
The Generic Temperature Response of Large Biochemical Networks

Julian B. Voits1 and Ulrich S. Schwarz1,2∗
1Institute for Theoretical Physics, University of Heidelberg, Germany

2BioQuant-Center for Quantitative Biology, University of Heidelberg, Germany
(Dated: March 27, 2024)

Biological systems are remarkably susceptible to relatively small temperature changes. The most
obvious example is fever, when a modest rise in body temperature of only few Kelvin has strong
effects on our immune system and how it fights pathogens. Another very important example is
climate change, when even smaller temperature changes lead to dramatic shifts in ecosystems.
Although it is generally accepted that the main effect of an increase in temperature is the acceleration
of biochemical reactions according to the Arrhenius equation, it is not clear how it effects large
biochemical networks with complicated architectures. For developmental systems like fly and frog,
it has been shown that the system response to temperature deviates in a characteristic manner
from the linear Arrhenius plot of single reactions, but a rigorous explanation has not been given
yet. Here we use a graph theoretical interpretation of the mean first passage times of a biochemical
master equation to give a statistical description. We find that in the limit of large system size and
if the network has a bias towards a target state, then the Arrhenius plot is generically quadratic, in
excellent agreement with experimental data for developmental times in fly and frog.

I. INTRODUCTION

High fever has a dramatic effect on our body, but from
the physics point of view, it is only a modest change: in-
creasing the human body temperature by three degrees is
less than one percent on the absolute temperature scale
[1]. An increase by the same amount due to global warm-
ing would most likely result in an extensive loss of biodi-
versity [2, 3]. As illustrated by these examples, complex
biological systems are remarkably susceptible to changes
in temperature. The explanation for these sensitive re-
sponses to temperature has been given already in the
19th century by Arrhenius, who suggested that the rates
of all chemical reactions are exponentially increased by
increased temperature [4]. This can be verified by an Ar-
rhenius plot, in which the logarithm of the kinetic rate
decreases in a linear fashion as a function of the inverse
temperature 1/T . This insight has been confirmed over
and over again for single chemical reactions and has led
to many important advances over the last century [5].
Moreover it has been made more rigorous by the theories
by Kramers [6, 7] and Eyring [8, 9] on potential barriers
as transition states in chemical reactions.

Biochemical systems do not behave differently from
chemical systems in this regard, except that they are
typically limited by protein denaturation at high tem-
peratures [10]. A large body of experimental work exists
on temperature effects in biochemical networks, ranging
from intracellular temperature effects [11–23] to the im-
pact of temperature on growth and development [24–33].
We refer to [34] for a comparison of more than 1.000 stud-
ies on biological temperature responses. From this body
of experimental work, the picture arises that the systems
response typically does not show the Arrhenius form of
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single reactions. However, a fundamental theoretical un-
derstanding of this striking observation is missing and it
is an open question if such networks show a generic re-
sponse to temperature changes. Yet this question is key
if one aims at understanding biochemical systems like the
immune system or ecosystems from a theoretical point of
view.

There is one subject area for which the investigation
of temperature effects has been relatively systematic and
comprehensive, and that is the case of biochemical oscil-
lators [35–46]. Here the general picture has emerged that
they often come with compensation mechanisms which
can assure that their functioning is unaltered within the
physiological temperature range. A notable example
for this general observation are circadian clocks, whose
function is to instruct the organism about upcoming
changes due to the diurnal cycle. Because temperature
changes are one of the main consequences of changing
solar input, circadian clocks are typically temperature-
compensated, to ensure reliable time measurements [39–
43]. Another important example of temperature compen-
sation is chemotaxis of swimming organisms like E. Coli,
which have to reliably find food sources despite temper-
ature changes and gradients in their environment [47].
Although the existence of temperature compensation for
biochemical oscillators and chemotaxis proves the rele-
vance of temperature for biochemical networks, it does
not instruct us about its generic effect, exactly because
in these cases it is compensated by specific mechanisms,
typically by the action of proteins that have evolved for
that purpose.

Because developmental systems are often shielded from
temperature changes (e.g. due to an egg shell or a pla-
centa which protects the embryo), they seem to have
evolved less temperature compensation and therefore
appear to be better model systems to study the ef-
fect of temperature changes on biochemical networks
[48]. Measurements of the prepupal development time of
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Drosophila under different temperature conditions have
been published almost one hundred years ago by Bliss
[24]. The results clearly showed a concave curve in the
Arrhenius plot, as opposed to the straight line usually
found for single reactions. About a decade later, Pows-
ner [25] obtained similar results for the embryonic, larval
and pupal phase of the development of Drosophila, al-
ready hypothesizing that this may be a consequence of
the complexity of the underlying network. More recently,
Crapse et al. [26] published a study in which the em-
bryonic development of Drosophila was subdivided into
twelve phases. The authors measured the temperature
dependence of the completion time of each of them. On
this level, a concave temperature response emerged as
well, which could be accurately described by a quadratic
fit in the Arrhenius plot. In the same study, similar re-
sults were also found for Xenopus laevis embryos. The
authors also performed simulations for a linear sequence
of Poisson processes with statistically distributed param-
eters, but the results could not fully reproduce the shapes
of the experimental curves [26]. Moreover, this approach
disregards the fact that the underlying biochemical net-
works is bound to be highly non-linear, with complicated
feedbacks and network motifs [49]. In general, although
there has been some work on understanding the temper-
ature dependence of development rates from first princi-
ples [50–54], the main body of work has remained empir-
ically [55–60].

