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Abstract

In the current landscape, the predominant methods for identifying manufac-
turing capabilities from manufacturers rely heavily on keyword matching and
semantic matching. However, these methods often fall short by either over-
looking valuable hidden information or misinterpreting critical data. Con-
sequently, such approaches result in an incomplete identification of manu-
facturers’ capabilities. This underscores the pressing need for data-driven
solutions to enhance the accuracy and completeness of manufacturing ca-
pability identification. To address the need, this study proposes a Graph
Neural Network-based method for manufacturing service capability identifi-
cation over a knowledge graph. To enhance the identification performance,
this work introduces a novel approach that involves aggregating information
from the graph nodes’ neighborhoods as well as oversampling the graph data,
which can be effectively applied across a wide range of practical scenarios.
Evaluations conducted on a Manufacturing Service Knowledge Graph and
subsequent ablation studies demonstrate the efficacy and robustness of the
proposed approach. This study not only contributes a innovative method for
inferring manufacturing service capabilities but also significantly augments
the quality of Manufacturing Service Knowledge Graphs.

Keywords: Node Classification, Link Prediction, Graph Neural Network,
Manufacturing Service Capability, Manufacturing Service Knowledge Graph
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1. Introduction

1.1. Background and Motivation

Recent global crises, including the pandemic, the shift towards near-
shoring in manufacturing, and escalating geopolitical tensions, have sig-
nificantly impacted supply chains across all major industries [1]. Small
manufacturing companies, which are the backbone of most manufacturing
economies [2], have been disproportionately affected by supply chain disrup-
tions, with delays in manufacturing and shipping, and shortages across the
board [3]. The crises prevent these enterprises, which typically rely on inter-
personal connections and regional web directories to look for new business
prospects. Therefore, it is vital to implement advanced and effective tactics
for the identification of small manufacturing firms and their capabilities to
assist them in being discovered and vetted into the global supply chains[4].

1.2. Challenges in Identifying Manufacturing Service Capabilities

Manufacturing Service Capability (MSC) [5] is the ability of manufac-
turing enterprises to effectively integrate and configure various resources,
reflecting their proficiency in completing specific tasks. This comprehensive
concept spans the entire life-cycle of manufacturing, including design, sim-
ulation, and production capabilities. It’s evidenced in various forms, from
industry-recognized certifications like Capability Maturity Model Integration
(CMMI), indicating a commitment to quality and consistency, to specific
manufacturing processes such as drilling and milling. MSC also covers the
adaptability of manufacturers to serve different industries, like medical in-
dustry and automotive industry, and their capacity to work with diverse
materials, such as plastics and steel.

Traditional methodologies constrain the scope of MSC identification, re-
stricting it to a limited scale. Within the business sector, platforms such
as Thomasnet [6] and Google Maps necessitate that manufacturers indepen-
dently catalog their competencies. This self-reporting approach slows down
the expansion of manufacturing business networks. In the academic context,
there is always an assumption that MSC data is pre-defined and uniformly
structured for supply-demand matching [7, 5]. However, in reality, a sig-
nificant portion of MSC data, particularly from smaller, local businesses, is
derived from their distinct and varied website structures. To effectively ad-
dress this, there’s a critical need to develop a universally adaptable method
that can autonomously and efficiently identify MSCs on a much broader scale.
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Existing approaches to automatically identifying MSC [8] rely on key-
word matching or Natural Language Processing (NLP). Keyword match-
ing involves identifying keywords such as “CNC machining” or “injection
molding” on a manufacturer’s website. NLP-based methods analyze relevant
information from textual data sources, such as websites, catalogs, or docu-
ments. For instance, Named Entity Recognition (NER) can be adopted to
identify specific MSCs [9]. The widespread application of various methods in
identifying and categorizing businesses and services has greatly contributed
to the optimization of supply chains and decision-making processes in the
manufacturing domain [10, 11].

However, these methods often suffer from two critical limitations: wrong
identification and misidentification. Wrong identification occurs when a busi-
ness or service is incorrectly categorized. For example, a company selling
Computer Numerical Control (CNC) machines may be incorrectly identified
as a CNC machining provider, even if it cannot provide CNC machining
services [12]. This misclassification can lead to incorrect assumptions about
the company’s capabilities, resulting in inappropriate decisions and actions
by other parties, such as suppliers or potential customers. Misidentification
happens when a business or service’s capabilities are not fully recognized or
understood. For instance, manufacturers skilled in titanium processing might
be integrated into the supply chain for aircraft or medical device production,
given that titanium is a frequently used material in the aerospace indus-
try [13] or the medical industry [14]. However, if these capabilities are not
accurately identified, the manufacturer may be overlooked for contracts or
collaborations in these sectors. It is crucial to uncover, integrate, and utilize
hidden information in manufacturing data sources to aid decision-making,
and risk management, and gain insights into the flow of goods, materials,
and resources through the supply chain.

1.3. Objectives

Recently, Knowledge Graphs (KGs) and Graph Neural Networks (GNNs)
are of paramount importance in data representation and knowledge extrac-
tion [15, 16]. KGs effectively manage complex data with interconnected
entities, offering scalability and ease of updates. GNNs complement this by
adeptly learning from data’s complex relationships and patterns, particularly
useful in graph-structured data. In the realm of MSC identification, combin-
ing KGs and GNNs leads to a more adaptable, precise, and scalable approach.
This integration is key in accurately distinguishing the unique characteristics
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of various manufacturers, thus reducing misidentifications. This synergy has
propelled the development of GNN-based systems for digital supply chain
representation in manufacturing, as further detailed in recent research [17].

