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ABSTRACT

The control of traffic signals is crucial for improving transportation
efficiency. Recently, learning-based methods, especially Deep Re-
inforcement Learning (DRL), garnered substantial success in the
quest for more efficient traffic signal control strategies. However,
the design of rewards in DRL highly demands domain knowledge
to converge to an effective policy, and the final policy also presents
difficulties in terms of explainability. In this work, a new learning-
based method for signal control in complex intersections is pro-
posed. In our approach, we design a concept of phase urgency for
each signal phase. During signal transitions, the traffic light control
strategy selects the next phase to be activated based on the phase
urgency. We then proposed to represent the urgency function as
an explainable tree structure. The urgency function can calculate
the phase urgency for a specific phase based on the current road
conditions. Genetic programming is adopted to perform gradient-
free optimization of the urgency function. We test our algorithm
on multiple public traffic signal control datasets. The experimental
results indicate that the tree-shaped urgency function evolved by
genetic programming outperforms the baselines, including a state-
of-the-art method in the transportation field and a well-known
DRL-based method.
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1 INTRODUCTION

Traffic signals coordinate traffic flow with different directions at
signalized intersections, and play an important role in enhancing
both transportation efficiency and road safety [1]. Ineffective traffic
signal plans lead to wasted time for commuters on the roads. Most
current traffic signal control systems are not based on decisions
made according to the dynamic traffic environment. For example,
Sydney Coordinated Adaptive Traffic System [2], designed based
on pre-determined cycle time plan, is still widely adopted at real
signalized intersections around the world.

With advancements in deep learning [3] and the accessibility
of transportation infrastructure (e.g., surveillance cameras, road
sensors and internet of vehicles) [4], there is an emerging trend
[5-7] of utilizing Deep Reinforcement Learning (DRL) to address

Traffic Signal Control (TSC) problem. DRL methods can seek ef-
fective traffic signal control strategies based on feedback from the
environment. These strategies can dynamically adjust traffic sig-
nals according to the real-time conditions at intersections and have
demonstrated superior performance when compared to traditional
transportation methods [8].

Despite promising results achieved in TSC, the existing DRL
methods still suffer from two major problems. One is the intricate
design of essential components, with the reward system being par-
ticularly demanding. Designing a reasonable reward often requires
a significant amount of domain knowledge and expertise [7]. Other-
wise, it is easy to encounter issues such as overly delayed rewards
and credit assignment over long time scales [9]. For instance, within
a time step, it is challenging to describe the effectiveness of an ac-
tion (i.e., transitioning from one traffic signal phase to another)
using an immediate reward.

The other issue is that the ultimate signal control policy learned
by DRL is typically based on a complex deep neural network. This
complexity impedes human or expert understanding, making it
difficult to explain the learned policy. However, explainable traffic
signal control strategies are crucial [10]. The absence of trans-
parency poses significant barriers to establishing trust from users
and for dispatchers to examine potential weaknesses in the policies
[11, 12]. In addition, drivers should also be able to anticipate the
next traffic light change while waiting for a green signal; otherwise,
it may lead to traffic confusion. For example, drivers in the through
lane may forcefully enter the right-turn lane because they cannot
anticipate the arrival of a green signal.

To address the shortcomings mentioned above, this paper pro-
poses a traffic signal control optimization algorithm based on ge-
netic programming (GP) [13, 14]. The proposed algorithm, called
GPLight, aims to evolve an effective urgency function. This urgency
function is an explicit tree expression that can evaluate the priority
for each traffic light phase at an intersection in real time. Each time
a transition in traffic signal phases is necessary at an intersection,
the urgency function considers the traffic movement features on the
lanes that can be affected by the phase, and generates an urgency
value for that specific phase. This outputted phase urgency can
be considered as the priority for a green light demand at the cur-
rent intersection state. Consequently, the phase with the maximum
phase urgency will be selected as the next phase. The proposed
GPLight treats the traffic signal control as a black-box model and
conducts a global search for the most accurate urgency function.
This not only eliminates the necessity for reward design grounded
in domain knowledge, but also maintains explainability in the final
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signal control strategy. The main contributions of this paper are as
follows:

(1) To the best of our knowledge, we are among the first to
adapt GP for traffic signal control in the complete 8-phase
multi-intersection scenarios.