Here we give a rigorous derivation why large biochem-
ical networks typically show a quadratic shape in the
Arrhenius plot. Our proof is based on concepts from
stochastic dynamics and graph theory and is valid for all
network architectures. Thus, our work solves the long-
standing question what is the generic temperature re-
sponse of large and complicated biochemical networks.
We also show that our results are in excellent agreement
with experimental data from developmental systems like
fly and frog. Finally, our approach paves the way to deal
with smaller biochemical systems and more specific tem-
perature responses, including protein denaturation.

II. RESULTS

A. Meaning of mean first passage time

A general framework to mathematically describe a
chemical reaction network is to express it as time-
dependent probability distribution pi(t) on N+1 discrete
states, where without loss of generality we denote states
1 and N + 1 as start and target states, respectively. For
a linear chain we thus would have N reactions, each with
forward and back directions, but in general, the system
could contain many loops. The time evolution of pi is
governed by the master equation[61]:

ṗi(t) =

N+1∑
j=1

(
kjipj(t)− kijpi(t)

)
, (1)

or in vectorial notation:

˙⃗pi(t) = Kp⃗(t), (2)

where kij is the transition rate from state i to state j and

Kij =

{
kji if i ̸= j

−
∑

m kim if i = j
. (3)

Realistic biochemical networks typically exhibit a large
number of intertwined reactions, meaning that N ≫ 1
and Eq. (1) then describes a large system of coupled
ordinary differential equations, for which it is difficult
to find a full mathematical solution. Another important
limitation is that often not all connections and/or rates
might be known. Together this raises the question if one
can make progress without explicitly solving the com-
plete system.
Indeed, certain features of the system Eq. (1) can be

computed without the need for a complete solution [63].
A notable example are first-passage times (also called
first-hitting times or exit times) [64, 65] and in partic-
ular, the mean first passage time (MFPT), which char-
acterizes the typical completion time of the process of
interest. The main example in this work is a develop-
mental process seen as the consequence of a complex net-
work of biochemical reactions. Developmental systems
are very large and complex and besides biochemistry also

FIG. 1: The activation of cell division by an epidermal
growth factor (EGF) via the mitogen-activated protein
kinase (MAPK) signaling pathway is a biochemical
network of central importance for developmental
processes. Not all involved steps are shown in this
cartoon (for more details see [62]).The mean first

passage time ⟨τ⟩ indicates how long it takes on average
for an external growth stimulus to trigger a reaction in
the nucleus. The guiding question in this work is to
describe the temperature dependence of ⟨τ⟩ in a
many-component biochemical network under the

assumption that the elementary reaction rates obey an
Arrhenius-like temperature dependence.
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involve many spatial processes, such as cytoskeletal rear-
rangements [66]. However, experimental measurement
of heat generation in zebrafish embryos combined with
modelling of biochemical networks suggests that even in
this case, the rate-limiting steps are in the biochemical
control system for the cell cycle [67], which in itself is
again a large and complex biochemical network [68]. To
give an instructive example of a small and transparent
biochemical network that is active during development
and that can be described with the master equation from
Eq. (1), in Fig. 1 we show the mitogen-activated protein
kinase (MAPK) signaling pathway triggered by epider-
mal growth factor (EGF). In this case, the MFPT ⟨τ⟩
describes the typical time for the signal to reach from
the plasma membrane to the nucleus, where gene expres-
sion is changed. Here we ask who such MFPTs can be
calculated for this and more complex networks, and how
they depend on temperature.

B. Solution with graph theory

1. Some concepts from graph theory

It is often a useful approach to represent networks de-
scribed by a master equation as weighted and directed
graphs, i.e., vertices and directed edges (pairs of ver-
tices), where the edges have a weight attributed to them
[69]. Then the vertices are the states, the directed edges
are the possible jumps and their weights are the jump-
ing rates kij from vertex i to vertex j. In the following,
graphs are always understood as weighted and directed.
Also the rates kij are simply referred to as edges, for the
ease of notation, setting kij = 0 if there is no transition
from i to j.

A tree rooted at a vertex i is a cycle-free graph where
there is a directed path from any other vertex to i. Note
that this requires i to be an endpoint because any out-
going edge from i would create a cycle. It is then also
clear that the root of a tree is unique. A disjoint union
of trees is called a forest. A spanning tree (forest) is a
subgraph of a given graph that contains all its vertices
and is a tree (forest). This is illustrated in Fig. 2.

