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AN AVERAGE INTERSECTION ESTIMATE FOR FAMILIES OF

DIFFEOMORPHISMS

AXEL KODAT AND MICHAEL SHUB

Abstract. We show that for any sufficiently rich compact family H of C1 diffeomor-
phisms of a closed Riemannanian manifold M , the average geometric intersection number
over h ∈ H between h(V ) and W , for V,W any complementary dimensional submanifolds
of M , is approximately (i.e. up to a uniform multiplicative error depending only on H)
the product of their volumes. We also give a construction showing that such families
always exist.

1. Introduction

Let M be a closed Riemannian manifold of dimension n, and let Diffr(M) denote the
space of Cr diffeomorphisms of M with the Cr topology. For 0 ≤ k ≤ n, let Grk(TM)
denote the k-Grassmannian bundle over M , i.e. the set of k-planes tangent to M .

In this note we study conditions on compact C1 families in Diff1(M) sufficient to
guarantee a kind of “uniform mixing” on average of the (smooth) incidence geometry of
M . By a Cr family of diffeomorphisms of M we will mean a pair (H, ψ), where H is
a smooth manifold, possibly with boundary, and ψ : H → Diffr(M) is such that the
associated evaluation map evψ : H ×M → M is Cr. This implies in particular that the
parametrizing map ψ is continuous. When a family (H, ψ) is fixed we will usually suppress
the map ψ, using the same letter h to denote both an element in H and its image under ψ;
by this mild abuse of notation we will often write, for instance, evψ(h, p) = ψ(h)(p) = h(p).

We will also assume that any such H comes equipped with a Riemannian metric, and
thus a Riemannian density which we denote by dH. Given these assumptions, our main
result is the following estimate:

Theorem 1.1. Suppose (H, ψ) is compact C1 family of diffeomorphisms of M such that

(A1) ev : H×M →M ×M defined by ev(h, p) = (p, h(p)) is a submersion;

(A2)
◦

evk :
◦

H × Grk(TM) → Grk(TM) × Grk(TM) defined by evk(h, σ) = (σ, dh(σ)) is
surjective for all 0 ≤ k ≤ n.

Then there is a constant C = C(H, ψ) ≥ 1 such that

(1)
1

C
vol(V ) vol(W ) ≤

∫

h∈H
#(h(V ) ∩W ) dH ≤ C vol(V ) vol(W ).

for all complementary dimensional submanifolds V,W ⊂M .
1
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2 A. KODAT AND M. SHUB

Assumption (A1) says equivalently that for all p ∈ M , the map evψ,p : H → M ,
h 7→ ψ(h)(p) is a submersion, or (again equivalently) that for all (h, p) ∈ H ×M ,

∂h(evψ)(h,p) : ThH → Th(p)M

is surjective. Assumption (A2) says that for all 0 ≤ k ≤ n and σ1, σ2 ∈ Grk(TM), there is

an h ∈
◦

H such that dh(σ1) = σ2; in other words, the interior of H “acts transitively” on
Grk(TM) for every k.

Here #(h(V ) ∩W ) ∈ N0 ∪ {∞} simply means the number of points in h(V ) ∩W , i.e.
the geometric intersection number between h(V ) and W . Note that (1) implicitly includes
the claim that the function

H ∋ h 7−−−−→ #(h(V ) ∩W ) ∈ N≥0 ∪ {∞}

is measurable, and integrable if both V and W have finite volume; in the latter case it
implies that #(h(V ) ∩W ) <∞ for a.e. h ∈ H.

By the volume of a submanifold S ⊂ M we will always mean its intrinsic volume
as a Riemannian manifold with metric inherited from M , i.e. vol(S) =

∫
S dS, where dS

denotes the density induced by the restricted metric. Alternatively, if dim(S) = k we have
vol(S) = HauskM (S), the k-dimensional Hausdorff measure of S in M .

