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Abstract

Efficient estimation methods for simultaneous autoregressive (SAR) models with

missing data in the response variable have been well-developed in the literature. It

is common practice to introduce a measurement error into SAR models. The mea-

surement error serves to distinguish the noise component from the spatial process.

However, the previous literature has not considered adding a measurement error to

the SAR models with missing data. The maximum likelihood estimation for such

models with large datasets is challenging and computationally expensive. This paper

proposes two efficient likelihood-based estimation methods: the marginal maximum

likelihood (ML) and expectation-maximisation (EM) algorithms for estimating SAR

models with both measurement errors and missing data in the response variable. The

spatial error model (SEM) and the spatial autoregressive model (SAM), two popular

SAR model types, are considered. The missing data mechanism is assumed to follow

missing at random (MAR). While naive calculation approaches lead to computational

complexities of O(n3), where n is the total number of observations, our computational

approaches for both the marginal ML and EM algorithms are designed to reduce the

computational complexity. The performance of the proposed methods is investigated

empirically using simulated and real datasets.

Keywords: spatial error model; spatial autoregressive model; measurement errors;

marginal likelihood; expectation-maximisation algorithm; computational complexity
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1 Introduction

Spatial regression models, often called simultaneous autoregressive (SAR) models, have been

extensively used in the field of spatial statistics and econometrics (Anselin, 1988; LeSage and

Pace, 2009; Gómez-Rubio et al., 2021). They extend linear regression models by accounting

for spatial dependencies between different observations, making them useful for analysing

spatial data. The dependence between observations in SAR models is captured by a spatial

weight matrix (also known as a contiguity matrix); see Section 2 for further details on the

spatial weight matrix. SAR models have been used in a wide range of applications, including

ecology (Tognelli and Kelt, 2004; Ver Hoef et al., 2018), social sciences (Angrist and Lang,

2004; Ammermueller and Pischke, 2009), criminology (Glaeser et al., 1996), and financial

market analysis (Longstaff, 2010).

There are two commonly used SAR models. The first is the spatial error model (SEM),

where the spatial dependence is incorporated in the error term. The second is the spatial

autoregressive model (SAM), where the spatial dependence is directly modelled in the equa-

tion for the response variable. In addition, more complex variants of SAR models exist. For

example, the spatial Durbin model (SDM) (Anselin, 1988), which considers spatially cor-

related covariates, the SAM with heteroskedastic errors (Su, 2012), and SAR models with

measurement errors (Burden et al., 2015; Suesse, 2018a). Furthermore, Dong and Harris

(2015) expanded the applicability of SAR models accounting for geographically hierarchical

data structures by incorporating regional-level random effects.

The estimation methods for SAR models with no missing values in the response vari-

able are well-developed in the literature. For example, Ord (1975) introduced an efficient

maximum likelihood (ML) estimation method by leveraging the eigenvalues of the spatial

weight matrix. When dealing with sparse spatial weight matrices, efficient sparse Cholesky

factorisation algorithms are employed (Pace and Barry, 1997; Pace, 1997; Pace and LeSage,

2004) within the ML estimation framework. Other popular estimation methods, such as the

method of moments (MOM) (Kelejian and Prucha, 1999, 2001; Lee, 2007), Bayesian meth-

ods (Hepple, 1979; Anselin, 1988; LeSage, 1997), and instrumental variable (IV) estimation

methods (Lee, 2003), have also been developed in the literature.

Having missing values in the response variable is common in practice. In this case, SAR

models are often incorrectly estimated using the spatial weight matrix constructed from ob-

served data only. The resulting estimates are biased and inconsistent (Wang and Lee, 2013;

Benedetti et al., 2020). Estimation methods for SAR models under the missing at random

(MAR) mechanism (Little and Rubin, 2019) have been explored extensively. For example,

LeSage and Pace (2004) employed an iterative algorithm, which is similar to the expectation-
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maximisation (EM) algorithm of Dempster et al. (1977), for estimating SAR models under

MAR. Although the distribution of unobserved data given observed data is multivariate

normal for SAR models, LeSage and Pace (2004) expressed it as a product of univariate nor-

mals to avoid computationally demanding matrix inversions. They approximated the mean

of the SAM using the Neumann approximation for computational efficiency. These alter-

ations made their algorithm invalid as a proper EM algorithm. Suesse and Zammit-Mangion

(2017) addressed this issue by implementing minor adjustments to the algorithm proposed

by LeSage and Pace (2004), thus transforming it into a valid EM algorithm. These adjust-

ments included the consideration of exact terms rather than the approximations utilised by

LeSage and Pace (2004). Suesse (2018b) introduced an alternative approach that directly

maximises the marginal log-likelihood of the observed data. This is feasible because the

marginal densities for observed data in both the SEM and SAM are available in closed

form. This is achieved by integrating out the unobserved data from the joint density of

observed and unobserved data, resulting in multivariate normal densities. Consequently, the

marginal log-likelihood of the observed data for both SEM and SAM is available in closed

form. They demonstrated that the marginal likelihood method is generally faster than the

EM algorithm, and it does not suffer from the non-convergence issues associated with the

EM algorithm. Kelejian and Prucha (2010) proposed an instrumental-variable (IV) estima-

tor for SAM with missing responses, and Luo et al. (2021) developed an inverse probability

weighting (IPW) based robust estimator for the SAM.

In spatial statistics, the observations are noisy measurements of the underlying spatial

unobserved latent process. As a result, a measurement error is usually added to SAR models.

For example, Bivand et al. (2015) and Gómez-Rubio et al. (2021) used the Integrated Nested

Laplace Approximation (INLA) method of Rue et al. (2009) for estimating SAR models with

measurement errors. Burden et al. (2015) and Suesse (2018a) used the ML estimation method

for the SEM with measurement errors. Burden et al. (2015) utilised a spatial random effects

model proposed by Cressie and Johannesson (2008) to efficiently approximate the covariance

matrix of the SEM, while Suesse (2018a) employed efficient sparse matrix operations to

estimate SEM and SAM with measurement errors.

Our article makes a number of contributions. First, we introduce SAR models that

account for measurement errors, denoted as hierarchical SAR (H-SAR) models, with missing

data in the response variable. Second, two ML estimation methods for estimating the H-SAR

models with missing data are proposed. The first is the marginal ML estimation algorithm.

The second is the EM algorithm. The EM algorithm involves two steps. The first step is

known as the E-step, which computes the expectation of the complete log-likelihood with

respect to the distribution of unobserved data given observed data and a fixed parameter
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vector. The second step is known as the M-step, which maximises the expectation with

respect to the model parameters; see Section 3.3 for further details.

Naive implementations of these two algorithms are expensive for large datasets, mainly

due to the calculations of matrix inversions and determinants. The third contribution is to

reduce computational costs. We propose efficient computational strategies that significantly

lower computational complexity while preserving the accuracy of parameter estimates. For

the marginal ML method, our computational approach significantly decreases the complexity

from O(n3) to a maximum of either O(n3/2no) or O(nn2
o), where n is the total number of

observations and no is the number of observed data. In the case of the EM method, the naive

calculation of the terms leads to a complexity of O(n3). Our approach typically requires less

than O(n3). Fourth, we establish a guideline for selecting the most appropriate method for

different real-world scenarios.

The remainder of this paper is organised as follows. Section 2 discusses the hierarchical

SAR models. Section 3 presents the two estimation methods: the marginal ML estimation

method and the EM algorithm. Efficient computational strategies to reduce the complexity

of the algorithm are also discussed. In Section 4, we evaluate the performance of the

estimation methods using simulated datasets. Section 5 discusses the real data application.

Section 6 concludes. The paper has an online supplement containing some further technical

and empirical results.

2 SAR models

In this section, we first present standard SAR models. Then, hierarchical SAR models are

considered.

2.1 Standard SAR Models

We consider the spatial autoregressive model (SAM),

y = Xβ + ρWy+ e, (2.1)

and the spatial error model (SEM),

y = Xβ + u,

u = ρWu+ e,
(2.2)
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where y = (y1, y2, . . . , yn)
⊤ is the vector of response variables observed at n spatial locations

s1, . . . , sn, X is the n × r matrix of covariates, and W is the n × n spatial weight matrix.

The error term e is assumed to follow a multivariate normal distribution with the mean

vector 0 and covariance matrix σ2
yIn, where σ2

y is a variance parameter, and In is the n× n

identity matrix, β = (β1, . . . , βr)
⊤ is the vector of fixed effects parameters, and ρ is the

spatial autocorrelation parameter (Anselin, 1988; Allison, 2001; LeSage and Pace, 2009).

Let Wij be the ith row and jth column entry of the spatial weight matrix W. The entry

Wij is non-zero if the unit i is the neighbour of the unit j. By definition, the diagonal of

the spatial weight matrix W is zero, i.e. Wii = 0. Several strategies for constructing W

have been proposed in the literature (see Ord (1975); Anselin (1988); Kelley Pace and Barry

(1997) for further details). The spatial weight matrix W has the dimension of n× n, where

n is the number of observations. We assume that W is sparse and symmetric, as commonly

observed in numerous real-world scenarios. However, this may not necessarily be the case.

Section 4.1 provides a detailed explanation of the methodology used to construct the spatial

weight matrices that are employed in the simulation studies in this paper.

For the standard SEM and SAM, when the error vector e is normally distributed, the

response variable y is also normally distributed with the mean vector µy and the covariance

matrix Σy given in Table 2.1.

Table 2.1: Expressions for µy, and
Σy for SAM and SEM with A = In − ρW.

Term SAM SEM
µy A−1Xβ Xβ
Σy σ2

y(A
⊤A)−1 σ2

y(A
⊤A)−1

To ensure a valid covariance matrix in SAM and SEM, it is crucial that the correlation

parameter ρ does not take on any of the values 1
λ(1)

, 1
λ(2)

, . . . , 1
λ(n)

, where λ(1), λ(2), . . . , λ(n)

are the eigenvalues of W sorted in ascending order (Li et al., 2012). When W is normalised

either by row or column, with each row or column summing to 1, the range of ρ is constrained

to 1
λ(1)

< ρ < 1 (LeSage and Pace, 2009).

2.2 Hierarchical Simultaneous Autoregressive models

In many practical applications, the observations are a noisy manifestation of the underlying

scientific process. A measurement error is usually added to the spatial statistical model.

Given the observed spatial data z = (z1, z2, . . . , zn)
⊤ at spatial locations s1, . . . , sn, the

model is

zi = yi + ϵi i = 1, 2, . . . , n, (2.3)
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where yi represents the spatial latent process, and ϵi is the additive measurement error at

the spatial location si. We assume that ϵi follows a normal distribution with a mean of 0

and a variance σ2
ϵ .

The SAM with measurement errors is derived by substituting the latent process y in

Equation (2.3) with the model described in Equation (2.1). Similarly, the SEM with mea-

surement errors is obtained by replacing the latent process y in Equation (2.3) with the

model specified in Equation (2.2).

In spatial statistics, the model given in Equation (2.3) is often called the data model (Arab

et al., 2008). The data model characterises the distribution of the observed data, zi, given

the underlying hidden process, yi, for i = 1, . . . , n. Conversely, the model describing the

underlying latent process (the process of interest), such as the SAM in Equation (2.1) and

the SEM in Equation (2.2), is usually called the process model (Arab et al., 2008). A

joint spatial statistical model defined through a data model and a process model is often

called a hierarchical spatial model (Arab et al., 2008). In this paper, we call SAR models

with measurement errors as the hierarchical simultaneous autoregressive model (H-SAR),

the SAM with measurement errors as the hierarchical SAM (H-SAM), and the SEM with

measurement errors as the hierarchical SEM (H-SEM).

We now derive the marginal distribution of z. Let ϕ = (β⊤, ρ, ω, θ)⊤ be the vector of

model parameters of the H-SAR model, where ω = σ2
ϵ and θ = σ2

y/σ
2
ϵ . The joint distribution

of z and y is

f(z,y | ϕ) = f(z | y,ϕ)f(y | ϕ), (2.4)

where f(z | y,ϕ) =
∏n

i=1 f(zi | yi,ϕ), with f(zi | yi,ϕ) a normal distribution having mean

yi and variance σ2
ϵ . In addition, f(y | ϕ) represents the density of standard SAR models

outlined in Equations (2.1) and (2.2) for SEM and SAM, respectively. Then, the marginal

distribution of z is obtained by integrating out y from the joint distribution of z and y in

Equation (2.4), and is given by:

f(z | ϕ) =
∫

f(z | y,ϕ)f(y | ϕ)dy. (2.5)

Since the measurement error distribution follows a multivariate normal distribution, the

marginal distribution of z in H-SEM and H-SAM also follows a multivariate normal dis-

tribution with the mean vector µ and the covariance matrix Σ given in Table 2.2. The

constraints on the correlation parameter ρ in H-SAM and H-SEM, ensuring a valid covari-

ance matrixΣ, align with those for standard SEM and SAM, as elucidated by Suesse (2018a).

The log-likelihood function of z in terms of the model parameters ϕ = (β⊤, ρ, ω, θ)⊤ is
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Table 2.2: Expressions for µ,
Σ, and V for H-SAM and H-SEM with A = In − ρW.

Term H-SAM H-SEM
µ A−1Xβ Xβ

Σ = ωV ω(In + θ(A⊤A)−1) ω(In + θ(A⊤A)−1)
V (In + θ(A⊤A)−1) (In + θ(A⊤A)−1)

M = V−1 (In + θ(A⊤A)−1)−1 (In + θ(A⊤A)−1)−1

logf(z;ω, θ, ρ,β) = −n

2
log(2π)− n

2
log(ω) +

1

2
log|V−1| − 1

2ω
r⊤V−1r, (2.6)

where r = z−µ is the vector of residuals. Expressions for the V and µ are given in Table 2.2.

Suesse (2018a) developed an efficient ML estimation method for estimating H-SAR mod-

els without missing data. The next section discusses the proposed ML estimation methods for

estimating the H-SAR models with missing responses under the missing at random (MAR)

mechanism.

3 Estimation Methods

Section 3.1 discusses the H-SAR under the MAR mechanism, Section 3.2 discusses the

marginal maximum likelihood (marginal ML) estimation method, and Section 3.3 discusses

the EM algorithm.

3.1 Hierarchical simultaneous autoregressive models under MAR

Let zo be the subset of z with no units, and zu be the subset of z with nu units, where

no and nu are the numbers of observed and missing response variables, respectively. The

complete-data vector is denoted by z = (z⊤o , z
⊤
u )

⊤. The matrices X and W are divided into

distinct parts as follows:

X =

(
Xo

Xu

)
, W =

(
Woo Wou

Wuo Wuu

)
, (3.1)

where Xo and Xu are the corresponding matrices of covariates for the observed and un-

observed data, respectively, and Woo, Wou, Wuo, and Wuu represent the sub-matrices of

W.

When dealing with missing data in the response variable, the conventional approach of

specifying the H-SAR model based solely on observed locations becomes inadequate. We
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refer to this model specification as observed data models (ODMs). The ODM specification

constructs the spatial weight matrix (W) exclusively using the location information from

observed locations or units only. They use zo, Xo, and Woo to specify the H-SAR model. As

a result, the ODM uses inaccurate specifications of the correlation structure of the marginal

density of observed data zo (LeSage and Pace, 2004), leading to inconsistent and biased

parameter estimates (Wang and Lee, 2013; Benedetti et al., 2020).

We now briefly explain the MAR mechanism. Consider the vector m of length n con-

taining 1’s and 0’s. If an element in z is missing, then the corresponding element in m is 1

and 0, otherwise. The vector m is often called the missing data indicator vector (Little and

Rubin, 2019). The probability distribution of m given z is denoted by p(m | z,ψ), where
ψ is the vector of parameters that governs the missing data generating process. Under the

MAR mechanism, this probability distribution is independent of the unobserved data but it

depends on the observed data zo, i.e.. p(m | z,ψ) = p(m | zo,ψ) (Rubin, 1976). Under the
MAR mechanism, assuming that ϕ and ψ are distinct, the ML estimation method focuses

on maximising the marginal likelihood of the observed data zo, ignoring the missing data

mechanism m; see Little and Rubin (2019) for the detailed proof.

To compute the marginal likelihood of zo, the unobserved data zu must be integrated out

from the complete data density of z,

f(zo;ϕ) =

∫
f(z;ϕ)dzu, (3.2)

where f(z;ϕ) is the complete data density of z.