(2) The performance of the proposed method was compared
with a well-known reinforcement learning method, MPLight
[5], on publicly available real-world datasets. The experi-
mental results indicate that our approach significantly out-
performs MPLight as well as state-of-the-art heuristic-based
method [15] in most scenarios.

(3) Both high-quality and human-understandable traffic signal
control strategies are achieved by tree-like structured ex-
pressions.

The rest of this paper is organized as follows. In Section 2, we
review the prior studies concerning traffic signal control and intro-
duce the traffic signal control problem. We presents the proposed
GPLight in Section 3 and validate its effectiveness and advantages
in Section 4. Finally, we conclude in Section 5.

2 BACKGROUND
2.1 Problem Model

In this section, some important definitions related to the traffic
signal control to be solved in this paper is introduced.

Definition 1 (Intersection structure). An example of the intersec-
tion structure is shown in Figure 1 (a). It consists of eight roads
which can be categorized into two types: incoming roads and out-
going roads. Each road is composed of three lanes, one turning left,
one going straight, and one turning right. In total, there are twelve
incoming lanes and twelve outgoing lanes in an intersection. A
vehicle arriving on incoming lanes [ can cross the intersection and
move to one of the corresponding outgoing lanes m.

Definition 2 (Traffic movement (TM)). Each traffic movement rep-
resents vehicles crossing an intersection in a particular direction,
including left, right or straight. We assume that traffic must travel
on the right side and U-turns are not allowed. As shown in Figure 1
(b), there are twelve traffic movements, including four go-straight
TMs, four left-turn TMs and four right-turn TMs (gray directions).
Among them, right turn TMs are permitted at all times. Therefore,
typically, there are eight adjustable TMs.

Definition 3 (Movement signal and signal phase). A movement
signal refers to the movement of traffic in each direction in an
intersection. Specifically, the green signal indicates that traffic in
a particular direction is allowed to move safely, while red and
yellow signals signify that traffic in that direction is prohibited
from moving.

A traffic signal phase encompasses a set of allowed traffic move-
ments. Some signals cannot turn ‘green’ at the same time, and there
are eight possible pairs of non-conflicting signals at an intersection,
which are called signal phases, S = {s1, 2, ...sg}. At one time, only
one phase can be activated at an intersection. In Figure 1, phase
s3 is activated, the traffic from [ and [, is allowed to turn left to
corresponding possible outgoing lanes.

In this work, we assume that each road is always composed of
three lanes: left-turn lane, go-straight lane, and right-turn lane.
From Figure 1, it can be observed that each phase includes two
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Figure 1: Example of an intersection, traffic movements, and
different phases. In this figure, phase s3 is currently activated.

Table 1: Summary of notations

Notations =~ Meaning
I incoming lanes for an intersection
m outgoing lanes for an intersection
s a traffic signal phase in an intersection
S a set of possible signal phases in an intersection
Ii,I5,.,INy  intersections in a traffic network
R{,Ry,....R,;, asetofroadsin a traffic network
w(l) number of waiting vehicles on lane /
x(1) total number of vehicles on lane [

incoming lanes /; and I, each with its own three downstream lanes
{m1, mg, m3}. Thus, for each s; € S, |sij| =2 X3 =6.

Definition 4 (Traffic Network). A traffic network comprises a
collection of intersections (I1, Iz, ..., In') connected by a set of roads
(R1, Ry, ...Rpp), where N represents the number of intersections, M
denotes the number of roads.

The summary of notations is outlined in Table 1.

Objective: (Average travel time). A traffic network consists of
intersections and roads. Given the time period of analysis, each
intersection is controlled at each step t, making an optimal decision
to choose appropriate signal phase by observing the current traffic
conditions at the intersection. The objective is to minimize the
average travel time for all vehicles spent between entering and
leaving area in the network.

2.2 Related Work

Numerous traffic signal control approaches have been proposed,
categorizable into two typical groups: traditional methods, and
learning-based methods.

2.2.1 Traditional Traffic Signal Control Methods. Traditional meth-
ods for traffic signal control can be further categorized into four
types.

Fixed time control. Webster et al. [16] introduced the fixed-time
control approach in 1958, which entails modifying signal phases
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according to predefined rules specified in signal plans. The fixed-
time method controls the switching of traffic signal phases in a
very mechanical sequence, without considering states of vehicles
on different lanes. This could easily lead to highly imbalanced traffic
flow. However, due to its simplicity, it is widely adopted in the real
world.