Theorem 1.1 is actually a special case of a more general result, which applies whenever
dim(V ) + dim(W ) ≥ dim(M) and correspondingly replaces the cardinality of the intersec-
tion with its appropriate-dimensional Hausdorff measure. We focus on the complementary
dimensional case for simplicity of exposition (and greater proximity to our original moti-
vations), but the proof of the general case works similarly. For the precise statement and
some remarks on its proof, see §4.

By analogy with the (exact) kinematic formulas of integral geometry (see e.g. [Che66],
[Cal20], [San04]), we call (1) a kinematic inequality for the family (H, ψ). Taken alone,
Theorem 1.1 is a relatively straightforward adaptation of these classical formulas—which
obtain when H = G is a compact Lie group acting isometrically on M and transitively
on every Grk(TM)—to a specific (a priori somewhat artificial and potentially rare) non-
homogeneous context. Its possible utility derives from the following existence result, which
we prove in §5:

Theorem 1.2. Every closed manifold M admits an H and ψ : H → Diff1(M) satisfying
the hypotheses of Theorem 1.1.

We emphasize that the H constructed here has non-empty boundary. This is the main
motivation for allowing ∂H 6= ∅ in the definition of Cr families, and in fact Theorem 1.2
fails in general if one requires ∂H = ∅. For details see §1.3.

1.1. Background and motivation. Formulas of the type considered here have a long
history in integral geometry and a well-developed theory in the setting of homogeneous
spaces of compact Lie groups. From this perspective the basic antecedent to our result is

Theorem 1.3 (Poincaré’s formula for homogeneous spaces). Let Mn be a closed Rie-
mannian manifold with G a compact Lie group acting smoothly and transitively on M by
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isometries. Suppose the action is also transitive on Grk(TM), for every 1 ≤ k ≤ n − 1.
Then for every k, ℓ ≥ 0 satisfying k+ ℓ ≥ n, there is a constant Ck,ℓ > 0 such that for any
submanifolds V,W ⊂M with dim(V ) = k and dim(W ) = ℓ, we have

(2)

∫

g∈G
vol(gV ∩W ) dG = Ck,ℓ vol(V ) vol(W ),

where dG denotes the Haar measure on G.

In the form given here this result is due to Howard [How93]. The basic idea behind
the proof is to view the left-hand side as a double integral over what we will later call the
intersection manifold associated to V and W , i.e. the space of all intersections between
g(V ) and W for g ∈ G. By changing the order of integration one then (essentially) equates
this integral with the average volume of the spaces Gx,y = {g ∈ G : gx = y} over all
(x, y) ∈ V ×W . (In other words, one replaces the average volume of intersections with the
average volume of the spaces of maps realizing each possible intersection.) Since all such
spaces are isometric for any bi-invariant metric on G inducing the Haar measure, the result
follows. For details, see [How93, §3] or [BC13, §A.4]. Our adaptation of this approach
below is particularly indebted to [BCSS98, §13] and [SS94, §4]. For a classic presentation
of the foundational material, see [San04].

Observe that any action G y M as in Theorem 1.3 can be viewed as a compact C∞

family of diffeomorphisms of M , namely (G,ψ) where ψ : G ∋ g 7→ (x 7→ gx) ∈ Diff∞(M).
This family clearly satisfies (A1) and (A2), and thus Theorem 1.1 yields (2) up to a uniform
multiplicative error. The fact that this error can be eliminated in the setting of Theorem
1.3 depends on (among other things) the assumption that the family (G,ψ) consists of
isometries. For an analogous result applicable to general manifolds, however, this is too
much to ask: if (H, ψ) satisfies (A1) and im(ψ) ⊂ Isom(M) for some choice of Riemannian
metric on M , then the action of Isom(M) on M is automatically transitive and thus M is
homogeneous, i.e. M ∼= G/H for G a compact Lie group and H < G closed. An inequality
incorporating some bounded multiplicative error therefore seems to be the most one could
expect from an extension of Poincaré’s formula to non-homogeneous manifolds.