This paper seeks to harness the power of KGs and GNNs to enhance
the discoverability of small manufacturing businesses and their MSCs by
prospective clients. The identification of MSCs enabled by KG and GNNs
significantly aids startups, entrepreneurs, and researchers in gaining insights
from manufacturing data to select potential business partners. In this work,
we employ an automated approach to construct a Manufacturing Service
Knowledge Graph (MSKG) as introduced in [18], serving as the foundational
framework for our analysis. An MSKG is comprised of two distinct node
categories: “Manufacturer” and “Service”. It encapsulates two types of re-
lational links: one that establishes connections between “Manufacturer” and
“Service” nodes, and another that delineates affiliations amongst “Service”
nodes. The central challenge lies in effectively modeling the problem using
a graph-based approach while concurrently enhancing performance through
the strategic application of feature engineering methods. The task of model-
ing the problem is not only selecting the most appropriate architecture but
also modifying the setting of models and data especially for addressing the
business objective. It also includes designing effective feature representations
that can significantly elevate the overall predictive power and generalizability
of our method. The main contributions highlighted in this paper are:

1. We introduce a methodology to deduce MSCs by graph-based node
classification, offering unique advantages in the realm of graph-based
information inference.

2. We propose a feature engineering approach tailored for MSKGs that
enhances the performance of graph-based analysis by aggregating in-
formation from nodes’ neighborhoods.

3. We propose to mitigate the issue of node class imbalance in real-world
heterogeneous graphs by generating synthetic edges and nodes, which
can be generalized to various practical scenarios.

An example to identify MSC using our approach is shown in Figure 1.
Suppose we aim to determine if a manufacturer possesses the capability to
cater to the automotive industry and handle copper processing. Initially,
an MSKG is formulated by gleaning textual data from different manufac-
turing data sources. Then, the graph’s nodes and edges are synthesized to
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balance the node classes of two distinct node classification objectives: “Does
the manufacturer serve the automotive industry?” and “Does the manu-
facturer process copper?”. Following this, we aggregate information from
neighboring nodes within the graph. In the final phase, we employ GNN
algorithms to train two distinct node classifiers. These classifiers’ outcomes
then help ascertain the manufacturer’s capability in the automotive sector
and copper processing. The refinement in the second and third steps ensures
enhanced precision in node classification, leading to more accurate insights
into manufacturing competencies.

For the rest of the paper, we review the related work in Sec. 2. The studied
problem is defined and the details of the proposed method are presented
in Sec. 3. In Sec. 4, the experiments are conducted to demonstrate the
effectiveness of our method. In Sec. 5, the limitations and future work of our
method are concluded.

Figure 1: An Example of Identifying MSC
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2. Related Work

2.1. Manufacturing Data Sourcing and Inference

Currently, there are various methods for manufacturing data sourcing.
Key term matching and Term Frequency-Inverse Document Frequency (TF-
IDF) [19] help with extracting essential words from manufacturing textual
data [20]. K-means and Latent Dirichlet Allocation (LDA) algorithms are
used for document clustering and topic modeling in manufacturing text data
mining [21]. When handling a large amount of manufacturing textual data,
several forms of NLP have been constructed through different kinds of em-
bedding representation schemes. For example, Word2Vec [22], Doc2Vec [23],
Bidirectional Encoder Representations from Transformers (BERT) [24], Ope-
nAI embedding [25] are widely used in dealing with content embedding in
the manufacturing domain. Named Entity Recognition is applied to identify
goods, materials, and resources in different parts of the supply chain [26].

With the development of the digital supply chain, applications of data-
driven inference in the manufacturing domain have been evolving in recent
years. There are inference systems constructed which are related to evalu-
ating management of supply chain performance [27], supply chain risks [28]
or downstream demand inference [29]. Manufacturing information inference
is inferring information about a manufacturing process or service based on
available data and evidence, which can help suppliers to optimize their cost-
effectiveness, and customer satisfaction as well as be noticed and considered
by more potential clients. Villas-Boas [30]conducts inference on vertical re-
lationships between manufacturers and retailers. A framework to enable
the reusability of manufacturing knowledge through inference rules applied
to manufacturing ontologies is introduced in [31]. Cao et al. [5] propose a
model for estimating MSCs, specifically emphasizing machining and produc-
tion services. Another framework for canonicalizing MSC models is proposed
using the reference ontology [32]. But none of them is about gaining insight-
ful inference on the latent relationships between manufacturers and various
manufacturing services.

2.2. Knowledge Graph Construction from Unstructured Data

Constructing a KG from unstructured data is more challenging due to the
inherent difficulty in accurately extracting entities and relationships from
such data. In the healthcare domain, Health KG Builder is introduced
by [33], which can be used to construct disease-specific and extensible health
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KGs from unstructured sources. Zhu et al. [34] focuses on the application of
KG in the traditional geological field and proposes a novel method to con-
struct KG from complex geological unstructured data. Li and Starly [35]
presents a bottom-up approach to parse through unstructured text available
on the websites of small manufacturers across the United States to construct
a MSKG [18].

2.3. Current Graph Neural Networks and Downstream Applications

GNNs are able to effectively extract complicated, non-linear relation-
ships in datasets. One type of GNN is Message-passing neural networks
(MPNNs) [36] which utilize a message-passing mechanism to aggregate in-
formation from neighboring nodes in the graph and accordingly update the
delineation of each node. GraphSAGE [37] and graph convolutional networks
(GCNs) [38], SGC-GNNs [39] and EdgeConv [40] are MPNNs. APPNP [41]
incorporates personalized PageRank scores into the propagation process to
improve prediction accuracy, making it a specialized variant within the MPNNs.
Another type is Graph Generative Models (GGM) which are used for generat-
ing synthetic graph structures based on probabilistic models such as Markov
random fields or Bayesian networks. Instances of GGMs include graph re-
current neural networks (GRNNs) [42] and graph generative adversarial net-
works (GraphGANs) [43]. Last is Graph Transformer Models [44] which are
built on the transformer framework, such as graph transformers (GTrs) [45]
and graph attention transformers (GATs) [46].

