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Abstract

In 1988, Tian posed the stabilization problem for equivariant global log canonical thresh-

olds. We solve it in the case of toric Fano manifolds. This is the first general result on Tian’s

problem. A key new estimate involves expressing complex singularity exponents associated to

orbits of a group action in terms of support and gauge functions from convex geometry. These

techniques also yield a resolution of another conjecture of Tian from 2012 on more general

thresholds associated to Grassmannians of plurianticanonical series.
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1 Introduction

This article is the first in a series in which we study asymptotics of invariants related to existence
of canonical metrics on Kähler manifolds.

In the present article we focus on Tian’s αk,G- and αk,m,G-invariants that were defined in 1988
and 1991, and to a large extent are still rather mysterious. The presence of the compact symmetry
group G is a major source of difficulty and new ideas are needed here as these invariants have
not been previously systematically studied or computed. In particular, we provide a formula for
such invariants, valid for all toric Fano manifolds, leading to a resolution of Tian’s stabilization
conjecture in this setting, which is also the first general result on Tian’s conjecture.

A sequel to this article deals with the δk-invariants of Fujita–Odaka (also called k-th stability
thresholds) on toric Fano manifolds. It turns out that for these invariants there is a quantitative
dichotomy regarding stabilization, and when stabilization fails we derive their complete asymptotic
expansion.

1.1 Tian’s stabilization problem

Let (X,L, ω) be a polarized Kähler manifold of dimension n with L a very ample line bundle over
X , and ω a Kähler form representing c1(L). The space

HL := {ϕ : ωϕ := ω +
√
−1∂∂ϕ > 0} ⊂ C∞(X) (1)

of Kähler potentials of metrics cohomologous to ω was introduced by Calabi in a short visionary
talk in the Joint AMS–MAA Annual Meetings held at Johns Hopkins University in December,
1953 [7]. In a groundbreaking article some 35 years later, Tian proved (motivated by a question
of Yau [34, p. 139]) that HL is approximated (or “quantized”) in the C2 sense by the finite-
dimensional spaces Hk consisting of pull-backs of Fubini–Study metrics on P(H0(X,Lk)∗) under
all possible Kodaira embeddings induced by H0(X,Lk) [31]. A decade later this was improved
to a complete asymptotic expansion [9, 35] and so the Hk can be considered as the Taylor (or
Fourier, depending on the point of view) expansion of HL. The theme that holomorphic and other
invariants associated to X and H may be quantized using the spaces Hk has dominated Kähler
geometry for the last 35 years.

In the 1980’s, Futaki’s invariant was a new obstruction for the existence of Kähler–Einstein
metrics, but there were no invariants that guaranteed existence. At best, there were constructions
that utilized symmetry to reduce the Kähler–Einstein equation to a simpler equation that could
be solved and lead to specific examples (another theme pioneered by Calabi). Given a maximal
compact subgroup G of the automorphism group AutX , Tian introduced the invariant

αG := sup

{
c > 0 : sup

ϕ∈HG

∫

X

e−c(ϕ−supϕ)ωn < ∞
}

(where HG denotes the G-invariant elements of HL), and its quantized version (Definition 4.1)

αk,G,
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computed over the G-invariant elements of Hk, and obtained the sufficient condition

αG >
n

n+ 1
(2)

for the existence of a Kähler–Einstein metric when L = −KX (which we will henceforth assume
unless otherwise stated) [29, Theorem 4.1]. Initially, the main interest in the invariants αG was
as the first systematic tool for constructing Kähler–Einstein metrics on Fano manifolds, but later
it was also conjectured by Cheltsov and established by Demailly that αG actually coincides with
the G-equivariant global log canonical threshold from algebraic geometry [12]. Since Hk ⊂ HL it
follows that αG ≤ infk αk,G [31, p. 128], yet this does not help obtain (2). Instead, Tian posed
the following difficult question that would reduce the computation of the invariant αG from the
infinite-dimensional space HL to a finite-dimensional one Hk, and establish a highly non-trivial
relation between the different Hk’s [31, Question 1],[30]:

Problem 1.1. Let X be Fano and L = −KX , and let G be a maximal compact subgroup G ⊂
AutX. Is αk,G = αG for all sufficiently large k ∈ N?

It is interesting to note that a slight variation of Tian’s α- and αk-invariants turned out to
lead about three decades later [36, 26] to the very closely related δ- and δk-invariants of Fujita–
Odaka [18] that are in turn a slight (and ingenius) variation on global log canonical thresholds,
and turn out to essentially characterize the existence of Kähler–Einstein metrics. We return to
these invariants in a sequel [22].

1.2 A Demailly type identity in the presence of symmetry

Another (easier) problem motivating this article concerns the by-now-classical relation between
Tian’s (holomorphic) invariants and the (algebraic) global log canonical thresholds. The relation-
ship was first conjectured by Cheltsov and proved by Demailly and Shi [12, 27]. However, so far,
this relationship has only been shown for the α- and αk-invariants, or for the αG-invariant (see
[12, Theorem A.3], [27, Proposition 2.1], [12, (A.1)], respectively), and not for the more subtle
invariants αk,G. Inspired by Demailly, we introduce (Definition 4.4) the k-th G-equivariant global
log canonical threshold

glctk,G

as an algebraic counterpart of Tian’s αk,G (Definition 4.1). A natural question is:

Problem 1.2. Let X be Fano and L = −KX , and let G be a compact subgroup G ⊂ AutX. Is
glctk,G = αk,G?

1.3 Results

In this article, we resolve both Problems 1.1 and 1.2 in the toric setting. It is perhaps not well-
known, but Calabi was interested in toric geometry and computed certain geodesics in HL in the
toric setting, although he never published the result [8].

As standard, we allow the slightly more flexible situation of any (and not just a maximal)
compact subgroup of the normalizer

N((C∗)n)

of the complex torus (C∗)n in AutX . We refer the reader to §2 where these and other toric notation
is set-up carefully. Denote by

AutP ⊆ GL(M) ∼= GL(n,Z) (3)
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the subgroup of the automorphism group of the lattice M that leaves the polytope P (26) invariant.
It is necessarily a finite group (see §2). In fact, AutP is the quotient of the normalizer N((C∗)n) of
the complex torus (C∗)n in AutX by (C∗)n, so that N((C∗)n) consists of finitely many components
each isomorphic to a complex torus [2, Proposition 3.1]. For H ⊂ AutP , let

G(H) := H ⋉ (S1)n ⊂ N((C∗)n) ⊂ AutX (4)

denote the compact group generated by H and (S1)n (the latter is the maximal compact subgroup
of the complex torus (C∗)n).

Our first result resolves Problem 1.2 in this generality.

Proposition 1.3. Let X be toric Fano and L = −KX. Let P ⊂ MR (see (17), (26)) be the polytope
associated to (X,−KX), let H ⊂ AutP , and let G(H) be as in (4). Then glctk,G(H) = αk,G(H).

Using this result, and several new estimates, we can resolve Tian’s Problem 1.1 in the toric
setting in a surprisingly strong sense, showing that equality holds for all k ∈ N. We also allow for
all groups G(H) (and not just the maximal toric one G(AutP )).

To state the precise result we introduce some more notation. For H ⊂ AutP , denote by

PH :=
{
y ∈ P : h.y = y, ∀h ∈ H

}
⊂ P ⊂ MR (5)

the fixed-point set of H in P , and let

πH :=
1

|H |
∑

η∈H

η ∈ End(MQ) (6)

be the map that takes a point in MR to the average of its H-orbit. Note that πH is a projection
map (see §6.3 for details).

Theorem 1.4. Let X be toric Fano associated to a fan ∆ whose rays are generated by primitive
elements vi in the lattice N dual to M . Let P ⊂ MR (see (17), (26)) be the polytope associated to
(X,−KX), let H ⊂ AutP , and let G(H) be as in (4). Then for any k ∈ N,

αk,G(H) = sup

{
c ∈ (0, 1) : − c

1− c
PH ⊂ P

}

= min
u∈VerPH

1

maxi〈u, vi〉+ 1
(7)

= min
u∈πH(VerP )

1

maxi〈u, vi〉+ 1
,

where PH and πH are defined in (5)–(6) and Ver( · ) denotes the vertex set of a polytope. In
particular, αk,G(H) is independent of k ∈ N and is equal to αG(H).

There are a few new ingredients in the proof of Theorem 1.4. The first is a useful formula for

the spaces HG(H)
k in terms of the H-orbits of the finite group action (Lemma 4.5). This together

with a trick that amounts to estimating the singularities associated to a basis of sections in terms
of the finite group action orbit of a section yields a useful formula for αk,G(H) (Proposition 4.6)
as well as the equality αk,G(H) = glctk,G(H), i.e., a solution to Problem 1.2 (Proposition 1.3).
These then yield a corresponding useful formula for αG(H) (Corollary 4.7). One may prove using
the results of §3–§4 that αk,G(H) ≥ αkℓ,G(H) for any fixed k and all ℓ ∈ N (Proposition 5.1). In
Proposition 5.3 it is shown that there is a special k0 for which αk0ℓ,G(H) = αG(H) for all ℓ ∈ N, as
well as observed that this does not seem to imply Tian’s conjecture (Remark 5.6). Finally, key new
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estimates occur in §6. First, we show that rather general complex singularity exponents associated
to collections of toric monomials are independent of k (Proposition 6.2). The proof of this uses a
new observation about the relation between the support functions of collections of lattice points
associated to the toric monomials and complex singularity exponents. We then apply this to our

G(H)-invariant setting, using the aforementioned expression of HG(H)
k and a reduction lemma to

the H-invariant subspace (Lemma 6.10), to conclude the proof of Theorem 1.4.
It is perhaps of some interest to include here a rather immediate application of this circle of

ideas to a slightly more technical set of invariants, also introduced by Tian, that we call Tian’s
Grassmannian α-invariants. These invariants are defined a little differently, algebraically, and are
denoted αk,m or αk,m,G (Definition 7.1). At least in the non-equivariant setting (as well as in the
torus-equivariant setting, see Remark 7.2) these can be considered as generalizations of the αk

as αk = αk,1 [27, 12]. The invariants αk,2 were used by Tian implicitly in his proof of Calabi’s
conjecture for del Pezzo surfaces [31, Appendix A] (cf. [32, Theorem 6.1]) to overcome the most
difficult case (of a cubic surface with an Eckardt point) where equality holds in (2), and this was
improved by Shi to αk,2 > 2/3 = αk,1 in that case [27, Theorem 1.3],[10].

Tian also posed a stabilization conjecture for these invariants in 2012 [33, Conjecture 5.3]:

Conjecture 1.5. Let X be Fano. Fix m ∈ N. For sufficiently large k, αk,m,G is constant.

We completely resolve Conjecture 1.5 in the toric setting. Theorem 1.4 resolved Problem 1.1
in the affirmative (corresponding to the case m = 1 of Conjecture 1.5). For m ≥ 2, Conjecture
1.5 turn out to be only partially true as determined by a novel convex geometric obstruction we
introduce:

‖ · ‖−P

∣∣∣
P\VerP

< max
P

‖ · ‖−P . (∗P )

Note that this condition depends only on P (and not on m, k). The condition (∗P ) means that the
function ‖ · ‖−P on P achieves its maximum only at the vertices of P , i.e.,

argmaxP ‖ · ‖−P ⊂ VerP. (∗P )

When (∗P ) fails the maximum is achieved also at some point that is not a vertex of P .

Theorem 1.6. Let X be toric Fano with associated polytope P (27). Conjecture 1.5 holds if and
only if (∗P ) fails. More precisely, if (∗P ) holds,

αk,m,(S1)n > α, for k ∈ N and m ∈ N \ {1}, (8)

otherwise
αk,m,(S1)n = α, for m ∈ N and for sufficiently large k ∈ N. (9)

Theorem 1.6 is proven in §7.1 where we also explain the intuition behind it (see also Examples
8.6 and 8.9). For now, let us elucidate the condition (∗P ) a bit. The level set {‖ · ‖−P = λ} is the
dilation λ∂(−P ), and {‖ · ‖−P = maxP ‖·‖−P } is the largest dilation that intersects P (by Lemma
7.4). Thus, condition (∗P ) states that P intersects maxP ‖ · ‖−P∂(−P ) only at vertices. When
(∗P ) fails, convexity arguments show the intersection will contain a positive-dimensional face of P .
See Figure 1 for two examples.