(a) An example
graph

(b) A spanning
tree

(c) A spanning
forest

FIG. 2: The full directed graph on three vertices (a)
with a spanning trees rooted at 3 (b) and a spanning

forest of two trees rooted at 2 and 3 (c).

The (in-degree) Laplacian matrix L of a graph is de-
fined as:

Lij :=

{
−kij if i ̸= j∑
m ̸=i kim if i = j

, (4)

so the i-th entry on the main diagonal is the sum of
all incoming edges and Lij for i ̸= j are the negative
transition rates from i to j.

2. Graph theoretical interpretation of FPT moments

The standard text book approach to find first-passage
times (FPTs) is to evaluate them in Laplace-space[64,
65, 70]. However, this becomes increasingly cumbersome
for larger systems. Here we instead use a solution that
can be derived with graph theory [71, 72]. Consider the
master equation on a finite space i = 1, ...N + 1 with
time-independent rates kij . Then the formal solution to
Eq. (2) is given by:

p⃗(t) = exp(Kt)p⃗0, (5)

with exp denoting the matrix exponential and p⃗0 = p⃗(0).

Since 1 − pN+1 =
∑N

i=1 pi, Eq. (5) can be restricted to
only the first N components. In particular, K is then no
longer singular.
Asking for the FPT to reach state N + 1, this state

can be assumed to be absorbing, i.e., kN+1i = 0 for all i,
because we are only interested in the first time that it is
reached. The FPT density f(t) then follows from:

p(τ ≤ t) = pN+1(t) (6)

=⇒ f(t) = ṗN+1(t) = êTN+1Kp⃗(t)

= êTN+1Kexp(Kt)p⃗0, (7)

where êi denotes the i-th unit vector. We define the FPT
density to reach N + 1 starting at state i

fi(t) : = êTN+1Kexp(Kt)êi

= êTi exp(K
T t)KT êN+1, (8)

where the second equality uses the symmetry of the inner
product. In vector form, this now reads:

f⃗ = exp(KT t)KT êN+1 = exp(KT t)f⃗0, (9)

where f⃗0 = (k1,N+1, ...kN,N+1)
T . A distribution of this

shape is called phase-type distribution[73]. The moments
are obtained by integration by parts:

⟨τ⃗n⟩ =
∫

dt tnf⃗

= −n
(
KT
)−1

∫
dt tn−1exp(KT t)f⃗0

= −n
(
KT
)−1⟨ ⃗τn−1⟩. (10)
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FIG. 3: All spanning trees of the complete graph on
four vertices rooted at 4. The vertex labels are for all

graphs as indicated for the first one.

Equivalently we have

KT ⟨τ⃗n⟩ = −n⟨ ⃗τn−1⟩. (11)

Here ⟨τni ⟩ is the n−th moment of the FPT when starting
at state i. Iterative application of the formula above
yields:

⟨τ⃗n⟩ = n!
(
(−KT )−1

)n
1⃗, (12)

where 1⃗ = (1, 1, ..., 1)T . Note that

(−KT )ij=1,...N =

{
−kij if i ̸= j∑N+1
m=1 kim if i = j

(13)

can be interpreted as the submatrix obtained by deleting
the N + 1-th row and column of the Laplace matrix of
the weighted and directed graph identifying the states
with vertices and the edges with the transitions between
them, where kij is the weight for the edge going from i
to j.
By a generalization of Kirchhoff’s theorem to weighted

and directed graphs[74], the determinant of −KT is given
by:

det
(
−KT

)
=
∑

T[N+1]

w(T ), (14)

where T[N+1] denotes the spanning trees of the corre-
sponding graph rooted at N + 1 and their weights are
defined as w(T ) :=

∏
kij∈E(T ) kij , with E(T ) being the

edge set of T . Fig. (3) shows T[4] for the complete graph
on four vertices as an example.

(−KT )−1 can be expessed as:

(−KT )−1
ij =

(−1)i+j

det (−KT )
Mji, (15)

where Mji is the determinant of the (j, i)-minor of −KT ,
which can also be expressed as a sum with a graph the-
oretic interpretation[71]:

Mji = (−1)i+j
∑

Fi→j
[j,N+1]

w(F), (16)

FIG. 4: The two-tree spanning forests F1→1
[1,4] , F

1→2
[2,4] and

F1→3
[1,3] of the complete graph on four vertices rooted at

4. The vertex labels are for all graphs as indicated for
the first one.

where F i→j
[j,N+1] are the spanning forests with two trees of

the graph, one rooted at j and containing i and the other
one rooted at N + 1.
This yields

(−KT )−1
ij =

∑
Fi→j

[j,N+1]
w(F)∑

T[N+1]
w(T )

, (17)

and therefore, Eq.(12) becomes[71]:

⟨τ⃗n⟩ = n!