Actuated methods. Some studies [17, 18] established a set of rules,
and the activation of the traffic signal is contingent upon adherence
to these predefined rules alongside real-time data. For instance, a
rule could stipulate that the green signal is assigned to a specific
traffic movement only when the queue length exceeds a designated
threshold.

Selection-based adaptive control methods. In later developments,
some methods and systems [19], such as SCATS [2] and SCOOT
[20], coordinate traffic signals based on a set of signal plans that
are designed manually. In these approaches, a series of signal plans
are predefined, and then, based on the real-time traffic conditions
of roads, the system selects which signal plan to adopt.

2.2.2  Optimization-based methods. Traditional methods for traffic
signal control heavily depend on human expertise, as they neces-
sitate the manual design of traffic signal plans or rules. It also
lacks integration with an optimization process, leading to potential
performance shortcomings. Classical optimization-based methods
typically involve optimizing travel time by assuming a uniform
arrival rate [21, 22]. Subsequently, a traffic signal plan, encompass-
ing cycle length and phase ratios, can be computed using formulas
based on traffic data. Some researchers utilize meta-heuristics [23],
such as genetic algorithms [24, 25], differential evolution [26, 27],
particle swarm optimization [28, 29] and ant colony optimization
[30, 31], to optimize signal plans. The signal type, cycle time, sig-
nal offset and green time are typically used as decision variables.
Optimization-based methods depend less on human knowledge,
determining traffic signal plans based on observed traffic data, and
demonstrated promising results. However, these methods still rely
on pre-optimized signal plans, making it challenging to handle
dynamic and uncertain traffic conditions.

Varaiya proposed the Max-Pressure (MP) [15] method that does
not rely on predefined signal plans and can adjust traffic signals
based on real-time traffic conditions at intersections. MP is a state-
of-the-art method in the transportation field [7] and its primary
objective is to maximize network throughput, thereby minimizing
travel time. However, it still relies on strong assumptions, such
as assuming unlimited capacity of downstream lanes to simplify
traffic conditions. These assumptions may limit the effectiveness
of the MP method in real-world scenarios, as they may not always
hold true in actual conditions.

2.2.3  Learning for Traffic Signal Control. Different from traditional
methods, learning-based approaches do not require the predefined
or pre-optimized static signal plans and do not make strong assump-
tions about traffic data. It can learn directly from intersections with
feedback from the transportation system without prior knowledge
about a given environment.

At present, the most prominent learning-based method for traffic
signal control is DRL. In DRL, one approach is to centrally control
signals in all intersections of the road network [32]. This involves
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the agent directly determining actions for all intersections, but mas-
tering the task is challenging due to the curse of dimensionality in
the action space. Some studies, such as [33] and [34], have explored
the use of a multi-agent DRL method to jointly model two adjacent
intersections, employing centralized global joint actions. However,
these approaches encounter scalability issues during deployment.
Consequently, as the network scale expands, centralized optimiza-
tion becomes infeasible due to the combinatorially large joint action
space, impeding the widespread adoption of this method for city-
level control.

To mitigate this issue, the method of modeling each intersec-
tion as an individual agent was proposed [35]. In these methods,
each intersection is controlled by a separate agent [6, 7, 36], and
in some studies [5, 37], these agents share parameters. The state
representing the quantitative description of the traffic condition at
that intersection. The action corresponds to the traffic signal, and
the reward serves as a measure of transportation efficiency, such as
delay [38], queue length [6], pressure [7]. However, these methods
typically require designing a reward that may not be directly related
to the problem objective, and they often demand a certain level of
domain knowledge.

In addition to DRL-based methods, Ricalde and Banzhaf [39, 40]
undertook some preliminary work using GP with an epigenetics
design in the TSC domain. This is the most similar work to the
approach presented in this paper. Nevertheless, their method op-
erates in scenarios with only vertical and horizontal traffic flows,
similar to a 2-phase setup, which is uncommon in real-life situa-
tions. Their approaches cannot be applied to the complete 8-phase
multi-intersection scenarios. The utilization of GP to develop effec-
tive and explainable traffic signal control strategies still encounters
limitations that necessitate further advancements.