Relation to earlier works. Theorem 1.4 strengthens and clarifies work of Song [28] and Li–Zhu
[24]. Song obtained a formula for αG but not for αk,G. In particular, there seems to be a gap
in the proof of [28, Theorem 1.2] that claims that αG = αk,G for all sufficiently large k. This
claim relies on proving that for some k0 ∈ N and all ℓ ∈ N, αG = αk0ℓ,G and then invoking that
αk,G is eventually monotone in k, and hence must be independent of k for sufficiently large k.
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Figure 1: The polytope P (solid line) and the level set {‖ · ‖−P = maxP ‖ · ‖−P} (dashed line).
For P = co{(−1,−1), (2,−1), (−1, 2)}, the maximum is only attained at the vertices of P . In
particular, (∗P ) holds. For P = [−1, 2]× [−1,−1], the maximum is attained on the line segment
{2} × [−1,−1]. In particular, (∗P ) does not hold.

Unfortunately, the proof of monotonicity is omitted from [28, p. 1257, line 7], and it appears to be
difficult to reproduce. It seems that such monotonicity is not currently known (cf. Remark 5.6).
Indeed, there is no obvious relationship between the various HG

k coming from different Kodaira
embeddings. As noted above, Song showed (for H = AutP ) that αG(H) = αk0ℓ,G(H) for some
k0 ∈ N and all ℓ ∈ N. Li–Zhu showed the same identity (essentially for H = {id}) for a group
compactification of a reductive complex Lie group and also claimed, similarly to Song, that this
implies eventual constancy in k in that setting [24, Theorem 1.3, p. 233]. Unfortunately, also they
do not provide a proof of the needed eventual monotonicity or constancy. In the non-equivariant
setting, and for rather general Fano varieties for which α ≤ 1, Birkar showed the deep result that
α = αk0ℓ for some k0 ∈ N and all ℓ ∈ N [5, Theorem 1.7]. However, also this result does not imply
Tian stabilization due to the aforementioned unknown monotonicity. Thus, Theorem 1.4 seems to
be the first general result on Tian’s stabilization Problem 1.1.

Similarly, Theorem 1.6 seems to be the first general result on Conjecture 1.5. Indeed, Li–Zhu
showed the same type of result Song obtained in the m = 1 setting, i.e., that αk0ℓ,m,(S1)n = α(S1)n

under a condition depending on k0 and m, and hence different from our (∗P ) (with the minor
caveat that their statement as written [24, Theorem 1.4] is incorrect, though can be easily fixed
by replacing “facet” by “face”, see §7.1). However, again, due to the lack of monotonicity, they
do not obtain a resolution of Conjecture 1.5 though they do obtain the first counterexamples to it
when m ≥ 2.

Combining Theorem 1.4 and Demailly’s theorem [12, (A.1)] also recovers Song’s formula for
the αG(AutP ) (that itself generalized Batyrev–Selivanova’s formula that αG(AutP ) = 1 whenever
PAutP = {0} (recall (5)) [2, Theorem 1.1, p. 233]). Cheltsov–Shramov claimed a more general
formula for αH (i.e., without the real torus symmetry included in G(H), recall (4)) however (as
kindly pointed out to us by I. Cheltsov) there is an error in the proof of [12, Lemma 5.1] as the
toric degeneration used there need not respect the H-invariance. Further generalizations of Song’s
formula for αG to general polarizations and group compactifications are due to Delcroix [13, 14]
and Li–Shi–Yao [23] and our methods should generalize to those settings as well as to the setting
of log toric Fano pairs and edge singularities [11, §6–7].

Finally, it is also worth mentioning that Tian also posed more general conjectures [33, Con-
jecture 5.4] for general polarizations (i.e., L not being −KX) for which there are already some
counterexamples [1].

Organization. Section 2 sets up the necessary notation concerning toric varieties and convex
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analysis. Section 3 constructs natural equivariant reference Hermitian metrics and volume forms.
Proposition 1.3 is proved in §4.4. Section 5 explains a trick that allows to deal with divisible k ∈ N

but also highlights the difficulties in dealing with general k. Theorem 1.4 is proved in §6. Theorem
1.6 is proved in §7. We conclude with examples in §8.

Acknowledgments. Thanks to C. Birkar, H. Blum, I. Cheltsov, and K. Zhang for helpful refer-
ences. Research supported in part by NSF grants DMS-1906370,2204347, BSF grant 2020329, and
an Ann G. Wylie Dissertation Fellowship.

2 Toric and convex analysis set-up

2.1 Notions from convexity

Consider an n-dimensional real vector space V ∼= Rn and let V ∗ ∼= Rn denote its dual with the
pairing denoted by 〈 · , · 〉. Given a set A ⊂ V , denote by

A◦ = {y ∈ V ∗ : 〈x, y〉 ≤ 1, ∀x ∈ A}

the polar of A [25, p. 125], and by
coA (10)

the convex hull of A [25, p. 12]. For a finite set [25, Theorem 2.3],

co{p1, . . . , pℓ} =
{∑ℓ

i=1 λipi :
∑ℓ

i=1 λi = 1, λ ∈ [0, 1]ℓ
}
. (11)

Also, set
−K := {−x : x ∈ K}.

Note (−K)◦ = −K◦. Also, K◦ = (coK)◦ ⊂ V ∗ whenever K ⊂ V . The polar can also be described
via the support function hK : V ∗ → R,

hK(y) := sup
x∈K

〈x, y〉, y ∈ V ∗ ∼= R
n, (12)

by K◦ = {hK ≤ 1}.
A dual notion to the support function is the near-norm function

‖x‖K := inf {t ≥ 0 : x ∈ tK} , (13)

associated to any compact convex set K with 0 ∈ intK. Note that [25, Corollary 14.5]

‖ · ‖K = hK◦ . (14)

Note that ‖ · ‖K is a norm when K is centrally symmetric (i.e., K = −K), otherwise it is only a
near-norm in the sense that it satisfies all the properties of a norm but is only R+-homogeneous:
‖λx‖K = ‖x‖K for λ ∈ R+ (and not fully R-homogeneous). The infimum in (13) is achieved: for
a minimizing sequence {ti}, x

ti
∈ K for any i, so

x ∈ ‖x‖KK (15)

since K is closed.
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Lemma 2.1. Let V be an R-vector space. Consider the polytope

A =

d⋂

j=1

{x ∈ V : 〈x, vj〉 ≤ 1} ,

where vj ∈ V ∗. Then,
‖x‖A = max

1≤j≤d
〈x, vj〉 .

Proof. Notice that x ∈ tA if and only if for any 1 ≤ j ≤ d, 〈x, vj〉 ≤ t. Thus,

‖x‖A = inf

{
t ≥ 0 : max

1≤j≤d
〈x, vj〉 ≤ t

}
= max

1≤j≤d
〈x, vj〉 .

Alternatively, observe that A = {v1, . . . , vd}◦ and A◦ = ({v1, . . . , vd}◦)◦ = co{v1, . . . , vd} [25,
Theorem 14.5] and then use (55) and (14).

2.2 Toric algebra

Consider a lattice of rank n and its dual lattice

N, M := N∗ := Hom(N,Z). (16)

Both N and M are isomorphic to Zn but we do not specify the isomorphism (see, e.g., the proof
of Lemma 2.3 for this point). The notation is useful as it serves to distinguish between objects
living in one lattice and its dual (although of course in computations we simply work on Zn, see
§8). Denote the corresponding R-vector space and its dual (both isomorphic to Rn)

NR := N ⊗Z R, MR := M ⊗Z R = N∗
R. (17)

A rational convex polyhedral cone in NR takes the form

σ = σ(v1, . . . , vd) :=
{∑d

i=1aivi : ai ≥ 0, vi ∈ N
}
. (18)

The rays R+vi, i ∈ {1, . . . , d} are called the generators of the cone [19, p. 9]. They are (1-
dimensional) cones themselves, of course. Our convention will be that the

vi, i ∈ {1, . . . , d}, are primitive elements of the lattice N, (19)

which means there is no m ∈ N \ {1} such that vi/m ∈ N . A cone is called strongly convex if
σ ∩−σ = {0} [19, p. 14]. A face of σ is any intersection of σ with a supporting hyperplane.

Definition 2.2. A fan ∆ = {σi}δi=1 in N is a finite set of rational strongly convex polyhedral
cones σi in NR such that:

(i) each face of a cone in ∆ is also (a cone) in ∆,

(ii) the intersection of two cones in ∆ is a face of each.

Such a fan gives rise to a toric variety X(∆): each cone σi in ∆ gives rise to an affine toric
variety [19, §1.3], that serves as (a Zariski open) chart in X(∆) with the transition between the
charts constructed by (i) and (ii) above [19, p. 21]. For instance, the zero cone corresponds to the
open dense orbit (C∗)n [3, p. 64], and more generally there is a bijection between the cones {σi}δi=1

and the orbits of the complex torus (C∗)n in X(∆) [3, Proposition 5.6.2], with the non-zero cones
corresponding precisely to all the toric subvarieties of X(∆) of positive codimension.
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When X(∆) is a smooth toric Fano variety (as we always assume), the fan ∆ must arise from
an integral polytope as follows (but in general, i.e., for singular toric varieties, this need not be
the case [19, p. 25]). Let ∆ be a fan such that X(∆) is smooth Fano and let σ1, . . . , σd be its
1-dimensional cones (i.e., rays) generated by primitive generators

∆1 := {v1, . . . , vd} ⊂ N, (20)

so σi = R+vi, and set (recall (10))

Q := co∆1 = co{v1, . . . , vd} = co∆1 ⊂ NR. (21)

Then ∆ is equal to the collection of cones over each face of Q plus the zero cone [19, p. 26], in
other words if F ⊂ Q is a face, then

σF := {rx ∈ NR : r ≥ 0, x ∈ F} (22)

is the union of all rays through F and the origin, and

∆ = {σF }F⊂Q.

Denote by
VerA (23)

the vertices of a polytope A. Note that VerF ⊂ VerQ = ∆1, and by (18)–(19),

σF = σ(VerF ). (24)

Smoothness of X means that the generators of σF form a Z-basis for N [19, p. 29]. By (24) this
means

the vertices of F form a Z-basis for N (for any facet F ⊂ Q). (25)

Thus each facet F of Q is an (n − 1)-simplex whose vertices form a Z-basis of N . In Lemma 2.3
we show this means the vertices of the polar polytope belong to the dual lattice M .

When L = −KX , there is an AutX action on H0(X,−kKX) for every k ∈ N. To get an
induced linear action on MQ we must restrict to the normalizer N((C∗)n) of the complex torus
(C∗)n in AutX . The representation of (C∗)n on H0(X,−kKX) splits into 1-dimensional spaces,
whose generators are called the monomial basis. There is a one-to-one correspondence between
the monomial basis of H0(X,−kKX) and points in kP ∩M , and the quotient N((C∗)n)/(C∗)n is
a linear group, that can be identified with AutP ⊂ GL(M) ∼= GL(n,Z) (3). Since P is defined
as the convex hull of vertices in M it follows that AutP is finite. Alternatively, this can be seen
by observing that NR is canonically isomorphic to the quotient of (C∗)n by its maximal compact
subgroup (S1)n [2, p. 229] and the induced action on MR is then defined by transposing via
the pairing. Conversely, all compact subgroups of N((C∗)n) that contain (S1)n are generated
by (S1)n and a finite subgroup H of AutP [2, Proposition 3.1], and we denote such a group by
G(H) ⊂ AutX as in (4). We describe in the proof of Lemma 3.1 concretely how the action of
AutP is expressed in coordinates. For a finite group H or finite set A we denote by

|H |, respectively |A|,

its order or cardinality.
Oftentimes we will work with

P := −Q◦ = {−v1, . . . ,−vd}◦ = −{v1, . . . , vd}◦ ⊂ MR, (26)
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as it has the nice geometric property of faces of (real) dimension k corresponding to toric sub-
varieties of dimension k, and since the metric properties (e.g., volume) of P correspond to those
of X . (Moreover, P can also be realized as the Delzant (moment) polytope associated to any
(S1)n-invariant Kähler metric representing the anticanonical class.) In particular,

P =

d⋂

i=1

{
y ∈ MR : 〈y,−vi〉 ≤ 1

}
= {h−∆1 ≤ 1} = {y ∈ MR : max

j
〈−vj , y〉 ≤ 1}, (27)

and irreducible toric divisors correspond to facets of P

Di := {y ∈ P : 〈y,−vi〉 = 1}. (28)

Note that P contains the origin in its interior. Also note that (26) is the standard convention since
then lattice points of P correspond to monomials via (33). Batyrev–Selivanova use −P instead.