Unlike the ODM, the accurate specification of the marginal density of zo depends on the

weight matrix W, constructed based on the complete set of n spatial locations. We call

this model the complete locations model (CLM). We employ two approaches to maximise

the marginal likelihood in Equation (3.2). The first approach involves directly maximising

the marginal log-likelihood of the observed data. In the second approach, we utilise the

EM algorithm. In Section 4.2, we compare the two approaches in terms of accuracy and

computational cost.

3.2 Marginal maximum likelihood estimation method

This section discusses the proposed marginal ML estimation method. Since z is a multivariate

normal random variable, zo also follows a multivariate normal distribution with the mean

vector µo and the covariance matrix Σoo = ωVoo (Petersen et al., 2008); see Equation (3.4).

To compute the log-likelihood of the marginal distribution of zo, replace V with Voo, µ with

µo, z with zo, and n with no in Equation (2.6). This yields the following expression for the
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marginal log-likelihood of zo:

logf(zo;ω, θ, ρ,β) = −no

2
log(2π)− no

2
log(ω) +

1

2
log|V−1

oo | −
1

2ω
r⊤o V

−1
oo ro, (3.3)

where ro = zo − µo, and the µ vector and the matrix V are partitioned as

µ =

(
µo

µu

)
, V =

(
Voo Vou

Vuo Vuu

)
. (3.4)

Direct maximisation of Equation (3.3) is challenging, and to reduce the dimension of the

maximisation problem, we obtain the concentrated marginal log-likelihood by substituting

the ML estimates of ω̂ and β̂ into Equation (3.3).

We now define a new matrix X̃ to make the notation below simpler. For H-SEM, the

matrix X̃ = X, and for H-SAM the matrix X̃ = A−1X. By maximising Equation (3.3) with

respect to β and ω (taking partial derivatives and setting to zero) while holding θ and ρ

fixed, we obtain the closed form ML estimates for β and ω as follows:

β̂(ρ, θ) =
(
X̃

⊤
o V

−1
oo X̃o

)−1

X̃
⊤
o V

−1
oo zo, (3.5)

and

ω̂(ρ, θ) =
r⊤o V

−1
oo ro

no

. (3.6)

The proof is given in Section S4 of the online supplement.

By substituting β̂(ρ, θ), and ω̂(ρ, θ) in Equations (S4.3) and (S5.5) in the log-likelihood

in Equation (3.3), the concentrated marginal log-likelihood Lc has the form:

Lc(θ, ρ) = c− no

2
log(ω̂) +

1

2
log|V−1

oo |, (3.7)

where c = −no

2
log(2π)− no

2
is a constant.

To obtain the ML estimates for θ and ρ, we maximise the concentrated marginal log-

likelihood in Equation (3.7) using optim() function in R. Upon examining Equations (S4.3),

(S5.5), and (3.7), it becomes clear that three computationally expensive terms are involved

in the optimisation process. They are log|V−1
oo |, r⊤o V−1

oo ro, and X̃
⊤
o V

−1
oo X̃o. Therefore, efficient

calculations of matrix Voo are crucial for computing these terms. Below, we propose two

computational approaches to calculate the sub-matrix Voo.

We call the first approach the direct method since it involves directly extracting the
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sub-matrix Voo from the larger matrix V as

Voo = [(In + θ(A⊤A)−1)]oo. (3.8)

The analysis of computational complexity of calculating Voo using the direct method is

discussed in Section 4.1.1. The direct method gives an overall computational complexity of

O(n2), where n is the total number of observations; see Section 4.1 for further details. For

the second method, the Voo sub-matrix is obtained by re-expressing it with an additional

sparse matrix Bo. This approach leverages the sparsity of W (through A), and Bo to

simplify the computation of Voo. First, the matrix V in Table 2.2 is written as V =

A−1
(
AA⊤ + θIn

)
(A⊤)−1. The proof is given in Section S5.2 in the online supplement.

Then the sub-matrix Voo is obtained by Voo = ((A⊤)−1B⊤
o )

⊤(AA⊤ + θIn)((A
⊤)−1B⊤

o ),

where Bo is a sparse matrix such that Bo = [Io|0], where Io is the no × no identity matrix,

and 0 is the no × nu zero matrix. For convenience of notation, let (A⊤)−1B⊤
o = A−1

Bo
. Then,

the matrix Voo is

Voo = (A−1
Bo
)
⊤
(AA⊤ + θI)A−1

Bo
. (3.9)

The calculation of A−1
Bo

is computationally more efficient and stable compared to the direct

calculation ofVoo using the inverse ofA
⊤A as in Equation (3.8). The advantages are twofold.

First, A is sparser thanA⊤A, which reduces the computational complexity as there are fewer

nonzero elements to consider. This can significantly speed up the calculations, especially for

large sparse matrices. Second, to calculate A−1
Bo
, we do not need to explicitly compute A−1.

Instead, we can use a system of linear equations to solve for it, which is generally faster and

more stable numerically, particularly for sparse matrices. Therefore, we solve the system

A⊤A−1
Bo

= B⊤
o , for A

−1
Bo

and, then, calculate Voo. We call the approach the parameterisation

method.

In Section 4.1, we thoroughly examine the computational complexities associated with

both methods. Table 4.1 outlines the computational complexities linked to the fundamental

operations needed for calculating Voo using the expression in Equation (3.8). Table 4.2

summarizes the complexities associated with the essential operations required for computing

Voo based on the expression in Equation (3.9).

3.3 EM algorithm

The EM algorithm, introduced by Dempster et al. (1977), is a widely used iterative algorithm

for parameter estimation in the presence of missing data (Lauritzen, 1995; Enders, 2003) or

latent variables (Bishop, 1998). The EM algorithm maximises Equation 3.2 by iteratively
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estimating the missing data or the latent variables and updating the model parameters.

The EM algorithm consists of two main steps: the E (expectation) step and the M (max-

imisation) step. In the E-step, the algorithm computes the expected value of the complete-

data log-likelihood in Equation (2.6), with respect to the conditional density of zu given zo

and a fixed parameter vector ϕ′. This expectation is denoted by Eu|o,ϕ′(·). In the subse-

quent M-step, this expectation is maximised with respect to the vector of parameters ϕ. In

summary, the EM algorithm for H-SAR models proceeds as follows:

• Starts with assigning initial values for ϕ′ = ϕ′
0.

• E-step: Calculate

Eu|o,ϕ′ [logf(z;ϕ)] = Q(ϕ | ϕ′)

=

∫
logf(z;ϕ)f(zu | zo,ϕ = ϕ′)dzu,

(3.10)

where f(zu | zo,ϕ = ϕ′) denotes the conditional density of zu given zo and a fixed

parameter vector ϕ′.

It is well known that as z follows a multivariate normal distribution, the conditional

distribution of zu | zo also follows a multivariate normal distribution (Petersen et al.,

2008), characterized by the mean vector µu|o and the covariance matrix Σu|o given by

µu|o = µu +VuoV
−1
oo (zo − µo), (3.11)

and

Σu|o = ω{Vuu −VuoV
−1
oo Vou}. (3.12)

• M-step: Maximise Q(ϕ | ϕ′) with respect to the parameter vector ϕ.

• Iterate the E-step and the M-step until convergence.

By substituting M for V−1 in the complete-data log-likelihood of z in Equation (2.6), we

obtain the following equation:

logf(z;ω, θ, ρ,β) = −n

2
log(2π)− n

2
log(ω) +

1

2
log|M| − 1

2ω
r⊤Mr. (3.13)

By taking the conditional expectation of Equation (3.13) with respect to f(zu | zo,ϕ = ϕ′),
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we obtain

Q(ϕ | ϕ′) = Eu|o,ϕ′ (logf(z;ω, θ, ρ,β)) = −n

2
log(2π)−n

2
log(ω)+

1

2
log|M|− 1

2
Eu|o,ϕ′

(
r⊤Mr

)
.

(3.14)

For simplicity, we no longer explicitly denote the dependence of the expectation operator

on the fixed parameter vector ϕ′. i.e. Eu|o(·) = Eu|o,ϕ′(·). Suesse and Zammit-Mangion

(2017) simplified the conditional expectation of the final term in Equation (3.14) for the

standard SAR models (for SAM and SEM). It is important to note that in the case of H-

SAR, the covariance structure of the distribution of z deviates from that of standard SAR

models. Consequently, the matrix M and the vector r exhibit distinct forms in H-SAR

models compared to standard SAR models. Utilising these derivations, we can express the

term Q(ϕ | ϕ′) for H-SAR as:

Q(ϕ | ϕ′) = −n

2
log(2π)− n

2
log(ω) +

1

2
log|M|

−
r⊤u|oMru|o + ω′tr{Muu(θ

′, ρ′)−1Muu(θ, ρ)}
2ω

,

(3.15)

where tr{·} is the matrix trace1 , ru|o = Eu|o(z) − µ, Eu|o(z) = (z⊤o ,µ
⊤
u|o)

⊤, and the matrix

M is partitioned as

M =

(
Moo Mou

Muo Muu

)
. (3.16)

In the M-step, we maximise the term Q(ϕ | ϕ′) in Equation (3.15) with respect to the

vector of parameters ϕ = (ρ,β⊤, θ, ω)⊤. By differentiating Equation (3.15) with respect to

β and ω, and setting the derivatives to zero, we obtain closed-form expressions for the ML

estimators of these parameters in terms of θ and ρ:

β̂(ρ, θ) =
(
X̃

⊤
MX̃

)−1

X̃
⊤
MEu|o(z), (3.17)

and

ω̂(ρ, θ) =
r⊤u|oMru|o

n
. (3.18)

The proof is given in Section S5.1 of the online supplement.

By substituting β̂(ρ, θ) from Equation (3.17) and ω̂(ρ, θ) from Equation (3.18) into Equa-

1The trace of a square matrix M, denoted as tr{M}, is the sum of its diagonal elements: tr{M} =∑n
i=1 Mii.
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tion (3.15), we simplify Q(ϕ | ϕ′) to

Q(θ, ρ | ϕ′) = −n

2
log(2π)− n

2
log (ω̂(ρ, θ)) +

1

2
log|M| − n

2
, (3.19)

which is a function of θ and ρ. We obtain the ML estimates for θ and ρ by maximising (3.19)

using the optim() function in R.

While maximising the expected log-likelihood in Equation (3.19), we encounter four com-

putationally challenging terms: log|M|, X̃
⊤
MX̃, r⊤u|oMru|o, and µu|o. Importantly, it is

worth noting that it is unnecessary to compute the entire matrix M = (In + θ(A⊤A)−1)−1

for any of these terms, as this would entail two matrix inversions. Instead, we only need

specific terms related to M and its sub-matrices, as detailed in the following subsections.

3.3.1 Calculate log|M|

We have previously rewritten V = A−1
(
AA⊤ + θIn

)
(A⊤)−1. Since M is the inverse of V,

we express it as follows:

M = V−1 = A⊤ (AA⊤ + θIn
)−1

A, (3.20)

and the logarithm of the matrix M is

log|M| = log|A⊤| − log|AA⊤ + Inθ|+ log|A| = −log|AA⊤ + θIn|+ log|AA⊤|; (3.21)

see Section S5.2 of the online supplement for the complete proof.

Calculating the determinant of AA⊤ using its Cholesky factorisation (denoted as LAA⊤)

is computationally efficient since the matrix AA⊤ is sparse. Next, we can compute the

determinant of AA⊤ + θIn by using update() function in R. The update function takes the

Cholesky factor LAA⊤ , the matrix AA⊤, and θ as the inputs, and it outputs LAA⊤+θIn
, the

Cholesky factor of AA⊤ + θIn. This approach lowers the computational requirements of

calculating the logarithm of the determinant of M in Equation (S5.7).

3.3.2 Computing the terms X̃
⊤
MX̃ and r⊤u|oMru|o

The terms X̃
⊤
MX̃ and r⊤u|oMru|o play a crucial role in computing β̂(ρ, θ) and ω̂(ρ, θ) in

Equations (3.18) and (3.19). To facilitate the more efficient calculation, we introduce two

additional terms: C = (LAA⊤+θIn
)−1X̃A, and c = (LAA⊤+θIn

)−1zAu|o , where X̃A = AX̃, and
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zAu|o = AEu|o(z). Subsequently, the expressions for X̃
⊤
MX̃ and r⊤u|oMru|o are given by:

X̃
⊤
MX̃ =

(
(LAA⊤+θIn

)−1X̃A

)⊤
(LAA⊤+θIn

)−1X̃A = C⊤C, (3.22)

and

r⊤u|oMru|o = Eu|o(z)
⊤MEu|o(z)− 2Eu|o(z)

⊤MX̃β + β⊤X⊤MX̃β. (3.23)

We can show that Eu|o(z)
⊤MEu|o(z) = c⊤c and Eu|o(z)

⊤MX̃ = c⊤C (see Section S5.1 of

the online supplement for the proof). By substituting these terms and the expression for

X̃
⊤
MX̃ from Equation (S5.10) into Equation (S5.11), we obtain a much simpler expression

for r⊤u|oMru|o as:

r⊤u|oMru|o = c⊤c− 2c⊤Cβ̂ + β̂
⊤
C⊤Cβ̂. (3.24)

By substituting X̃
⊤
MX̃ in Equation (S5.10), and the simplified expression for Eu|o(z)

⊤MX̃

into Equation (3.17), we obtain a simpler expression for β̂(ρ, θ) as:

β̂(ρ, θ) = (C⊤C)−1C⊤c, (3.25)

and by substituting r⊤u|oMru|o in Equation (3.24) into Equation (3.18), we obtain a simpler

expression for ω̂(ρ, θ) as

ω̂(ρ, θ) =
c⊤c− 2c⊤Cβ̂ + β̂

⊤
C⊤Cβ̂

n
=

c⊤c− c⊤Cβ̂

n
. (3.26)

3.3.3 Computing the conditional mean µu|o

To calculate the term c, the vector Eu|o(z) is required, which involves computing µu|o.

Calculating µu|o as in Equation (3.11), requires performing a sparse matrix inversion for

calculating V, and a dense matrix inversion for calculating V−1
oo . LeSage and Pace (2004)

provide an alternative and simpler expression for µu|o as follows:

µu|o = µu −M−1
uuMuo(zo − µo). (3.27)

Even though Equation (3.27) contains sub-matrices of M, it is possible to obtain these sub-

matrices without explicitly calculating the full matrix M. Let us define a new, sparse matrix

Bu such that Bu = [0 | Iu], where Iu is the nu × nu identity matrix, and 0 is the nu × no

zero matrix. Using Bu, the matrix Muu is expressed as

Muu = BuMB⊤
u = BuA

⊤ (AA⊤ + Inθ
)−1

AB⊤
u , (3.28)
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and the matrix Mou is

Mou = BoMB⊤
u = BoA

⊤ (AA⊤ + Inθ
)−1

AB⊤
u , (3.29)

where Bo is a sparse matrix such that Bo = [Io|0] with Io is the no×no identity matrix, and

0 is the no × nu zero matrix.

By examining Equations (3.28) and (3.29), we observe that the term
(
AA⊤ + Inθ

)−1
AB⊤

u

is common to both equations. Moreover, we can efficiently compute
(
AA⊤ + Inθ

)−1
AB⊤

u

using the solve() function in R since the Cholesky factors of AA⊤ + Inθ are available from

previous computations.

Upon a comprehensive examination of the terms crucial for implementing the EM algo-

rithm, it becomes apparent that the algorithm’s overall computational complexity is pre-

dominantly influenced by the computation of the log determinant term, log|M|, and the

conditional mean in Equation (3.27), which depends on Muu and Mou (see Table 4.3 for de-

tails of the computational complexity of computing µu|o using Mou and Muu). It is clear that

the naive calculation of these terms results in computational complexity of O(n3), given that

the computation of M involves the inverse of the dense matrix M = (In+θ(A⊤A)−1)−1. Our

proposed approaches reduce the complexity, ensuring it remains below this bound in most

real-world scenarios. Further analysis of the computational complexity of the two proposed

algorithms is discussed in the subsequent section.

4 Simulation study

In Section 3.2, we show that the computation of the matrix Voo poses a significant com-

putational issue when implementing the marginal ML method. Similarly, the calculations

involving Muu, Mou, and log|M| are computationally demanding for the implementation of

the EM algorithm (see Section 3.3).