N∑
j0,...,jn=1

∏n
m=1

∑
F

jm−1→jm

[jm,N+1]

w(F)(∑
T[N+1]

w(T )
)n êj0 . (18)

The mean in particular reads [71, 72]:

⟨τ⟩ =

∑N
j=1

∑
F1→j

[j,N+1]
w(F)∑

T[N+1]
w(T )

. (19)

Note that similar graph theoretical counting schemes
also exist for the steady state distributions of ergodic
networks[75, 76]. In appendix A we show how this for-
mula can be used to derive MFPTs for two example net-
works for which the results are also known from Laplace
transforms.
Overall, the graph theoretical approach results in three

possible approaches to the FPTs of a homogeneous mas-
ter equation. The first one consists in solving the matrix
exponential as given in Eq. (9) or, alternatively, the cor-
responding differential equation:

˙⃗
f = Kf⃗, (20)

with f⃗0 as above. This is numerically feasible for systems
of moderate size. If no full analytic solution is available,
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the moments of the FPT can be computed by either in-
verting −KT algebraically and using Eq. (12) or by solv-
ing the combinatorial problem in Eq. (18).

First-passage time distributions can be broad, espe-
cially when one considers the statistics of rare events,
and higher moments are therefore often of interest[64].
For processes with a clear bias towards a final state, the
distribution of the completion time tends to be more nar-
row and its mean characterizes it sufficiently well[77],
which is likely to be the case for most developmental
systems. Indeed, the development times of Drosophila
embryos varies only by a few percent[78].

C. Effect of temperature

Temperature now enters the description via the rate
constants. By the Arrhenius equation[4], the tempera-
ture dependence of the kij can be described as follows:

kij = Aije
−

Eij
kBT = Aije

−
Eij [

J
mol

]

RT , (21)

where T denotes the temperature, kB Boltzmann’s con-
stant, Aij a (temperature-independent) prefactor and Eij

is the activation energy. For large systems like develop-
mental ones, one often expresses Eij in J

mol . Then kB
has to be replaced by the universal gas constant R.
Since most biological organisms have evolutionary

adapted to a relatively fixed thermal environment, it is
reasonable to rephrase the Arrhenius equation in terms
of the rate constant at a reference temperature T0, intro-
ducing Ki = ki(T = T0). T0 describes the temperature
at which the organism usually operates. For instance,
for homeothermic animals, the body temperature would
serve as the natural reference point, while for poikilother-
mic animals, it would be the typical temperature of the
environment. Ki can be seen as the standard rates, and a
crucial assumption for the following analysis is that these
standard rates are independent of the activation energies
Ei.
The Arrhenius equation can be expressed in terms of

these parameters as:

kij = Aije
−

Eij
kBT = kij(T = T0)e

−
Eij
kB

( 1
T − 1

T0
)
= Kije

−∆βEij ,
(22)

where ∆β := 1
kBT − 1

kBT0
.

D. Partition sums and generating functions

We note that the number of spanning trees on a com-
plete graph on N + 1 vertices is given by the Cayley
formula[79] as (N +1))N−1, so it grows faster then expo-
nential with N . Even though many of the rates vanish,
for sufficiently complex networks one can expect the nu-
merator and the denominator of Eq. (19) to be the sum
of many such graphs. This motivates the introduction of

a partition sum like quantity Z summing over the span-
ning trees:

ZT =
∑

T[N+1]

w(T ), (23)

and for the two-tree spanning forests:

ZF =

N∑
j=1

∑
F1→j

[j,N+1]

w(F), (24)

so that Eq. (19) reads in terms of these two quantities:

⟨τ⟩ = ZF

ZT
. (25)

Letting the sums in Eq. (23) and Eq. (24) run only over
the non-vanishing trees, all involved rates satisfy kij > 0,
and one can parameterize them as kij(a) = eaXi,j such
that kij(a = 1) = eXi,j is the rate of interest. Applying
this parametrization, one obtains for Z:

ZT (a) =
∑

T[N+1]

∏
kij∈E(T )

kij

=
∑

T[N+1]

e
a
∑

kij∈E(T ) Xij

=
∑

T[N+1]

eaXT , (26)

defining XT :=
∑

kij∈E(T ) Xij , which is the sum over all

Xij of a given tree. Now consider the Taylor-series of
lnZ in a = 0:

lnZT =

∞∑
n=0

∂n lnZT

∂na

∣∣∣
a=0

an

n!
(27)

The zeroth order coefficient is

lnZT (a = 0) = ln
( ∑

T[N+1]

1
)
= ln |T |, (28)

i.e., it is the logarithm of the total number of spanning
trees. For the first order, one finds:

∂ lnZT

∂a

∣∣∣
a=0

=

∑
T[N+1]

XT

|T |
= ⟨XT ⟩T , (29)

i.e., the mean of XT over the trees. For the second order,
one obtains:

∂2 lnZT

∂2a

∣∣∣
a=0

=

∑
T[N+1]

X2
T

|T |
−
(∑T[N+1]

XT

|T |

)2
= ⟨X2

T ⟩T − ⟨XT ⟩2T
= σ2

XT
, (30)
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i.e., the variance of XT over the trees. These results
are no coincidence: Eq. (26) is precisely the cumulant
generating function forXT such that one finds in general:

∂n lnZT

∂na

∣∣∣
a=0

= κXT
n . (31)

Hence,

lnZT (a) =

∞∑
n=0

κXT
n

an

n!
, (32)

and completely analogously for lnZF :

lnZF (a) =

∞∑
n=0

κXF
n

an

n!
. (33)

For the rates of interest (a = 1), the logarithm of Eq.
(25) becomes:

ln ⟨τ⟩ = lnZF (a = 1)− lnZT (a = 1)

=

∞∑
n=0

κXF
n − κXT

n

n!
. (34)

Note that Eq. (34) is completely general and as such
could be applied e.g. to the MAPK-system shown in Fig.
1. The cumulants are taken over the spanning trees and
the expression is precise if all kij are known for any N .
Also, our treatment so far is not restricted to biochemical
networks. In principle, it can also be applied to other
settings described by a master equation.

E. Limit of large system size

We now are in a position to study the limit of large net-
works (N ≫ 1). Because in this case not all details can
be known, at the same time we switch to a statistical
description for the reaction rates kij . To address tem-
perature dependance, we consider biochemical networks
with rates that have an Arrhenius-like temperature de-
pendence, that is to say, Xij = −∆βEij + lnKij , where
Eij and lnKij are assumed to be independent random
variables. For that case, using that

κXT
n = κ

−∆βET +
∑

kij∈E(T ) lnKij

n

= (−∆β)nκET
n + κ

∑
kij∈E(T ) lnKij

n , (35)

where ET :=
∑

kij∈E(T ) Eij , one obtains:

ln ⟨τ⟩ =
∞∑

n=1

(−1)n

n!
(κEF

n − κET
n )∆βn + const. (36)

Note that backward rates do not fully enter in the
spanning trees (cf. examples in appendix A) so the ac-
tivation energies on the trees and on the two-tree forests
are different in general. The result so far requires to know

the cumulants κET
n and κEF

n to get the global rate con-
stant. A priori, there may be infinitely many of them.
But there are two cases in which the description simpli-
fies:
Case 1: All Eij are independent and identically dis-

tributed with no difference between the energies on the
trees and the reduced trees. Then ET = EF + Eij (seen
as random variables) and Eq. (36) becomes:

ln ⟨τ⟩ =−
∞∑

n=0

(−1)n

n!
κEij
n ∆βn + const.

= ln ⟨e−∆βEij ⟩+ const, (37)

again using the definition of the cumulant generating
function.
For a developmental process, it seems rather reason-

able to assume that the clear direction in the network is
also reflected by the involved activation energies, so that
the distributions of the forward and backward rates is dif-
ferent. Thus case 1 is therefore most likely not applicable
to developmental systems.
Case 2 : ET and EF can be sufficiently well approxi-

mated by normal distributions, ET ∼ N (⟨E⟩T , σ2
T ) and

EF ∼ N (⟨E⟩F , σ2
F ). Then all but the first two cumulants

vanish, resulting in the following expression:

ln ⟨τ⟩ = (⟨E⟩T − ⟨E⟩F )∆β +
σ2
F − σ2

T
2

∆β2 + const.

(38)

yielding a quadratic dependence in the Arrhenius plot
(since ln ⟨τ⟩ = − ln k).
ET =

∑
kij∈E(T ) Eij and EF =

∑
kij∈E(F) Eij are the

sums of N , and N−1 independent random variables and,
since N ≫ 1, the central limit theorem suggests indeed
that this is a valid assumption. However, the crucial
point here is that the higher cumulants have to vanish
fast enough compared to the differences of the first two
terms, requiring sufficiently well-behaved convergence to
the normal distribution. The simplest case is that the
Eij already follow a normal distribution, which may be
different for the Eij on the trees and the two tree-forests,
their sums also follow a normal distribution and one ob-
tains:

ln ⟨τ⟩ =(N⟨Eij⟩T − (N − 1)⟨Eij⟩F )∆β

+
(N − 1)σ2

F,Eij
−Nσ2

T ,Eij

2
∆β2 + const. (39)

We thus have arrived at our main result: the Arrhenius
plot for large and complex biochemical networks is ex-
pected to show a quadratic dependence on the inverse
temperature, if they have a bias towards a specific target
state, as it must be the case for developmental systems.

F. Comparison to experimental data

Indeed our theoretical prediction is in striking agree-
ment with experimental data for developmental systems.



7

(a) Rate until the beginning of cellularization (stage B,
R2 = 0.9587)

(b) Rate until the development of horizontal posterior
midgut (stage E, R2 = 0.9909)

(c) Rate until full germ band retraction (stage H,
R2 = 0.9952)

(d) Rate until the first breath (stage K, R2 = 0.9868).