With the rapid development of GNNs, they have demonstrated state-
of-the-art performance on diverse graph downstream applications. Three
typical tasks are node classification [47], link prediction [48] and graph clas-
sification [49]. Node classification is when we have a KG with a certain
ratio of nodes labeled, a classifier is trained on those labeled nodes so that it
can classify the unlabeled nodes in the graph. Class imbalance has been an
essential challenge in node classification.

2.4. Class Imbalance

Class imbalance has been a vital research topic in machine learning for
years. Numerous tasks, like fraud detection [50] and sentiment analysis [51]
suffer from class imbalance. The main approach is changing the data itself
or the way the model is used to solve class imbalance, such as undersampling
and oversampling. Undersampling is a technique that reduces the number of
instances in the majority class so that it is more evenly represented with the
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minority class. When removing instances from the majority class, we may
lose essential information in those instances which could negatively affect the
performance of the models. Oversampling is duplicating existing instances
in minority classes which can mitigate class imbalance but result in over-
fitting in the data training process. Many variations of oversampling have
been proposed to improve its effectiveness. Synthetic Minority Over-sampling
Technique (SMOTE) [52] is one of the most popular over-sampling methods.
It involves generating synthetic minority class samples by interpolation to
multiply the representation of the minority class. To address node class
imbalance issue in a graph, current methods such as GraphSMOTE [53] and
GATSMOTE [54] are proposed, which leverage synthetic data generation to
balance class distribution, enabling models to better handle underrepresented
classes.

2.5. Feature Engineering

Feature engineering is a fundamental component of machine learning that
profoundly influences model performance. Data transformation techniques
encompass one-hot encoding, feature scaling, etc., which are crucial for man-
aging data heterogeneity and scaling issues. Dimension reduction approaches,
such as t-distributed stochastic neighbor embedding (t-SNE) [55], Principal
component analysis (PCA) [56] and feature selection, aid in managing high-
dimensional data and curating a subset of the most informative features.
Additionally, domain-specific knowledge often guides the creation of task-
specific features [57, 58]. The choice of feature engineering method depends
on the data type and problem domain. Hence, it is essential to select and
customize the strategy of feature engineering based on the characteristics
of the KGs in the manufacturing domain to enhance the model’s predictive
ability in identifying MSCs.

3. Methodology

3.1. Problem Statement

The objective of our paper is to identify if a manufacturer is capable of a
specific potential manufacturing service, which can be converted to a graph-
based information inference problem. The reasons are as follows: first, the
representations of MSCs is easy to show in graphs. Manufacturers, as well as
their services (like machining and automotive industry), can be represented
as nodes, while the relationships between them, indicating manufacturers’
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service capability, can be represented as edges. Second, graph has scalability
and flexibility. As more data about new manufacturers and their services
are gathered, the graph can be continuously expanded. For instance, if a
new service becomes relevant to the automotive industry, it can be easily
incorporated into the graph, allowing for dynamic updating of inferences.
Last but not least, the inference can be conducted through connectivity in
the graph. If a new manufacturer provides both machining and 3d printing,
and these capabilities are commonly found among manufacturers serving
the automotive industry (as seen in the graph), then it’s likely that this
manufacturer also has potential in the automotive domain. This conclusion
can be inferred based on the proximity and connectivity patterns in the
graph.

In this study, our objective is to infer MSCs of manufacturers, which
is achieved by utilizing the connections identified within the MSKG. Our
approach offers a detailed assessment of the manufacturers’ expertise and
proficiency across diverse manufacturing domains. Within the MSKG, the
connections between manufacturers and services are classified into four key
categories: “provide”, “certified with”, “serve in”, and “process on”. These
categories are directly linked to the targeted manufacturing services, encom-
passing areas such as manufacturing processes, certifications, industries, and
materials.

G = {M,S,A, F} is the MSKG used for graph-based information infer-
ence. The attributed network is depicted by various elements, as follows:

• M = {m1, ...,mn} is a set of n nodes, where each node represents a
unique manufacturing business. Within the graph, these nodes can be
oversampled, as various manufacturer nodes can potentially link to a
group of same manufacturing service nodes. Mt is a subset of M used
in training.

• S = {s1, ..., si} is a set of i manufacturing service nodes, where each
node represents a unique entity so they can’t be oversampled within
the graph. St is a subset of S used in training.

• A ∈ Rp×p is the adjacency matrix of G, p = n + i. Akm is essentially
a binary indicator that tells you whether the vertices corresponding to
row k and column m are directly connected in G.

• F ∈ Rp×d is the node attribute matrix, where F [j, :] ∈ R1×d is the node
attributes of node j. d is the dimension of the node attributes.
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• Y ∈ Rp represents the class information for nodes in G. Yt is a subset
of Y for training. The task of node classification is to predict whether
a given node represents a manufacturer as well as it is connected to a
designated manufacturing service node. The manufacturer nodes that
have direct relationships with these services are labeled as 1, and all
other nodes are labeled as 0.

• C = {c1, c2}, |c1| is the size of majority node class and |c2| is the size
of minority node class.

• Imbalance ratio, |c2|
|c1| determines the level of node class imbalance.