Section 4.1 presents simulation results for evaluating the proposed computational ap-

proaches to reduce the complexities associated with computing the demanding terms in

marginal ML and EM algorithms. Then, in Section 4.2, we discuss the accuracy and com-

putational cost of the marginal ML and EM methods using simulated datasets.

4.1 Computational complexities

Parameter estimation of SAR models involves a series of matrix and vector manipulations,

and many of these operations, such as matrix multiplication, inversion, and factorisation,
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have a computational complexity of O(n3) for dense matrices. Consequently, the overall

complexity of SAR estimation algorithms is O(n3) if naive computation methods are utilised.

In practical applications of SAR models, sparse weight matrices (W) are commonly

utilised. Matrix operations involving sparse matrices tend to be significantly faster than

those involving dense matrices. The computational complexity of matrix multiplication and

factorisations, such as the Cholesky factorisation for sparse matrices, depends on the number

of nonzero values within the sparse matrix. For instance, while the Cholesky factorisation for

dense matrices typically exhibits a complexity of O(n3), the complexity for sparse precision

matrices is often reduced to O(n) for temporal Gaussian Markov random fields (GMRFs),

O(n3/2) for spatial GMRFs, and O(n2) for spatio-temporal GMRFs, as discussed by Rue

and Held (2005).

In our simulation study, we utilise sparse weight matrices (W), allowing us to take

advantage of the sparse matrix operations offered by the R package Matrix (Bates et al.,

2022) for implementing our proposed methods. For example, the EM algorithm described

in Section 3.3 necessitates computing the Cholesky factors of the matrix AA⊤. The Matrix

package offers an efficient function for this task, which has a computational complexity

of O(n3/2) when AA⊤ is sparse. In contrast, the standard R chol() function entails a

complexity of O(n3), even when AA⊤ is sparse. Likewise, for sparse matrix inversions and

solving systems with sparse matrices, we rely on the efficient functions provided by the

Matrix package. Further details regarding the functionality of these functions can be found

in Section S1 of the online supplement.

We now discuss the theoretical and empirical computational complexities of the expensive

matrix operations used in the marginal ML and EM methods. The theoretical computational

complexity is established by analysing the structure of matrices involved in the specific

operation. To derive the theoretical complexity of a specific matrix operation, we need to

compute the number of scalar operations, known as flops (floating-point operations). For

instance, consider the multiplication of two n× n dense matrices. This operation comprises

n3 scalar multiplications and n2(n− 1) scalar additions. In total, the computation involves

2n3 − n2 flops. As a consequence, the overall computational complexity is O(n3).

On the other hand, the empirical complexity is estimated based on simulations. To

illustrate, we now consider determining the empirical complexity of the matrix multiplication

AA⊤. We first define a
√
n×

√
n grid (see Figure 4.1), and then followed by the construction

of the spatial weight matrixW and the computation ofA = In−ρW. We perform the matrix

multiplication AA⊤ repeatedly for a fixed n. The average computing time is calculated

based on 5000 replications. This process is repeated for various n values, and the resulting

computing time is plotted against n (see Figures S1.1 and S1.2 in Section S1 of the online

16



O

N

N

N N

Figure 4.1: The grid used for constructing W based on the Rook neighbourhood (also
referred to as the W-neighbourhood).

supplement). Finally, the following regression line

ti = b× nα
i , (4.1)

is fitted to estimate the computational complexity, where ti denotes the average computing

time of AA⊤ when the total number of observations n = ni, b is a constant, and α ≥ 0 is

the computational complexity. However, the estimation of the regression is done in the log

scale; log(ti) = log(b) + α× log(ni), using the least square method.

We briefly explain the grid and neighbourhood structure used in constructing the spatial

weight matrix W. Consider a regular grid of size
√
n ×

√
n, with n observations. We

define neighbours based on the Rook neighbourhood criterion (Moura and Fonseca, 2020)

as shown in Figure 4.1, where O is the unit of interest and, N’s are neighbours of O. It is

clear that any given unit can have 2 to 4 neighbours. The rows of matrix W (before row

normalization) that correspond to Rook neighbourhoods can accommodate a maximum of 4

non-zero elements. The neighbourhood structure of W is often called the W-neighbourhood

in spatial econometrics literature (Mukherjee et al., 2014; Suesse, 2018a). Moreover, given

that each row ofW contains a constant maximum number of non-zero elements (4) regardless

of the value of n, the neighbourhood structure of W is defined as a local neighbourhood.

The computational complexities, as detailed in the final columns of Tables 4.1, 4.2, and

4.3, are obtained through a combination of theoretical and empirical analysis. The analysis

is based on the spatial weight matrix W following the Rook neighbourhood structure. The

overall computational complexity of a term is determined by the maximum complexity among

the individual matrix operations involved. In Tables 4.1 and 4.2, the final row reflects

the overall complexity of computing the computationally expensive terms in the marginal

ML method using the direct approach and the parameterisation approach respectively. See
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Table 4.1: Complexity of calculatingVoo using the direct method. The cells in the complexity
column marked with * indicate the empirical complexity derived from simulations, whereas
the cells without * represent the theoretical complexity. See Section S1.2 of the online
supplement for a comprehensive derivation of these complexities.

Term Description Complexity

A⊤A
Two n× n sparse

matrix multiplication
O(n)

(A⊤A)−1 Inverse of n× n sparse matrix O(n2) *

Voo =
(
In + θ(A⊤A)−1

)
oo

No matrix
operations

-

Overall − O(n2)

Table 4.2: Complexity of calculating Voo using the parameterisation method. The cells in
the complexity column marked with * indicate the empirical complexity derived from sim-
ulations, whereas the cells without * represent the theoretical complexity. See Section S1.2
of the online supplement for a comprehensive derivation of these complexities.

Term Description Complexity

A−1
Bo

= (A⊤)−1B⊤
o = solve (A⊤,B⊤

o )
solving a system of
two sparse matrices

O(n1.5no) *

AA⊤ Two n× n sparse
matrix multiplication

O(n)

R = (A−1
Bo
)⊤(AA⊤ + θI) no × n times n× n O(nno)

Voo = RA−1
Bo

no × n times n× no O(nn2
o)

Overall − max(O(n1.5no), O(nn2
o))

Section S1 of the online supplement for further details on the analysis of the computational

complexity of the marginal ML method and EM algorithm.

4.1.1 Computational complexity of marginal ML method

This section discusses the complexity of the marginal ML method, described in Section 3.2.

The computation of the sub-matrix Voo plays an important role in determining the overall

complexity of the method. Tables 4.1 and 4.2 present the complexities associated with the

individual terms of the two alternative approaches for computing the sub-matrix Voo. In the

direct approach, we compute the complete matrix V and then extract the sub-matrix Voo.

On the other hand, in the parameterisation method, we compute Voo by reformulating it us-

ing a sparse matrixBo = [Io|0], represented asVoo = ((A⊤)−1B⊤
o )

⊤(AA⊤+θIn)((A
⊤)−1B⊤

o ).

Tables 4.1 and 4.2 show that the overall complexity of the direct method for calculating

Voo depends only on the size of the dataset (n), while the complexity of the parameterisation

method depends on both the size of the dataset (n) and the number of observed data points
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(no). We now discuss the overall complexity of the parameterisation method under two

different real-world scenarios.

In the context of conducting a survey based on a sample from a larger population, the pop-

ulation is considered as the complete dataset with n units. The sample comprises observed

data with no units; the remaining nu units are considered missing. Choosing a criterion to

determine the value of no results in varying complexities.

Scenario 1: ( no ≤ c )

When the size of no is constrained by a constant c (no ≤ c), the overall complexity is

O(n1.5).

Scenario 2: no =
√
n

When no =
√
n, the overall complexity becomes O(n2) .

In the first scenario, the decision is made to keep no fixed regardless of any increase in n.

This leads to an overall computational complexity of O(n3/2) for calculating Voo. In the sec-

ond scenario, no remains relatively small compared to n. For example, with n = 1, 000, 000,

the number of observed units no is 1, 000. The number of observed units no is chosen to

be relatively small compared to n, but still varying with n such that the computational

complexity is O(n2). Thus, in real-world scenarios, the parameterisation approach typically

demonstrates computational complexities either smaller or equivalent to the direct method,

which carries a complexity of O(n2) for any given scenario.

We strongly recommend utilising the parameterisation method to compute Voo. This

recommendation arises from two key considerations. First, it avoids the direct inversion of

a sparse n × n matrix with a computational complexity of O(n2). Second, in the direct

method, even though A⊤A is a sparse matrix, its inverse is a dense matrix. As n increases,

the size of (A⊤A)−1 grows, and storing (A⊤A)−1 becomes impractical. In simulation stud-

ies, we observed that attempting to store (A⊤A)−1 on the National Institute for Applied

Statistics Research Australia High Performance Computer cluster2 failed when n exceeded

approximately 32, 500. On the other hand, utilising the parameterisation method allowed us

to obtain Voo, even for large values of n up to 1, 000, 000.

As Voo is a dense matrix, subsequent computations after its calculation include deter-

mining its determinant and solving systems that involve Voo; see the log-likelihood of zo in

Equation (3.3). Due to the computational complexity of these operations, particularly when

no is large, the practical applicability and efficiency of the marginal ML method are limited.

Thus, we recommend to use the marginal ML method when no is small.

2https://hpc.niasra.uow.edu.au/
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Table 4.3: Complexity of calculating terms in matrices Mou and Muu. The cells in the com-
plexity column marked with * indicate the empirical complexity derived from simulations,
whereas cells without * represent the theoretical complexity. Refer to Section S1.3 of the
online supplement for a comprehensive derivation of these complexities.

Operation Description Complexity

ABu = AB⊤
u

Two sparse matrix
multiplication

O(nnu)

AA⊤ Two n× n sparse
matrix multiplication

O(n)

LAA⊤
Cholesky of

local neighbourhood
O(n1.5)

LAA⊤+θIn
Cholesky update O(n1.5) *

S = solve(LAA⊤+θIn
,ABu)

solving a system of
two sparse matrices

using Cholesky factors
O(n1.5nu) *

A⊤
Bo

= BoA
⊤ no × n times n× n O(nno)

Muu = ABu

⊤S nu × n times n× nu O(n2
u)

Mou = ABo

⊤S no × n times n× nu O(nuno)

T= solve(Muu,Muo(zo − µo))
solving a system
with nu × nu

dense matrix
O(n3

u)

4.1.2 Computational complexity of EM algorithm

This section discusses the complexity of the EM algorithm, described in Section 3.3. The

most computationally demanding aspects of the EM algorithm involve calculating the log-

determinant, log|M| and the conditional mean, µu|o. Notably, the computation of sub-

matrices Muu and Mou includes all the necessary calculations for determining log|M|. For

a comprehensive understanding of the overall computational complexity of the EM algo-

rithm, exploring the details of computing Muu = BuA
⊤ (AA⊤ + Inθ

)−1
AB⊤

u , Mou =

BoA
⊤ (AA⊤ + Inθ

)−1
AB⊤

u , and then computing µu|o = µu −M−1
uuMuo(zo − µo) are suffi-

cient. Table 4.3 provides a detailed summary of the essential matrix operations and their

complexity for computing µu|o.

By reviewing Table (4.3), it is clear that the overall complexity of calculating T in Ta-

ble (4.3) using Muu and Mou depends on the values of n, no, and nu. The overall complexity

can be written as max(O(n1.5nu), O(nno), O(nonu), O(n3
u)). We undertake an analysis of the

overall computational complexity for calculating T across two distinct real-world scenarios.

Scenario 1: nu ≤ c, no = n− c

When nu is limited by a constant c (nu ≤ c), no equals n− c. Consequently, the overall
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complexity is determined by the maximum of either O(n1.5) or O(n2 − cn). Since the

highest order polynomial is 2, the overall complexity can be simplified to O(n2).

Scenario 2: nu =
√
n, no = n−

√
n.

This leads to the overall complexity of O(n2).

Similar to the parameterisation approach in the marginal ML method, we delve into

explaining the complexities of the two real-world scenarios for the EM algorithm. In the

first scenario, the sampling design involves fixing nu regardless of any increase in n. In this

context, the calculation of T exhibits a complexity of O(n2). In the second scenario as well,

where nu is relatively small compared to n, the overall complexity remains O(n2).

It is noteworthy that, for any positive value of n, these overall complexities are found

to be less than the complexity derived from the naive calculation of terms, which is O(n3).

This implies that the implementation of the EM algorithm utilising our proposed computa-

tional approaches entails lesser computational complexity compared to the implementation

involving the naive computation of terms, particularly under certain real-world scenarios.

To find the solution T for the equation T = M−1
uuMuo(zo−µo), where Muu is an nu×nu

symmetric and dense matrix, it is necessary to perform the Cholesky decomposition of Muu

(See Section S1.3.7 of the online supplement for the detailed implementation). However,

computing the Cholesky decomposition becomes computationally challenging for large values

of nu due to the dense nature ofMuu. Therefore, we recommend employing the EM algorithm

when nu is small.

In Figure 4.2, we present a plot of the average computing time (across 1000 replications)

required to calculate the marginal likelihood of zo in the marginal ML method (using the

parameterisation approach) and to compute the term Q(ϕ | ϕ′) in the EM algorithm for

H-SAM and H-SEM. This analysis is conducted with a fixed total number of observations

(n) while varying the proportion of missing values (nu). We set n = 5000, and consider

10%, 20%, . . . , 90% of 5000 as the number of observed units no. The plot provides support

for our complexity analysis and its findings, indicating that the marginal ML approach is

better when the value of no is small, whereas the EM algorithm becomes more useful when

no is large for both H-SEM and H-SAM.
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Figure 4.2: Average computing time of calculating the marginal log-likelihood of zo for
marginal ML, and Q(ϕ | ϕ′) for EM-algorithm for H-SAM (left) and H-SEM (right)

4.2 Comparing estimation methods

In the subsequent sections, we use the following terminology: the full data model (FDM)

refers to the model fitted using the entire dataset. The observed data model (ODM), on the

other hand, refers to the model fitted solely based on the observed locations. For this model,

the weight matrix, design matrix, and the vector of the response variable are constructed

exclusively from observed locations, denoted asWoo, Xo, and zo respectively. As discussed in

Section 3.1, the ODM specification leads to inconsistencies and biases in parameter estimates.

Furthermore, the complete locations model (CLM) refers to the model fitted based on the

complete locations, which accurately captures the marginal distribution of zo. We employ

two suggested estimation approaches from Sections 3.2 and 3.3 to fit the CLM.

Theoretically, the EM algorithm and the marginal ML method are expected to yield sim-

ilar estimates. However, the frequent non-convergence of the EM algorithm often leads to

divergent estimates. On the other hand, when the underlying optimisation problem presents

multiple local maxima, employing optimisers, such as the Newton–Raphson method, for

the marginal ML method to obtain the global maximum is challenging. Simulation studies

are conducted with two main objectives: (1) to assess the accuracy and the computational

efficiency of the marginal ML method and the EM algorithm, and (2) to evaluate the incon-

sistencies and the bias in the estimates when the ODM is used in the presence of missing

data.

We now describe the approaches to assess convergence for marginal ML and EM al-

gorithms. For the marginal ML method, we utilise the R optim() function to numerically

maximise the marginal log-likelihood with respect to parameters θ and ρ. We set 10−8 as the

convergence threshold for the optim() function. Regarding the EM algorithm, the standard
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Table 4.4: Mean estimates of ρ, σ2
ϵ , and σ2

y for different percentages of missing data for
the ODM and CLM estimated using marginal ML and EM algorithms for H-SEM. CLM-I:
marginal ML method and CLM-II: EM algorithm. The true values are ρ = 0.8, σ2

ϵ = 2, and
σ2
y = 1. The empirical means are computed from 2500 simulated datasets, each with n = 625

units. Entries marked with ’NC’ indicate that the EM algorithm failed to converge for a
significant number of simulations, preventing the reliable calculation of mean estimates.