FIG. 5: Arrhenius plot (logarithmic rates against inverse temperature) for the rates to the different stages
(B,E,H,K) in the development of Drosophila melanogaster embryos, starting at the 14th nuclear division adapted
from [26] with quadratic fit to data. The labeling of the stages follows the convention from the original authors.

(a) Male specimen (R2=0,9950) (b) Female specimen (R2=0,9950)

FIG. 6: Logarithmic developmental rate to the pupal stage of Drosophila melanogaster versus inverse temperature
adapted from [24] with quadratic fit.
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(a) Embryonic development rates (R2=0,9976)

(b) Larval development rates for male specimen
(R2=0,9838)

(c) Larval development rates for female specimen
(R2=0,9808)

(d) Pupal development rates for male specimen
(R2=0,9990)

(e) Pupal development rates for female specimen
(R2=0,9981)

FIG. 7: Logarithmic developmental rate for the embryonic, pupal and larval stage of Drosophila melanogaster [25]
with quadratic fit.
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In a work published in 2021, Crapse et al.[26] conducted
a study on the development rates of Drosophila embryos
at different temperatures. To that end, the embryonic
phase of Drosophila was subdivided into 12 stages and
the rates to reach each stage were measured under dif-
ferent temperature conditions. The 14th nuclear division
in the zygote was chosen as the starting point (stage A)
and the first breath was chosen as the end point (stage
K). The cumulative rates starting with the 14th nuclear
division to 4 different stages (B,E,H,K in the notation of
the original authors) are shown in Fig. 5 as an example,
together with a quadratic fit performed in Python via
the numpy.poly1d command. The data were taken from
the supplementary material of the original publication,
which tabulated the measured times for the entire sam-
ple and all stages. The fitting parameters are listed in
appendix C. Note that these do not provide insights into
the microscopic structure of the network without further
assumptions since the coefficients of the quadratic func-
tions contain the differences of the first two moments
along the trees and forests as well as terms containing

1
kBT0

.

For the beginning of stage B (begin of cellularization),
no robust statement can be made about the goodness of
the quadratic fit. Since this is the first stage following the
starting point, it may well be that the assumption of a
sufficiently large underlying biochemical network is sim-
ply not valid. However, as more steps accumulate, such
as in the rates to stages E, H, and K, the quadratic shape
of the data points becomes more apparent. A quadratic
fit of the data was also suggested by Crapse et al.[26], al-
though without providing an explanation on fundamental
grounds, as done here.

Measurements of the temperature dependence of de-
velopmental rates of Drosophila were already performed
by Bliss[24] in 1926 for the prepupal development and by
Powsner[25] in 1935 for the embryonic, pupal, and larval
stages. Their results are shown in Fig. 6 and 7, respec-
tively, also with a quadratic fit to their data points. Both
articles list their data in a table and show them in a di-
agram, albeit together with piecewise linear functions as
fit instead of a global quadratic function. One sees that
in all cases, the quadratic fits predicted by our theory are
in very good agreement with the experimental data.

III. DISCUSSION

Here we have shown that the generic temperature re-
sponse of large biochemical networks is quadratic in the
Arrhenius plot, if the network has an imbalance of acti-
vation energies in forward versus background directions,
as it is to be expected for developmental systems. In or-
der to make general statements on such networks, we re-
sorted to a statistical description which does not require
knowledge of all activation energies; rather we only make
assumptions about their distribution, which is a reason-
able description for a large system size N , where not all

degrees of freedom can be known. Our discussion was
based on a general expression of the MFPT for arbitrary
networks, Eq. (19), which follows from graph theory [72]
and here has been derived in a pedagogical manner. We
then rewrote this formula in the language of statistical
physics. The coefficients appearing in the Taylor-series
of the logarithmic MFPT can be interpreted in terms
of the cumulants of the distribution of the sums along
the spanning trees and two-tree forests. If this sum can
be sufficiently well approximated by a Gaussian distribu-
tion, this yields a quadratic dependence in the Arrhenius
plot, as described by Eq. (38). This is our main result,
namely the quadratic response as the natural description
for complex biochemical networks. This result would not
apply for a network which has similar distributions for
the activation energies for forward and backward direc-
tions, but this is unlikely for developmental systems.