Our primary motivation for formulating such an extension comes from smooth dynam-
ics.1 Given a C1 diffeomorphism f : M → M and a pair of complementary dimensional
submanifolds V,W ⊂ M , one would like to understand how the growth of vol(fn(V )) af-
fects the distribution of (a large compact piece of) the isotopy class of fn(V ) with respect
to W . Our results here imply that we can fix a compact family of diffeomorphisms H of M
so that the average number of intersections between h(fn(V )) and W has the same order
of growth (in the sense of e.g. [CP23]) as vol(fn(V )). In future work we hope to show how
this could be a useful tool in a new approach to the second author’s Cr entropy conjecture
for the open case(s) of r <∞.

1For a similar generalization from a different direction, see the work of Fu in [Fu16], and especially his
definition of an “admissible measured family” of diffeomorphisms in §6. We regret that we became aware
of this paper too late to explore the connection further.
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1.2. Assumptions. Theorem 1.1 is a “backwards” theorem in the sense that we started
with the estimate (1) and looked for reasonable (and in particular abundantly realized)
assumptions that would make it true. Here we collect some comments on our eventual
selections (A1) and (A2).

First, we emphasize that the statement of Theorem 1.1 is not quite optimal, in two
main ways:

(i) The upper bound in (1) actually follows from (A1) alone; the surjectivity assump-
tion (A2) is needed only for the lower bound. Note also that (A1), in contrast
to (A2), is a purely local property of (H, ψ). Since the property (A1) is also eas-
ily seen to be invariant under (either left- or right-) translation of the family by
a diffeomorphism g, this implies that an upper bound as in (1) can be obtained
for finite-dimensional slices of Diff1(M) concentrated arbitrarily close to any given
diffeomorphism f .

(ii) In the other direction, it follows from the proof that (A2) is somewhat stronger
than necessary for our result. What we really need is the following:

(A2*) For any σp ∈ Grk(TM) and σq ∈ Grn−k(TM), there is an h ∈
◦

H such
that h(p) = q and dh(σp) ⋔ σq.

For further discussion of this point see the remark after Claim 2.9. We have opted
to use (A2) in the statement of Theorem 1.1 nonetheless, primarily to emphasize
the analogy with the transitivity assumption in Theorem 1.3, and also because
it is no more difficult in practice to construct a family satisfying (A2) than one

satisfying the weaker condition (A2*).

These qualifications in mind, the purpose of our assumptions is heuristically the fol-
lowing. The assumption that ev is a submersion implies that no particular intersection
h(p) = q between h(V ) ∩W can be locally persistent (since one can move h(p) off itself
by a small change in h). In particular, any non-transversal intersection between h(V ) and
W (near which the cardinality of h(V ) ∩W could explode) can be destroyed by a small
perturbation of h. This ensures that almost all intersections are isolated, and moreover
that the total number of such points (summed over H) is never too large compared to
vol(V ) · vol(W ). This yields the upper bound in Theorem 1.1 using (A1) alone.

To get a lower bound, one needs to show that H can always produce intersections
between pairs of points in V and W . Moreover, since the quantity we are trying to bound
is a sort of average of the number of intersections with respect to the volume measure on H,
these intersections should persist over open (thus positive measure) subsets of H. In other
words, H should be able to produce transverse intersections between any pair of points in
V and W . This will certainly hold if H can move any tangential k-plane to any other, as
guaranteed by (A2).

The following example cleanly illustrates the main ideas in the isometric case:

Example 1.4 (T2
y T

2). Let M = T
2 = R

2/Z2 be the standard flat 2−torus, and
H = T

2 with ψ : T
2 −→ Diff(T2) the smooth action of T

2 on itself by translations;
explicitly, ψ : a 7→ (ψa : x 7→ x + a). Then the pair (H, ψ) satisfies assumption (A1), but
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not (A2), since dh = id for all h ∈ im(ψ) (using the canonical identifications TpT
2 ∼= R

2)
and thus

im(ev1) = {(σ1, σ2) : σ1 and σ2 are parallel} 6= Gr1(TT
2)×Gr1(TT

2).

More strongly, the fact that every element of H maps any element of Gr1(TT
2) to a parallel

translate means that no element of Gr1(TT
2) can be made transverse to itself via H.