Model
10% 20% 30%

ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y

ODM 0.7631 2.0128 1.0337 0.7400 2.1273 0.9719 0.7139 2.2285 0.9166
CLM-I 0.7779 1.8777 1.1342 0.7743 1.8771 1.1424 0.7817 1.8757 1.1203
CLM-II 0.7779 1.8777 1.1342 0.7743 1.8770 1.1424 0.7817 1.8757 1.1203

Model
70% 80% 90%

ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y

ODM 0.5302 2.0334 1.6499 0.5012 2.1295 1.3452 0.2781 1.1193 2.7998
CLM-I 0.7726 1.7241 1.2912 0.8162 1.9895 0.8016 0.5547 0.9749 1.9075
CLM-II 0.7726 1.7248 1.2901 0.8159 1.9879 0.8021 NC NC NC

approach involves comparing the Euclidean distance between estimated parameter vectors

at the ith and (i− 1)th iterations of the EM algorithm (Mader et al., 2014). If the distance

falls below 10−9, we determine that the algorithm has converged. We also set a maximum

limit of 1, 000 iterations for the EM algorithm due to practical computational constraints.

It is noteworthy that during each EM iteration, the estimates for θ and ρ are obtained using

the optim() function by maximising Q(θ, ρ | ϕ′) in Equation (3.19). For this numerical

optimisation task, we also set the convergence threshold of the optim() function to 10−8.

To generate synthetic data, we set ρ = 0.8, σ2
ϵ = 2, and σ2

y = 1 for the H-SEM and

H-SAM. The regression parameters are fixed at β0 = 1 and β1 = 5. The covariate is drawn

from a normal distribution with a mean of 0 and a standard deviation of 1. The spatial

weight matrix is generated based on a 25× 25 grid that follows the Rook neighbourhood. In

total, we simulate 2500 data sets, each with n = 625 units. The same initial values are used

for both marginal ML and EM algorithms.

Tables 4.4 and 4.5 present the mean estimates of ρ, σ2
ϵ , and σ2

y for the H-SEM and H-

SAM with different percentages of missing data using the ODM and CLM specifications.

Tables 4.6 and 4.7 further compare marginal ML and EM algorithms for estimating H-SEM

and H-SAM, respectively. The tables include the average computational time, convergence

rates of the EM algorithm, the average number of EM iterations, and the average relative

distances (ARD) between the estimates obtained from the marginal ML method and EM
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Table 4.5: Mean estimates of ρ, σ2
ϵ , and σ2

y for different percentages of missing data for
the ODM and CLM estimated using marginal ML and EM algorithm for H-SAM. CLM-I:
marginal ML method and CLM-II: EM algorithm. The true values are ρ = 0.8, σ2

ϵ = 2, and
σ2
y = 1. The empirical means are computed from 2500 simulated datasets, each with n = 625

units. Entries marked with ’NC’ indicate that the EM algorithm failed to converge for a
significant number of simulations, preventing the reliable calculation of mean estimates.

Model
10% 20% 30%

ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y

ODM 0.7519 1.8826 2.1226 0.6892 1.8075 3.4897 0.6136 1.5454 5.3717
CLM-I 0.8009 2.0182 0.9621 0.7994 2.0213 0.9658 0.7998 2.0069 0.9734
CLM-II 0.8009 2.0182 0.9621 0.7994 2.0213 0.9659 0.7998 2.0069 0.9734

Model
70% 80% 90%

ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y ρ σ2
ϵ σ2

y

ODM 0.3444 0.0387 15.1225 0.2737 0.3197 16.2810 0.2849 3.7648 13.8161
CLM-I 0.7987 2.0980 0.9440 0.8017 2.2445 0.8367 0.7991 2.2564 0.7381
CLM-II 0.7987 2.0970 0.9444 0.8017 2.2406 0.8384 NC NC NC

algorithm.

Tables 4.4 and 4.5 show that the mean estimates from marginal ML and EM algorithms

are nearly identical for H-SEM and H-SAM, except for the case of 80% missing values. When

analysing datasets with 90% missing values, the EM algorithm demonstrates slow conver-

gence. Consequently, we solely compare the estimates from the ODM with those from the

marginal ML method. For the H-SAM, regardless of the percentage of missing values, the

CLM specifications consistently yield estimates closer to the true values with lower Mean

Square Errors (MSEs) compared to estimates from the ODM (see Section S2 of the online

supplement for MSEs). In the case of H-SEM, with missing value percentages of 10%, 20%,

and 30%, although both ODM and CLM produce accurate parameter estimates, the esti-

mates from CLM are slightly closer to the true values with lower MSEs. For higher missing

value percentages, such as 70%, 80%, and 90%, the mean estimates for H-SEM obtained

from the ODMs significantly deviate from the true values compared to CLMs. Section S2

of the online supplement provides further results for this study. These results include mean

estimates, mean squared errors, and parameter coverages for all model parameters, including

fixed effects (β), across various levels of missing data percentages.

As shown in Tables 4.6 and 4.7, when dealing with low percentages of missing values

(10%, 20%, 30%), the EM algorithm consistently achieves convergence well before it reaches

the maximum iteration limit across almost all simulated data sets for both H-SEM and H-
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Table 4.6: Comparisons of average computing time, convergence rate, average number of EM
iterations, and the ARD measure for fitting ODM and CLM (using marginal ML method
and EM algorithm) for H-SEM. The properties are computed from 2500 simulated datasets,
each with n = 625 units.

Property
Missing percentages

10 20 30 70 80 90

Average computing
time (s)

ODM 1.1880 1.1477 1.1309 0.9018 0.8848 0.8207
Marginal

ML
33.2491 28.8777 23.5002 6.6306 4.1570 2.3825

EM 40.942 83.797 200.009 3009.488 6488.425 6754.785
Convergence rate
EM algorithm

- 1 0.9975 0.9920 0.7885 0.4423 0.2867

Average No. of
EM iterations

- 46 70 110 565 812 895

ARD -
9.8703
×10−5

1.4330
×10−4

2.3029
×10−4

9.4642
×10−4

1.3102
×10−3

3.4279
×10−3

SAM. However, when working with datasets with high missing data percentages of 70%, 80%,

90%, we observe that the percentages of the convergence of the EM algorithm are 0.7885,

0.4423, 0.2867 for H-SEM and 0.9870, 0.2826 and 0.1831 for H-SAM on the simulated data

sets, respectively. As the percentage of missing values increases, so does the average number

of EM iterations. The observed behaviors can be attributed to the slower convergence rate

exhibited by the EM algorithm when operating with a smaller number of observed units. We

compare the estimates obtained from the EM algorithm with the estimates obtained using

the marginal ML method and the true parameter values. The final rows in Tables 4.6 and

4.7 present a summary of the average relative distance (ARD) between EM and marginal

ML estimates, relative to the true values, where ARD =

√√√√ r+3∑
i=1

(
θ̂i(marginal) − θ̂i(EM)

θi(true)

)2

, with

r + 3 representing the length of the parameter vector. The measure quantifies the variation

between the two estimation methods.

In both H-SEM and H-SAM, when the missing percentage exceeds 80%, the ARD be-

tween EM estimates and marginal ML estimates becomes larger than when the missing data

percentages are lower than 80%, as presented in the final rows of Tables 4.6 and 4.7. This

indicates a notable difference between estimates obtained using the marginal ML and EM

algorithms in scenarios with higher missing value percentages compared to those with lower

percentages. The difference is reflected in the observed variations in the mean estimates

beyond the second decimal point, as illustrated in the respective cells of Tables 4.4 and 4.5.

Tables 4.6 and 4.7 show that estimating ODM is faster than estimating CLM using the
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Table 4.7: Comparisons of average computing time, convergence rate, average number of EM
iterations, and the ARD measure for fitting ODM and CLM (using marginal ML method
and EM algorithm) for H-SAM. The properties are computed from 2500 simulated datasets,
each with n = 625 units.

Property
Missing percentages

10 20 30 70 80 90

Average time
consumption (s)

ODM 1.1380 1.0012 0.9482 0.9613 0.8565 0.8413
Marginal

ML
33.2988 25.4981 20.1207 7.9276 6.9077 5.5549

EM 59.542 74.295 165.862 2216.192 6368.822 7256.036
Convergence rate
EM algorithm

- 1 0.9996 0.9996 0.9870 0.2826 0.1831

Average No. of
EM iterations

- 42 55 84 560 918 927

ARD -
1.5954
×10−4

2.4737
×10−4

3.5323
×10−4

1.8938
×10−3

2.6936
×10−2

3.8173
×10−2

two proposed methods for any percentage of missing values. The marginal ML method is

faster for estimating H-SEM and H-SAM when the missing percentages are high. The EM

algorithm is faster when the missing value percentages are small.

Based on our complexity analysis detailed in Section 4.1, the EM algorithm demonstrates

superior computational performance over the marginal ML method when the percentage of

missing values (nu) is low. However, Tables 4.6 and 4.7 show that the marginal ML is faster

than the EM algorithm for all missing value percentages. There are two reasons. First, the

EM algorithm’s extremely small convergence threshold of 10−9 requires a large number of

iterations for convergence, thereby contributing to its higher computing time relative to the

marginal ML method. Second, the computational time of both algorithms is also influenced

by the total number of observations n. We conducted an additional simulation study where

we fitted ODMs and CLMs for H-SAM with n = 2, 500, having low (10%) and high (90%)

percentages of missing data. We adjusted the convergence threshold of the EM algorithm

to 10−6 and set the maximum number of EM iterations to 1, 000. Similar to the simulation

study with n = 625 and 90% missing values, we observed slow convergence of the EM

algorithm when n = 2, 500 and 90% missing values. Consequently, in the scenario where

90% of values are missing, we only compare the ODM with the CLM estimated using the

marginal ML method. The results of this study are presented in Table 4.8.

When estimating H-SAM with datasets with 10% of missing values percentages, the EM

algorithm is faster than the marginal ML method. However, when dealing with datasets with

90% of missing values percentages, the marginal ML method outperforms the EM algorithm.
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Table 4.8: Mean estimates of ρ, σ2
ϵ , and σ2

y and average computation times in seconds for
10% and 90% of missing data for the ODM and CLM estimated using marginal ML and EM
algorithms for H-SAM. The true values are ρ = 0.8, σ2

ϵ = 2, and σ2
y = 1. Entries marked

with ’NC’ indicate that the EM algorithm failed to converge for a significant number of
simulations, preventing the reliable calculation of mean estimates and ARD. The properties
are computed from 100 simulated datasets, each with n = 2, 500 units.

Model
10% 90%

ρ σ2
ϵ σ2

y Time (s) ρ σ2
ϵ σ2

y Time (s)

ODM 0.7584 1.9769 2.0744 20.5496 0.2415 0.0265 18.9752 0.8812
Marginal

ML
0.8092 2.1325 0.8840 3778.8418 0.7999 2.0578 0.9458 136.5278

EM 0.8092 2.1326 0.8839 691.8043 NC NC NC 429878.3

Convergence rate
EM algorithm

1 NC

Average No. of
EM iterations

42 NC

ARD
1.3792
×10−4 NC

These findings confirm the results of our complexity analysis in Section 4.1. Furthermore,

estimates derived from CLM, utilising both ML and EM algorithms are closer to the true

values compared to estimates obtained from ODM for both 10% and 90% missing value

percentages.

5 Real Data Application

This section applies the estimation methods to a real dataset. The dataset on house prices

in Lucas County, Ohio, USA, contains a total of 25,357 observations of single-family homes

sold between 1993 and 1998. The Spatial Econometrics toolbox for Matlab provides a com-

prehensive description of the dataset3 . The dataset is also included in the R package spData

(Bivand et al., 2023).

We use the natural logarithm of housing prices (ln(price)) as the dependent variable and

include several independent variables, including various powers of house age (age, age2, and

age3), the logarithm of the lot size in square feet (ln(lotsize)), the number of rooms (rooms),

the logarithm of the total living area in square feet (LTA), the number of bedrooms, and a

binary indicator for each year from 1993 to 1998 (syear) to represent the year of the house

3The dataset can be accessed at http://www.spatial-econometrics.com/html/jplv7.zip
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sale. The same row-normalized sparse weight matrix W, as introduced by Bivand (2010),

is used.

Suesse (2018a) conducted an analysis on the same dataset, using standard SEM and

SAM (i.e. SAR models without measurement errors) and SEM and SAM with measurement

errors. They employed the same dependent variable and covariates as those used by Bivand

(2010). The analysis revealed that when ignoring measurement errors, SAM gives a better fit

than SEM for the dataset, whereas when incorporating measurement errors, the SEM with

measurement errors outperforms the SAM with measurement errors. Therefore, ignoring

measurement errors in the SAR models can affect the conclusion significantly.

We first estimate the H-SEM and H-SAM with the complete dataset (FDM) and use

the estimates as the ground truth for comparing ODM and CLMs. We then generate two

datasets with missing values in the response variables from the complete dataset. The two

datasets have missing percentages of 10% and 90%. Subsequently, we estimate the ODM

and the CLM using the marginal ML and EM algorithms. We start both the marginal ML

and EM algorithms with identical initial values. We set the convergence threshold for the

optim() function to 10−8 for the marginal ML method. For the EM algorithm, we set the

convergence threshold for the optim() function to 10−8 for numerical maximisation within

each iteration, and 10−6 to terminate the EM algorithm.

Table 5.1 shows estimates and standard errors for ρ, σ2
ϵ , and σ2

y obtained using the FDM,

the ODM, the CLM with marginal ML method, and the CLM with EM algorithm for the

H-SEM with 10% of missing data. The table includes marginal log-likelihood values (for

the marginal ML and the EM algorithms), along with fitting time, the time to compute the

standard error of the parameters, and the number of EM iterations.

According to Table 5.1, the EM algorithm is faster than the marginal ML method for

estimating H-SEM when the missing data percentage is small (10% of missing data). The

results are consistent with our findings provided in Section 4.1. The marginal ML and EM

methods yield identical parameter estimates. Moreover, the parameter estimates obtained

from CLM are closer to the estimates obtained from the FDM than those of the ODM,

which relies solely on observed data locations; see Table S3.3 in Section S3 of the online

supplement for more detailed results, including the estimates and standard errors of fixed

effects (β).

Table 5.2 shows estimates and standard errors for ρ, σ2
ϵ , and σ2

y obtained using the

FDM, the ODM, the CLM with marginal ML method, and the CLM with EM algorithm

for the H-SAM with 90% of missing data. The table shows that the marginal ML method

outperforms the EM algorithm in terms of computing time when the percentage of missing

values is high (i.e. no is small). This confirms our results outlined in Section 4.1. Due
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Table 5.1: Parameter estimates (est.) with their standard errors (S.E.), marginal
log-likelihood values for the marginal ML and the EM algorithms, estimation time and the
time to calculate the standard errors of the parameters (Time std.error) in seconds for
fitting H-SEM using FDM-ML for the full data set, and ODM-ML, CLM-Marginal ML,

and CLM-EM for a partially observed data set with 10% of missing data, and the number
of EM iterations

Variables
FDM-ML ODM-ML

CLM
-Marginal ML

CLM-EM

est. S.E. est. S.E. est. S.E. est. S.E.
ρ 0.9866 0.0002 0.8654 0.0049 0.9868 0.0002 0.9868 0.0002
σ2
y 0.0004 0.0001 0.0226 0.0011 0.0004 0.0001 0.0004 0.0001

σ2
ϵ 0.0685 0.0007 0.0603 0.0012 0.0691 0.0007 0.0691 0.0007

number of EM
iterations

8

estimation time (s) 14.249 4.963 1803.9157 1546.3783
Time std.error (s) 5.849 5.52 59.2792 65.7387

marginal
log-likelihood

-5885.136 -5885.098

to computational constraints, we terminated the EM algorithm after 100 iterations (after

around 28 hours), and at this point, the EM algorithm had not yet converged. The lack of

convergence highlights the typical slow convergence of the EM algorithm when handling high

percentages of missing data, supporting our recommendation of employing the marginal ML

method for large missing data percentages in Section 4.1; see Table S3.2 in Section S3 of the

online supplement for further details. In this example, the computational cost per iteration

of the marginal ML method and EM algorithm is expensive because the total number of

observations (n) is large. Moreover, the online supplement provides a summary of the H-

SAM with 10% missing data and the H-SEM with 90% missing data; see Tables S3.1 and S3.4

in Section S3 of the online supplement for further details.

To compare the accuracy of the parameter estimates obtained from the ODM specification

and those observed from the CLM, we computed the MSE of the estimated parameters for

both H-SEM and H-SAM as shown in Table 5.3. The estimates from the FDM are treated

as true parameter values, and the MSE of the parameter estimates obtained using the EM

algorithm is calculated using the formula MSEEM = 1
r+3

∑r+3
i=1 (θ̂i − θ̂i,EM)2, where θ̂i is the

estimated value for the i-th parameter from the FDM, and θ̂i,EM is the estimated value for

the i-th parameter obtained from EM algorithm, and r+3 is the total number of parameters.