Lemma 2.3. Let P ⊂ MR be the polytope associated to a smooth toric variety X. Then P is an
integral lattice polytope, i.e., VerP ⊂ M .

Proof. By duality, if u ∈ MR is a vertex of P then

F = {v ∈ Q : 〈u,−v〉 = 1} ⊂ NR (29)

is a facet of Q = −P ◦ ⊂ NR. Since X is smooth, the vertices of F form a Z-basis for N by (25).
Choose coordinates on N associated to this Z-basis, i.e., the vertices of F are the standard basis
vectors e1, . . . , en. Thus, the facet F = co{e1, . . . , en} is the standard (n−1)-simplex in Rn cut-out
by the equation 〈u,−v〉 = 1 where u = (−1, . . . ,−1) ∈ M , as desired.

Alternatively, if one does not wish to choose coordinates but rather work invariantly, denote by
VerF = {f1, . . . , fn} ⊂ N , and note spanZ VerF = N . Thus, any v ∈ N can be written uniquely
as v =

∑n
i=1 aifi (with ai ∈ Z), and so u ∈ MR = Hom(N,R) can be identified (recall (16)) with

the map

N ∋ v 7→ −
n∑

i=1

ai,

As
∑n

i=1 ai ∈ Z, this map actually belongs to Hom(N,Z) = M .

Another useful fact is a sort of maximum principle for convex polytopes, saying essentially that
a convex function on a polytope achieves its maximum at some vertex (regardless of continuity).

Lemma 2.4. Let A be a convex polytope and f : A → R ∪ {∞} a convex function. Then:
(i) supA f = supVerA f .
(ii) if f is bounded on VerA it is bounded on A and its maximum is achieved in a vertex.
(iii) if f attains its finite maximum on intA it is constant.
(iv) if f attains its finite maximum on the relative interior of a face F ⊂ A it is constant on F .

Proof. Write VerA = {p1, . . . , pℓ} and assume f(p1) ≤ · · · ≤ f(pℓ). By convexity, A = coVerA,
and (11) implies that any x ∈ A can be expressed as

x =
ℓ∑

i=1

λipi,
ℓ∑

i=1

λi = 1, λ ∈ [0, 1]ℓ. (30)

Then f (x) ≤∑ℓ
i=1 λif (pi) ≤

∑ℓ
i=1 λif (pℓ) = f (pℓ) , proving (i) and (ii).
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To see (iii), again express any x ∈ A using (30). Suppose that xint ∈ intA achieves the (finite)
maximum of f . Note that xint ∈ intA means one has the representation (30) for xint for some
λint ∈ (0, 1)ℓ. Choose δ = δ(x) ∈ (0, 1) so that λint − δλ ∈ R

ℓ
+. Define

λ′ :=
1

1− δ
(λint − δλ) ∈ R

ℓ
+.

Note that λ′ satisfies
∑ℓ

i=1 λ
′
i = 1, so letting x′ =

∑ℓ
i=1 λ

′
ipi we have x′ ∈ A by (30). Also,

δx+ (1− δ) x′ = xint. Thus, maxA f = f(xint) ≤ δf(x) + (1− δ) f(x′) ≤ maxA f , forcing equality,
i.e., f(x) = maxA f (since δ > 0 and maxA f < ∞), proving (iii). The proof of (iv) is identical by
working on the polytope F .

Finally, we recall Ehrhart’s theorem on the polynomiality of the number of lattice points in
dilations of lattice polytopes [15, 16], [21, Theorem 19.1]. Set

EP (k) := |kP ∩M |, k ∈ N. (31)

Proposition 2.5. Let M be a lattice and P ⊂ MR be a lattice polytope of dimension n. Then,

EP (k) =

n∑

i=0

aik
i, for any k ∈ N,

with an = Vol(P ), and
k ≤ k′ ⇒ EP (k) ≤ EP (k′) . (32)

3 A natural equivariant Hermitian metric and volume form

In light of Lemma 4.2 below it makes sense to choose a convenient pair (µ, h) of a volume form
and a Hermitian metric. In fact, we are free to choose such a pair for each k. The special feature
of working with L = −KX is that in fact a volume form essentially doubles as a Hermitian metric,
which is sometimes a bit confusing to keep track of in terms of notation, but is quite convenient

for computations. This section serves to explain this choice (µk = h
1/k
k , hk), see (39) and (41),

originally due to Song [28, Lemma 4.3]. We emphasize that the Hermitian metric must additionally
be chosen G-invariant in Definition 4.1, and this is confirmed for hk in Lemma 3.1.

Let X be a toric Fano manifold and P its associated polytope. There is a natural basis of the
space of holomorphic sections H0(X,−kKX) defined by the monimials zku where u ∈ P ∩ 1

kM .
That is, there exists an invariant frame e over the open orbit such that

sk,u(z) = zkue. (33)

What does e actually look like? This is most naturally expressed in terms of the monomial basis.
When k = 1 and u ∈ P ∩M [19, §4.3],

s1,u = zu
n∏

i=1

zi · ∂z1 ∧ · · · ∧ ∂zn .

In general, for any k ∈ N and u ∈ P ∩ 1
kM ,

sk,u = zku

(
n∏

i=1

zi

)k

(∂z1 ∧ · · · ∧ ∂zn)
⊗k. (34)
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In other words,

e =

(
n∏

i=1

zi

)k

(∂z1 ∧ · · · ∧ ∂zn)
⊗k. (35)

Next, let us construct a canonical Hermitian metric hk on −kKX . Since −kKX is very ample
[19, p. 70], it is natural to pull-back the Fubini–Study Hermitian metric via the Kodaira embedding.
It turns out that choosing the Kodaira embedding given by the monomial basis

ιk : X ∋ z 7→ [sk,u(z)/e(z)]u∈P∩ 1
k
M = [zku]u∈P∩ 1

k
M ∈ P

EP (k)−1, (36)

will yield the desired hk; importantly, the resulting hk will be torus-invariant, smooth, and essen-
tially transform computations on X to P . To wit, the Fubini–Study metric on O(1) → PEP (k)−1

is (where EP (k) is the number of lattice points in kP )

hFS(Zi, Zj) :=
ZiZ̄j∑
ℓ |Zℓ|2

,

and we define
hk := ι∗khFS . (37)

Note that each homogeneous coordinate Zi ∈ H0(PEP (k)−1,O(1)) pulls-back via ιk to one of the
monomial sections sk,u (which one depends on the ordering for the elements of P ∩ 1

kM chosen in
(36)). Thus, to express hk it suffices to compute it on the monomial basis of H0(X,−kKX):

hk(sk,u1 , sk,u2)(z) = hFS

(
sk,u1 , sk,u2

)
(ιk(z)) =

zku1zku2

∑
u∈P∩ 1

k
M

|zku|2 . (38)

Comparing (34) and (38) means that hk can be written as

hk =

(
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

)⊗k

(
n∏

i=1

|zi|2
)k ∑

u∈P∩ 1
k
M

|zku|2
. (39)

In conclusion, h
1/k
k is a smooth metric on −KX (hk being obtained as a pull-back of a smooth

metric under the Kodaira embedding), hence it is a smooth volume form on X . To express this
volume form, on the open orbit (C∗)n = Rn × (S1)n consider the holomorphic coordinates

wi := xi/2 +
√
−1θi = log zi ∈ C

n. (40)

In these coordinates then, this volume form, on the open orbit, is

µk := h
1
k

k =
dx1 ∧ · · · ∧ dxn ∧ dθ1 ∧ · · · ∧ dθn

(
∑

u∈P∩M/k

e〈ku,x〉

) 1
k

. (41)

Lemma 3.1. Let G(H) ⊆ AutX (4) be a subgroup generated by (S1)n and a subgroup H of
Aut(P ). Then hk (39) is G(H)-invariant.
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Proof. From (41) it is evident that hk is independent of (θ1, . . . , θn), i.e., it is (S
1)n-invariant. An

automorphism σ ∈ AutP ⊆ GL(M) can be represented (via choosing a basis for the lattice M) by
a matrix in GL(n,Z) ∼= GL(M). Since σ preserves the polytope P , then detσ ∈ {±1} (σ could be
orientation-reversing, e.g., in the case of a reflection). The induced action of σ on the dual space
NR is naturally represented (via the pairing between M and N) by the transpose matrix, that we
denote by σT , and this action is actually coming from the C-linear action of σT on NC

∼= Cn (40).
Thus,

σ.(dx1 ∧ · · · ∧ dxn) = d(x1 ◦ σ) ∧ · · · ∧ d(xn ◦ σ) = det(σT )dx1 ∧ · · · ∧ dxn

(here σ. denotes the action of σ on forms, i.e., by pull-back), and σ.(dθ1∧· · ·∧dθn) = det(σT )dθ1∧
· · · ∧ dθn. Since (detσT )2 = 1 it remains to consider the denominator of (41):

σ.
∑

u∈P∩M/k

ek〈u,x〉 =
∑

u∈P∩M/k

ek〈u,σ
T .x〉

=
∑

u∈P∩M/k

ek〈σ.u,x〉

=
∑

u∈σ(P∩M/k)

ek〈u,x〉

=
∑

u∈P∩M/k

ek〈u,x〉,

since σ preserves both P and M/k. In particular, hk is invariant under σ, concluding the proof.

Remark 3.2. An alternative, more invariant, proof of Lemma 3.1 is as follows. By (37), σ.hk =
(ιk ◦ σ)∗hFS. Now ιk ◦ σ induces the exact same Kodaira embedding if σ ∈ (S1)n < G(H). So
it suffices to consider σ ∈ H ; then, since H preserves P ∩ M/k, one obtains the same Kodaira
embedding up to permutation of the coordinates in PEP (k)−1. Either way, one obtains the same
pull-back of the Fubini–Study metric as can be from the definition of the Fubini–Study metric or
directly from (39), i.e., σ.hk = hk.

4 An algebraic αk,G-invariant and a Demailly type result

4.1 Analytic definition

Analogous to the classical αG-invariant, Tian [31, p. 128] defined the αk,G-invariant. For this one
restricts to a G-invariant subset of Hk. To write the subset explicitly in terms of global Kähler
potentials it is necessary to choose a continuous G-invariant Hermitian metric h on −kKX :

HG
k (h) :=

{
ϕ =

1

k
log
∑

i

|si|2h : ϕ is G-invariant, {si} is a basis of H0(X,−kKX)

}
⊂ C∞(X).

(42)

Definition 4.1. Let G ⊆ AutX be a compact subgroup. Let h be a fixed continuous G-invariant
Hermitian metric on −kKX , and µ a fixed continuous volume form on X . Then

αk,G(h, µ) := sup

{
c > 0 : sup

ϕ∈HG

k

∫

X

e−c(ϕ−supϕ)dµ < ∞
}
.
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Lemma 4.2. Definition 4.1 does not depend on the choice of h or µ.

For this reason we will simply denote the invariants by αk,G from now on.

Proof. Since X is compact, any two continuous volume forms are uniformly bounded and hence
define the same L1 spaces. Next, given two continuous G-invariant Hermitian metrics h and h̃ on

−kKX there is an isomorphism from HG
k (h) to HG

k (h̃) given by ϕ 7→ ϕ + 1
k log h̃

h . Observe that
1
k log h̃

h is (again by compactness of X) a uniformly bounded function on X . Hence, for a fixed
c > 0,

sup
ϕ∈HG

k
(h)

∫

X

e−c(ϕ−supϕ)dµ < ∞ ⇔ sup
ϕ∈HG

k
(h̃)

∫

X

e−c(ϕ−supϕ)dµ < ∞,

as desired.

4.2 Algebraic definition

Consider a (complex) non-zero vector subspace V of H0(X, kL). Associated to it is the (not
necessarily complete) linear system |V | := PV ⊂ |kL| := PH0(X, kL) [20, p. 137].

Lemma 4.3. Let V be vector subspace of H0(X, kL) of dimension p > 0. For any basis ν1, . . . , νp ∈
H0(X, kL) of V , the number

sup



c > 0 :




p∑

j=1

|νj(z)|2



−c

is locally integrable on X





is the same.

Proof. Let {ν(ℓ)1 , . . . , ν
(i)
p }, ℓ ∈ {1, 2}, be two bases for V ∈ H0(X, kL). Let A ∈ GL(p,C) be the

change-of-basis matrix, i.e., ν
(2)
j = Ai

jν
(1)
i . Observe that AHA is a positive Hermitian matrix-valued

on X , and denote its eigenvalues 0 < λ1 ≤ · · · ≤ λp. Denote ν(ℓ)(z) := (ν
(ℓ)
1 (z), . . . , ν

(ℓ)
p (z)) ∈ Cp

and |ν(ℓ)(z)|2 =
∑p

i=1 |ν
(ℓ)
i (z)|2. Then,

|ν(2)(z)|2
|ν(1)(z)|2 =

|Aν(1)(z)|2
|ν(1)(z)|2 ∈ [λ1, λp],

Thus, |ν(2)|2 is locally integrable if and only if |ν(1)|2 is.