3 GPLIGHT

In this section, we describe the proposed method, namely GPLight,
which uses GP to learn traffic signal control. Specifically, we first
present the detailed design of the urgency function that is used
to calculate the phase urgency for each phase at an intersection.
Then, we describe the process of determining next signal phase for
each intersection at every decision point (i.e., each step t) based on
the urgency function. Afterwards, the evolutionary process of the
proposed GPLight for evolving the urgency function is described,
including the framework, operators of GP and simulation-based
fitness evaluation.

3.1 Urgency Function

In this work, we introduced the concept of phase urgency, which
can measure the urgency of activating a green light for a specific
phase. Our objective is to utilize the urgency function to calculate
the urgency value for each phase. At each stage of traffic signal
transitions at an intersection, the signal light phase with the highest
urgency value, signifying it as the most urgent, should be activated.
Through this approach, we aim to choose the signal phase with the
highest urgency at each signal transition, thereby reducing wait-
ing times for vehicles at intersections and effectively coordinating
traffic flows from different directions.
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Figure 2: Framework of the proposed GPLight.

Accordingly, the crucial aspect lies in designing a suitable ur-
gency function. Roads associated with different phases are distinct,
and the lanes associated with them are heterogeneous, potentially
encompassing incoming, outgoing, left-turn, and go-straight lanes.
Therefore, the urgency function should be capable of accurately
and effectively calculating the urgency for each phase, adapting to
diverse situations occurred over time. In the following, we progres-
sively introduce the design of the urgency function.

3.1.1 Lane Features. With the advancement of vehicular ad-hoc
network [41] technology and continuous improvements in road
infrastructure, enormous real-time information on key vehicle and
road conditions can be extracted and analyzed. This work employs
two features associated with lane, which also were widely utilized
in previous research [5, 42]. For each lane, two pieces of information
from the lane are utilized by the urgency function, including the
number of waiting vehicles w(l) on lane /, and the total number of
vehicles x(I) on lane I, where x(I) both includes vehicles in motion
and waiting vehicles. Since one phase involves two non-conflicting
traffic movements, for any given traffic movement, vehicles from
the incoming lane can move to three outgoing lanes, including
left-turn, go straight and right-turn outgoing lanes. Therefore, in
an intersection, each phase involves eight lanes, including two
incoming lanes and six outgoing lanes. As shown in Figure 2, phase
s7 of intersection I; and phase s3 of intersection I, are activated,
with the incoming lanes (I1, I2) represented in purple font and the
outgoing lanes (m1,msy,..m¢) in blue font.

3.1.2  Phase Inputs for Urgency Function. As aforementioned in
section 3.1.1, two features w(l) and x () are available for each lane
I. Then, each road consists of three lanes, and each phase involves
four roads. Therefore, the calculation of urgency for each phase will
involve 2X3Xx4 = 24 features. To minimize the input dimensionality
of the urgency function, in this work, we choose to exclude features
from two right-turn lanes of incoming roads and their respective

three downstream lanes, which are often included as inputs in the
Q-network of reinforcement learning [5]. Our rationale for this is
that the TM of right-turn lanes is not influenced by the traffic signal.
Its impact on the calculation of urgency values might be relatively
marginal. Hence, the number of lanes that need to be taken into
consideration in each phase is reduced to 8, and the total number
of variables is decreased to 16.

For each phase, we can represent its features using 16 features
gathered from 8 relevant lanes:

X = {x0, X1, ..., X15} - (1)

A challenge of the feature encoding is that the lane linked to a x; €
X undergoes variations when urgency is computed for different
phases. For example, in one phase, x; (i < 8) is defined to represent
the number of waiting vehicles w(l;) in a specific lane /; during
that phase. However, in different phases of the intersection, x; may
represent the number of waiting vehicles w(l) in another lane
I, where j # k. This variation is the fundamental principle to
base that the urgency function can calculate unique urgency values
for different phases. However, it also brings some challenges to
the design of X. For an extreme example of poorly designed X, x;
represents the number of waiting vehicles w(l) on an incoming
lane when calculating phase urgency of s1, it might represent the
total number of vehicles x(I) on an outgoing lane when calculating
phase urgency of s3. The contextual dependence in indicates that
x; has a variable semantics across different phases, and its specific
meaning is contingent upon the changes in phases. To address
this issue, we need to thoroughly consider such variations in the
intersection control to ensure accurate modeling and understanding
of intersection behavior.