Theorem 1.1 correspondingly fails. For instance, take I, J two parallel Euclidean line
segments in T

2. Then it is easy to see that ψa(I) ∩ J = ∅ for a.e. a ∈ T
2, so

∫

a∈T2

#(ψa(I) ∩ J) dT
2 = 0.

This implies that the lower bound in Theorem 1.1 cannot hold for any positive C.
If the angle between I and J is θ 6= 0, however, it is similarly straightforward to show

that ∫

a∈T2

#(ψa(I) ∩ J) dT
2 = | sin θ| length(I) · length(J).

In particular, we have
∫

a∈T2

#(ψa(I) ∩ J) dT
2 ≤ length(I) · length(J)

for any Euclidean line segments I, J ⊂ T
2, and by a subdivision and approximation argu-

ment it is not difficult to see that this holds more generally for I, J ⊂ T
2 any embedded

C1 curves. Thus the upper bound in Theorem 1.1 holds here with C = 1.

1.3. A digression on H. One technical hurdle in proving Theorem 1.1 stems from our
allowance of the possibility that the parameter space H has boundary. If one assumes
instead that ∂H = ∅, the availability of Ehresmann’s fibration theorem (applied to the
submersion ev) substantially streamlines the proof; see the remark concluding §2.4. How-
ever, here Ehresmann’s theorem cuts both ways, imposing strong topological constraints
on any boundaryless H satisfying (A1). These constraints imply in particular that for
general M , the condition ∂H = ∅ is too much to ask:

Proposition 1.5. Suppose M is a closed manifold and (H, ψ) a compact, connected family
of C1 diffeomorphims of M with ∂H = ∅, such that evp is a submersion for some p ∈M .
Then π1(M) is a finite extension of a quotient of a subgroup of π1(Diff0(M)).

Proof. Let (H, ψ) be such a family. After translating and perturbing we may assume that
ψ(H) ⊂ Diff0(M) the identity component of Diff∞(M). Choose p ∈ M such that evp a
submersion.

By Ehresmann’s theorem, evp : H →M is a locally trivial fibration, say with fiber F .
The end of the homotopy long exact sequence for this fibration reads

π1(H)
(evp)∗

−−−−−→ π1(M) −−→ π0(F) −−→ 1.
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SinceH and (therefore) F are compact we must have #π0(F) <∞, so this sequence implies
that (evp)∗ is virtually onto. On the other hand, evp = EVp◦ψ where EVp : Diff0(M) →M ,
f 7→ f(p). Thus (evp)∗ factors through π1(Diff0(M)), and the result follows. �

Corollary 1.6. Suppose M is a closed hyperbolic manifold with dim(M) ≤ 3. Then there
is no boundaryless compact family of diffeomorphisms of M satisfying (A1).

Proof. By work of Earle-Eells (in dimension 2) and Gabai (in dimension 3), Diff0(M) is
contractible ([EE69], [Gab01]). In particular, π1(Diff0(M)) = 0. Since (by hyperbolicity
of M) π1(M) is infinite, by Proposition 1.5 we are done. �

The upshot here is that Theorem 1.2 fails if one requires that ∂H = ∅. More strongly,
these results (combined with the restrictions on higher homotopy groups obtained by con-
tinuing the above exact sequence) suggest that manifolds which admit a submersive com-
pact family of diffeomorphisms without boundary may be quite rare. Clearly homogeneous
spaces of compact Lie groups form the main class of examples. Are there others?

Question 1.7. Which closed manifolds M admit a compact smooth family of diffeomor-
phisms H −→ Diff(M) with ∂H = ∅, such that the associated evaluation map ev :
H×M −→M ×M is a submersion?

We note that, on the question of existence, the choice of regularity is irrelevant. A
Cr family of diffeomorphisms can be viewed as a map Φ ∈ Cr(H × M,M) such that
Φ(h, ·) ∈ Diffr(M) for all h ∈ H; with this notation, the submersion condition simply
means that Φ(·, p) : H →M is a submersion for all p ∈M . When H and M are compact,
these properties are open in C1(H ×M,M), so if one obtains a boundaryless C1 family
satisfying (A1), by perturbing one can obtain a C∞ family as well.