Thus, define the log canonical threshold of the linear system |V | by

lct|V | := sup



c > 0 :




∑

j

|νj(z)|2



−c

is locally integrable on X



 . (43)

When L = −KX , there is an AutX action on H0(X,−kKX) for every k ∈ N. Demailly [12,
Theorem A.3, (A.1)] noted that then αG-invariants (for compact subgroup G ⊂ AutX) can be
algebraically computed as

αG = inf
k∈N

k inf
|V |⊂|−kKX |
V G=V 6=0

lct|V |, (44)
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Figure 2: The six orbits O
(1)
1 , . . . , O

(1)
6 of the action of the group generated by the reflection about

y = x on the polytope corresponding to P2 with k = 1.

where
V G := {v ∈ V : g.v ∈ V ∀g ∈ G}.

Note that in (44) V 6= 0 ranges over all G-invariant vector subspaces of H0(X,−kKX) (i.e., of any
positive dimension). For example, lct| − kKX | = ∞. From the definition, if V1 ⊂ V2 are two such
subspaces it suffices to compute lct|V1| since

lct|V1| ≤ lct|V2|. (45)

It is thus natural to define the algebraic counterpart of the αk,G-invariant as follows.

Definition 4.4. Let X be a Fano manifold and G ⊂ AutX be a compact subgroup of the
automorphism group. Define

glctk,G := k inf
|V |⊂|−kKX |

V G=V

lct|V |. (46)

4.3 Characterization of the equivariant Bergman spaces

First, we show that in the toric setting the space HG(H)
k consists of Kähler potentials induced

by Kodaira embeddings of multiples of monomials sections, with the norming constants constant
along orbits of H .

Denote by

O
(k)
1 , . . . , O

(k)
N , (47)

the orbits of H in k−1M ∩ P (see Figure 2 for an example).

Lemma 4.5. Let {sk,u}u∈k−1M∩P be the monomial basis (33) of H0(X,−kL). Let G(H) ⊆ AutX
(4) be a subgroup generated by (S1)n and a subgroup H of Aut(P ). Then (recall (42) and (47)),

HG(H)
k := HG(H)

k (hk) =




k−1 log

N∑

i=1

λi

∑

u∈O
(k)
i

|sk,u|2hk
: λi > 0





.

Proof. Recall the natural basis {sk,u}u∈P∩M/k defined by the lattice monomials (33). Given any
other basis {si} for H0(X,−kKX), let A ∈ GL(EP (k),C) be the change-of-basis matrix, so

si = Au
i sk,u, i ∈ {1, . . . , EP (k)}
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(we use the Einstein summation convention).

Let ϕ ∈ HG(H)
k and let {si} be the associated basis (42). Expanding ϕ in terms of the mono-

mials,

ekϕ =
∑

i

|si|2hk
=

∑

u,u′∈P∩M/k

EP (k)∑

i,j=1

Au
i A

u′

j 〈sk,u, sk,u′ 〉hk

=: |sk,0|2hk

∑

u,u′∈P∩M/k

cu,u′zkuz̄ku
′

for some coefficients {cu,u′}u,u′∈P∩M/k. We claim that {zuz̄u′}u,u′∈M are linearly independent. To
see that, suppose

f(z) =
∑

u,u′∈M

cu,u′zuz̄u
′

= 0

with all but finitely many coefficients being 0. We may assume for any cu,u′ 6= 0, u, u′ lie in the

positive orthant, by multiplying by
∏

i

|zi|2 to some sufficiently large power. Then

cu,u′ =
1

u!u′!

∂|u|+|u′|
∂uz∂u′ z̄

∣∣∣∣∣
z=0

f(z) = 0,

proving the claim. Now, the subgroup (S1)n < G(H) acts on the open orbit (C∗)n by

(β1, . . . , βn).(z1, . . . , zn) = (e
√
−1β1z1, . . . , e

√
−1βnzn). (48)

So by (S1)n-invariance and Lemma 3.1,

β.ekϕ = |sk,0|2hk

∑

u,u′∈P∩M/k

cu,u′e
√
−1〈β,k(u−u′)〉zkuz̄ku′

= |sk,0|2hk

∑

u,u′∈P∩M/k

cu,u′zkuz̄ku
′

= ekϕ,

for any β ∈ (S1)n = (R/2πZ)n. By comparing the coefficients and using the claim we just
demonstrated, it follows that for ekϕ to be (S1)n-invariant we must have cu,u′ = 0 whenever u 6= u′

(the converse is also true, of course).
Moreover, we also require ekϕ to be invariant under the action of H , i.e., cu,u = cσu,σu for any

σ ∈ H . In conclusion, let O
(k)
1 , . . . , O

(k)
N be the orbits of the action of H on P ∩M/k. Then

ekϕ =

N∑

i=1

λi

∑

u∈O
(k)
i

|sk,u|2hk
,

for some coefficients {λi}Ni=1. Thus (42) simplifies to

HG(H)
k (h) =




ϕ =

1

k
log

N∑

i=1

λi

∑

u∈O
(k)
i

|sk,u|2hk
: λi > 0





,

as claimed.
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4.4 Replacing a basis of sections by an orbit of a section

The next result generalizes [27, Proposition 2.1] to the equivariant setting using Lemma 4.5.

Proposition 4.6. For a subgroup G(H) ⊆ AutX (4) generated by (S1)n and a subgroup H of
Aut(P ),

αk,G(H) = sup

{
c > 0 :

∫

X

( ∑

σ∈H

|sk,σu|2hk

)− c

k

dµ < ∞, ∀ u ∈ P ∩M/k

}
. (49)

Proof. Step 1: estimate a basis-type element using the worst orbit present in its expansion. As-
suming λN = maxi=1,...,N λi, we have

supϕ ≤ sup




1

k
log

N∑

i=1

λN

∑

u∈O
(k)
i

|sk,u|2hk


 =

1

k
logλN ,

since 1/hk =
∑

u∈P∩M/k |sk,u|2. If c > 0 is such that for each i ∈ {1, . . . , N},

∫

X



∑

u∈O
(k)
i

|sk,u|2hk




− c

k

dµ ≤ Cc,

then for ϕ ∈ HG(H)
k (using Lemma 4.5),

∫

X

e−c(ϕ−supϕ)dµ = ec supϕ

∫

X




N∑

i=1

λi

∑

u∈O
(k)
i

|sk,u|2hk




− c

k

dµ

≤ e
c

k
log λN

∫

X


λN

∑

u∈O
(k)
N

|sk,u|2hk




− c

k

dµ ≤ Cc.

Step 2: estimate an orbit-type element using an approximation by degenerating basis-type elements.

Conversely, assume α > 0 is such that for any ϕ ∈ HG(H)
k ,

∫

X

e−c(ϕ−supϕ)dµ ≤ Cc.

Since, for any ℓ = 1, . . . , N ,



∑

u∈O
(k)
ℓ

|sk,u|2hk




− c

k

= lim
λi→0,i6=ℓ




N∑

i=1

λi

∑

u∈O
(k)
i

|sk,u|2hk




− c

k

,

where λℓ = 1, by Fatou’s Lemma [17, Lemma 2.18],

∫

X



∑

u∈O
(k)
ℓ

|sk,u|2hk




− c

k

dµ ≤ lim inf
λi→0,i6=ℓ

e−α supϕλeα supϕλ

∫

X




N∑

i=1

λi

∑

u∈O
(k)
i

|sk,u|2hk




−α

k

dµ
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=


sup

∑

u∈O
(k)
ℓ

|sk,u|2hk




− c

k

lim inf
λi→0,i6=ℓ

∫

X

e−c(ϕλ−supϕλ)dµ

≤


sup

∑

u∈O
(k)
ℓ

|sk,u|2hk




− c

k

Cc,

where

ϕλ =
1

k
log

N∑

i=1

λi

∑

u∈O
(k)
i

|sk,u|2hk
.

Thus, we have shown that

αk,G(H) = sup





c > 0 :

∫

X



∑

u∈O
(k)
i

|sk,u|2hk




− c

k

dµ < ∞, ∀ i





(50)

= sup




c > 0 :

∫

X

(
∑

σ∈H

|sk,σu|2hk

)− c

k

dµ < ∞, ∀ u ∈ P ∩M/k




 ,

proving (49).

Corollary 4.7. Fix k ∈ N and let O
(k)
1 , . . . , O

(k)
N be the orbits of the action of H on k−1M ∩ P .

Then

αk,G(H) = min
1≤i≤N

sup




c > 0 :

∫

X



∑

u∈O
(k)
i

|sk,u|2hk




− c

k

dµ < ∞





.

Proof. By (50),

αk,G(H) = sup




c > 0 :

∫

X



∑

u∈O
(k)
i

|sk,u|2hk




− c

k

dµ < ∞, ∀ i





= min
1≤i≤N

sup





c > 0 :

∫

X



∑

u∈O
(k)
i

|sk,u|2hk




− c

k

dµ < ∞





.

We can now answer affirmatively Problem 1.2 in our setting.

Proof of Proposition 1.3. Let
∣∣∣VO

(k)
i

∣∣∣ denote the linear system generated by {(sk,u) : u ∈ O
(k)
i }

(recall (47)). By (43) and (49),

αk,G(H) = k inf
i
lct
∣∣∣VO

(k)
i

∣∣∣.
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It remains to show
glctk,G(H) = k inf

i
lct
∣∣∣VO

(k)
i

∣∣∣.

By (45), it suffices to restrict to irreducible G(H)-invariant linear systems (cf. [23, p. 146]).
Now, any (S1)n-invariant linear system |V | is spanned by monomials (see Lemma 4.8 below). By
irreducibility, this means |V | is spanned by the monomials coming from some H-orbit Oi. i.e.,

|V | =
∣∣∣VO

(k)
i

∣∣∣.

Lemma 4.8. Let V ⊆ H0(X,−kKX) be a complex vector subspace invariant under (S1)n. Then
there exists a unique subset F ⊂ P ∩M/k such that

V = span {sk,u}u∈F .

Proof. It suffices to prove that any section in V is generated by monomials in V . That is, given
any section

s =
∑

u∈P∩M/k

ausk,u ∈ V,

if au 6= 0, then sk,u ∈ V .
By (S1)n-invariance, for any β ∈ (S1)n and s ∈ V also β.s ∈ V (recall (48)), i.e.,

β.s =
∑

u∈P∩M/k

auβ.sk,u =
∑

u∈P∩M/k

aue
√
−1〈β,ku〉sk,u ∈ V.

Thus for any u0 ∈ P ∩M/k,
∫

(S1)n
e−

√
−1〈β,ku0〉β.s dβ =

∑

u∈P∩M/k

ausk,u

∫

(S1)n
e
√
−1〈β,ku−ku0〉dβ

=
∑

u∈P∩M/k

ausk,u · (2π)n δu−u0

= (2π)
n
au0sk,u0 ∈ V.

If au0 6= 0, then sk,u0 ∈ V . This completes the proof.

Corollary 4.9.

αG(H) = inf
k
αk,G(H) = sup



c > 0 :

∫

X

(
∑

σ∈H

|sk,σu|2hk

)− c

k

dµ < ∞, ∀ u ∈ P ∩M/k, k ∈ N



 .

(51)

Proof. By Demailly’s theorem (44) [12, (A.1)], (46), and Proposition 1.3,

αG(H) = inf
k∈N

glctk,G(H) = inf
k∈N

αk,G(H).

By (49),

αG(H) = inf
k∈N

sup



c > 0 :

∫

X

(
∑

σ∈H

|sk,σu|2hk

)− c

k

dµ < ∞, ∀ u ∈ P ∩M/k





= sup



c > 0 :

∫

X

(
∑

σ∈H

|sk,σu|2hk

)− c

k

dµ < ∞, ∀ u ∈ P ∩M/k, k ∈ N



 .
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Remark 4.10. Note that here it would not have been enough to invoke Tian’s theorem [31,
Proposition 6.1], and it was necessary to invoke Demailly’s theorem [12, (A.1)]. The reason is that
the αk,G-invariants are defined by requiring certain integrals to be merely finite, i.e., bounded,
but with a constant possibly depending on k. Tian’s theorem says that HG is approximated by
HG

k , but in approximating ϕ ∈ HG by a sequence ϕk ∈ HG
k it might happen that the integrals∫

X
e−c(ϕk−supϕk)ωn blow up as k tends to infinity. Demailly precludes that from happening by

using the Demailly–Kollár lower semi-continuity of complex singularity exponents.