A similar measure is also defined for the marginal ML method.

As expected, parameter estimates obtained from the data with lower missing data per-
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Table 5.2: Parameter estimates (est.) with their standard errors (S.E.), marginal
log-likelihood values for the marginal ML and the EM algorithms, estimation time and the
time to calculate the standard errors of the parameters (Time std.error) in seconds for
fitting H-SAM using FDM-ML for the full data set, and ODM-ML, CLM-Marginal ML,

and CLM-EM for a partially observed data set with 90% of missing data, and the number
of EM iterations. Entries labeled as ’NC’ indicate instances where the EM algorithm did

not successfully converge.

Variables
FDM-ML ODM-ML

CLM
-Marginal ML

CLM-EM

est. S.E. est. S.E. est. S.E. est. S.E.
ρ 0.6727 0.0001 0.0027 0.0311 0.6046 0.0201 NC
σ2
y 0.0399 0.0008 0.0882 0.0114 0.0682 0.0070 NC

σ2
ϵ 0.042 0.0009 0.0882 0.0234 0.0203 0.0080 NC

number of EM
iterations

100

estimation time (s) 6.319 0.216 18.7909 101916.2943
Time std.error (s) 5.926 0.836 46.3919 41.6773

marginal
log-likelihood

-1120.645 NC

Table 5.3: Mean squared errors of estimates of ODM and CLMs (marginal ML and EM
estimates) relative to the FDM estimates for different missing value percentages. Cells
marked with an asterisk (*) indicate instances where the EM algorithm has not converged.

H-SEM H-SAM
10% missing 90% missing 10% missing 90% missing

ODM ML 0.1663 0.4838 1.0392 1.1248

CLMs
Marginal-

ML
0.0046 0.2556 4× 10−5 0.0172

EM
algorithm

0.0045 * 4× 10−5 *

30



centages (10%) exhibit lower MSE compared to those from scenarios with higher missing

value percentages (90%), irrespective of whether the ODM or the CLM model specifications

are used for H-SEM and H-SAM. The MSE estimates obtained from the ODM are consis-

tently much larger than those of CLMs for the 10% and 90% missing data percentages for

H-SEM and H-SAM.

6 Conclusion

The article proposes two approaches for estimating the parameters of SAR models with

measurement errors in the presence of missing data. The first method involves directly

maximising the marginal log-likelihood. The second method is based on the EM algorithm.

The two methods are particularly effective when the spatial weight matrix W is sparse.

The computational complexity analysis and our examples suggest that when dealing

with datasets with a small number of observed data (i.e., no is small), the marginal ML is

more efficient than the EM algorithm. There are two main reasons. First, the marginal

ML method becomes more advantageous in terms of computational efficiency for small no

because calculating the inverse and determinant of matrix Voo presents fewer computational

challenges in scenarios where no is small. Second, for datasets with small no, the convergence

of the EM algorithm tends to be slow, leading to a high number of iterations required to

achieve convergence.

When dealing with datasets containing a small number of missing data (i.e., nu is small),

we recommend employing the EM algorithm due to its lower computational complexity

compared to the marginal ML method. The EM algorithm’s computational demands mainly

depend on the terms Muu and Mou. When nu is small, the computational burden associated

with calculating these terms is considerably small. In addition, the EM algorithm tends to

converge rapidly for datasets with a small number of missing data nu, resulting in a lower

number of iterations required for convergence. On the contrary, the marginal likelihood

method involves operations such as V−1
oo and calculation of the determinant of Voo. These

operations are computationally intensive and may become infeasible for datasets with very

large values of no (small values of nu) because Voo is a dense matrix.

A notable limitation of our proposed methods arises when both no and nu are large,

leading to computational challenges due to dense matrix operations. For instance, consider

a scenario where n = 100, 000, and no = 1, 000. In such a case, the marginal ML method

is both preferable and computationally feasible, since no is small. However, as the value

of no increases to 20,000, even though the marginal ML method remains preferable due to

the small size of no compared to n, it becomes computationally challenging. Specifically,
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computing the determinant of a 20, 000× 20, 000 dense matrix (|Voo|; see the marginal log-

likelihood in Equation (3.3)) becomes difficult. Conversely, when no = 20, 000, nu reaches

80, 000 employing the EM algorithm also becomes problematic due to its computational

demands.

In future research, it is important to address computational challenges arising from large

no and nu. This can be accomplished by employing methods to approximate the marginal

covariance of zo, such as the reduced rank approach utilised by Burden et al. (2015), as

demonstrated for the SEM with measurement errors, in the cases where the data is fully ob-

served. Furthermore, while our study primarily investigates the estimation of H-SAR models

under the missing at random (MAR) mechanism, there is a pressing need to extend investi-

gations to encompass estimations with the missing not-at-random (MNAR) mechanism.
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Online Supplement for Statistical Inference on Hierar-

chical Simultaneous Autoregressive Models with Miss-

ing Data

We use the following notation in the supplement. Eq. (1), Table 1, and Figure 1, etc, refer to

the main paper, while Eq. (S1.1), Table S1.1, and Figure S1.1, etc, refer to the supplement.

S1 Computational complexity analysis

This section examines the computational complexities associated with computing computa-

tionally demanding individual terms for the two proposed likelihood approaches discussed in

Sections 3.2 and 3.3 of the main paper. We explore these complexities through theoretical

derivations and empirical estimations obtained from simulations.

S1.1 Common terms computed in both marginal ML and EM

methods: calculating AA⊤

This section illustrates the complexity of the term AA⊤ defined in the rows of different

tables in the main paper: (1) the first row of Table 4.1 in Section 4.1.1, (2) the second row

of Table 4.2 in Section 4.1.1, and (3) the second row of Table 4.3 in Section 4.1.1.

We observed that W contains a local neighbourhood; see Section 4.1 of the main paper.

As A = In − ρW, the structure of A also encompasses a local neighbourhood. Each row

of A contains a maximum of 3, 4, or 5 non-zero elements, which is one additional non-zero

element compared to W. The additional non-zero element arises from the fact that while

the diagonal of W is all zeros, the diagonal elements of A are 1.

To calculate a non-zero element in each row of AA⊤, it necessitates a maximum of 5

scalar multiplications and 4 scalar additions, resulting in a total of 9 flops. Simulation

studies have shown that for any value of n, AA⊤ contains at most 13 non-zero entries in

each row, indicating that AA⊤ constitutes a local neighbourhood. This implies that a total

of 9× 13 maximum number of flops are required to compute one row in AA⊤. With a total

of n rows, the computation of all elements in AA⊤ demands n×9×13 flops. As a result, the

overall maximum computational complexity of this operation is O(n). Through simulation

studies, the time complexity of computing AA⊤ has been estimated to be approximately

O(n1.032) ≈ O(n). The method to estimate the computational complexity is discussed in

Section 4.1 of the main document. However, in the implementation, this operation is not
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conducted as a matrix operation. It can be simplified as a scalar multiplication, expressed

as AA⊤ = I − ρ(W + W⊤) + ρ2WW⊤. To maximise the concentrated log-likelihood in

Equation (3.7) and the function Q(ϕ | ϕ′) in Equation (3.19) from the main document with

respect to ρ and θ, we provide precomputed matrices W+W⊤ and WW⊤, along with the

concentrated log-likelihood and Q(ϕ | ϕ′), as inputs to the optim() function for numerical

maximisation; see Section 3 of the main paper.

S1.2 Computing terms in the marginal ML method

S1.2.1 Calculate A−1
Bo

This section discusses the complexity of the term A−1
Bo

found in the first row of Table 4.2 in

Section 4.1.1 of the main paper.

In R programming language, the solve() function serves a dual purpose, allowing us to

calculate the inverse of a matrix and solve systems of linear equations. This function takes

two primary arguments. The command solve(M1, M2) solves the system M1X = M2 for X,

with both M2 and X can be either a vector or a matrix, provided that they have compatible

sizes. If direct inversion of M1 is desired, the command solve(M1) or solve(M1, I) can be

employed, where I represents the identity matrix matched in size to M1.

It is important to highlight that when dealing with a sparse matrix M1, the solve()

function in R’s Matrix package utilises specialised algorithms designed for sparse matrices.

These algorithms, including sparse Cholesky decomposition (see Section S1.3.1) and sparse

LU decomposition (Davis, 2006), are explicitly used to optimise computations in scenarios

involving sparse matrices. For more information, interested readers can refer to the docu-

mentation of the Matrix package (Bates et al., 2022).

In our case, the objective is to compute A−1
Bo

with the provided matrices A⊤ and B⊤
o ,

where the calculation is expressed as

A−1
Bo

= (A⊤)−1B⊤
o . (S1.1)

When the command solve(A⊤,B⊤
o ) is executed, the solve function performs an LU decom-

position on the sparse square matrix A⊤ from the Csparse library (Davis, 2006), which is

optimised for sparse matrices. The sparsity of A⊤ allows the use of efficient sparse matrix

LU decomposition algorithms, typically achieving computational complexities below O(n3).

Let LA⊤ and UA⊤ represent the lower and upper triangular matrices obtained from the LU

decomposition of A⊤. The system to be solved in Equation (S1.1) can be expressed as:
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A⊤A−1
Bo

= B⊤
o ,

(LA⊤UA⊤)A−1
Bo

= B⊤
o ,

LA⊤
(
UA⊤A−1

Bo

)
= B⊤

o .

(S1.2)

To solve the system described in Equation (S1.2), a two-step process is employed. Firstly,

forward substitution is used on the system LA⊤Z = B⊤
o to derive the solution for Z. Subse-

quently, with Z determined, backward substitution is applied to the system UA⊤A−1
Bo

= Z

to obtain A−1
Bo
.

During the application of forward substitution to LA⊤Z = B⊤
o , assuming all the lower

triangular elements of LA⊤ are non-zero, the computation of each row of the matrix Z

requires n2 flops per row (Ford, 2015). Given that Z has no columns, the total number of

flops needed to compute it is n2no. Similarly, assuming all the upper triangular elements of

UA⊤ are non-zero, the application of backward substitution to UA⊤A−1
Bo

= Z requires n2no

flops. Hence, the total number of flops required for both forward and backward substitutions

is 2n2no, and the complexity of these operations should not exceed O(n2no).

In summary, the solve() function first computes the LU decomposition of A⊤, with

a complexity of less than O(n3). Subsequently, the application of forward and backward

substitution involves a complexity of at most O(n2no). As a result, the overall complexity of

the solve(A⊤,B⊤
o ) operation should be less than O(n3). Through simulations, considering a

constant value for no, the estimated time complexity for the solve(A⊤,B⊤
o ) operation, which

includes both the LU decomposition of A⊤ and the forward and backward substitutions

steps is approximately O(n1.522) ≈ O(n3/2). Moreover, a simulation study suggests that,

when considering a constant value for n, the complexity of the solve(A⊤,B⊤
o ) operation

can be estimated as O(n0.973
o ) ≈ O(no). This finding aligns with the overall complexity of

the solve(A⊤,B⊤
o ) operation derived from its theoretical implementation.

S1.2.2 Calculate R

This section aims to demonstrate the complexity of the term R given in the third row of

Table 4.2 in Section 4.1.1 of the main paper. The operation of calculating R given (A−1
Bo
)⊤

and (AA⊤ + θIn) is a matrix multiplication:

R = (A−1
Bo
)⊤(AA⊤ + θIn). (S1.3)

It is clear that the structure of the matrix AA⊤+ θIn is similar to that of AA⊤. i.e. entries

of zero and non-zero in AA⊤+ θIn equivalent to that of AA⊤. This implies that AA⊤+ θIn
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also comprises a local neighbourhood having at most 13 non-zero entries in each row.

We understand that (A−1
Bo
)⊤ represents an no × n dense matrix, and AA⊤ + θIn is an

n×n sparse matrix, with each row having a maximum of c non-zero elements, where c = 13.

Since AA⊤ + θIn is symmetric, this property extends to its columns as well; each column

also contains a maximum of c non-zero elements. The resulting matrix, R, is an no×n dense

matrix.

To compute a single entry in the R matrix, a maximum of 2c − 1 flops are required,

involving c scalar multiplications and c − 1 scalar additions. Subsequently, calculating an

entire row in R necessitates evaluating n columns, leading to a total of n(2c−1) flops. Given

that R has no rows, the total number of flops required to compute all rows in R is given

by non(2c − 1). As a result, the maximum time complexity for the operation described in

Equation (S1.3) is O(nno). Specifically, when no is held constant, the complexity reduces to

O(n), whereas, when n is fixed, the maximum complexity becomes O(no).

Through simulation studies, we find that when no remains constant, the complexity of

the operation described in Equation (S1.3) is O(n1.298) ≈ O(n). Conversely, with a fixed n,

the complexity is estimated to be O(n1.215
o ) ≈ O(no). These findings confirm the theoretical

complexity analysis.

S1.2.3 Calculating Voo

This section aims to demonstrate the complexity of the term Voo found in the fourth row of

Table 4.2 in Section 4.1.1 of the main paper. Given matrices R and A−1
Bo
, the calculation of

Voo involves performing a matrix multiplication on two dense matrices. This operation can

be expressed as:

Voo = RA−1
Bo
. (S1.4)

The matrix dimensions for R and A−1
Bo

are no×n and n×no, respectively. Calculating a

single entry in the Voo matrix requires exactly 2n−1 flops. With Voo containing no columns,

computing an entire row demands exactly no(2n− 1) flops. Since Voo has no rows, the total

flops for computing the entire Voo matrix amount to exactly n2
o(2n−1). Thus the complexity

of the operation in Equation (S1.4) can be derived as O(nn2
o).

S1.2.4 Inversion of A⊤A

This section aims to demonstrate the complexity of computing the inverse of A⊤A found in

the second row of Table 4.1 in Section 4.1.1 of the main paper.
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As described in Section S1.2.1, the solve() function is utilised to compute the inversion

of A⊤A. In order to calculate inverse of A⊤A, we use the command solve(A⊤A, I). The

system
(
A⊤A

)
X = I requires solving for the matrixX. SinceA⊤A is symmetric and sparse,

The R function first calculates the Cholesky factors of A⊤A. Due to its local neighbourhood

structure, the complexity of the Cholesky factorisation isO(n3/2). Let us denote the Cholesky

factor of A⊤A as LA⊤A. The system to be solved can be written as:

(
A⊤A

)
X = I,(

LA⊤A(LA⊤A)
⊤
)
X = I,

LA⊤A

(
(LA⊤A)

⊤X
)
= I.

(S1.5)

To solve the system presented in Equation (S1.5), a two-step process is employed. Firstly,

forward substitution is applied to the system LA⊤AZ = I, resulting in the derivation

of Z. Subsequently, with Z in hand, backward substitution is conducted on the system

(LA⊤A)
⊤X = Z to yield X, which is the inverse of A⊤A.

During the application of forward substitution to LA⊤AZ = I for obtaining Z, it is notable

that LA⊤A forms a lower triangular matrix. Assuming all the lower triangular elements are

non-zero, the computation of one row of the matrix Z requires n2 flops. As Z possesses n

columns, the total number of flops needed to compute its all entries is n3. Similarly, the

application of backward substitution to (LA⊤A)
⊤X = Z for obtaining X assuming all the

upper triangular elements in (LA⊤A)
⊤ are non-zero demands n3 flops.

However, it is crucial to emphasize that A⊤A is a sparse matrix, meaning its Cholesky

factors are also sparse. Consequently, a substantial portion of entries in the lower trian-

gular matrix LA⊤A is zero. This leads to a reduction in the number of flops required for

both forward and backward substitutions, making it less than n3. This indicates that, the

complexity of these operations is lower than O(n3).

In summary, the solve() function initially computes the Cholesky factors of A⊤A,

which carries a complexity of O(n3/2). Subsequently, the application of forward and back-

ward substitution, benefiting from the sparsity of A⊤A, involves a complexity of less than

O(n3). Consequently, the overall complexity of the solve() operation falls within the range

of O(n3/2) and O(n3). Based on a simulation study, the estimated computational complexity

for the solve(A⊤A, I) operation is O(n2.057) ≈ O(n2).
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S1.3 Computing terms in the EM algorithm approach.

