2

2π

p∑
q=0

[V (p−q)(ω1), ρ
(q)
k (ω2)]nm2πδω1+ω2,ω. (D7)

In the velocity gauge, we can describe Ĥ(t) as

Ĥ(t) = Ĥ0

(
k − q

ℏ
A(t)

)
= Ĥ0(k)− qv̂β(k)A

β(t) +
q2

2
v̂βγ(k)A

β(t)Aγ(t) + · · · . (D8)

If we perfome the Fourier transformation, V
(p)
nm(ω) (p = 1, 2) are given by

V (1)
nm(ω) = −qvnmβ

∫
dω1

2π
Aβ(ω1)2πδω1,ω, (D9)

V (2)
nm(ω) =

q2

2
vnmβγ

∫
dω1

2π

dω2

2π
Aβ(ω1)A

γ(ω2)2πδω1+ω2,ω. (D10)

Therefore, the p-th order RDMs (p = 0, 1, 2) become ρ
(0)
knm(ω) ≡ δnmfm2πδ(ω) and

ρ
(1)
knm(ω) =

∫
dω1

2π

qvnmβ fnm

ℏω1 − εnm + iη
Aβ(ω1)2πδω1,ω, (D11)

ρ
(2)
knm(ω) =

∫
dω1

2π

dω2

2π
Aβ(ω1)A

γ(ω2)2πδω1+ω2,ω

× q2
{
1

2

vnmβγ fmn

ℏω − εnm + 2iη
+
∑
l

1

ℏω − εnm + 2iη

(
vnlβ v

lm
γ fml

ℏω2 − εlm + iη
−

vnlγ v
lm
β fln

ℏω2 − εnl + iη

)}
, (D12)

where fnm = fn − fm. The expectation value of the spin density is calculated by the spin operator and the RDM as
follows;

⟨δŝα(ω)⟩ =
∑
n,m

∫
dk

(2π)d
snmα (k)ρkmn(ω). (D13)

In particular, the second-order spin density ⟨δŝα(ω)⟩(2) is

⟨δŝα(ω)⟩(2) = 2
∑
n,m

∫
dk

(2π)d
snmα ρ

(2)
kmn(ω) (D14)
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=

∫
dω1

2π

dω2

2π
Eβ(ω1)E

γ(ω2)2πδω1+ω2,ω

×− q2

(ω1 + iδ)(ω2 + iδ)

∑
n,m

∫
dk

(2π)d

{
1

2

snmα vmn
βγ fnm

ℏω − εmn + 2iη

+
∑
l

snmα
ℏω − εmn + 2iη

(
vml
β vlnγ fnl

ℏω2 − εln + iη
−

vml
γ vlnβ flm

ℏω2 − εml + iη

)}
+
[
(β, ω1) ↔ (γ, ω2)

]
. (D15)

Here, we multiply the factor 2 in the first line of the above expressions to include the term interchanging the indices
and frequencies of the electric fields. This additional contribution is reflected in the term,

[
(β, ω1) ↔ (γ, ω2)

]
.

Furthermore, we replace the vector potential A with the electric field E by using Eq. (12).

2. Weak scattering limit in Eq. (10)

If we consider Eq. (C10), we can describe Eq. (10) as

ζ
(2)
α;βγ(ω;ω1, ω2) = − q2

(ω1 + iδ)(ω2 + iδ)

∑
n,m

∫
dk

(2π)d

{
1

2

snmα vmn
βγ fnm

ℏω − εmn + iη

+
∑
l

snmα vml
β vlnγ

(ℏω − εmn + iη)(ℏω1 − εml + iη)(ℏω2 − εln + iη)

×
(
(ℏω1 − εml + iη)fn − (ℏω − εmn + iη)fl + (ℏω2 − εln + iη)fm

)}
+
[
(β, ω1) ↔ (γ, ω2)

]
, (D16)

where we change ωΣ with ω. Here, we replace ℏω + iη with ℏω + 2iη for a technical reason. We note that this
modification changes the results in the region of the peak (ℏω = εnm) and in the low-frequency region for the diagonal
response (n = m), as already pointed out in Refs. [56, 90]. Using this modification, we find

ζ
(2)
α;βγ(ω;ω1, ω2) = − q2

(ω1 + iδ)(ω2 + iδ)

∑
n,m

∫
dk

(2π)d

{
1

2

snmα vmn
βγ fnm

ℏω − εmn + 2iη

+
∑
l

snmα
ℏω − εmn + 2iη

(
vml
β vlnγ fnl

ℏω2 − εln + iη
−

vml
γ vlnβ flm

ℏω2 − εml + iη

)}
+
[
(β, ω1) ↔ (γ, ω2)

]
, (D17)

which is consistent with Eq. (D15).
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