To better distinguish each feature, in this paper, we adopt the
following principle: the first eight features represent the number
of waiting vehicles on lanes, while the subsequent eight features
represent the total number of vehicles on lanes. Specifically, feature
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Figure 3: Tree representation of an urgency function I'(-) =
X0 — x1/x2 + X3X4.

sets {x; | i =0 (mod 8)}and {x; | i =1 (mod 8)} come from the
two incoming lanes I; and Iy, respectively. We specify the ordering
of the two incoming lanes for each phase, as shown in the top-left
corner of Figure 2. Feature sets {x; | i = 2 (mod 8)}, {x; | i =3
(mod 8)},and {x; | i =4 (mod 8)} correspond to downstream left-
turn, through, and right-turn lanes of incoming lane Iy, respectively.
Feature sets {x; | i =5 (mod 8)}, {x; | i =6 (mod 8)}, and {x; |
i =7 (mod 8)} are derived from downstream left-turn, through,
and right-turn lanes of incoming lane Iy, respectively.

Taking the example of the activated phase sy at intersection I
and the activated phase s3 at intersection I, as illustrated in Figure
2, the specific representation of each feature is marked in the figure.
In phase s7, the number of waiting vehicle in the left-turn outgoing
lane to the east direction (represented as lane m) is defined as x,
while in phase s3, the waiting vehicles in the left-turn outgoing
lane to the north direction represents feature x;.

To simplify representation, we encapsulate the above feature
extraction into a function G:

Xi=G (si), @

where X; represents the ordered input features for phase s;. The ur-
gency function can take X; as input and directly output the urgency
value for phase s;.

3.1.3  Signal Control via Urgency Function. Considering that each
phase involves different incoming and outgoing lanes, and the traf-
fic conditions vary in each lane, with many vehicles waiting on
some lanes while others have only a few vehicles. Therefore, by
assessing the traffic flow conditions on lanes associated with each
phase, calculating the urgency value for each phase, and select-
ing the phase with the highest priority, is an intuitive approach.
When a phase transition is required at any intersection, the urgency
function can be utilized to calculate the next phase that is most
appropriate for activation, as specified by Eq. (3).

s* = argn;ax (T (G (s1))) ®3)

where T'(+) represents the urgency function, which is a tree-based
function partially composed of features for each phase. With the
given urgency function, when a phase switch is required at an
intersection, the currently most urgent phase can be determined.
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3.2 Evolutionary Process

In this paper, we use genetic programming to evolve the urgency
functions, which we called GPLight. In GPLight, each individual
is a tree-based function [43] and represents a candidate urgency
function T'(+). An example of individual is illustrated in Figure 3.
This tree-like individual is composed of terminal nodes on the
leaf nodes and function nodes. The terminal set is designed as the
aforementioned features of a single phase:

Xi = {x0, x1, X2, X3, X4, X5, X6, X7, @

X8+0,X8+15 X8+25 X843, X8+, X845, X8+6, X847 }»
where Xj is the terminal set used in this work, wherein xg;¢ is
equivalent to xg, xg+1 is equivalent to x9 and so forth. Through this
representation, it can be easily discerned that the features xg; 1
and xg ;4 originate from the same lane. The function set is set as
).

{+, -, X, +, min, max} . (5)

Each function operates on two arguments, with the "+" function
ensuring protected division and returning one in case of division
by zero. The max and min functions take two arguments, returning
the maximum and minimum values, respectively.

The overall framework of GPLight for traffic signal control is
presented in Figure 2. The algorithm begins with the random gener-
ation of individuals by applying the ramped-half-and-half method
[44], thereby forming the initial population. Then the evolutionary
process starts. Firstly, each individuals are compiled to urgency
functions and each urgency function is evaluated based on simula-
tion, which is presented in Algorithm 1.