5 The case of divisible k

We ultimately improve on the results of this section, but we include them since they serve to
emphasize the difficulties that still need to be dealt with (see Remark 5.6).

Proposition 5.1. Let G(H) ⊆ AutX (4) be a subgroup generated by (S1)n and a subgroup H of
Aut(P ). For k, ℓ ∈ N, αk,G(H) ≥ αkℓ,G(H).

Proof. Since hkℓ and hℓ
k (38) are both smooth metrics on −kℓKX, by compactness of X , they are

equivalent. We also use the following lemma.

Lemma 5.2. Let a1, . . . , aN ≥ 0. Then for ℓ ∈ N,

N∑

i=1

aℓi ≤
(

N∑

i=1

ai

)ℓ

≤ N ℓ−1
N∑

i=1

aℓi .

Proof. The first inequality follows by expanding (
∑N

i=1 ai)
ℓ. For the second inequality, consider

the function f(x) := xℓ on [0,+∞). Since f is convex, by Jensen’s inequality,

f

(
1

N

N∑

i=1

ai

)
≤ 1

N

N∑

i=1

f (ai) ,

i.e.,

(
N∑

i=1

ai

)ℓ

≤ N ℓ−1
N∑

i=1

aℓi .

By Proposition 4.6, and since M/kℓ ⊂ M/k,

αkℓ,G(H) = sup

{
c > 0 :

∫

X

( ∑

σ∈H

|skℓ,σu|2hkℓ

)− c

kℓ

dµ < ∞, ∀ u ∈ P ∩M/kℓ

}

≤ sup

{
c > 0 :

∫

X

( ∑

σ∈H

|skℓ,σu|2hkℓ

)− c

kℓ

dµ < ∞, ∀ u ∈ P ∩M/k

}

= sup

{
c > 0 :

∫

X

( ∑

σ∈H

∣∣∣s⊗ℓ
k,σu

∣∣∣
2

hℓ

k

)− c

kℓ

dµ < ∞, ∀ u ∈ P ∩M/k

}

= sup

{
c > 0 :

∫

X

( ∑

σ∈H

|sk,σu|2ℓhk

)− c

kℓ

dµ < ∞, ∀ u ∈ P ∩M/k

}

= sup

{
c > 0 :

∫

X

( ∑

σ∈H

|sk,σu|2hk

)− c

k

dµ < ∞, ∀ u ∈ P ∩M/k

}
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= αk,G(H),

where Lemma 5.2 was invoked in the penultimate equality.

Proposition 5.3. Let G(H) ⊆ AutX (4) be a subgroup generated by (S1)n and a subgroup H of
Aut(P ). There exists k0 ∈ N such that αK,G(H) = αG(H) for all K divisible by k0.

Remark 5.4. In fact, the proof will show that k0 is determined by the fan as follows: let u0 ∈ PH

attain supu∈PH maxi〈u, vi〉. Since PH is a convex polytope u0 will be a vertex of P
H , i.e., cut out by

PH and the supporting hyperplanes of P containing u0. The equations defining PH are determined
by H ⊂ GL(M) hence are linear equations with integer coefficients. So are the equations cutting
out ∂P . It follows that u0 is a rational point, i.e., u0 ∈ M/k0 for some k0. Let k0 be the smallest
such positive integer. The fact that u0 is a rational point is originally due to Song [28, p. 1257]
who proved that αk0,G(AutP ) = αG(AutP ).

Proof. We can further simplify (51). Recall (6). By the geometric-arithmetic mean inequality,

(
1

|H |
∑

σ∈H

|sk,σu|2hk

)−α

k

≤
∏

σ∈H

|sk,σu|
− 2α

|H|k

hk
=
∣∣s|H|k,πH(u)

∣∣−
2α

|H|k

h|H|k

=

(
1

|H |
∑

σ∈H

∣∣s|H|k,σπH (u)

∣∣2
h|H|k

)− α

|H|k

,

with the last equality since πH(u) is fixed by H (recall (5)–(6)) so each term in the sum is identical.
Therefore the supremum in (51) is unchanged if restricted to those u fixed by H . Thus, using
Lemma 5.5 (proven below), (51) simplifies to (recall (5))

αG(H) = sup

{
c > 0 :

∫

X

|sk,u|−
2c
k

hk
dµ < ∞, ∀ u ∈ PH ∩ 1

k
M, k ∈ N

}

= inf

{
k · lct(sk,u) : u ∈ PH ∩ 1

k
M, k ∈ N

}

= inf
k∈N

inf
u∈PH∩ 1

k
M

1

maxi〈u, vi〉+ 1

= inf
u∈PH

1

maxi〈u, vi〉+ 1

=
1

maxi〈u0, vi〉+ 1
,

where we used the notation of Remark 5.4. By that same Remark, u0 ∈ PH ∩ 1
KM whenever

K ∈ N is divisible by k0. In particular, by (49), and using Lemma 5.5 again,

αK,G(H) ≤ sup

{
c > 0 :

∫

X

|sK,u0 |
− 2c

K

hK
dµ < ∞

}

= K · lct(sK,u0)

= min
i

1

〈u0, vi〉+ 1

= αG(H).

Since by definition αG(H) ≤ αK,G(H), equality is achieved and αK,G(H) = αG(H) for all K divisible
by k0.
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Lemma 5.5. For u ∈ P ∩ k−1M , lct(sk,u) =
1

k

1

1 + maxi〈u, vi〉
(recall (20) and (33)).

Proof. This is well-known (see, e.g., [6, Corollary 7.4], [23, Theorem 4.1]). It is also a consequence
of Proposition 6.8 proven below (put F = {u}).

Remark 5.6. According to Proposition 5.3, the sequence {αk,G(H)}k∈N is constant (equal to
αG(H)) along the subsequence k0, 2k0, . . .. Proposition 5.3 does not yield information for all k ∈ N

unless k0 = 1, and examples show (see §8) that oftentimes k0 > 1. Moreover, even though the
sequence also satisfies αk,G(H) ≥ αkℓ,G(H) ≥ αG(H) for any k, ℓ ∈ N (Proposition 5.1), these facts
combined are still not enough to conclude Tian’s conjecture without further work. For instance,
the sequence

ak :=

{
αG(H), k even,

αG(H) + k−1, k odd,

satisfies these requirements for k0 = 2 (and also satisfy limk ak = αG(H)). Perhaps a more natural
sequence that satisfies all the requirements and even for the k0 of Remark 5.4 is

ak := inf

{
k · lct(sk,u) : u ∈ PH ∩ 1

k
M

}
,

with the proof of Proposition 5.3 showing that ak0ℓ = ak0 = αG(H) for ℓ ∈ N but possibly
ak > αG(H) for k not divisible by k0. Thus, we are led to develop more refined estimates that are
the topic of the next section.

6 Estimating singularities associated to orbits

6.1 Real singularity exponents and support functions

In this subsection we develop a key new technical estimate that expresses real singularity exponents
associated to collections of toric monomials in terms of support functions.

Definition 6.1. For non-empty finite sets F ,U ⊆ Rn and k ∈ N,

ck(F ,U) := sup




c ∈ (0, 1) :

∫

Rn

(∑
u∈F e〈ku,x〉

)− c

k

(∑
u∈U e〈ku,x〉

) 1−c

k

dx < ∞




 .

Proposition 6.2. For F ,U ⊆ Rn non-empty finite sets with 0 ∈ int coU (recall (10)),

ck(F ,U) = sup
{
c ∈ (0, 1) : 0 ∈ (1− c) coU + c coF

}

= sup

{
c ∈ (0, 1) :

(
− c

1− c
coF

)
∩ coU 6= ∅

}
> 0.

In particular, ck(F ,U) is independent of k.

Proof. Using polar coordinates x = rν and dx = rn−1dr ∧ dS(ν) with r ∈ R+, ν ∈ Sn−1(1) :=
{x ∈ Rn : |x| = 1},

∫

Rn

(∑
u∈F e〈ku,x〉

)− c

k

(∑
u∈U e〈ku,x〉

) 1−c

k

dx =

∫

Sn−1(1)

fc(ν)dS(ν), (52)
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where fc : S
n−1(1) → R+ is defined by

fc(ν) :=

∫ ∞

0

(∑
u∈F ekr〈u,ν〉

)− c

k

(∑
u∈U ekr〈u,ν〉

) 1−c

k

rn−1dr.

Notice that for any finite set A ⊂ Rn and r ∈ R+ (recall (12)),

ekrhA(ν) ≤
∑

u∈A
ekr〈u,ν〉 ≤ |A|ekrhA(ν).

Hence for c ∈ (0, 1),

|F|− c

k

|U| 1−c

k

e−krgc(ν) ≤
(∑

u∈F ekr〈u,ν〉
)− c

k

(∑
u∈U ekr〈u,ν〉

) 1−c

k

≤ e−krgc(ν), (53)

where

gc(x) := cmax
u∈F

〈u, x〉+ (1− c)max
u∈U

〈u, x〉

= hcF+(1−c)U(x)

= c max
u∈coF

〈u, x〉+ (1 − c) max
u∈coU

〈u, x〉

= chcoF (x) + (1− c)hcoU (x) = hc coF+(1−c) coU (x), (54)

where A+B := {x+ y : x ∈ A, y ∈ B} is the Minkowski sum.
We need the following property of support functions.

Claim 6.3. Let A ⊂ Rn be a nonempty finite set. Then hA|Sn−1(1) > 0 if and only if 0 ∈ int coA.

Proof. Note first that
hA = hcoA : (55)

hA ≤ hcoA since A ⊂ coA, while if hcoA(y) = 〈a(y), y〉 for some a(y) ∈ coA, and writing

a(y) =
∑|A|

i=1 λiai with
∑|A|

i=1 λi = 1 and λi ≥ 0, where A = {ai} yields hcoA(y) =
∑|A|

i=1 λi〈ai, y〉 ≤∑|A|
i=1 λihA(y) = hA(y).
Next, if 0 ∈ int coA then ǫBn

2 ⊂ coA where Bn
2 := {x ∈ Rn : |x| ≤ 1} and hcoA ≥ hǫBn

2
=

ǫhBn
2
= ǫ when restricted to Sn−1(1).

Conversely, if 0 6∈ int coA then by convexity of coA there exists a hyperplaneH passing through
a boundary point of coA so that coA lies on one side of it and 0 lies on the other side of it. If
ν ∈ Sn−1(1) is normal to H and points toward the side not containing coA then hcoA(ν) ≤ 0.

Claim 6.4. Let A ⊂ Rn be a nonempty finite set. Then hA|Sn−1(1) is somewhere negative if and
only if 0 ∈ int(Rn \ coA) = Rn \ coA.

Proof. Suppose 0 6∈ int(Rn \ coA) = R
n \ coA. Equivalently 0 ∈ coA. Then hA ≥ h{0} = 0 so hA

is nowhere negative.
Conversely, if 0 /∈ coA then by convexity of coA there exists a hyperplane H passing through

the origin so that coA lies strictly on one side. Let ν ∈ Sn−1(1) be a unit normal to H that points
toward the side not containing coA. By the strictness mentioned above and compactness of coA,
for some small ǫ > 0, coA+ ǫν still lies on the same side of H as coA. Hence, as in the proof of
Claim 6.3, hcoA+ǫν(ν) ≤ 0. In other words,

hcoA(ν) = hcoA+ǫν(ν) − ǫ|ν|2 ≤ −ǫ,

as claimed.

23



Corollary 6.5. For F ,U ⊆ Rn non-empty finite sets with 0 ∈ int coU (recall (10)),

sup

{
c ∈ (0, 1) :

(
− c

1− c
coF

)
∩ coU 6= ∅

}
=






1, 0 ∈ coF ,[
1− min

Sn−1(1)

hF
hU

]−1

, 0 /∈ coF .
(56)

Proof. By assumption 0 ∈ int coU , so by Claim 6.3, hU |Sn−1(1) > 0. By (54),

gc = hcoU ·
(
1− c

(
1− hcoF

hcoU

))
. (57)

Case 1: 0 ∈ coF . If 0 ∈ coF , i.e., hcoF ≥ 0, then gc ≥ hcoU · (1− c) > 0 for any c ∈ (0, 1). By
(57) and Claim 6.3 then 0 ∈ int(c coF + (1 − c) coU) ⊆ c coF + (1 − c) coU and so (56) holds in
this case.