In the methodology, the inference of MSC is modeled as a GNN-based
node classification problem. The proposed method is composed of four sub-
sections: 3.2 Problem Modeling. It introduces why and how to model our
problem into a node classification task over MSKGs. 3.3 Synthetic Edge and
Node Generation. It leverages random sampling and stratified sampling on
edges associated with minority classes to balance the node classes to obtain
an augmented graph. 3.4 Feature Aggregation. It aggregates and encodes
neighbor nodes’ information through Doc2Vec and t-SNE and combines them
with original node features to form the node attribute matrix of the aug-
mented graph. 3.5 GNN Classification. It utilizes a GraphSAGE classifier to
predict binary class labels of the nodes in the oversampled augmented graph.
The following parts provide further details on each step.

3.2. Problem Modeling

The process of constructing an MSKG serves as the foundation for our
graph-based inferential procedures. The construction of the MSKG is car-
ried out in three phases. First, a web-scraping process is initiated to gather
the text content from the manufacturers’ websites in the United States to
create manufacturer nodes in M . Second, we identify manufacturing service
nodes in S as well as the edges between them such as subclass relation-
ships from Wikidata and standard manufacturing textbooks. Third, after
text pre-processing, keyword matching is conducted between M and S to
obtain the relationships.G0 denotes the initial graph constructed. The basic
schema structure of an MSKG includes two entity types: manufacturer name,
M ; 2) manufacturing service, S. S encompasses the manufacturing process,
relevant certifications, materials utilized, and the industries in which the

10



manufacturer operates. Equation (1) is used to initialize the node attribute
matrix, designated by F [j]:

F [j] =



0 if j ∈M

1 if j ∈ S and j is an industry

2 if j ∈ S and j is a service

3 if j ∈ S and j is a material

4 if j ∈ S and j is a certification

(1)

G is obtained from G0 by excluding the target manufacturing service
nodes and the edges directly connected to them. This step is essential for
node classification. For instance, if we need to infer which manufacturer
serves the medical industry, we initially mask the correct answer within the
graph. By excluding the “Medical Industry” node and its corresponding
manufacturer relationships, we can partition the modified graph: some nodes
for training a graph-based classifier and others for subsequent prediction and
evaluation.

To deduce the MSC from the MSKG, we explore both link prediction and
node classification approaches to tackle the challenge. Node classification is
selected as the primary method for our study, with link prediction serving as
the comparative approach. The reason is that in MSKGs, the number of links
is typically 15 times greater than the number of nodes. Given this, computing
predictions for every potential link can be computationally intensive. It’s
essential to save on computational costs, especially for the dynamic nature
of MSKGs. To accomplish our primary objective, node classification aims
to discern whether a node represents a manufacturer node and is directly
linked to a manufacturing service node, while link prediction is designed to
predicting the relationships between manufacturer nodes and a designated
manufacturing service node. On the other hand, node classification aims to
discern whether a node represents a manufacturer and is directly linked to a
manufacturing service node.

3.3. Synthetic Edge and Node Generation

Possible ways to oversample the graph could be through node duplication,
or adapt SMOTE to the graph data, like GraphSMOTE. These methods are
sub-optimal for our graph due to the following reasons: 1) Since each node
in S is unique, directly oversampling entities in S may distort the overall
structure of the MSKG, leading to a misrepresentation of the relationships
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between nodes. Simply oversampling entities in the graph may easily cause
overfitting during the training process as well. 2) Since nodes of M and S
can be classified into the same node classes, GraphSMOTE or performing
SMOTE in the node embedding space may result in the creation of synthetic
nodes in the minority class that are neither similar to entities in M and S. 3)
Both SMOTE and GraphSMOTE, regardless of whether synthetic nodes are
generated through interpolation in the raw feature space or embedding space,
fail to consider the diversity within the same node class in a heterogeneous
graph. This implies that within a single node class, there may be different
node types, leading to a situation where certain types can be oversampled in
while others are not.

Figure 2: An Example of SENG

Hence, we propose a heuristic approach, Synthetic Edge and Node Gener-
ation (SENG), to conduct graph oversampling on an MSKG shown in Figure
2. SENG-oversampling utilizes bagging of entities and edges as a means
of mitigating the overfitting that is introduced through oversampling in the
training process. To generate a synthetic node along with all the edges as-
sociated, there are six steps: 1) To minimize redundancy in the generation
of synthetic nodes, a random selection α is made from the set [2, 3, 4]. This
choice is deliberately constrained to values greater than 1 and less than 5,
thus ensuring a diversified range of selections; 2) Randomly sample α ele-
ments from M with replacement to obtain a subset of M , Msub ; 3) Use Msub

to get corresponding Asub; 4) Use Asub to obtain a subset of S, Ssub; 5) Ran-
dom sample 1

α
from Ssub ; 6) Create a synthetic node m′ along with synthetic

edges connecting m′ with entities in Ssub. After this generation process, node
classes are more balanced. However only applying SENG may cause severe
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overfitting during the training process. To improve training performance, we
introduce the feature aggregation process in the following step.

3.4. Feature Aggregation

Word embedding [59], a technique based on artificial neural networks,
allows textual data to be represented in a way that can be understood by
computers, which is achieved by representing words as vectors. Doc2Vec, an
extension of theWord2vec model, is a word embedding method that generates
a vector representation of a paragraph, allowing for the detection of semantic
similarity. This vector representation captures the meaning and context of
the words in the document, as well as their order and arrangement. T-SNE
is a machine learning algorithm that can project high-dimensional data into
a lower-dimensional space as well as preserve the structure of the data. Both
Doc2Vec and t-SNE are used in the node feature generation process.