The simulation begins with the loading of a traffic dataset and
initialization of the time step (lines 1-2). The algorithm then enters
a main loop, where, for each time step t, it iterates over each inter-
section in the road network. At each intersection, real-time data is
collected from lanes, preprocessed to obtain relevant information
for each signal phase, and the most urgent phase is determined
using the urgency function (lines 5-7). The signal phase of each
intersection is set to the most urgent phase, and the simulation pro-
gresses by switching red and yellow lights based on signal phase
changes. Vehicle movement is simulated until the next signal phase
transition, which occurs at the subsequent time step. In this work,
each time step includes a 10-second period for vehicle passage at
each intersection, with a 3-second yellow light time and a 2-second
red light time. This iterative process continues for multiple time
steps until the current time reaches the predetermined simulation
duration. After the simulation completes, the average travel time
of vehicles can be calculated, providing an important metric for
evaluating the overall performance of an urgency function.

After the evaluation of all individuals is completed, promising
individuals are selected by the tournament selection operator based
on their fitness values. Then, all individuals in the population un-
dergo two genetic operators, including crossover and mutation. In
this work, we employ the subtree crossover operator, where the
subtrees of two parents are randomly selected and exchanged to
generate new individuals for the next generation. In addition, in
the mutation operator, a randomly sampled subtree of the mutated
individual is replaced by a newly generated subtree. The process
is repeated until the maximum number of generations is reached,
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Algorithm 1: Fitness evaluation/Simulation

Input: Urgency function I'(-)
Output: Average travel time of vehicles as the fitness of
()
1 Load traffic dataset.
2t«—0

3 for each time step t do

4 for each intersection of the road network do

5 Collect the real-time data at time step ¢ on lanes of
the intersection

6 Obtain X; for each phase s; by Eq. (2)

7 Identify the current most urgent phase s* based on
Eq. (3)

8 Set the signal phase of the intersection to s*

9 end

10 Switch the corresponding red and yellow lights based on
changes in signal phase at each intersection, and
simulate vehicles running until the next signal phase
transition.

1 te—t+1
12 end
13 Calculate the average travel time and return it

Table 2: Parameter settings.

Parameter Value
Population size 100
The number of generations 50
Method of initialization ramped-half-and-half
Initial minimum depth 3
Maximum depth 8
Elitism No
Parent selection tournament selection
Tournament size 3
Crossover rate 90%
Mutation rate 10%

and the minimum vehicle travel time and the best urgency function
T*(-) can be returned.

4 EXPERIMENTS

In this section, we perform a series of experiments on three real-
world road networks with six traffic flow datasets to evaluate our
proposed method. The experimental results are analyzed in detail.

4.1 Datasets

In this paper, we use three real-world traffic data (which are fre-
quently used in previous works [5, 6, 42]): Dongfeng Sub-district
in Jinan, Gudang Sub-district in Hangzhou, and Upper East Side in
Manhattan. The detailed descriptions are as follows:

Jinan: There are 12 (3 X 4) intersections in Dongfeng Sub-district.
Each intersection in this road network is configured as a four-way
intersection, featuring two 400-meter long road segments in the
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East-West direction and two 800-meter road segments in the South-
North direction. This traffic road network dataset contains three
different traffic flow datasets.

Hangzhou: There are 16 (4 X 4) intersections in Gudang Sub-
district. Each intersection is designed as a four-way intersection,
featuring two 800-meter road segments in the East-West direction
and two 600-meter road segments in the South-North direction. This
traffic road dataset consists of two different traffic flow datasets.

New York: A large-scale scenario with 196 (28 X 7) intersec-
tions in Upper East Side. Each intersection in this road network
is designed as a four-way intersection, featuring two 300-meter
road segments in the East-West direction and two 300-meter road
segments in the South-North direction. This traffic dataset consists
of one traffic flow dataset.

4.2 Experiment Settings

Our experiments are conducted on Cityflow!, an open-source traffic
simulator designed for large-scale traffic signal control [45]. Once
the traffic data is fed into the simulator, vehicles moves towards their
destinations according to the environmental settings. The simulator
provides local information in an intersection to the traffic signal
control method, which in turn executes the corresponding traffic
signal phases. Following convention [42, 46], each green signal
is succeeded by a three-second yellow signal and a two-second
all-red interval to clear the intersection. In a multi-intersection
Traffic Signal Control (TSC) system, the minimum action duration
serve as critical hyper-parameters and need to be consistent when
establishing the baseline. We set the minimum action duration
10-second [5, 47]. Besides, based on the recommendations from
the previous work [13, 14, 48, 49], the parameters of GPLight is
represented in Table 2.