The computational complexity of the EM algorithm depends on computing submatrices Muu

andMou, whereMuu = BuA
⊤ (AA⊤ + Inθ

)−1
AB⊤

u andMou = BoA
⊤ (AA⊤ + Inθ

)−1
AB⊤

u .

To investigate the total computational complexity of calculating these terms, we need to con-

sider the individual complexity of each matrix operation involved in their computations.

S1.3.1 Calculating Cholesky factorisation of AA⊤

This section discusses the complexity of the term found in the third row of Table 4.3 in

Section 4.1.2 of the main paper.

As discussed in Section S1.1, the matrix AA⊤ represents a local neighborhood. Rue and

Held (2005) demonstrated that when performing Cholesky factorisation on a sparse matrix

with a local neighborhood constructed on an
√
n ×

√
n regular grid, the computational

complexity is O(n3/2). Consequently, the computational complexity of Cholesky factorisation

for AA⊤ is O(n3/2). Our simulation studies confirmed this by demonstrating an estimated

computational complexity of O(n1.659) ≈ O(n3/2).

S1.3.2 Calculating ABu

This section aims to demonstrate the complexity of the term ABu found in the first row of

Table 4.3 in Section 4.1.2 of the main paper. Given matrices A and B⊤
u , the calculation of

ABu involves performing a matrix multiplication between two sparse matrices, as defined by

the equation:

ABu = AB⊤
u (S1.6)

We previously established that the n × n matrix A represents a local neighbourhood,

and Bu = [0 | Iu] is an nu × n sparse matrix, where Iu is the nu × nu identity matrix, and

0 is the nu × no zero matrix. In B⊤
u , each column has exactly one element with a value

of 1, while all other elements are zero. This implies that to compute a single element in

ABu , a maximum of 1 flop is required. Considering that each row in ABu has nu entries

(corresponding to the nu columns in ABu), the computation of an entire row demands at

most nu flops. Given that there are n rows in ABu , the total maximum flops required to

compute all rows are nu × n. This results in a maximum total computational complexity of

O(nnu). In a simulation study, it has been estimated that the computational complexity of

the operation in Equation (S1.6) is O(n0.7831) ≈ O(n) for a fixed nu.
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S1.3.3 Calculating A⊤
Bo

= BoA
⊤

This section aims to demonstrate the complexity of the term A⊤
Bo

found in the sixth row of

Table 4.3 in Section 4.1.2 of the main paper. Given matrices A⊤ and Bo, the calculation of

A⊤
Bo

involves performing a matrix multiplication between two sparse matrices, as defined by

the equation:

A⊤
Bo

= BoA
⊤. (S1.7)

The matrix A⊤ represents a local neighbourhood with the dimension n× n, and Bo = [Io|0]
is an sparse matrix of size no × n, where Io is the no × no identity matrix, and 0 is the

no × nu zero matrix. Consequently, A⊤
Bo

becomes an no × n sparse matrix. In Bo, each row

has exactly one element with a value of 1, while all other elements are zero. This implies

that to compute a single element in A⊤
Bo
, a maximum of 1 flop is required. Considering that

each row in A⊤
Bo

has n entries (corresponding to the n columns in A⊤
Bo
), the computation

of an entire row demands at most n flops. Finally, since there are no rows in A⊤
Bo
, the total

maximum flops required to compute all rows is no × n. This results in a maximum total

computational complexity of O(nno). In a simulation study, it has been estimated that the

computational complexity of the operation in Equation (S1.7) is O(n0.9477) ≈ O(n) for a

fixed no.

S1.3.4 Calculating S = (AA⊤ + θIn)
−1ABu

This section aims to demonstrate the complexity of the term S found in the fifth row of

Table 4.3 in Section 4.1.2 of the main paper. Given matrices AA⊤ + θIn and ABu , the

calculation to obtain S is

S = (AA⊤ + θIn)
−1ABu , (S1.8)

and this operation can be expressed as solving the following system for S:

(AA⊤ + θIn)S = ABu . (S1.9)

The solve() function can be used to solve the system presented in Equation (S1.9) by

employing the command solve(AA⊤+θIn,ABu). However, the solve() function can operate

more efficiently with the Cholesky factor of AA⊤ + θIn, denoted as LAA⊤+θIn
, and solving

the system with the command solve(LAA⊤+θIn
,ABu). To do this, it is necessary to compute

LAA⊤+θIn
. We describe the calculation of LAA⊤+θIn

using the Cholesky factor of AA⊤ and

R’s update() function in Section 3.3 of the main paper. Consequently, LAA⊤+θIn
is readily
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available and can be used to solve the system presented in Equation (S1.9) more efficiently.

Calculation of S (including calculation of LAA⊤+θIn
) involves three steps. Firstly, we

compute the Cholesky factor of AA⊤, which has a complexity of O(n3/2) (refer to Sec-

tion S1.3.1 for details). Subsequently, the Cholesky factorisation of AA⊤+θIn is carried out

by calling the update() function. The simulation studies carried out by Suesse (2018a) sug-

gest that the computational complexity of this operation is approximately O(n1.5). Finally,

we execute the command solve(LAA⊤+θIn
,ABu) to solve the original system presented in

Equation (S1.9). The estimated complexities associated with this operation are: when nu

is held constant, the complexity is O(n1.497) ≈ O(n3/2), and when n is held constant, the

complexity becomes O(n0.968
u ) ≈ O(nu).

S1.3.5 Calculating Muu = (ABu)
⊤S

This section aims to demonstrate the complexity of the term Muu found in the seventh row

of Table 4.3 in Section 4.1.2 of the main paper. Given matrices ABu and S, the calcula-

tion of Muu involves performing a matrix multiplication. This operation is carried out by

multiplying a sparse matrix with a dense matrix, as specified by the following equation:

Muu = (ABu)
⊤S. (S1.10)

The dimensions of the matrices are nu×n for (ABu)
⊤ and n×nu for S. Notably, S is a dense

matrix due to the involvement of a matrix inverse in its calculation (see Equation (S1.8)).

In contrast, while (ABu)
⊤ is a sparse matrix, its specific structure proves challenging to

generalise. Consequently, simulation studies were undertaken to explore its structure. The

results show that, for a fixed value of n and varying values of nu, (ABu)
⊤ exhibits a local

neighbourhood structure, with a maximum of 5 nonzero elements in each row. Similarly, with

a fixed value of nu and varying values of n, a corresponding local neighbourhood structure

was observed in (ABu)
⊤, again with a maximum of 5 nonzero elements in each row.

Based on these findings, we demonstrate that computing a single entry of Muu requires

a maximum of 9 flops (5 scalar multiplications and 4 additions). As there are nu entries

in each row, the total number of maximum operations needed for computing a row is 9nu.

Given that Muu comprises nu rows, the total maximum number of operations required to

calculate all entries in Muu is 9n2
u. This results in a maximum computational complexity

of O(n2
u). The results from simulation studies indicate that the empirical complexity of this

operation is estimated to be O(n2.1683
u ) ≈ O(n2

u) when n is held constant.
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S1.3.6 Calculating Mou = A⊤
Bo
S

This section aims to demonstrate the complexity of the term Mou found in the eighth row

of Table 4.3 in Section 4.1.2 of the main paper. Given the matrices A⊤
Bo

and S, the calcu-

lation of Mou involves performing a matrix multiplication. This operation is carried out by

multiplying a sparse matrix with a dense matrix, as specified by the following equation:

Mou = A⊤
Bo
S. (S1.11)

Similar to the calculation of Muu using A⊤
Bo

and S discussed in section S1.3.5, due to

the difficulty in generalising the structure of A⊤
Bo
, simulation studies were conducted to

investigate its structure. The results revealed that A⊤
Bo

contains a local neighbourhood with

a maximum of 5 nonzero elements. It can be shown that the maximum number of flops

required to calculate all entries in Mou is 9nonu. The proof is is very similar to the proof for

calculating Muu, discussed in Section S1.3.5. This implies that the maximum computational

complexity of this operation is O(nonu).

S1.3.7 Calculating T = M−1
uuMuo(zo − µo)

This section aims to demonstrate the complexity of the term T found in the last row of

Table 4.3 in Section 4.1.2 of the main paper. Given matrices Muu and Muo(zo − µo), the

calculation to obtain T is expressed as follows

T = M−1
uumzu , (S1.12)

where mzu = Muo(zo − µo), and this operation can be expressed as solving the following

system for T:

MuuT = mzu (S1.13)

As discussed in Section S1.2.1, the solve function can be employed to solve the system

presented in Equation (S1.13) using the command solve(Muu,mzu). It is important to note

that while Muu is an nu × nu dense matrix, mzu is a vector of length nu. Consequently,

the solve() function cannot leverage sparse matrix operations, resulting in computational

complexity for solving a system with a dense matrix, which is O(n3
u).
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(a) Fixed nu and no (b) Fixed n

Figure S1.1: Time needed of various matrix operations in the EM algorithm in log10(time)
in seconds versus log10(n) in the left panel and log10(nu) in the right panel

(a) Fixed nu and no (b) Fixed n

Figure S1.2: Time needed of various matrix operations in the marginal ML method in log10
(time) in seconds versus log10(n) in the left panel and lg10(no) in the right panel.

Figure S1.1(a) illustrates the relationship between the log of the average computing time

needed to compute individual terms in the EM algorithm and the log of the total number

of units (n). Figure S1.1(b) shows the relationship between the log of the average comput-

ing time and the log of the number of unobserved units (nu). The estimated complexities

(empirical complexities), discussed in Section S1.3, are derived by estimating the slopes of

these graphs. See Section 4.1 in the main paper for further details. Similarly, Figure S1.2(a)

displays the logarithm of the average computing time of individual terms in the marginal

ML method against the logarithm of n. Figure S1.2(b) illustrates the relationship between

the logarithm of average computing time and the logarithm of the number of observed units,
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no. The estimated complexities, discussed in Section S1.2, are determined by estimating the

slopes of these graphs.

S1.4 Complexity summary

Table S1.1: Theoretical and empirical (estimated) computational complexities of calculating
Voo using the Direct method.

Term Description
Theoretical
complexity

Empirical
complexity

A⊤A
two n× n sparse

matrix multiplication
O(n) O(n1.032)

(A⊤A)−1 Direct inversion of n× n
sparse matrix

- O(n2.057)

Voo =
(
In + θ(A⊤A)−1

)
oo

No matrix
operations

- -

Table S1.1 presents a summary of the computational complexities associated with each

operation necessary for calculating Voo in the marginal ML method using the direct method.

Notably, the computational complexity primarily relies on the inversion of A⊤A. However,

it is important to note that evaluating this complexity theoretically is challenging. As a

result, we approximate its complexity using simulations as O(n2.057), which can be expressed

as approximately O(n2).

Table S1.2: Theoretical and empirical (estimated) computational complexities of calculating
Voo using the parameterisation method.

Term Description
Theoretical
complexity

Empirical
complexity

fixed no fixed n

A−1
Bo

= solve((A⊤)−1,B⊤
o )

solving a system of
two sparse matrices

- O(n1.522) O(n0.973
o )

AA⊤ Two n× n sparse
matrix multiplication

O(n) O(n1.032) constant

R = (A−1
Bo
)⊤(AA⊤ + θI) no × n times n× n O(nno) O(n1.298) O(n1.215

o )
Voo = RA−1

Bo
no × n times n× no O(nn2

o) O(n1.045) O(n1.795
o )

Table S1.2 provides a summary of the computational complexity associated with each

operation required to calculate Voo in the marginal ML method using the parameterisation

method. With the exception of the first operation, we have access to theoretical complex-

ity values for all other operations, and these values align with the estimated complexities.

For the first operation, the computational complexity estimate, based on simulations, is
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O(n1.522n0.973
o ), which can be further simplified to approximately O(n1.5no). In Section 4.1.1

of the main paper, we provide a comprehensive discussion on the overall complexity of calcu-

lating Voo, both in a general context and in the context of two specific real-world scenarios.

Table S1.3: Theoretical and empirical (estimated) computational complexities of calculating
T in the EM algorithm.

Term Description
Theoretical
complexity

Empirical
complexity

fixed nu fixed n

ABu = AB⊤
u

Two sparse matrix
multiplication

O(nnu) O(n0.7831)

AA⊤ Two n× n sparse
matrix multiplication

O(n) O(n1.032) constant

LAA⊤
Cholesky of

local neighbourhood
O(n1.5) constant

LAA⊤+θIn
Cholesky update - constant

S = solve(LAA⊤+θIn
,ABu)

solving a system of
two sparse matrices

using Cholesky factors
- O(n1.497) O(n0.9098

u )

ABo

⊤ = BoA
⊤ no × n times n× n O(nno) O(n0.9477)

Muu = ABu

⊤S nu × n times n× nu O(n2
u) constant O(n2.1683

u )
Mou = ABo

⊤S no × n times n× nu O(nuno) constant

T= solve(Muu,Muo(zo − µo))
=M−1

uuMuo(zo − µo)

solving a system
with a dense matrix

and a vector
O(n3

u) constant

Similarly, Table S1.3 summarises the computational complexities attached to individual

operations in calculating the conditional mean µu|o for the proposed EM algorithm. Except

for the fourth and fifth operations (calculating the Cholesky update and S), we have theoreti-

cal complexity values. We can approximate the complexity of S as O(n1.497n0.9098
u ), which can

be expressed as approximately O(n1.5no). Moreover, when performing the Cholesky update

operation, we rely on the complexity findings presented by Suesse (2018a). These findings

suggest an approximate computational complexity of O(n1.5). A comprehensive overview of

the overall computational complexity involved in calculating µu|o is available in Section 4.1.2

of the main paper.

S2 Extended simulation results

Tables S2.1 to S2.12 present the empirical means, mean squared errors of parameter estimates

and their coverages obtained from 2500 simulated datasets (each with n = 625 units) for the
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H-SEM and H-SAM. The synthetic data for these simulations are generated under settings

similar to those employed in the simulation study outlined in Section 4.2 of the main paper.

The coverage calculation is determined using 95% Wald-type confidence intervals, employing

the formula δ̂ ± 1.96

√
V̂ar(δ̂), where δ ∈ ϕ and V̂ar(δ̂) is the estimated variance of the

parameter δ. The estimated variances for the parameters are computed based on the formula

given in Section S6 of the online supplement.

Table S2.1: H-SEM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
10% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 0.9929 0.0415 0.9329 0.9932 0.0411 0.9399 0.9932 0.0411 0.9399

β1 5 4.9962 0.0050 0.9717 4.9961 0.0050 0.9717 4.9961 0.0050 0.9717

ρ 0.8 0.7631 0.0080 0.9399 0.7779 0.0060 0.9470 0.7779 0.0060 0.9505

σ2
ϵ 2 2.0128 0.1807 0.9364 1.8777 0.1995 0.9682 1.8777 0.1994 0.9717

σ2
y 1 1.0337 0.2190 0.9011 1.1342 0.2360 0.9399 1.1342 0.2359 0.9435

For H-SEM, when estimating parameters with a small percentage of missing data, specif-

ically 10%, 20%, and 30% (see Tables S2.1, S2.3, and S2.5), we observe that, the mean

estimates obtained from all three approaches (the ODM specification, marginal ML method,

and EM algorithm) are relatively close to the true values. However, the mean squared errors

(MSE) of estimates from the ODM specification tend to be generally higher compared to

those from the CLM.
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Table S2.2: H-SAM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
10% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 1.2403 0.0746 0.3307 0.9945 0.0049 0.9402 0.9945 0.0049 0.9402

β1 5 5.0602 0.0138 0.8924 4.9970 0.0070 0.9323 4.9970 0.0070 0.9323

ρ 0.8 0.7519 0.0026 0.0737 0.8009 0.0001 0.9422 0.8009 0.0001 0.9422

σ2
ϵ 2 1.8826 0.1091 0.9402 2.0182 0.0686 0.9502 2.0182 0.0686 0.9502

σ2
y 1 2.1226 1.3899 0.0319 0.9621 0.0385 0.9183 0.9621 0.0384 0.9183

For H-SAM, when dealing with 10%, 20%, 30%, 70%, and 80% missing data, the marginal

ML method and EM algorithm consistently provide nearly identical estimates with a cov-

erage probability of approximately 0.95 (i.e., 95%) and exhibit low mean squared errors

(MSE). In contrast, the estimates obtained from the observed data model specification devi-

ate significantly from the true values, displaying higher MSE compared to the marginal ML

method and EM algorithm. Some parameters even exhibit 0 coverage in certain cases. See

Tables S2.2, S2.4, S2.6, S2.8, and S2.10 for further details.