Feature Aggregation (FA) aims to enhance the performance of node clas-
sification by enriching node features. Through SENG, G is transformed into
G̃, with corresponding changes occurring in M̃ , S̃, Ã, F̃ , C̃ and Ỹ . Tex-
tual information from the neighboring nodes, which are their names, are
collected to populate the representation of manufacturer node features in F̃ ′.
D, a dictionary, which is a built-in data structure that allows the storage
and retrieval of key-value pairs. In this paper, D contains all the entities
in M̃ as keys and their first-order related names of neighbouring nodes in
S̃ as values. Each value, indexed by a key, is a paragraph within a corpus.
Each paragraph corresponds to an entity in M̃ . The vectors of paragraph are
learned by Doc2Vec such that each paragraph is mapped to a high dimension
space, feature matrix F1. Dimensionality reduction via t-SNE is performed
to project high dimensional vectors into 2-dimensional space and generate
the feature matrix F2. In Equation (2), each row in F2 is integrated with

F̃ [j] where F̃ ′[j, :] ∈ R1×3 is the updated node features of node j.

F̃ ′[j, :] =

{
F̃ [j] + F2[j, :], if j ∈M

F̃ [j] + [0, 0], otherwise
(2)

3.5. GNN Classification

This step is to train a GNN-based node classification model on the aug-
mented graph G̃ = {M̃, S̃, Ã, F̃ ′}. The binary labels assigned to each node
are determined by assessing whether they establish direct connections with
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the target MSCs within G0. We partition our graph data for training, vali-
dation, and testing. Additionally, we employ stratified splitting for the aug-
mented graph data and incorporate it into the training data. The class im-
balance problem is addressed in 4.2 through SENG, resulting in equal class
support while using a weighted cross-entropy loss in model training.

GNN-based node classification employs a specialized deep learning frame-
work to categorize or label individual nodes within a given graph. A two-layer
GraphSAGE is adopted to derive node embeddings. An output layer is then
appended, processing the feature vectors from the final GraphSAGE layer
to assign node classification labels. At the first layer, the aggregated em-
bedding h

N(j)
1 at node j, based on the set of sampled neighbor nodes N(j),

is concatenated with the node’s attributes F̃ ′[j, :] from G̃. The equation to

generate aggregated information h
N(j)
1 at node j is represented as Equation

(3). Passing and concatenating the aggregated information with node at-

tributes F̃ ′[j, :] from G̃, a node embedding of j at the first layer is expressed
as Equation (4).

h1
N(j) = MEAN

(
{F̃ ′[u, :]∀u ∈ N(j),∀j ∈ V }

)
(3)

h1
j = ReLU

(
W 1 · CONCAT(F̃ ′[j, :], h1

N(j))
)

(4)

Wk(k = 1, 2, 3) refers to the weight parameters of each layer. The mean
aggregator is applied in the aggregated information equation at each layer.
Similarly, at the second layer, the aggregated neighbor nodes’ embedding
h2
N(j) at node j is combined with node j’s embedding from the previous

layer, as depicted in Equations (5) and (6). ReLU is used as the activation
function in generating node embeddings at both layers.

h2
N(j) = MEAN

(
{h1

u,∀u ∈ N(j), ∀j ∈ V }
)

(5)

h2
j = ReLU

(
W 2 · CONCAT(h1

j , h
2
N(j))

)
(6)

In addition, the second layer is appended by a sigmoid layer to predict
node labels as expressed in Equation (7). Pj is the probability that node j is
related to a certain manufacturing service. The classifier is finally optimized
by cross-entropy loss as shown in Equation (8). V is the union of M̃ ∪ S̃.

P ′
j = Sigmoid

(
ReLU

(
W 3 · CONCAT(h2

j , H
2 · Ã[:, j])

))
(7)
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Lnode =
∑
j∈V

(1(Yj == 1) · log(Pj)) (8)

The predicted label of node j, Y ′
j , is set as:

Y ′
j =

{
1, if Pj > 0.5

0, otherwise
(9)

Hence, the objective of our framework is to minimize Lnode. ∅ is the
parameter of the node classifier.

min
∅

Lnode (10)

3.6. Training Algorithm

The procedure for executing our framework is outlined in Algorithm 1.
From Line 1 to Line 8, the graph is augmented by SENG. From Line 9 to
Line 15, node features are enriched and integrated by FA. From Line 16
to the end, a GraphSAGE classifier is trained on the augmented graph G̃.
Oversampling Scale (OS) determines how much oversampling is applied to
the minority class. For example, if OS is set to 1, it means the number of
samples in the minority class is doubled by generating synthetic samples until
the class distribution is more balanced.

The design of our algorithm has four advantages: 1)The primary advan-
tage is its dynamic adaptability, facilitated by the automated updating of
MSKG combined with the utilization of GraphSAGE for inductive learning,
which allows for the continual integration of evolving manufacturing service
capabilities. 2) It is simple to implement SENG over a minority class on a
heterogenous graph or a bipartite graph without distortion appearing during
the oversampling process. 3) The utilization of FA significantly enhances the
representation of nodes within the graph and subsequently improves the per-
formance of node classification. 4) SENG and FA are applied independently,
and either can be removed from the whole algorithm if necessary.