Case 2: 0 6∈ coF . By assumption and Claim 6.4, hcoF < 0 somewhere, by continuity/compactness
let ν0 be a minimizer of the function

hcoF
hcoU

on Sn−1(1). In particular,
hcoF (ν0)

hcoU (ν0)
= min

Sn−1(1)

hF
hU

< 0.

Set

c (F ,U) :=
[
1− hcoF (ν0)

hcoU (ν0)

]−1

=

[
1− min

Sn−1(1)

hF
hU

]−1

.

First, if c ∈ (0, c(F ,U)), for all ν ∈ Sn−1(1),

gc (ν) = hcoU (ν)

(
1− c

(
1− hcoF (ν)

hcoU (ν)

))

≥ hcoU (ν)

(
1− c

(
1− hcoF (ν0)

hcoU (ν0)

))

= hcoU (ν)

(
1− c

c(F ,U)

)
> 0.

Thus, by (54) and Claim 6.3, 0 ∈ int(c coF + (1 − c) coU) ⊆ c coF + (1− c) coU ; in particular,

(
− c

1− c
coF

)
∩ coU 6= ∅.

So,

sup

{
c ∈ (0, 1) :

(
− c

1− c
coF

)
∩ coU 6= ∅

}
≥ c(F ,U).

Second, if c ∈ (c(F ,U), 1),

gc (ν0) = hcoU (ν0)

(
1− c

(
1− hcoF (ν0)

hcoU (ν0)

))

= hcoU (ν0)

(
1− c

c(F ,U)

)
< 0.
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Thus, by Claim 6.4, 0 ∈ Rn \ (c coF + (1− c) coU), equivalently,
(
− c

1− c
coF

)
∩ coU = ∅,

and

sup

{
c ∈ (0, 1) :

(
− c

1− c
coF

)
∩ coU 6= ∅

}
≤ c(F ,U).

Thus, also in this case (56) holds.

The following corollary follows from the proof of Corollary 6.5.

Corollary 6.6. For F ,U ⊆ Rn non-empty finite sets with 0 ∈ int coU (recall (10)), let

c(F ,U) : = sup

{
c ∈ (0, 1) :

(
− c

1− c
coF

)
∩ coU 6= ∅

}

= sup
{
c ∈ (0, 1) : 0 ∈ (1− c) coU + c coF

}
.

Recall (54). If c < c(F ,U), then gc > 0; if c > c(F ,U), then gc < 0 somewhere.

We can now complete the proof of Proposition 6.2. Set

c(F ,U) := sup

{
c ∈ (0, 1) :

(
− c

1− c
coF

)
∩ coU 6= ∅

}
.

By assumption 0 ∈ int coU , thus c(F ,U) > 0. We consider two cases.

Case 1: c ∈ (0, c(F ,U)). By the proof of Corollary 6.5, gc|Sn−1(1) > 0. By continuity/compactness
it attains its minimum gc(ν̂) > 0. Therefore,

fc(ν) ≤
∫ ∞

0

e−krgc(ν)rn−1dr ≤
∫ ∞

0

e−krgc(ν̂)rn−1dr < ∞, (58)

so by (52), ck(F ,U) ≥ c, i.e., ck(F ,U) ≥ c(F ,U).
Case 2: c ∈ (c(F ,U), 1). By the proof of Corollary 6.5, gc(ν0) < 0 for some open neighborhood
U ⊂ Sn−1(1). Thus, by (53), for some constant C = C(c, k,F ,U) > 0,

fc(ν) ≥ C

∫ ∞

0

e−krgc(ν)rn−1dr = ∞, for ν ∈ U,

so ck(F ,U) ≤ c, i.e., ck(F ,U) ≤ c(F ,U).
In conclusion, ck(F ,U) = c(F ,U) and Proposition 6.2 is proved.

6.2 Complex singularity exponents

Now, we go back to our setting of estimating complex singularity exponents, where P was a reflexive
polytope coming from a fan. For any k ∈ N and a non-empty subset F ⊆ P ∩M/k set

ck(F) := sup




c ∈ (0, 1) :

∫

X

(
∑

u∈F
|sk,u|2hk

)− c

k

dµ < ∞




 . (59)
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Remark 6.7. Consider

c̃k(F) := sup




c ∈ (0,∞) :

∫

X

(
∑

u∈F
|sk,u|2hk

)− c

k

dµ < ∞




 .

Then, by definition (43), c̃k(F) = k lct
∣∣ span{sk,u}u∈F

∣∣. However, Proposition 6.2 would not be
applicable then. The point is that for the proof of Tian’s conjecture we need to compute equivariant
global log canonical thresholds and there will always be ‘admissible’ invariant linear series for which
k times the log canonical threshold is at most 1 (i.e., the “worst” ones will not have c̃k > 1), i.e.,
for which ck = c̃k. This is essentially because our H are linear groups so {0} is always an H-orbit
and lct(sk,0) = 1/k = ck({0}) = c̃k({0}) (by Lemma 5.5).

Proposition 6.8. For any k ∈ N and a non-empty subset F ⊆ P ∩M/k,

ck(F) = sup

{
c ∈ (0, 1) : P ∩

(
− c

1− c
coF

)
6= ∅
}

> 0.

In particular, it is independent of k.

Proof. By (41),

∫

X

(
∑

u∈F
|sk,u|2hk

)− c

k

dµ = (2π)n
∫

Rn

(∑
u∈F e〈ku,x〉

)− c

k

(∑
u∈P∩M/k e

〈ku,x〉
) 1−c

k

dx.

By Proposition 6.2 with U = P ∩M/k,

ck(F) = sup

{
c ∈ (0, 1) : P ∩

(
− c

1− c
coF

)
6= ∅
}

> 0,

since coU = P (as the vertices of P belong to M/k for all k ∈ N).

Remark 6.9. Although not needed for our analysis, it might be of independent interest to under-
stand whether the supremum in (59) (and in the definition of αk,G(H) (49)) is attained. In other
words, is (recall the notation of Corollary 6.6)

∫

Sn−1(1)

fc(ν)dS(ν) (60)

finite for c = c(F ,U)? By (52)–(53) it is equivalent to consider this question for the integral

∫

Sn−1(1)

∫ ∞

0

e−krgc(ν)rn−1drdS(ν) =

∫

Rn

e−kh(1−c) co U+c co F (x)dx. (61)

A classical formula in convex geometry says that whenever K ⊂ R
n is a compact convex set with

the origin in its interior, then n!|K◦| =
∫
Rn e−hK(y)dy (for a detailled proof see [4, (4.2)]). In fact,

it is possible to show that when 0 ∈ ∂K the formula still holds in the sense that both sides are
equal to ∞ (this is related to, but stronger than, the classical fact that 0 ∈ intK if and only if K◦

is bounded [25, Corollary 14.5.1]). To summarize, both (60) and (61) are infinite when c = c(F ,U).
We remark that one can also use this point of view to give an alternative, but equivalent, proof of
Corollary 6.6.
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6.3 Group orbits and singularities

Consider the orbit-averaging map πH (6), taking a point to the average of its image under H . In
particular, points on the same orbit have the same image. Let MH

R be the subspace of fixed points
of H in MR. Then πH |MH

R

= idMH

R

, and MH
R is the image of πH . Note that unless H is trivial,

this is a proper subspace of MR, so πH is a projection from MR to the invariant subspace MH
R ,

justifying the notation.
Recall (5),

PH := P ∩MH
R ,

Since P is convex, πH(P ) ⊆ P . Hence πH(P ) ⊆ PH . On the other hand, PH = πH(PH) ⊆ πH(P ).
This implies

PH = πH(P ). (62)

Then (recall (23))
PH = πH(P ) = πH(co(VerP )) = co(πH(VerP )).

In particular,
VerPH ⊆ πH(VerP ). (63)

Note that equality does not hold in general (for instance, consider P = [−1, 1]2 and H the reflection
group about a diagonal).

Lemma 6.10. Fix u0 ∈ MH
R , and let F be a non-empty H-invariant convex subset of some fiber

π−1
H (u0) of πH . Then F ∩ P 6= ∅ if and only if u0 ∈ P .

Proof. If F ∩ P 6= ∅, then πH(F ∩ P ) 6= ∅. By (62), πH(F ∩ P ) ⊂ πH(P ) = PH ⊂ P , and since
∅ 6= F ⊂ π−1

H (u0), then πH(F ∩P ) ⊂ πH(F) = {u0}. Thus, πH(F ∩P ) ⊂ {u0} ∩P and for this to
be nonempty it follows that u0 ∈ P .

For the converse, since F is H-invariant and convex, πH(F) ⊂ F . Additionally, as before
∅ 6= F ⊂ π−1

H (u0) implies πH(F) = {u0}. Thus u0 ∈ F . Therefore, if u0 ∈ P then actually
u0 ∈ F ∩ P .

6.4 Proof of Tian’s conjecture

We can now prove our main result.

Proof of Theorem 1.4. Fix k ∈ N and let O
(k)
1 , . . . , O

(k)
N be the orbits of the action ofH on P∩M/k.

Recall that πH maps an orbit to a singleton,

{
o
(k)
i

}
:= πH

(
O

(k)
i

)
.

Note that O
(k)
i ⊂ π−1

H

(
o
(k)
i

)
and hence (as the action of H and hence also πH is linear) also

coO
(k)
i ⊂ π−1

H

(
o
(k)
i

)
. Moreover, coO

(k)
i is convex and H-invariant. By Corollary 4.7, Proposition

6.8, and Lemma 6.10,

αk,G(H) = min
1≤i≤N

c
(
O

(k)
i

)

= min
1≤i≤N

sup

{
c ∈ (0, 1) :

(
− c

1− c
coO

(k)
i

)
∩ P 6= ∅

}

= min
1≤i≤N

sup

{
c ∈ (0, 1) : − c

1− c
o
(k)
i ∈ P

}
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= sup

{
c ∈ (0, 1) : − c

1− c

{
o
(k)
1 , . . . , o

(k)
N

}
⊂ P

}
.

Since
{
o
(k)
1 , . . . , o

(k)
N

}
= πH

(
N⋃

i=1

O
(k)
i

)
= πH

(
k−1M ∩ P

)
,

then

αk,G(H) = sup

{
c ∈ (0, 1) : − c

1− c
πH(k−1M ∩ P ) ⊂ P

}

= sup

{
c ∈ (0, 1) : − c

1− c
co(πH(k−1M ∩ P )) ⊂ P

}

= sup

{
c ∈ (0, 1) : − c

1− c
πH(co(k−1M ∩ P )) ⊂ P

}

= sup

{
c ∈ (0, 1) : − c

1− c
πH(P ) ⊂ P

}

= sup

{
c ∈ (0, 1) : − c

1− c
PH ⊂ P

}

= sup

{
c ∈ (0, 1) : − c

1− c
VerPH ⊂ P

}

= min
u∈VerPH

sup

{
c ∈ (0, 1) : − c

1− c
u ∈ P

}
. (64)

Also, by (63),

αk,G(H) = sup

{
c ∈ (0, 1) : − c

1− c
VerPH ⊂ P

}

≥ sup

{
c ∈ (0, 1) : − c

1− c
πH(VerP ) ⊂ P

}

≥ sup

{
c ∈ (0, 1) : − c

1− c
πH(P ) ⊂ P

}

= αk,G(H).

Therefore,

αk,G(H) = sup

{
c ∈ (0, 1) : − c

1− c
πH(VerP ) ⊂ P

}

= min
u∈πH(VerP )

sup

{
c ∈ (0, 1) : − c

1− c
u ∈ P

}
. (65)

Recall (27),

P =

d⋂

j=1

{x ∈ MR | 〈x,−vj〉 ≤ 1}.

For any point u and c ∈ (0, 1),

− c

1− c
u ∈ P if and only if c ≤ min

j

1

〈u, vj〉+ 1
for all j ∈ {1, . . . , d}.

In sum, combining (64) and (65) implies (7). In particular, αk,G(H) is independent of k ∈ N and,
by Corollary 4.9, is equal to αG(H). This completes the proof of Theorem 1.4.
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7 Grassmannian Tian invariants

The following definition is due to Tian [32, (6.1)].

Definition 7.1. Let X be a Fano manifold and G ⊆ AutX a compact subgroup. For k,m ∈ N,
define (recall (43))

αk,m,G := k inf
|V |⊂|−kKX |
dimV =m
V G=V

lct|V |,

with the convention inf ∅ = ∞.