Table S2.3: H-SEM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
20% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 1.0422 0.0494 0.8774 1.0429 0.0489 0.9151 1.0429 0.0489 0.9151

β1 5 5.0062 0.0066 0.9623 5.0060 0.0066 0.9623 5.0060 0.0066 0.9623

ρ 0.8 0.7400 0.0138 0.9214 0.7743 0.0077 0.9308 0.7743 0.0077 0.9245

σ2
ϵ 2 2.1273 0.2788 0.8679 1.8771 0.2538 0.9434 1.8770 0.2537 0.9403

σ2
y 1 0.9719 0.2932 0.8270 1.1424 0.2631 0.9308 1.1424 0.2630 0.9245
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Table S2.4: H-SAM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
20% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 1.5631 0.3570 0.0351 1.0041 0.0045 0.9396 1.0041 0.0045 0.9396

β1 5 5.1861 0.0489 0.6316 5.0077 0.0071 0.9688 5.0077 0.0071 0.9688

ρ 0.8 0.6892 0.0129 0.0000 0.7994 0.0001 0.9376 0.7994 0.0001 0.9376

σ2
ϵ 2 1.8075 0.2354 0.9240 2.0213 0.0833 0.9532 2.0213 0.0832 0.9532

σ2
y 1 3.4897 6.5525 0.0000 0.9658 0.0454 0.9181 0.9659 0.0454 0.9181

Table S2.5: H-SEM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
30% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 0.9690 0.0457 0.8806 0.9659 0.0454 0.9463 0.9659 0.0454 0.9463

β1 5 4.9927 0.0083 0.9522 4.9926 0.0081 0.9493 4.9926 0.0081 0.9493

ρ0 0.8 0.7139 0.0182 0.9373 0.7817 0.0067 0.9612 0.7817 0.0067 0.9582

σ2
ϵ 2 2.2285 0.2808 0.8627 1.8757 0.2600 0.9612 1.8757 0.2598 0.9582

σ2
y 1 0.9166 0.2770 0.8507 1.1203 0.2700 0.9403 1.1203 0.2699 0.9403
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Table S2.6: H-SAM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
30% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 1.9794 1.0589 0.0054 1.0039 0.0046 0.9458 1.0039 0.0046 0.9458

β1 5 5.3251 0.1262 0.3469 4.9994 0.0079 0.9485 4.9994 0.0079 0.9485

ρ 0.8 0.6136 0.0360 0.0000 0.7998 0.0001 0.9512 0.7998 0.0001 0.9512

σ2
ϵ 2 1.5454 0.6575 0.9079 2.0069 0.1144 0.9377 2.0069 0.1142 0.9377

σ2
y 1 5.3717 20.1868 0.0000 0.9734 0.0495 0.9350 0.9734 0.0494 0.9350

Table S2.7: H-SEM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
70% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 0.9863 0.0809 0.7903 0.9797 0.0820 0.9032 0.9796 0.0820 0.9032

β1 5 4.9916 0.0147 0.9886 4.9897 0.0153 0.9839 4.9897 0.0153 0.9839

ρ 0.8 0.5302 0.1331 0.6613 0.7726 0.0136 0.9032 0.7726 0.0135 0.9032

σ2
ϵ 2 2.0334 1.8126 0.8065 1.7241 1.0984 0.9677 1.7248 1.0915 0.9677

σ2
y 1 1.6499 2.4837 0.8065 1.2912 0.8625 0.8548 1.2901 0.8574 0.8548

In the case of fitting the H-SEM with 70% missing values, the MSEs are lower, and the

coverage is generally higher for estimates derived from the CLM specification compared to

estimates from the ODM specification. See Table S2.7 for further details. In contrast to

scenarios with lower missing value percentages such as 10%, 20%, and 30%, the estimate for

ρ from ODM considerably deviates from the true value.
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Table S2.8: H-SAM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
70% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 3.6927 7.5528 0.0000 1.0044 0.0073 0.9386 1.0044 0.0073 0.9386

β1 5 5.9984 1.0796 0.0702 5.0053 0.0212 0.9474 5.0053 0.0212 0.9474

ρ 0.8 0.3444 0.2095 0.0000 0.7987 0.0002 0.9561 0.7987 0.0002 0.9561

σ2
ϵ 2 0.0387 3.8995 0.9754 2.0980 0.4133 0.9649 2.0970 0.4096 0.9649

σ2
y 1 15.1225 205.5219 0.0526 0.9440 0.1491 0.9123 0.9444 0.1482 0.9123

Table S2.9: H-SEM mean estimates (est.), mean squared error (m.s.e.), and coverage (cov.)
of estimated parameters by the ODM, the marginal ML method, and the EM algorithm -
80% of missing data. These attributes are computed from 2500 simulated datasets, each

with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 0.9424 0.0583 0.9000 0.9522 0.0514 0.9734 0.9522 0.0514 0.9734

β1 5 4.9346 0.0306 0.9333 4.9342 0.0323 0.9333 4.9343 0.0323 0.9333

ρ 0.8 0.5012 0.1742 0.8000 0.8162 0.0105 0.8333 0.8159 0.0105 0.8333

σ2
ϵ 2 2.1295 1.3991 0.8333 1.9895 0.8954 0.8667 1.9879 0.8903 0.8667

σ2
y 1 1.3452 2.1345 0.8000 0.8016 0.4482 0.8000 0.8021 0.4469 0.8000

Fitting the H-SEM with 80% missing values using the ODM specification leads to in-

accurate estimates compared to the CLM specification. The ODM specification has higher

MSE values compared to those of CLM for the parameters ρ, σ2
ϵ and σ2

y, as displayed in

Table S2.9.
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Table S2.10: H-SAM mean estimates (est.), mean squared error (m.s.e.), and coverage
(cov.) of estimated parameters by the ODM, the marginal ML method, and the EM
algorithm - 80% of missing data. These attributes are computed from 2500 simulated

datasets, each with n = 625 units.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 4.0162 9.5202 0.0000 0.9838 0.0117 0.8605 0.9838 0.0117 0.8605

β1 5 6.0322 1.2216 0.2093 4.9542 0.0420 0.9302 4.9543 0.0420 0.9302

ρ 0.8 0.2737 0.2799 0.0000 0.8017 0.0003 0.9070 0.8017 0.0003 0.9070

σ2
ϵ 2 0.3197 3.7892 0.9877 2.2445 0.7745 0.9535 2.2406 0.7614 0.9535

σ2
ϵ 1 16.2810 241.6783 0.6047 0.8367 0.2287 0.8837 0.8384 0.2257 0.9070

In Section 3.3 of the main paper, we discuss the limitations associated with employing the

EM algorithm when dealing with large values of nu. When dealing with datasets with 90%

missing values, the EM algorithm exhibits slow convergence. As a result, we only compare

the estimates from the ODM with the estimates from the marginal ML method.

Tables S2.11 and S2.12 present the mean estimates, the MSE, and the coverage of

estimates obtained from the ODM and CLM estimated using the marginal ML method with

90% missing values.

Table S2.11: H-SEM mean estimates (est.), mean squared error (m.s.e.), and coverage
(cov.) of estimated parameters by the ODM, the marginal ML method, and the EM
algorithm - 90% of missing data. These attributes are computed from 2500 simulated
datasets, each with n = 625 units. Entries marked with ’NC’ indicate that the EM

algorithm failed to converge for a significant number of simulations, preventing the reliable
calculation of mean estimates, MSE, and coverages.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 0.9966 0.1101 0.8848 0.9939 0.1077 0.9168 NC NC NC

β1 5 5.0103 0.0738 0.8542 5.0141 0.0706 0.9424 NC NC NC

ρ 0.8 0.2781 0.4004 0.6112 0.5547 0.2621 0.8384 NC NC NC

σ2
ϵ 2 1.1193 3.2489 0.9360 0.9749 2.5725 0.9808 NC NC NC

σ2
y 1 2.7998 6.2493 0.8588 1.9075 2.4003 0.9040 NC NC NC
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The MSEs of estimates obtained from the CLM specifications are consistently lower than

those from the ODM specification for the H-SEM with 90% missing values, as illustrated in

Table S2.11. These results imply that the CLM specification displays greater robustness to

high percentages of missing data, resulting in more accurate estimates for the H-SEM.

Table S2.12: H-SAM mean estimates (est.), mean squared error (m.s.e.), and coverage
(cov.) of estimated parameters by the ODM, the marginal ML method, and the EM
algorithm - 90% of missing data. These attributes are computed from 2500 simulated
datasets, each with n = 625 units. Entries marked with ’NC’ indicate that the EM

algorithm failed to converge for a significant number of simulations, preventing the reliable
calculation of mean estimates, MSE, and coverages.

P
ar
am

et
er

T
ru
e
va
lu
e

ODM CLM

ML Marginal ML EM algorithm

est. m.s.e cov. est. m.s.e cov. est. m.s.e cov.

β0 1 4.4343 12.6305 0.0045 1.0019 0.0209 0.9189 NC NC NC

β1 5 6.2834 2.0270 0.4009 5.0123 0.0812 0.9279 NC NC NC

ρ 0.8 0.2849 0.2750 0.0180 0.7991 0.0007 0.9009 NC NC NC

σ2
ϵ 2 3.7648 47.2668 0.9775 2.2564 1.5172 0.9910 NC NC NC

σ2
y 1 13.8161 213.6280 0.9640 0.7381 0.4297 0.9595 NC NC NC

Similar to the scenarios with missing percentages of 10%, 20%, 30%, 70%, and 80%,

the CLM specification consistently yields estimates that are closer to the true parameters,

exhibiting lower MSEs and higher coverages compared to ODM for H-SAM with 90% of

missing values.

In summary, we find that estimating the H-SAM with ODM specification results in

inaccurate parameter estimates for any level of missing value percentage, whereas CLM

consistently produces highly accurate parameter estimates. Consequently, we recommend

adopting the CLM specification for estimating H-SAM regardless of the missing value per-

centage. On the other hand, for H-SEM, when dealing with a low percentage of missing values

(10%, 20%, 30%), both ODM and CLM provide accurate parameter estimates. However, as

the missing value percentage increases to 70%, 80%, and 90%, ODM produces estimates that

are considerably different from the true values. In contrast, CLM yields estimates closer to

the true values, demonstrating lower MSE, particularly for parameters such as ρ, σ2
ϵ and

σ2
y. Therefore, we recommend utilising CLM for H-SEM, especially in scenarios with higher

percentages of missing values.
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S3 Extended Real data analysis results

Table S3.1 displays estimates and standard errors for fixed effects (β’s), ρ, σ2
ϵ , and σ2

y for the

H-SAM with 10% missing values obtained using FDM, ODM, and CLM estimated using the

marginal ML method and the EM algorithm. The table includes the marginal log-likelihood

values for the marginal ML and the EM methods, the computing time, the time taken to

compute the standard errors of the parameter estimates, and the number of iterations for

the EM algorithm.

According to the results presented in the complexity analysis in Section 4.1 of the main

paper, when dealing with low percentages of missing values, the EM algorithm is generally

expected to offer computational advantages over the marginal ML method for both H-SEM

and H-SAM. However, contrary to this expectation, as indicated in the third last row of

Table S3.1, the EM algorithm takes longer to converge than the marginal ML method. This

observation can be attributed to the high number of iterations (10) in the EM algorithm.

It is important to note that despite the difference in computation time, both marginal ML

and EM algorithm methods produce identical parameter estimates. Furthermore, parameter

estimates obtained from CLM are found to be closer to the estimates obtained from the

FDM than those from the ODM, which relies solely on observed data.

Table S3.4 displays estimates and standard errors for fixed effects (β’s), ρ, σ2
ϵ , and σ2

y

for the H-SEM with 90% missing values obtained using FDM, ODM, and CLM estimated

using the marginal ML method and the EM algorithm. The table includes the marginal

log-likelihood values for the marginal ML and the EM methods, the computing time, the

time taken to compute the standard errors of the parameter estimates, and the number of

iterations for the EM algorithm.

It is important to highlight that, similar to the case of fitting H-SAM with 90% missing

data as discussed in Section 5 of the main paper, we terminated the EM algorithm for H-

SEM with 90% missing data after 100 iterations (after about 49 hours and 53 minutes) due

to computational constraints. At this point, the EM algorithm had not reached convergence,

and its execution time was significantly longer in comparison to the marginal ML method.

This observation aligns with the conclusions drawn from our computational complexity study

in Section 4.1 of the main paper, emphasising that when faced with a substantial proportion

of missing data, the marginal ML method demonstrates superior computational efficiency

compared to the EM algorithm. Note that, in this example, the computational cost of the

marginal ML and EM algorithms is large because the total number of observations (n) is

large.
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Table S3.1: Parameter estimates (est.) with their standard errors (S.E.), marginal
log-likelihood values for the marginal ML and the EM algorithms, estimation time and the
time to calculate the standard errors of the parameters (Time std.error) in seconds for
fitting H-SAM using FDM-ML for the full data set, and ODM-ML, CLM-Marginal ML,

and CLM-EM for a partially observed data set with 10% of missing data, and the number
of EM iterations.

FDM-ML ODM-ML CLM-Marginal ML CLM-EM

est. S.E. est. S.E. est. S.E. est. S.E.

Intercept -0.1124 0.0507 2.7726 0.0895 -0.0962 0.0538 -0.0962 0.0538

age 0.9565 0.0429 1.9633 0.0805 0.9512 0.0453 0.9512 0.0453

age2 -1.5790 0.0797 -4.0116 0.1458 -1.5702 0.0848 -1.5701 0.0848

age3 0.3697 0.0440 1.2107 0.0789 0.3714 0.0458 0.3714 0.0458

log(lotsize) 0.0413 0.0022 0.1724 0.0043 0.0400 0.0024 0.0400 0.0024

rooms -0.0052 0.0026 0.0090 0.0044 -0.0045 0.0028 -0.0045 0.0028

log(TLA) 0.4454 0.0083 0.8930 0.0141 0.4351 0.0098 0.4351 0.0098

beds 0.0129 0.0039 -0.0174 0.0065 0.0111 0.0041 0.0111 0.0041

syear1994 0.0357 0.0066 0.0461 0.0106 0.0333 0.0069 0.0333 0.0069

syear1995 0.0710 0.0064 0.0835 0.0103 0.0670 0.0067 0.0670 0.0067

syear1996 0.0864 0.0063 0.1083 0.0100 0.0810 0.0065 0.0810 0.0065

syear1997 0.1191 0.0062 0.1451 0.0099 0.1134 0.0065 0.1134 0.0065

syear1998 0.1675 0.0064 0.2045 0.0102 0.1635 0.0067 0.1635 0.0067

ρ 0.6727 0.0001 0.0220 0.0300 0.6794 0.0051 0.6794 0.0051

σ2
y 0.0399 0.0008 0.1745 0.0062 0.0399 0.0013 0.0399 0.0013

σ2
ϵ 0.042 0.0009 0.0001 0.0016 0.0418 0.0012 0.0418 0.0012

number of EM

iterations
10

estimation time (s) 6.319 20.091 642.4235 1438.0863

Time std.error (s) 5.926 9.0800 93.8317 85.8197

marginal

log-likelihood
-6838.894 -6838.894
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Table S3.2: Parameter estimates (est.) with their standard errors (S.E.), marginal
log-likelihood values for the marginal ML and the EM algorithms, estimation time and the
time to calculate the standard errors of the parameters (Time std.error) in seconds for
fitting H-SAM using FDM-ML for the full data set, and ODM-ML, CLM-Marginal ML,

and CLM-EM for a partially observed data set with 90% of missing data, and the number
of EM iterations. Entries labeled as ’NC’ indicate instances where the EM algorithm did

not successfully converge.

FDM-ML ODM-ML CLM-Marginal ML CLM-EM

est. S.E. est. S.E. est. S.E. est. S.E.