4. Experiments

In this section, we conduct experiments to assess the effectiveness of the
proposed method for inferring relationships between manufacturers and man-
ufacturing services. In the experimental evaluation, both real-world datasets
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Algorithm 1: Node Classification on MSKG

Data: G = {M, S, A, F, C, Y}
Result: Predicted node labels Y’

1 if |c2|
|c1| ≤ 0.7 then

2 Number of Oversampling nodes No = (1 +OS) · c2;
3 for i = 1 to No do
4 Mi = entity set of α random selections from M ;
5 Si = node set of entities from S which directly relate to nodes

in Mi;
6 S ′

i = randomly sample 1
α
of the elements from Si;

7 S ′
i = set(S ′

i);
8 Connect synthetic node i to elements in S ′

i, update G to

augmented G̃;

9 for node q in M ′ do
10 Sq = node set of entities from S ′ which directly relate to node q;
11 D[q].append(Sq);

12 Use D to train Doc2Vec, obtain F1;
13 F2 ← t-SNE(F1);

14 for node j ∈ M̃ ∪ S̃ do

15 Generate F̃ ′[j, :] ∈ R1×3 based on Equation (2);

16 Randomly initialize Wk;
17 while Not Converged do
18 Learn node embeddings according to Equation (3) - (6);
19 Update the model using Lnode;

20 Return trained node classifier;
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and the datasets augmented from real-world datasets with imbalanced class
distributions are utilized. Specifically, the following questions are addressed
in this study:

1. How does the node classification result in the performance of MSC
identification compared with link prediction?

2. Is our method pervasive to a different classifier structure?

3. How does the utilization of FA in our method result in performance
compared with other feature engineering approaches?

4. How does the performance of our method vary under different OSs in
the imbalanced node classification task?

5. Is our method pervasive to different imbalance ratios?

The experimental settings, including datasets, baselines, configurations and
evaluation metrics are presented in 4.1. Question (1)-(5) are addressed in 4.2
- 4.6 respectively.

4.1. Settings

4.1.1. Datasets

We conduct experiments based on a MSKG to identify if manufacturers
are capable of the following manufacturing services: “Machining”, “Copper”,
“Heat Treatment” and “ISO 9001”. The MSKG [60], containing 7,052 nodes
and 112,873 relationships, has been constructed by keyword matching be-
tween textual data from over 7,000 manufacturers’ websites in the United
States as well as common manufacturing services, which are selected from
Wikidata and the manufacturing textbooks.

The task of node classification within the MSKG is to predict whether
a given node represents a manufacturer as well as it is connected to a cer-
tain manufacturing service or not. The manufacturer nodes that have direct
relationships with these services are labeled as 1, and all other nodes are
labeled as 0. Once this labeling has been performed, the direct relationships
between the manufacturer nodes and the selected manufacturing services are
removed from the graph. Node class distributions of the datasets regard-
ing selected manufacturing services are shown in Table 1. Classes in these
datasets follow a genuine imbalanced distribution. For each dataset, we split
graph data for training, validation and testing following an 8:1:1 ratio. In 4.5
and 4.6, the datasets generated from original datasets are varied by changing
the oversampling ratio and imbalance ratio to analyze the performance of
the proposed method under different imbalanced scenarios.
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Table 1: Node Class Distributions of the Datasets

Datasets Majority Class Imbalance Ratio
(%)

Machining 1 58.66
Copper 0 19.00

Heat Treatment 0 27.30

The link prediction on the MSKG is to predict whether an edge between
a manufacturer node and a designated service node exists or not. The edges
between the manufacturer nodes and the selected manufacturing services are
split following an 8:1:1 ratio for training, validation and testing. The rest of
the edges in the graph are added to the training data.

4.1.2. Baselines

The performance of our proposed method is evaluated in comparison to
alternative solutions for identifying MSCs on the MSKG. These solutions can
be used to establish a benchmark for highlighting the improvement or added
value of our work. For link prediction tasks, not only GraphSAGE, GCN,
EdgeConv, SGC, and APPNP are used as GNN classifiers and compared, but
also FA component is utilized on GraphSAGE and GCN to see if integrating
FA can enhance the performance of link prediction. For node classification
tasks, we assess the performance of a GraphSAGE Classifier in comparison
to the following methods:

• GraphSAGE: A GraphSAGE node classifier trained and tested on an
imbalanced dataset without any pre-processing or balancing techniques
applied.

• SENG−GraphSAGE: Utilizes the SENG part of our method by gen-
erating synthetic nodes and edges in the node classification training
process to mitigate class imbalance issues but excludes the FA compo-
nent.

• FA−GraphSAGE: Utilizes the FA component of our method to im-
prove the performance of node class classification on an imbalanced
dataset by enriching node features.
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• SF − GraphSAGE: Utilizes both SENG and FA components of our
method to improve the performance of node class classification on an
imbalanced dataset.

4.1.3. Configurations

All experimental trials were conducted within a consistent Google Colab
environment, employing the ADAM optimization algorithm [61] for training
the models. The learning rate for all models was set to 0.01. All models were
trained until convergence, with the maximum training epoch set to 415. The
OS was fixed at 1 for all datasets in 4.2.

4.1.4. Evaluation Metrics

We adopt two criteria for evaluating imbalanced classification, in line
with previous studies: Area Under the Receiver Operating Characteristic
curve (AUC-ROC) and Area Under the Precision-Recall curve (AUC-PR).
AUC-ROC metric measures the ability of a classifier to distinguish between
the positive and negative classes by comparing the true positive rate and false
positive rate. AUC-PR illustrates a model’s ability to distinguish between
positive and negative classes by comparing precision and recall.