Equivalently, these invariants are the minimum of the function V 7→ klct|V | over the Grass-
mannian restricted to the subset of G-invariant m-dimensional subspaces of H0(X,−kKX). This
subset can be, in some situations, even a finite set (see Remark 7.9). By Remark 7.2 below, these
invariants generalize the invariants αk,G. Note also that Definition 7.1 is an algebraic one. Also,
αk,EP (k),G = ∞ (recall (31)) so it is not equal to αk,G from Definition 4.1.

In the toric setting it is natural to consider Conjecture 1.5 for the invariants αk,m,(S1)n . For
these invariants we show that Conjecture 1.5 does not quite hold, and we give a precise breakdown
of when it does in terms of a natural convex geometric criterion. In contrast with previous sections,
we do not work with the additional symmetry corresponding to the groups G(H) (4). The reason
for that is that even in simple situations αk,m,G(H) will not be well-behaved: see Example 8.6.

Remark 7.2. Putting H = {id} in Proposition 4.6, notice that αk,(S1)n = αk,1,(S1)n . In this
sense, αk,m,(S1)n is a generalization of the αk,(S1)n -invariants.

First, we show, as a rather immediate consequence of our work, an explicit formula for the
invariants of Definition 7.1.

Corollary 7.3. Let X be toric Fano with associated polytope P (27). For k,m ∈ N (recall (59)),

αk,m,(S1)n = min
F⊆P∩M/k

|F|=m

ck (F) .

Proof. Fix k,m ∈ N. Let V ⊆ H0(X,−kKX) = span{su}u∈P∩M/k be a subspace invariant under
(S1)n. By Lemma 4.8, there exists a unique F ⊆ P ∩M/k such that

V = span {su}u∈F .

Note that |F| = dimV . By (43) and (59),

αk,m,(S1)n = k min
F⊆P∩M/k

|F|=m

lct
∣∣span {su}u∈F

∣∣ = min
F⊆P∩M/k

|F|=m

ck (F) .

Lemma 7.4. Let K ⊂ Rn be a compact convex set with 0 ∈ intK. For any set S ⊂ Rn,

inf
S

‖ · ‖K = inf {λ ≥ 0 : S ∩ λK 6= ∅} .

Proof. If S ∩ λK 6= ∅ for some λ ≥ 0, pick x ∈ S ∩ λK. Since x ∈ λK, by (13), ‖x‖K ≤ λ.
Therefore infx∈S ‖x‖K ≤ inf{λ ≥ 0 : S ∩ λK 6= ∅}.

On the other hand, for any x ∈ S, S ∩ ‖x‖KK ⊇ {x} 6= ∅ by (15). So infx∈S ‖x‖K ≥ inf{λ ≥
0 : S ∩ λK 6= ∅}.
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Proposition 6.8 can be reformulated in terms of near-norms:

Corollary 7.5. For k ∈ N and a non-empty set F ⊆ P ∩M/k (recall (59)),

ck (F) =
1

1 + min
coF

‖ · ‖−P

.

Proof. By Proposition 6.8 and Lemma 7.4,

ck (F) = sup

{
c ∈ (0, 1) : P ∩

(
− c

1− c
coF

)
6= ∅
}

= sup

{
c ∈ (0, 1) : coF ∩ 1− c

c
(−P ) 6= ∅

}

= sup

{
1

1 + a
: a ∈ (0,∞), coF ∩ (−aP ) 6= ∅

}

=
[
1 + inf

{
a ∈ (0,∞) : coF ∩ (−aP ) 6= ∅

}]−1

=
[
1 + inf

coF
‖ · ‖−P

]−1
=
[
1 + min

coF
‖ · ‖−P

]−1
,

using compactness of coF .

Combining Corollaries 7.3 and 7.5 yields an explicit formula for αk,m,(S1)n .

Corollary 7.6. Let X be toric Fano with associated polytope P (27). For k,m ∈ N,

αk,m,(S1)n =

[
1 + max

F⊆P∩M/k
|F|=m

min
coF

‖ · ‖−P

]−1

.

Remark 7.7. For m = 1, Corollary 7.6 reads

αk,(S1)n =
1

1 + max
u∈P∩M/k

‖u‖−P

.

Being a near-norm, the function ‖ · ‖−P satisfies the triangle inequality and is positively 1-
homogeneous, hence it is convex. By Lemma 2.3, the vertex set of P is in the integral lattice
M , hence also contained in M/k for all k ∈ N. This combined with Lemma 2.4 gives,

αk,(S1)n =
1

1 + max
VerP

‖ · ‖−P

=
1

1 +max
P

‖ · ‖−P

. (66)

This is, of course, a special case of Theorem 1.4 (proved in §6), derived here in slightly different
notation (using the near-norm instead of the support function). Thus,

αk,(S1)n = α(S1)n = α, (67)

where the first equality follows from (66) and Demailly’s result [12, (A.1)], and the last equality
follows by comparing Theorem 1.4 with Blum–Jonsson’s formula [6, (7.2)].

Proposition 7.8. Let X be toric Fano with associated polytope P (27). For k ∈ N and m′ > m,

αk,m′,(S1)n ≥ αk,m,(S1)n . (68)
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In particular,
αk,m,(S1)n ≥ αk,1,(S1)n = αk,(S1)n = α.

Equality holds if and only if there is F ⊆ P ∩M/k with |F| = m satisfying

‖ · ‖−P

∣∣∣
coF

= max
P

‖ · ‖−P . (69)

Remark 7.9. For a general Fano X , it does not follow from Definition 7.1 that αk,m′,G ≥ αk,m,G,
i.e., there may be no monotonicity in m. For instance, there might be no m-dimensinal G-
invariant subspaces. Thanks to Lemma 4.8 the situation for G = (S1)n is particularly simple:
there are finitely-many m-dimensional (S1)n-invariant subspaces (in fact, the Grassmannian of m-

dimensional subspaces has exactly
(
EP (k)

m

)
fixed points by the (S1)n-action), and moreover every

(S1)n-invariant subspace consists of 1-dimensional blocks.

Proof. Pick F ′ ⊆ P ∩ M/k that computes αk,m′,(S1)n (such a subset exists since P ∩ M/k is a

finite set). That is, |F ′| = m′ and αk,m′,(S1)n =
[
1 + min

coF ′
‖ · ‖−P

]−1
(recall Corollary 7.6). For F

be a subset of F ′ with |F| = m, Corollary 7.6 implies

αk,m,(S1)n =
1

1 + max
A⊆P∩M/k

|A|=m

min
coA

‖ · ‖−P

≤ 1

1 + min
coF

‖ · ‖−P

≤ 1

1 + min
coF ′

‖ · ‖−P

= αk,m′,(S1)n ,

proving (68).
Next, suppose αk,m,(S1)n = α, i.e. (recall (66)–(67)),

max
F⊆P∩M/k

|F|=m

min
coF

‖ · ‖−P = max
P

‖ · ‖−P . (70)

For any F ⊆ P , convexity of P (recall (27)) implies coF ⊆ P . Hence,

min
coF

‖ · ‖−P ≤ max
P

‖ · ‖−P .

The equality (70) holds if and only if there is F ⊆ P ∩M/k such that |F| = m and

min
coF

‖ · ‖−P = max
P

‖ · ‖−P ,

which forces ‖ · ‖−P to be the constant maxP ‖ · ‖−P on coF .

7.1 Proof of Theorem 1.6 and the intuition behind it

Theorem 1.4 resolved Tian’s classical stabilization Problem 1.1 in the affirmative. This corresponds
to the case m = 1 of Conjecture 1.5. Next we show that Conjecture 1.5 is only partially true for
m ≥ 2.

Proof of Theorem 1.6. Let F ⊂ P ∩M/k with |F| = m. By convexity of P and as m ≥ 2, coF
contains an interval in P . In particular, F contains a point of P \VerP . Thus, if (∗P ) holds then
(69) does not hold (for any such F), and Proposition 7.8 implies (8).

Next, suppose (∗P ) fails (and now we relax to m ≥ 1). Let x̂ ∈ P \VerP achieve the maximum
of ‖·‖−P on P . Express x̂ as a convex combination of a subset of vertices of P , {p1, . . . , pℓ} ⊂ VerP ,
namely,

x̂ =

ℓ∑

i=1

λ̂ipi,

ℓ∑

i=1

λ̂i = 1, λ̂ ∈ (0, 1)ℓ. (71)
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Note that necessarily
ℓ > 1. (72)

We claim that
‖x‖−P = max

x∈P
‖ · ‖−P , for any x ∈ co{pi}ℓi=1.

Indeed, letting
P ′ := co{pi}ℓi=1 ⊂ P,

the claim follows from x̂ ∈ intP ′ ⊂ P and Lemma 2.4 (iii).
Now, the lattice polytope P ′ := co{pi}ℓi=1 has positive dimension by (72). Equivalently, the

Ehrhart polynomial of P ′ has degree at least 1. Hence, by Proposition 2.5, |P ′ ∩M/k| ≥ m for
all sufficiently large k. Pick F ⊆ P ′ ∩M/k ⊆ P ∩M/k such that |F| = m. Then coF ⊆ P ′. By
Proposition 7.8, (9) follows. The case m = 1 was already treated in Theorem 1.4 but also from
this proof we see that any k ∈ N works for m = 1.

The proof of Theorem 1.6 and condition (∗P ) have a pleasing geometric interpretation. Geo-
metrically, by Proposition 7.8, αk,m,(S1)n = α if and only if there is a subset F ⊆ P ∩M/k such
that |F| = m and coF lies entirely in the level set

{
‖ · ‖−P = max

P
‖ · ‖−P

}
⊆ ∂P (73)

Recall that any convex subset of the boundary of a polytope must lie in a single face. Hence F
must be a subset of a face F of P . We may assume F is the minimal face that contains F , i.e., F
intersects the relative interior of F . In particular, ‖ · ‖−P |F attains its maximum in the interior of
F and so F has to lie entirely in the level set (73) by Lemma 2.4. Therefore αk,m,(S1)n = α if and
only if there is a subset F ⊆ P ∩M/k such that |F| = m and F is a subset of a face that lies in the
level set (73), or equivalently, there is a face F that lies in the level set (73), and |F ∩M/k| ≥ m.

Notice that the level set {‖ · ‖−P = λ} is the dilation λ∂(−P ), and (73) is the largest dilation
that intersects P (by Lemma 7.4); see Figure 1. Combining all the above then, (∗P ) states that

P intersects maxP ‖ · ‖−P∂(−P ) only at vertices.

If (∗P ) holds, then any such face F consists of a single lattice point. In particular, |F ∩M/k| = 1
for any k, and αk,m,(S1)n stabilizes if and only if m = 1. On the other hand, if (∗P ) fails, then
there is a face F of positive dimension that lies in the level set (73). Since |F ∩M/k| increases to
infinity, for any m, we can find k0 such that |F ∩M/k| ≥ m for k ≥ k0, i.e., αk,m,(S1)n stabilizes
in k.

7.2 A Demailly result for Grassmannian invariants

The next result was obtained independently by Li–Zhu [24, Proposition 4.1].

Proposition 7.10. Let X be toric Fano with associated polytope P (27). For m ∈ N,

lim
k→∞

αk,m,(S1)n = α.

Proof. By continuity, given ǫ > 0 there exists an open set Uǫ ⊂ P such that

‖ · ‖−P

∣∣∣
Uǫ

> max
P

‖ · ‖−P − ǫ. (74)

Fix δ > 0 sufficiently small so that there is a closed cube Cδ ⊂ Uǫ with edge length δ. Now, for
k ≥ K, |Cδ ∩ M/k| ≥ ⌊Kδ⌋n. Given m ∈ N, choose K so ⌊Kδ⌋n ≥ m. Then for each k ≥ K
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there exists F ⊂ Cδ ∩ M/k ⊂ P ∩ M/k such that |F| = m. Since F ⊂ Cδ and Cδ is convex,
coF ⊂ Cδ ⊂ Uǫ. By (74),

min
coF

‖ · ‖−P ≥ min
Cδ

‖ · ‖−P > max
P

‖ · ‖−P − ǫ.

So by Corollary 7.6 and (66)–(67),

αk,m,(S1)n ≤ 1

1 + min
coF

‖ · ‖−P

<
1

1 + max
P

‖ · ‖−P − ǫ
=

α

1− ǫα
,

for any k such that ⌊kδ⌋ ≥ n
√
m. Hence lim supk→∞ αk,m,(S1)n ≤ α

1−ǫα . On the other hand, by
Proposition 7.8, lim infk→∞ αk,m,(S1)n ≥ α. Since ǫ > 0 is arbitrary the proof is complete.