Intercept -0.1124 0.0507 3.2539 0.2683 0.1863 0.1511 NC

age 0.9565 0.0429 1.6800 0.2551 0.8215 0.1219 NC

age2 -1.5790 0.0797 -3.7745 0.4711 -1.2960 0.2327 NC

age3 0.3697 0.0440 1.1916 0.2583 0.0989 0.1264 NC

log(lotsize) 0.0413 0.0022 0.1701 0.0124 0.0414 0.0064 NC

rooms -0.0052 0.0026 0.0296 0.0134 -0.0042 0.0082 NC

log(TLA) 0.4454 0.0083 0.8581 0.0422 0.5234 0.0324 NC

beds 0.0129 0.0039 -0.0312 0.0194 -0.0143 0.0125 NC

syear1994 0.0357 0.0066 0.0620 0.0311 0.0631 0.0213 NC

syear1995 0.0710 0.0064 0.0900 0.0305 0.0816 0.0207 NC

syear1996 0.0864 0.0063 0.1005 0.0297 0.1010 0.0201 NC

syear1997 0.1191 0.0062 0.1341 0.0290 0.1288 0.0200 NC

syear1998 0.1675 0.0064 0.1629 0.0304 0.1518 0.0212 NC

ρ 0.6727 0.0001 0.0027 0.0311 0.6046 0.0201 NC

σ2
y 0.0399 0.0008 0.0882 0.0114 0.0682 0.0070 NC

σ2
ϵ 0.042 0.0009 0.0882 0.0234 0.0203 0.0080 NC

number of EM

iterations
100

estimation time (s) 6.319 0.216 18.7909 101916.2943

Time std.error (s) 5.926 0.836 46.3919 41.6773

marginal

log-likelihood
-1120.645 NC
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Table S3.3: Parameter estimates (est.) with their standard errors (S.E.), marginal
log-likelihood values for the marginal ML and the EM algorithms, estimation time and the
time to calculate the standard errors of the parameters (Time std.error) in seconds for
fitting H-SEM using FDM-ML for the full data set, and ODM-ML, CLM-Marginal ML,

and CLM-EM for a partially observed data set with 10% of missing data, and the number
of EM iterations.

FDM-ML ODM-ML CLM-Marginal ML CLM-EM

est. S.E. est. S.E. est. S.E. est. S.E.

Intercept 5.2578 0.0748 4.3654 0.0831 5.2025 0.0793 5.2024 0.079

age 0.6994 0.0793 1.2398 0.0848 0.8220 0.0837 0.8203 0.0837

age2 -1.7558 0.1321 -2.9150 0.1440 -1.9681 0.1398 -1.9681 0.1398

age3 0.6355 0.0659 1.0907 0.0733 0.7360 0.0700 0.7348 0.0700

log(lotsize) 0.1458 0.0046 0.2008 0.0048 0.1482 0.0049 0.1481 0.0049

rooms 0.0056 0.0029 0.0069 0.0034 0.0062 0.0031 0.0062 0.0031

log(TLA) 0.6038 0.0103 0.6606 0.0119 0.6059 0.0109 0.6059 0.0109

beds 0.0164 0.0043 0.0131 0.0050 0.0164 0.0045 0.0164 0.0045

syear1994 0.0365 0.0067 0.0400 0.0079 0.0339 0.0072 0.0339 0.0072

syear1995 0.0799 0.0066 0.0805 0.0077 0.0781 0.0070 0.0781 0.0070

syear1996 0.0962 0.0064 0.1006 0.0075 0.0940 0.0068 0.0940 0.0068

syear1997 0.1413 0.0063 0.1438 0.0074 0.1393 0.0067 0.1393 0.0068

syear1998 0.1937 0.0065 0.1954 0.0076 0.1937 0.0069 0.1937 0.0069

ρ 0.9866 0.0002 0.8654 0.0049 0.9868 0.0002 0.9868 0.0002

σ2
y 0.0004 0.0001 0.0226 0.0011 0.0004 0.0001 0.0004 0.0001

σ2
ϵ 0.0685 0.0007 0.0603 0.0012 0.0691 0.0007 0.0691 0.0007

number of EM

iterations
8

estimation time (s) 14.249 4.963 1803.9157 1546.3783

Time std.error (s) 5.849 5.52 59.2792 65.7387

marginal

log-likelihood
-5885.136 -5885.098
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Table S3.4: Parameter estimates (est.) with their standard errors (S.E.), marginal
log-likelihood values for the marginal ML and the EM algorithms, estimation time and the
time to calculate the standard errors of the parameters (Time std.error) in seconds for
fitting H-SEM using FDM-ML for the full data set, and ODM-ML, CLM-Marginal ML,

and CLM-EM for a partially observed data set with 90% of missing data, and the number
of EM iterations. Entries labeled as ’NC’ indicate instances where the EM algorithm did

not successfully converge.

FDM-ML ODM-ML CLM-Marginal ML CLM-EM

est. S.E. est. S.E. est. S.E. est. S.E.

Intercept 5.2578 0.0748 3.3498 0.2640 3.4952 0.2446 NC

age 0.6994 0.0793 1.5135 0.2553 1.1073 0.2472 NC

age2 -1.7558 0.1321 -3.4992 0.4678 -2.6208 0.4332 NC

age3 0.6355 0.0659 1.1014 0.2548 0.7277 0.2287 NC

log(lotsize) 0.1458 0.0046 0.1806 0.0125 0.1743 0.0133 NC

rooms 0.0056 0.0029 0.0264 0.0128 0.0021 0.0110 NC

log(TLA) 0.6038 0.0103 0.8340 0.0411 0.8300 0.0365 NC

beds 0.0164 0.0043 -0.0241 0.0187 -0.0049 0.0165 NC

syear1994 0.0365 0.0067 0.0660 0.0299 0.0770 0.0258 NC

syear1995 0.0799 0.0066 0.0862 0.0294 0.1206 0.0253 NC

syear1996 0.0962 0.0064 0.0977 0.0287 0.1384 0.0247 NC

syear1997 0.1413 0.0063 0.1386 0.0277 0.1744 0.0242 NC

syear1998 0.1937 0.0065 0.1575 0.0293 0.2148 0.0253 NC

ρ 0.9866 0.0002 0.6866 0.0012 0.9936 0.0006 NC

σ2
y 0.0004 0.0001 0.1643 0.0030 0.0001 0.0002 NC

σ2
ϵ 0.0685 0.0007 0.0001 0.0081 0.0837 0.0035 NC

number of EM

iterations
100

estimation time (s) 14.249 0.968 52.02428 179518.2548

Time std.error (s) 5.849 0.363 42.44297 44.4597

marginal

log-likelihood
-1159.595 NC

S4 Additional proofs for the marginal ML method

This section derives the analytical forms of ML estimators for β and ω for the proposed

marginal ML method presented in Section 3.2 of the main paper. By differentiating the
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marginal log-likelihood for zo in Equation (3.3) in the main paper with respect to β we get

∂logf(zo;ω,θ, ρ,β)

∂β
= − 1

2ω

∂(r⊤o V
−1
oo ro)

∂β
, (S4.1)

by substituting ro = zo − X̃oβ,

∂logf(zo;ω,θ, ρ,β)

∂β
= − 1

2ω

∂(zo − X̃oβ)
⊤V−1

oo (zo − X̃oβ)

∂β

= − 2

2ω
(−X̃o)

⊤V−1
oo (zo − X̃oβ)

=
1

ω
(X̃

⊤
o V

−1
oo zo − X̃

⊤
o V

−1
oo X̃oβ).

(S4.2)

Then, by setting Equation (S4.2) to zero, we obtain the ML estimator for β

0 =
1

ω
(X̃

⊤
o V

−1
oo zo − X̃

⊤
o V

−1
oo X̃oβ)

X̃
⊤
o V

−1
oo X̃oβ = X̃

⊤
o V

−1
oo zo

β̂(ρ, θ) =
(
X̃

⊤
o V

−1
oo X̃o

)−1

X̃
⊤
o V

−1
oo zo.

(S4.3)

Similarly, the ML estimator for ω is derived by differentiating (3.3) with respect to ω as

∂logf(zo;ω,θ, ρ,β)

∂ω
= − no

2ω
+

1

2ω2
r⊤o V

−1
oo ro. (S4.4)

By setting Equation (S4.4) to zero, the ML estimator for ω̂ is

ω̂(ρ, θ) =
r⊤o V

−1
oo ro

no

. (S4.5)

S5 Additional proof for the EM algorithm

S5.1 Maximum Likelihood estimators for the parameters β and ω

This section derives the analytical forms of ML estimators for β and ω for the proposed

EM algorithm presented in Section 3.3 of the main paper. By differentiating Q(ϕ | ϕ′) in

Equation (3.15) in the main paper with respect to β, we obtain

∂Q(ϕ | ϕ′)

∂β
= − 1

2ω

∂(r⊤u|oMru|o)

∂β
, (S5.1)
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and by substituting ru|o = Eu|o(z)− µ, we obtain

∂Q(ϕ | ϕ′)

∂β
= − 1

2ω

∂(Eu|o(z)− µ)⊤M(Eu|o(z)− µ)
∂β

= − 2

2ω
(−X̃)⊤M⊤(Eu|o(z)− µ)

=
1

ω
(X̃

⊤
MEu|o(z)− X̃

⊤
MX̃β)

(S5.2)

Then, by setting Equation (S5.2) to zero, we obtain the ML estimator for β,

0 =
1

ω
(X̃

⊤
MEu|o(z)− X̃

⊤
MX̃β)

X̃
⊤
MX̃β = X̃

⊤
MEu|o(z)

β̂(ρ, θ) =
(
X̃

⊤
MX̃

)−1

X̃
⊤
MEu|o(z).

(S5.3)

Similarly, the ML estimator for ω is derived by differentiating the conditional expectation in

Equation (3.15) in the main paper with respect to ω as

∂Q(ϕ | ϕ′)

∂ω
= − n

2ω
+

1

2ω2
r⊤u|øMru|ø. (S5.4)

By setting Equation (S5.4) to zero, the ML estimator for ω̂ is,

ω̂(ρ, θ) =
r⊤u|oMru|o

n
. (S5.5)

S5.2 Simplifying other terms in the EM algorithm.

This section simplifies the expressions for the termsM, log|M|, X̃⊤
MX̃, and r⊤u|oMru|o found

in the EM algorithm presented in Section 3.3 of the main paper. This simplification aims to

reduce the computational burden associated with direct calculations. First, the matrix M

can be expressed as

M = V−1 = (In + θ(A⊤A)−1)−1

= A⊤(A⊤)−1(In + θA−1(A⊤)−1)−1A−1A

= A⊤ (A(In + θA−1(A⊤)−1)A⊤)−1
A

= A⊤ (AA⊤ + Inθ
)−1

A.

(S5.6)
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Second, the determinant of the log|M| is expressed as

|M| = |A⊤ (AA⊤ + Inθ
)−1

A|

|M| = |A⊤||
(
AA⊤ + Inθ

)−1 ||A|

log|M| = log|A⊤| − log|AA⊤ + Inθ|+ log|A|

log|M| = −log|AA⊤ + θIn|+ log|AA⊤|.

(S5.7)

We define the following two terms:

C = (LAA⊤+θIn
)−1X̃A, (S5.8)

and

c = (LAA⊤+θIn
)−1zAu|o , (S5.9)

where LAA⊤+θIn
is the Cholesky factor of AA⊤ + θIn, X̃A = AX̃, and zAu|o = AEu|o(z).

Then, we express X̃
⊤
MX̃ and r⊤u|oMru|o as

X̃
⊤
MX̃ = X̃

⊤
A⊤ (AA⊤ + Inθ

)−1
AX̃

= (AX̃)⊤
(
AA⊤ + Inθ

)−1
AX̃

= X̃
⊤
A

(
LAA⊤+θIn

(LAA⊤+θIn
)⊤
)−1

X̃A

= X̃
⊤
A(LAA⊤+θIn

)−1⊤(LAA⊤+θIn
)−1X̃A

=
(
(LAA⊤+θIn

)−1X̃A

)⊤
(LAA⊤+θIn

)−1X̃A

= C⊤C.

(S5.10)

and

r⊤u|oMru|o = (Eu|o(z)− µ)⊤M(Eu|o(z)− µ)

= Eu|o(z)
⊤MEu|o(z)− 2Eu|o(z)

⊤MX̃β + β⊤X⊤MX̃β.
(S5.11)

To calculate the quadratic form presented in Equation (S5.11), we need to calculate Eu|o(z)
⊤MEu|o(z),
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and Eu|o(z)
⊤MX̃ as follows:

Eu|o(z)
⊤MEu|o(z) = Eu|o(z)

⊤A⊤ (AA⊤ + Inθ
)−1

AEu|o(z)

=
(
AEu|o(z)

)⊤ (
AA⊤ + Inθ

)−1
AEu|o(z)

=
(
(LAA⊤+θIn

)−1zAu|o

)⊤ (
(LAA⊤+θIn

)−1zAu|o

)
= c⊤c.

(S5.12)

and,

Eu|o(z)
⊤MX̃ = Eu|o(z)

⊤A⊤ (AA⊤ + Inθ
)−1

AX̃

= (AEu|o(z))
⊤ (AA⊤ + Inθ

)−1
AX̃

=
(
(LAA⊤+θIn

)−1zAu|o

)⊤
(LAA⊤+θIn

)−1X̃A

= c⊤C.

(S5.13)

S6 Computing Information matrix

To obtain variances for the parameters of interest β, ρ, σ2
ϵ and σ2

y, the standard procedure

requires the calculation of either the expected or the observed information matrix. They are

obtained by first calculating the second derivatives of the negative of marginal log-likelihood.

The negative of marginal log-likelihood is

−Lo = −logf(zo;σ
2
ϵ , σ

2
y, ρ,β) =

no

2
log(2π) +

no

2
log(σ2

ϵ )−
1

2
log|V−1

oo |+
1

2σ2
ϵ

r⊤o V
−1
oo ro, (S6.1)

and for the convenience of notation, we denote the negative marginal log-likelihood −Lo =

L̄o.

First, we discuss the H-SEM. The second derivative of L̄o with respect to β

∂L̄o

∂β
=

1

2σ2
ϵ

2(−X⊤
o )V

−1
oo (zo −Xoβ)

= − 1

σ2
ϵ

X⊤
o V

−1
oo ro,

(S6.2)

and since E(r) = E(zo −Xoβ) = 0, it is straightforward to show that

E

(
∂2L̄o

∂β∂ρ

)
= 0, E

(
∂2L̄o

∂β∂σ2
ϵ

)
= 0, E

(
∂2L̄o

∂β∂σ2
y

)
= 0,
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meaning that β̂ is asymptotically independent from ζ = (ρ, σ2
ϵ , σ

2
y)

⊤. Further,

E

(
∂L̄o

∂β∂β⊤

)
=

1

σ2
ϵ

X⊤
o V

−1
oo Xo. (S6.3)

These results leads to σ2
ϵCov(β̂) =

(
X⊤

o V
−1
oo Xo

)−1
, and Cov(ζ̂) =

[
E
(

∂2L̄o

∂ζ∂ζ⊤

)]−1

. To cal-

culate Cov(ζ̂), we recommend utilising the observed information matrix through numerical

differentiation. This approach helps prevent the need for frequent and expensive inversions.

Now, we consider the H-SAM, which is more complicated because ro depends on ρ. The first

derivative of L̄o with respect to β is

∂L̄o

∂β
=

1

2ω
2(−(A−1X)o

⊤
)V−1

oo (zo − (A−1X)oβ)

= − 1

σ2
ϵ

(A−1X)o
⊤
V−1

oo ro.

(S6.4)

Then, it is straightforward to show that

E

(
∂L̄o

∂β∂β⊤

)
=

1

σ2
ϵ

(A−1X)o
⊤
V−1

oo (A
−1X)o. (S6.5)

In addition, while E
(

∂2L̄o

∂β∂ρ

)
̸= 0 , it can be shown that E

(
∂2L̄o

∂β∂σ2
ϵ

)
= E

(
∂2L̄o

∂β∂σ2
y

)
= 0, with

E

(
∂2L̄o

∂β∂ρ

)
=

1

σ2
ϵ

(
(A−1X)⊤o V

−1
oo

∂(A−1X)o
∂ρ

β

)
, (S6.6)

where ∂(A−1X)o
∂ρ

= (A−1WA−1X)o. We recommend employing numerical differentiation to

compute the corresponding second derivative for the term E
(

∂2L̄o

∂ζ∂ζ⊤

)
. This allows us to

derive the observed information matrix without utilising expensive matrix computations.
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