4.2. Overall Performance of MSC Identification

The investigation of the overall performance of MSC predictions is con-
ducted to answer Question (1). To mitigate the effects of randomness, each
experiment is repeated on multiple occasions, with a minimum of three itera-
tions. For link prediction tasks, according to Table 2, GCN consistently per-
forms well across most evaluation metrics and datasets, which indicates that
GCNs are a robust choice for link prediction tasks, as they can capture com-
plex relationships in the graph structures effectively. FA-GraphSAGE and
FA-GCN generally outperform their non-feature-aggregated counterparts.
This suggests that incorporating additional features into the graph-based
models can lead to improvements in link prediction. For node classification
tasks, according to Table 3, the combination of both SENG and FA com-
ponents in SF-GraphSAGE leads to the highest AUC-ROC and AUC-PR
scores in most cases. This demonstrates that utilizing both SENG and FA
can significantly improve performance on the imbalanced datasets. Besides,
it is noticed that utilizing SENG without incorporating FA may not yield an
improvement in performance due to the insufficiency of node features. On
the contrary, using FA independently can greatly improve evaluation results
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from the baseline by augmenting node features. Additionally, extra evalua-
tions are conducted across varying Train-Test-Valid Ratios (8:1:1, 7:1.5:1.5,
6:2:2, 5:2.5:2.5) using two node classification models: GraphSAGE and FA-
GraphSAGE. It is consistently observed that FA-GraphSAGE outperformed
GraphSAGE across all metrics for each Train-Test-Valid Ratio. In summary,
these results underscore the importance of our method in the context of in-
ferring MSCs, particularly when integrated with node classification. As a
result, in the subsequent experiments, we will concentrate on analyzing the
variations in node classification.

Table 2: Comparison of Different Methods for Link Prediction
Datasets Machining Copper Heat Treatment

Evaluation Metrics AUC-ROC(%) AUC-PR(%) AUC-ROC(%) AUC-PR(%) AUC-ROC(%) AUC-PR(%)

GraphSAGE 19.77 30.64 37.05 31.11 17.30 27.86
GCN 27.82 42.06 39.98 40.84 44.08 42.31
EdgeConv 34.67 33.01 39.78 31.94 20.06 28.20
SGC 22.83 31.10 35.18 31.25 34.14 30.69
APPNP 17.44 39.26 11.83 32.96 10.06 32.26
FA-GraphSAGE 30.40 43.00 44.34 43.12 40.95 42.12
FA-GCN 37.95 45.45 49.13 45.20 54.10 47.02

Table 3: Comparison of Different Methods for Node Classification
Datasets Machining Copper Heat Treatment

Evaluation Metrics AUC-ROC(%) AUC-PR(%) AUC-ROC(%) AUC-PR(%) AUC-ROC(%) AUC-PR(%)

GraphSAGE 61.10 55.40 51.60 16.13 52.97 22.92
SENG-GraphSAGE 53.90 50.10 54.74 17.23 56.42 38.72
FA-GraphSAGE 78.70 71.80 73.56 43.48 78.47 52.51
SF-GraphSAGE 82.80 80.90 76.42 41.92 79.78 53.25

4.3. Influence of Classifier

To answer Question (2), we undertake an analysis of the performance
variations of the models replacing GraphSAGE with GAT and GCN. All
experiments have the same configuration settings as GraphSAGE, are im-
plemented on the same GAT and GCN. “Machining” is used as the target
manufacturing service, with its original class distributions and OS set to 1.
The results presented in Table 4 reveal that both FA-FCN and SF-GCN,
have good performance in evaluation metrics for identifying the capability of
“Machining”. The difference in their mechanisms for aggregating informa-
tion from neighbors in the graph could impact their performance in identi-
fying MSC. FA-GCN also outperforms FA- GraphSAGE. The difference in
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their mechanisms for aggregating information from neighbors in the graph
could impact their performance in identifying manufacturing service capa-
bility. GAT has a lower performance in conjunction with SENG and FA
compared to GCN and GraphSAGE. The potential reason is that it uses an
attention mechanism to weigh and aggregate information from neighboring
nodes in the graph. The attention mechanism’s performance depends on the
specific dataset and whether the relationships between nodes benefit from
such fine-grained weighting. It might not perform as well as the simpler
neighborhood aggregation used in GCN.

Table 4: Comparison of Different Classifiers for Node Classification

Methods AUC-ROC (%) AUC-PR (%)

GAT 56.76 55.96
SENG-GAT 56.49 54.98
FA-GAT 73.81 73.98
SF-GAT 73.11 72.96
GCN 72.48 63.99
SENG-GCN 61.77 65.19
FA-GCN 84.59 75.07
SF-GCN 85.79 85.96

4.4. Influence of FA

To answer Question (3), firstly, we compare the performance of utilizing
FA and traditional node feature engineering, which is to convert the names
of nodes to node features. All the experiments are conducted with Doc2Vec
and t-SNE except the ways of generating node features are different. Graph-
SAGE and GAT are selected as the classifiers. When applying node feature
engineering on detecting the capability of “Machining” with GraphSAGE,
AUC-ROC and AUC-PR are 57.48% and 62.12%, respectively. Applying the
same method with GAT, AUC-ROC and AUC-PR are 56.76% and 55.96%. It
is noticed that using the FA method significantly outperforms the traditional
method in terms of both AUC-ROC and AUC-PR. FA aggregates neighbor
service nodes’ names to manufacturer nodes, which takes into account the
broader context of each manufacturer node, while the traditional approach
considers each node’s name as its sole feature, more isolated in its context.
The results highlight the importance of considering the broader context in
graph-based node classification tasks.
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In addition, we undertake an analysis of the performance variations of
the algorithms replacing Doc2Vec with Bert. The evaluation metrics ob-
tained from the experiments are reported in Table 5. All experiments have
the same configuration settings except Doc2Vec is replaced by Bert in FA.
“Heat Treatment” and “Copper” are selected as target manufacturing ser-
vices, with the datasets’ original imbalance ratios and the OS set to 1. The
results presented in Table 4 reveal that the implementation of Doc2Vec in
FA exhibits a more substantial enhancement relative to the baseline in eval-
uation metrics when compared to the utilization of Bert. The utilization of
Bert demonstrates a relatively inferior performance on the AUC-PR metric
compared to the application of Doc2Vec. Given that the textual data uti-
lized in FA does not consist of complete paragraphs with context-dependent
sentences, the requirement for contextual understanding of words within a
sentence is diminished, resulting in Bert being less appropriate for the task
in comparison to Doc2Vec.