4.3 Compared Methods

We compare our methods with the following two categories of

baseline methods, including two traditional transportation methods

and a well-known deep reinforcement learning method.
Traditional methods:

e Fixed-Time [16]: each phase is allocated a fixed time inter-
val and operates in a pre-determined cyclic schedule, without
considering the actual traffic flow conditions at the intersec-
tion.

e Max Pressure (MP) [15]: the state-of-the-art method in the
transportation field, which is an adaptive control method
based on pressure response. At each time step, the phase
with the maximum pressure is selected, and green time is
allocated to it.

DRL method:

e MPLight [5]: a DRL-based method that integrates the ad-
vantages of previous DRL-based methods [7, 37] for traffic
signal control. This method adjusts signal control by con-
sidering the current phase and traffic movement pressure as
the state, while utilizing intersection pressure as the reward
to optimize the coordination of traffic flows with different
directions.

Uhttps://cityflow-project.github.io
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Table 3: The average travel time of vehicles for all compared methods in six instances.

Method Jinan Hangzhou New York
1 2 3 1 2
min. 514.1358 425.3143 456.3193 575.5565 563.8812 1582.103
Fixed-Time [16] mean 514.1358 (+) 4253143 (+) 456.3193 (+) 575.5565 (+) 563.8812 (+) 1582.103 (+)
std. 0.0 0.0 0.0 0.0 0.0 0.0
min. 374.5641 328.9629 332.9403 365.0634 446.9059 1335.7877
MP [15] mean 374.5641 (+) 328.9629 (+) 332.9403 (+) 365.0634 (+) 446.9059 (+) 1335.7877 (+)
std. 0.0 0.0 0.0 0.0 0.0 0.0
min. 3344 304.8 306.2 329.3 415.7 1249.4
MPLight [5] mean 339.6599 (=) 307.48 (+) 313.08 (+) 331.15 (+) 427.71 (+) 1277.48 (+)
std. 5.4376 2.2723 5.6985 1.6187 7.8895 17.0731
min. 333.1056 278.6506 287.7198 312.2883 399.8403 1209.7312
GPLight mean 337.8731 280.2954 291.562 314.1162 403.5419 1227.3804
std. 3.4102 0.837 2.8962 1.4334 2.5603 14.9831
Columns represent different instances and rows represent different algorithms. "+" denotes that the algorithm is significantly worse than GPLight, "—" denotes that the algorithm
is significantly better than GPLight, and "~" denotes that the algorithm is comparable to GPLight.
Table 4: The gap between different compared algorithms and Hangzhou,
GPLight.
6 B
Instance - - Gap (%) -
Fixed-Time MP MPLight 44
1 55.28 13.13 2.57
Jinan 2 3447 18.03 10.33 21 0.9
3 56.49 14.18 7.37 0.3 -0'6 0.0 0.0 94 0.10.10.0 - 0.1
1 83.12 16.15 5.38 0- S !
Hangzhou > 3975 076 =99 Xo X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11 X12 X13 X14 X15
: : : Hangzhou,
New York 28.91 8.84 4.08
4 -
We refer to our proposed method as GPLight, which uses GP to
find accurate urgency functions for traffic signal control. 2
0.8 10

4.4 Performance Comparison

We tested the average travel time of vehicles for all compared
algorithms using the CityFlow [45] engine. The comparison of
the methods over 10 independent runs conducted on 6 instances
are shown in Table 3, where each column represent a instance.
The "+/~/-" indicates that the corresponding result is significantly
worse than, statistically comparable to, or better than the proposed
GPLight based on the Wilcoxon rank-sum test at a significance level
of 0.05 with Bonferroni correction. In Table 3, the best min and
mean values (of the average travel time) among all the compared
algorithms are highlighted. To better illustrate the performance gap
between algorithms, we calculate the gap values using the follow
formula:
fi-fi

Ji
where f; represents the average value (of the average travel time)
obtained by the other algorithms, f; is the average value obtained
by GPLight. The gap values are presented in Table 4.