Crapse et al.[26] suggested that the observed devi-
ation from a pure Arrhenius-equation was due to the
biochemical reactions not following an ideal Arrhenius-
behavior, rather than a result of the complexity of the
system. They reached that conclusion based on the sim-
ulation of a linear chain of 1.000 reactions described by
an Arrhenius-equation, which failed to reproduce the ob-
served quadratic response in the Arrhenius plot. They
also conducted an experiment measuring the conversion
of NAD+ to NADH via GAPDH catalysis and found that
this reaction does not follow a pure Arrhenius-like depen-
dence. However, closer inspection of their simulations
shows that the activation energies were chosen uniformly
in an energy range from 20 kJ

mol − 100 kJ
mol and the prefac-

tors independently at T0 = 295K. Due to the absence of
backward rates and branching in this model, this leads
to Eq. (37), for which the uniform distribution results
in a series with infinitely many non-vanishing terms. If
the activation energies were chosen from a normal distri-
bution, this would yield a quadratic dependence also on
this level. In contrast, our results are much more general
and require less assumptions.

An important aspect of biochemical systems is that
above the melting temperature of the involved proteins,
the denaturation of the involved enzymes slows down the
reaction rates quite substantially, which is not described
by the Arrhenius equation [80, 81]. This could explain
the curvature of the Arrhenius plots seen at small val-
ues of the inverse temperature, in particular for temper-
atures of about 30◦C and above, where we observe that
the high temperature data points (low inverse tempera-
ture) in Fig. 5-7 all lie below the quadratic curve. In
the measurement by Powsner on the pupal development
rates (Fig. 7B), the decrease is most notable, and it is not
unlikely that this indicates that the denaturation thresh-
old for a protein that is important for the developmental
progression is surpassed at these temperatures. On the
other hand, however, this observation also suggests that
the larger part of the curve should not be affected by
protein denaturation, and that our theory indeed cap-
tures the generic behaviour of this system. It should be
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mentioned that Powsner already noticed in his work that
the combination of a few reactions, each described by an
Arrhenius equation, does not necessarily yield a global
Arrhenius equation and hypothesized that the observed
temperature response may be a consequence of the com-
plexity of the underlying biochemical network. However,
he did not give an mathematical description as provided
here. In the future, it might be interesting to extend
our theory by the effect of protein denaturation, e.g. by
introducing it as additional state in the network.

The observation that the development rates can be well
described by a quadratic fit in the Arrhenius plot does
not seem to be limited to Drosophila. Crapse et al.[26]
provide similar results for the development of Xenopus
laevis embryos, and Ratkowsky et al.[27] found empir-
ically that the growth of bacterial colonies can be well
described by a quadratic fit in an Arrhenius plot.

The discussion in this work was limited to the mean of
the first-passage time, although our formalism in princi-
ple covers all higher moments, too. The focus on the first
moment seems justified by the observation that the coef-
ficient of variation (standard deviation divided by mean)
for the development times of Drosophila embryos is in the
order of a few percent across different temperatures[78].
This results most likely from a strong forward bias for
the rates of a developmental network with many steps
like cell cycle checkpoints and cell division being practi-
cally irreversible. It is well known and follows from our
formalisms that this tends to yield sharp FPT distribu-
tions around the mean in the limit of large networks[77]
(compare also the example in appendix B).

The framework developed in this work was motivated
by describing the temperature dependence of complex
networks where not all degrees of freedom are known.
Here we focused on development, but as mentioned in
the introduction, there exist other complex biological sys-
tems with interesting temperature dependence, in partic-
ular in the contexts of fever and climate change. We also
note that our results are relatively general statements
about the mean first passage time of master equations
and are therefore not per se limited to biochemical net-
works and temperature effects. The idea to describe large
reaction networks from a coarse-grained perspective with
appropriate approximations has been discussed elsewhere
[82], but neither the mean first passage time nor the pos-
sibility to describe the rate constants on a statistical basis
the way proposed here seem to be explored so far. First
passage-time problems are ubiquitous in biology and bio-
chemistry [83] and it is very interesting how far one can
get without knowing all the details of the system under
consideration.
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Appendix A: Obtaining the MFPT by counting

To illustrate the application of the graph theoretical
approach used here, we derive the MFPTs for two ex-
amples which also can be obtained by applying Laplace-
transforms[77].

One-step master equation

Consider the one-step master equation with forward
rates ki and backward rates ri as depicted in Fig. (8).

FIG. 8: A one-step master equation from state 1 to
state N + 1, the latter one being absorbing.

Note that there is only one spanning tree with all flow
directed towards N + 1, namely the one consisting only
of the forward rates, meaning that:

∑
T[N+1]

w(T ) =

N∏
i=1

ki. (A1)

The F1→j
[j,N+1] are the chains which start off towards the

right and switch their direction at j and possibly also at
a later vertex m. This is shown in Fig. (9). Therefore,

FIG. 9: Counting the F1→j
[j,N+1] in Fig. (8).

one gets:

N∑
j=1

∑
F1→j

[j,N+1]

w(F) =

N∑
m=1

m∑
j=1

j−1∏
α=1

kα

m∏
β=l+1

rβ

N∏
γ=m+1

kγ .