Table 5: Comparison of Different Solutions to Node Classification with Bert

Datasets Copper Heat Treatment

Methods AUC-ROC (%) AUC-PR (%) AUC-ROC (%) AUC-PR (%)

FA-GraphSAGE 63.99 22.61 54.22 23.57
SF-GraphSAGE 77.93 34.61 77.65 47.01

4.5. Influence of Oversampling Ratio

In this section, we undertake an analysis of the performance variations
of two algorithms which include an oversampling process with respect to
varying levels of oversampling, to address Question (4). The oversampling
scale is manipulated to take on the values of {0.2, 0.4, 0.6, 0.8, 1.0, 1.2}. For
all the experiments in this section, the dataset of “Machining” is used with
its original imbalance ratio of 0.5866. In order to ensure statistical validity,
each experiment was repeated more than 3 times, with the average results
presented in Figure 3. For SENG-GraphSAGE, as the OS is smaller than
1, the evaluation metrics decrease slightly first, then increase and achieve
optimal scores at 1. It indicates the improvement in the model’s ability to
distinguish between Class 1 and Class 0 when synthesizing more samples for
minority classes with an OS between 0.6 and 1, as well as shows the fluc-
tuations in the model due to graph oversampling without applying content
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embedding. When the OS exceeds 1, a degradation in the performance of
SENG-GraphSAGE is observed. This phenomenon can be attributed to an
excessive generation of synthetic nodes with redundant or similar informa-
tion, which ultimately hinders the ability of GraphSAGE to learn effectively.
For SF-GraphSAGE, as the oversampling ratio increases from 0.2 to 0.8, the
evaluation metrics increase, indicating an improvement in the model’s ability
to distinguish between Class 1 and Class 0. However, as the oversampling
ratio increases from 1 to 1.2, the evaluation metrics decrease since too many
synthetic nodes are generated with similar attributes, which ultimately im-
pairs the ability of GraphSAGE to learn effectively.

Figure 3: Evaluation Metrics under Different OSs

4.6. Influence of Imbalance Ratio

In this section, we undertake an analysis of the performance variations
of various algorithms with respect to varying levels of imbalance ratio, to
address Question (5). For all the experiments in the section, the “Machining”
dataset is used as well as a fixed OS of 1 is applied to SENG-GraphSAGE
and SF-GraphSAGE. The imbalance ratio scale is manipulated to take on
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the values of {0.1, 0.2, 0.4, 0.5866}, where 0.5866 is the original imbalance
ratio of the ”Machining” dataset. In order to ensure statistical validity,
each experiment was repeated more than 3 times, with the average results
presented in Figure 4.

Figure 4: Evaluation Metrics under Different Imbalance Ratios

It is noticed that the SF-GraphSAGE method demonstrates a pervasive
performance across various imbalance ratios. It not only excels at specific
ratios but maintains a competitive edge throughout the range of presented
ratios. SF-GraphSAGE exhibits a relatively stable and consistent behavior,
especially highlighted in the AUC-PR progression. For FA-GraphSAGE, in
terms of AUC-ROC and AUC-PR, FA-GraphSAGE showcases strong per-
formance, especially at the extremes of the given imbalance ratio (0.1 and
0.2). There’s a noticeable dip in performance as we move from an imbalance
ratio of 0.1 to 0.4, but the method shows adaptability to varying degrees
of imbalance, evidenced by its consistently high AUC-ROC and increasing
AUC-PR values.
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5. Conclusion And Future Work

In the realm of industrial engineering and logistics, understanding a man-
ufacturer’s service capabilities is crucial for optimizing production efficiency
and supply chain management. The current prevailing methods for identify-
ing MSCs from manufacturers are predominantly based on keyword matching
and semantic matching. However, these methods tend to either lose hidden
information or misunderstand the information, which subsequently leads to
incomplete identification of manufacturers’ capabilities. To mitigate the lim-
itation, this study presents a novel GNN-based approach for effectively iden-
tifying MSCs within KGs. To enhance the accuracy and performance of this
identification process, an innovative strategy is introduced, which involves
aggregating information from neighboring nodes and oversampling the graph
data. Our rigorous evaluations, conducted on MSKGs, along with subse-
quent ablation studies, provide unequivocal evidence of the effectiveness and
robustness of our proposed approach. These advancements are applicable to
a wide range of recommender systems.

Although the effectiveness of our method is demonstrated, some limita-
tions and implications need further attention. In future work, it would be
valuable to utilize manufacturing ontologies [62] for constructing a more com-
prehensive MSKG that includes other critical entities like accuracy require-
ments and material specialization. This enhanced approach in evaluating
MSC will ensure that manufacturers are selected not just for their ability to
provide manufacturing services, but also for their alignment with the specific
and varied needs of different projects. Besides, the study mainly considers
a single type of heterogeneous graph. It is imperative to broaden the scope
of our method to encompass other heterogeneous graphs or bipartite graphs.
Integrating our method with heterogeneous GNN models [63] or bipartite
GNN models [64] can be developed. This work simplifies MSKGs and it
does not take into account the diversity and directionality of relationships
within the graph. The consideration of the difference between edges and the
directionality of edges may lead to a more optimized representation of nodes
and edges [65], which can benefit graph-based downstream tasks. Not only
node classification but also other graph-based downstream tasks, such as link
prediction and graph classification, are suffering from imbalance class issues.
Our methods can be tailored to address other imbalanced class problems,
enhancing its efficacy in accurately discerning MSCs.
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