From the results, it can be observed that Fixed-Time performs
poorly. This indicates that a static signal plan is not well-suited for
dynamic traffic conditions. Compared to Fixed-Time, MP shows
significant improvement, but it still falls short of learning-based
methods (i.e., MPLight and GPLight). This is attributed to the heavy

gap = (6)

. 0.6
0.0 0:3 0.1.0.1 .0.1-0.1 0.2
0_

Xo X1 X2 X3 X4 Xs Xe X7 Xg X9 X10 X11 X12 X13 X14 X15

Figure 4: The average frequency of occurrence of different
features in the optimal solutions.

reliance on over-simplified assumptions. In complex traffic scenar-
ios, overly simplistic assumptions can easily lead to local optima. It
can be seen in Table 3 that GPLight is significantly better than MP-
Light in all scenarios except for a relatively small scenario Jinan;.
Compared to MPLight, GPLight obtained better solutions in all
instances (average gap 5.95%). As indicated by the minimum val-
ues in Table 3, the proposed GPLight consistently found the most
promising solution in all instances. This is a promising result that
indicates GP can serve as a competitive counterpart to DRL in traffic
signal control. We expect this research to provide some potential
inspiration for researchers in the field of traffic signal control in
the future.

4.5 Feature and Rule Structure Analysis

The evolution of symbolic expressions stands out as a notable ad-
vantage of GP. This often makes it easier for human to understand
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Figure 5: An example of the evolved I'(-) by GP. Green nodes
represent functions; otherwise, they represent terminals.

or explain the evolved rules. To investigate the feature importance,
we first present the average occurrence frequency of each terminal
in the optimal solutions in two instances of Hangzhou in Figure
4. From this figure, it can be observed that xy and x1, represent-
ing the number of vehicles waiting on the two incoming lanes for
each phase, appear with particularly high frequencies. If a phase
is activated, the vehicles waiting on incoming lanes [ and I3 for
that phase are the ones most directly affected. Vehicles on other
outgoing lanes are only indirectly influenced by that phase. The
terminals xg and xo, that is, xg+¢ and xg4+1, occur with frequencies
second only to xp and x1, while features on outgoing lanes exhibit
relatively lower occurrence frequencies. This suggests that the fea-
tures on the two incoming lanes are more important than other
outgoing lanes. And the proposed GPLight can detect important
features automatically and use more important features to construct
individuals.

To analyze explainability of the traffic signal control strategy,
we try to analyze an example urgency function evolved by GPLight.
Figure 5 shows the tree structure of the urgency function trained
by GPLight on Hangzhou, and its corresponding mathematical
expression is:

T () = x9 + min (xp, min (x12, X0 + x1)) + x1 + (xo +x1) . (7)

Since any x; is non-negative, this urgency function can be simplified
to:

T (+) = xo + 2x1 + xg41 min (x0, Xg+4) , (8)
where xg+1 = x9 and xg+4 = x12. From the first two terms of this
urgency function, it can be observed that the queue lengths of the
two incoming lanes for the current phase are positively correlated
with the urgency of that phase. This implies that the longer the
queues on the lanes involved in that phase, the higher the urgency
of that phase, indicating a greater need for activation and clearance.
The last term also implies that the total number of vehicles xg41 on
the incoming lane I3 can contribute to the urgency of that phase.
This is because the total number of vehicles xg4; could potentially
lead to an increase waiting vehicles x; in a future time. xg4+1 also
has a coefficient that is always greater than 0, which simultaneously
considers the queue length of vehicles on the /; lane and the number

Liao, et al.

of vehicles on the downstream go-straight lane of [;. This coefficient
can adjust the contribution of xg+1 to phase urgency based on road
conditions. GPLight is capable of obtaining an analytical expression
for traffic signal control strategies based on simulation. Compared
to deep reinforcement learning, we believe that this characteristic
can provide some potential insights for the explainability research
in traffic signal control.

5 CONCLUSIONS

In this paper, we propose a new GP approach to learn better and
explainable traffic signal control rules. The experimental results
indicate that using a relatively simple urgency function to evaluate
the urgency for each phase achieves performance comparable to
or better than a well-known DRL method. Moreover, the proposed
GPLight can provide a solution in the form of mathematical formula,
which is exceedingly helpful to achieve the explainability for the
traffic signal control strategy.

This work is an initial exploration, and our approach still has
many shortcomings. Although the terminal set is specially designed
to address the issue of heterogeneous features, conflicts still ex-
ist among homogeneous lanes. This needs to be addressed in the
future. Additionally, this work controls traffic signals at multiple
intersections in a distributed manner based on the introduced ur-
gency function. In the future, a promising direction is to introduce
communication mechanisms to further enhance the algorithm’s
performance.
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