8 Examples

This section illustrates Theorems 1.4 and 1.6 in the case of toric del Pezzo surfaces.

Example 8.1. Let v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1). Then P2 = X(∆) for

∆ = {{0},R+v1,R+v2,R+v3,R+v1 + R+v2,R+v1 + R+v3,R+v2 + R+v3}

and P = {−v1,−v2,−v3}◦ = {y ∈ MR : 〈y,−vi〉 ≤ 1, i ∈ {1, 2, 3}} ⊂ MR is depicted in Figure 3.
Then AutP ∼= D6 = S3, the dihedral/cyclic group of order 6 consisting of the permutations of the 3
vertices, or the 3 homogeneous coordinates P2, as in Figure 2. For H = AutP , PH is the origin, so
by Theorem 1.4, αk,G(H) = αG(H) = 1. When H is the trivial group then PH = P and Theorem 1.4

gives αk,G(H) = αG(H) =
1
3 , with minimum achieved at any vertex of P . When H is the subgroup

Z2 given by reflection about, say, y = x (i.e., generated by the matrix

(
0 1
1 0

)
associated to

switching two of the homogeneous coordinates of P2), PH is the line segment co{(−1,−1), (12 ,
1
2 )}

and αk,G(H) = αG(H) =
1
3 , with minimum achieved at (−1,−1). When H is the subgroup of order

3, PH = {0}, and αk,G(H) = αG(H) = 1,

Example 8.2. Let P be the polytope for P2 blown up at one point, i.e., v1, v2, v3 as above and
v4 = (1, 1). Then AutP ∼= Z2, as shown in Figure 3. There are therefore two choices for H . When
H = AutP , PH is the line segment co{(− 1

2 ,− 1
2 ), (

1
2 ,

1
2 )}. By Theorem 1.4, αk,G(H) = αG(H) =

1
2 ,

with minimum achieved at ±(12 ,
1
2 ). When H is the trivial group then PH = P and Theorem 1.4

gives αk,G(H) = αG(H) =
1
3 , with minimum achieved at either of the vertices (−1, 2) or (2,−1).

Example 8.3. Let P be the polytope for P2 blown up at two points, i.e., v1, v2, v3 as above and
v4 = (−1, 0), v5 = (0,−1). Again AutP ∼= Z2, as shown in Figure 3. For H = AutP , PH is the
line segment co{(−1,−1), (12 ,

1
2 )}. By Theorem 1.4, αk,G = αG = 1

3 , with minimum achieved at
(−1,−1). When H is the trivial group then PH = P and Theorem 1.4 gives αk,G(H) = αG(H) =

1
3 ,

with minimum achieved still at (−1,−1).

Example 8.4. Let P be the polytope for P2 blown up at three non-colinear points, i.e., v1, . . . , v5
as in the previous example and v6 = (1, 1). Now AutP ∼= D12, the dihedral group of order 12
consisting of the cyclic permutations of the 6 vertices and the 6 reflections, as in Figure 3. For
H = AutP , PH is the origin, so by Theorem 1.4, αk,G(H) = αG(H) = 1. When H is the trivial

group then PH = P and Theorem 1.4 gives αk,G(H) = αG(H) =
1
2 , with minimum achieved at any

vertex of P . When H is the subgroup Z2 given by reflection about y = x, PH is the line segment
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Figure 3: The polytope P for del Pezzo surfaces, namely P2 blown up at no more than 3 generically
positioned points, and P1 × P1. For the two K-unstable examples, the automorphism group H =
Aut(P ) is generated by the reflection about y = x, and PH is the intersection of P with this
reflection axis. For the other three examples, the automorphism group H = Aut(P ) is the dihedral
group associated to the polygon P , and PH = {0}.

co{(− 1
2 ,− 1

2 ), (
1
2 ,

1
2 )} and αk,G(H) = αG(H) = 1

2 , with minimum achieved at ±(12 ,
1
2 ). When H

is the subgroup Z2 given by reflection about y = −x, PH = co{(−1, 1), (1,−1)}, and αk,G(H) =

αG(H) =
1
2 , with minimum achieved at (±1,∓1). Same for the other reflections. When H contains

a cyclic permutation, or more than one reflection, PH is the origin and αk,G(H) = αG(H) = 1.

Example 8.5. Let P be the polytope for P1 × P1, i.e., with v1, v2 as above and v3 = (−1, 0)
and v4 = (0,−1), so P = [−1, 1]2 and AutP ∼= D8, the dihedral group of order 8 generated by
4 reflections shown in Figure 3. Similar to previous examples, we obtain αk,G(H) = αG(H) = 1
whenever H contains a cyclic permutation or more than one reflection. Otherwise it equals 1/2.

Example 8.6. Let P be the polytope for X = P2 from Example 8.1. Recall that AutP = S3. Let
H = A3, the alternating group of order 3, generated by a cyclic permutation of the three vertices.
The group is represented by {I, A,A2} where

A =

(
−1 −1
1 0

)
.

All orbits of H on M ∼= Z
2 have cardinality 3 except the orbit of the origin, that has cardinality 1.

Any G(H)-invariant subspace of H0(X,−kKX) is spanned by a collection of monomials indexed

by a union ∪ℓ
i=1O

(k)
i of H-orbits on kP ∩M . This forces the subspace to have dimension m = 3ℓ

or m = 3(ℓ− 1)+ 1. Thus, m ≡3 0, 1 (see Figure 4 for the case k = 1). As a result, if m ≡3 2 then
αk,m,G(H) = ∞. For this reason we only consider in §7 the case H = {id}.

Example 8.7. Let P be the polytope for X = P2 from Example 8.1. We compute the obstruction
(∗P ), i.e., compute argmaxP ‖ · ‖−P = argmaxPhQ = argmaxPh∆1. Recall ∆1 = {v1, v2, v3} =
{(1, 0), (0, 1), (−1,−1)}. Let y = (y1, y2) be coordinates on P . Then,

hv1(y) = y1, hv2(y) = y2, hv3(y) = −y1 − y2,
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Figure 4: The four orbits O
(1)
1 , . . . , O

(1)
4 of the action of the cyclic group of order 3 (generated

by cyclic permutation of the homogeneous coordinates of P2) on the polytope corresponding to
P2 with k = 1. The dashed-dotted lines depict the sets on which h∆1 is constant equal to 1 and
that compute α1,2,(S1)2 = 1/2. These sets are the three components of −∂P ∩ P . The dotted
lines depict the sets on which h∆1 is not constant but whose minimum is 1 and that also compute
α1,2,(S1)2 = 1/2. The dashed lines depict the sets on which h∆1 is constant equal to 3/2 and that

compute α2,2,(S1)2 = 2/5. These sets are the three components of − 3
2∂P ∩ P .

so
h∆1(y) = max{y1, y2,−y1 − y2}.

By Lemma 2.4 VerP ∩ argmaxPh∆1 6= ∅. Note,

VerP = {p1, p2, p3} = {(−1,−1), (2,−1), (−1, 2)}.

So
max
P

hQ = max{hQ(p1), hQ(p2), hQ(p3)} = max{2, 2, 2} = 2,

and VerP ⊂ argmaxPh∆1 . Suppose that hQ(y) = 2. Then a computation shows that y ∈ VerP .
Thus VerP = argmaxPh∆1 . By Theorem 1.6, αk,m,(S1)n > α = 1

3 for all k ∈ N and m ≥ 2.
Let us compute α1,2,(S1)n . Let F = {f1, f2} ⊂ P ∩M . By Corollary 7.6 it suffices to consider

‘minimal’ F in the sense that for no other F ′, coF ′ ⊂ coF . So for instance, we do not need to
consider {p1, p2} but instead

{p1, (0,−1)}, {(0,−1), (1,−1)}, {(1,−1), p2}.

In fact, minco{p1,(0,−1)} hQ = hQ(0,−1) = 1 while min{p1,p2} hQ = hQ(1/2,−1) = 1/2.
Also, again by Corollary 7.6, we do not need to consider any F such that 0 ∈ coF since on

such an interval the support function attains its absolute minimum, i.e., vanishes.
Next, observe that h∆1 = 1 on the vertices of the hexagon

P1 := co{±(1, 0),±(0, 1),±(−1, 1)}.

By Lemma 2.4,
h∆1 |P1 ≤ h∆1 |VerP1 = 1.

Thus (by Corollary 7.6) we do not need to consider any F such that coF intersects P1, as such
an F will satisfy mincoF hQ ≤ 1. Since every F intersects P1 it follows that α1,2,(S1)2 = 1/2 by
Corollary 7.6. See Figure 4.
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By the same reasoning we can compute αk,2,(S1)2 using the hexagons

Pk := co

{(
2− 1

k
,
1

k
− 1
)
,
(
2− 1

k
,−1

)
,
(
− 1 +

1

k
,−1

)
,
(
− 1,−1 +

1

k

)
,

(
− 1, 2− 1

k

)
,
(
− 1 +

1

k
, 2− 1

k

)}

=
1

k
co

{(
2k − 1, 1− k

)
,
(
2k − 1,−k

)
,
(
− k + 1,−k

)
,
(
− k,−k + 1

)
,

(
− k, 2k − 1

)
,
(
− k + 1, 2k − 1

)}
⊂ P ∩M/k.

By Lemma 2.4,
h∆1 |Pk

≤ h∆1 |VerPk
= 2− 1/k.

Since every F intersects Pk it follows that

αk,2,(S1)2 =
[
1 + 2− 1

k

]−1

=
k

3k − 1

by Corollary 7.6. Note that limk
k

3k−1 = 1/3 = α (recall Example 8.1 and (67)) in accordance with
Proposition 7.10 and that this is a monotone sequence in accordance with Proposition 7.8.

The next result should be well-known but we could not find a reference.

Lemma 8.8. Let X be toric Fano. Let P ⊂ MR (see (17), (26)) be the polytope associated to
(X,−KX). Then α ≤ 1/2, and P is centrally symmetric (i.e., P = −P ) if and only if α = 1/2. If
P is not centrally symmetric then α ≤ 1/3.

Proof. If P 6= −P , then there is u0 ∈ P \ −P . By (27), −P = {y ∈ MR : maxj〈vj , y〉 ≤ 1}. Thus
〈u0, vi0〉 > 1 for some vi0 ∈ ∆1 ⊂ N (recall (20)). Recalling Theorem 1.4 and (67), or [6, Corollary
7.16],

α = min
u∈P

min
i

1

1 + 〈u, vi〉
≤ 1

1 + 〈u0, vi0〉
<

1

2
.

In fact, by convexity one may take u0 ∈ VerP \ −P , so u0 ∈ M by Lemma 2.3 and hence
Z ∋ 〈u0, vi0〉 ≥ 2, i.e., α ≤ 1/3.

If P = −P , by (66) and (67),

α =
1

1 +max
P

‖ · ‖−P

=
1

1 +max
P

‖ · ‖P
=

1

1 + 1
=

1

2

by (13) and (15).

Example 8.9. The purpose of this paragraph is to show that when n = 2, condition (∗P ) holds
for a Delzant polytope P if and only if P is not centrally symmetric, i.e., P 6= −P . Alternatively,
in n = 2, Conjecture 1.5 holds if and only if α = 1/2, by Lemma 8.8. However, in dimension
n ≥ 3 this is no longer the case: for instance P2 × P1 has a non-centrally symmetric polytope P
but condition (∗P ) fails.

When n = 2, the centrally symmetric Delzant polytopes are associated to P2 blown-up at the
three non-colinear points, and P1 ×P1 (Examples 8.4–8.5). Recall the description of (∗P ) given in
§7.1. Since P = −P , the intersection of P and maxP ‖ · ‖−P∂(−P ) is precisely all of ∂P , i.e., (∗P )
fails.

36



x

y

0 x

y

0

Figure 5: The polytope P for P2 blown up 1 or 2 points, and the level set {‖ · ‖−P = 2}.

Thus, it remains to check P2 blown-up at up to two points. We have already showed that
(∗P ) holds for (the non-centrally symmetric) P coming from P2 (Example 8.7). It thus remains
to check the remaining two cases. The polytope for the 1-point blow-up is a subset of the one
for P2 by chopping a corner. Thus the intersection of P and maxP ‖ · ‖−P∂(−P ) = −2∂P is
still just the two vertices (−1, 2) and (2,−1). For the 2-point blow-up the intersection of P and
maxP ‖ · ‖−P∂(−P ) = −2∂P is just the vertex (−1,−1), concluding the proof. See Figure 5.
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J. reine angew. Math. 226 (1967) 1–29.
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