(A2)
By Eq. (19), the MFPT is thus given by:

⟨τ⟩ =
N∑
i=1

i∑
l=1

1

kl

i∏
m=l+1

rm
km

. (A3)
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Simple Kinetic Proofreading

One can also derive the MFPT for a simple kinetic
proofreading (KPR) scheme shown in Fig. 10 by correct
counting. Again, there is just one spanning tree, namely

FIG. 10: A simple KPR network on N + 1 states
consisting of a chain of forward rates ki and reset rates

γi.

the one containing all ki. So one has again:

∑
T[N+1]

w(T ) =

N∏
i=1

ki. (A4)

The F1→j
[j,N+1] are the graphs with forward rates up to

some vertex j and either ki or γi for any i > j. This is
illustrated in Fig. 11. Therefore, one gets:

FIG. 11: Counting the F1→j
[j,N+1] in Fig. (10).

N∑
j=1

∑
F1→j

[j,N+1]

w(F) =

N∑
j=1

j−1∏
i=1

ki

N∏
m=j+1

(km + γm) (A5)

and obtains for the MFPT:

⟨τ⟩ =
N∑
j=1

1

kj

N∏
m=j+1

(1 +
γm
km

). (A6)

For the case that ki = k and γi = γ, this expression
simplifies to:

⟨τ⟩ =
N∑
j=1

1

k
(1 +

γ

k
)N−j =

(1 + γ
k )

N − 1

γ
. (A7)

Appendix B: First-Passage Times for a Linear Chain
of Reactions

The simplest example of a large network is a linear
chain of irreversible reactions, i.e., ki,j = kiδi+1,j , as il-
lustrated in Fig. (12)

FIG. 12: A linear chain of N reactions with reaction
rates ki,j = kiδi+1,j .

Then the corresponding graph is already a tree and
thus its own unique spanning tree:

∑
T[N+1]

w(T ) =

N∏
i=1

ki. (B1)

Also, for the spanning forests it is easy to see that there
is either exactly one or no combination:

∑
Fi→j

[j,N+1]

w(F) =
1

kj

N∏
i=1

kiδi≤j . (B2)

FIG. 13: For i ≤ j, the only corresponding spanning
forest is the one without the kj-edge. For i > j, there is

no such tree.

Then,

(−KT )−1 =


k−1
1 k−1

2 . . . k−1
N

0 k−1
2 . . . k−1

N
...

...
. . .

...
0 0 0 k−1

N

 . (B3)

One finds for the first two moments:

⟨τi⟩ =
N∑
j=i

1

kj
, (B4)

⟨τ2i ⟩ = 2

N∑
j=1

1

kj

N∑
l=j

1

kl
=
( N∑

j=1

1

kj

)2
+

N∑
j=1

1

k2j
, (B5)

which yields the standard deviation:

στ1 =
( N∑

j=1

1

k2j

) 1
2

(B6)

and the coefficient of variation (CV) reads:

CVτ1 =
στ1

⟨τ1⟩
=

( ∑N
j=1

1
k2
j

(
∑N

j=1
1
kj
)2

) 1
2

, (B7)
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meaning that CVτ1 → 0 for N → ∞ if most of the ki are
of comparable sizes[84], so the relative variation vanishes
in the limit of large chains.

If ki = k ∀i, one finds in general:

⟨τn⟩i =
1

kn
(N + n− i)!

(N − i)!
, (B8)

which are precisely the moments for an N − i +
1-dimensional Erlang distribution (Γ-distribution with
non-negative integer as shape parameter) with λ = 1

k :

fτi(t) =
kN−i+1

(N − i+ 1)!
tN−ie−kt, (B9)

as it should be since this is precisely the distribution
that arises from summing up N − i iid exponentially dis-
tributed random variables.

Note that the coefficient of variation (CV) reads:

CVτ1 =
στ1

⟨τ1⟩
=

1√
N

N→∞→ 0, (B10)

so the relative deviation from the mean becomes increas-
ingly small as the system size increases.

Appendix C: Fitting parameters for quadratic fits in
main text

The data in Fig 5-7 were fitted to a quadratic function
of the shape ln k = aT−2 + bT−1 + c. The corresponding

parameters are listed in the two following tables:

Figure a [107K2 lnmin−1] b [105K lnmin−1] c [102 lnmin−1]
5a -1.06 0.68 -1.10
5b -1.81 1.19 -1.98
5c -1.96 1.30 -2.17
5d -1.71 1.13 -1.88

TABLE I: Fitting parameters for the quadratic fit of
the data from[26] shown in Fig. 5 in the main text

Figure a [107K2 ln h−1] b [105K ln h−1] c [102 ln h−1]
6a -1.48 0.97 -1.60
6b -1.47 0.97 -1.59
6a -1.48 0.97 -1.60
7a -1.74 11.39 -1.88
7b -2.62 1.73 -2.89
7c -2.36 1.56 -2.59
7d -1.80 1.18 -1.96
7e -1.75 1.15 -1.91

TABLE II: Fitting parameters for the quadratic fit of
the data from[24] and [25] shown in the main text in

Fig. 6 and Fig. 7, respectively
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