This intriguing diversion aside, the proof of Theorem 1.1 in the general, possibly-
with-boundary setting turns out to work in much the same way as the Ehresmann-based
proof for the boundaryless case, modulo some basic lemmas concerning submersions from
compact manifolds with boundary which we relegate to Appendix A.2 The content of these
lemmas is to show that our required bounds (which follow trivially from compactness when
the fibers of ev move C1-continuously) still follow from our assumptions when we allow
boundary, provided that the surjectivity requirement in (A2) is phrased in terms of the
interior of H.

1.4. Acknowledgements. We would like to thank Bryce Gollobit, Charles Pugh, Enrique
Pujals, and Federico Rodriguez Hertz for many stimulating conversations and helpful sug-
gestions on the contents of this paper. The first author would also like to thank Ryan Utke
for pointing out the relevance of Ehresmann’s theorem to these results.

2Though these straightforward results are presumably well-known, we were unable to locate them in the
literature.
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2. Preliminaries

Let (H, ψ) satisfy the hypotheses of Theorem 1.1, and write d := dim(H). We begin
by introducing the main objects used in our proof.

2.1. Normal Jacobians. LetE1, E2 be finite-dimensional real inner product spaces. Then
for any linear map A : E1 → E2, one defines the normal Jacobian by the formula

NJ(A) := det(AA∗)1/2 ∈ R≥0.

Note that NJ(A) > 0 iff A is surjective. One can check that

NJ(A) = |det(A|ker(A)⊥)|.

For a C1 map f : M → N between Riemannian manifolds, we define the normal
Jacobian of f pointwise, by

NJ(f)(x) := NJ(dfx) = det(dfx · df
∗
x)

1/2.

Thus NJ(f) : M → R≥0, and since f is C1 it is easy to see that NJ(f) is continuous. By
the above, NJ(f)(x) > 0 iff x is a regular point of f .

2.2. The solution manifold Ṽ. The solution manifold Ṽ ⊂ H×M ×M is the subspace

consisting of all triples of the form (h, p, h(p)). Equivalently, Ṽ = Γ(evψ), where

evψ : H×M −→M

(h, p) 7−→ h(p).

Since evψ is C1, Ṽ is a neat C1 submanifold with boundary of H×M ×M , diffeomorphic

to H×M .3 In particular, it inherits C1 projection maps π̃1, π̃2:

Ṽ

H M ×M.

π̃1 π̃2

By (A1) and the k = 0 case of (A2), π̃2|int(Ṽ)
: int(Ṽ) →M ×M is a surjective submersion.

For (p, q) ∈M ×M we write

Vp,q := π̃−1
2 (p, q) ∩ int(Ṽ) =

(
π̃2|int(Ṽ)

)−1
(p, q).

Then each Vp,q is an embedded (d−n)-dimensional submanifold of int(Ṽ) with Riemannian
metric inherited from H×M ×M and induced Riemannian density which we will denote
by dVp,q.

3By neat we mean that ∂Ṽ ⊂ ∂(H×M ×M) = ∂H×M ×M .
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2.3. The intersection manifolds V. Now let V,W ⊂M be complementary dimensional
submanifolds of M , say dim(V ) = k and dim(W ) = n − k. We define the intersection
manifold V associated to H, V , and W by

V := {(h, p, q) ∈
◦

H× V ×W : h(p) = q}

=
(
π̃2
∣∣
int(Ṽ)

)−1
(V ×W ) = π̃−1

2 (V ×W ) ∩ int(Ṽ).

Since π̃2
∣∣
int(Ṽ)

: int(Ṽ) → M × M is a surjective submersion, V is a C1 submanifold of

int(Ṽ ) with codimṼ(V) = codimM×M (V ×W ) = n, so

dim(V) = dim(Ṽ)− n = dim(H) + n− n = dim(H).

Again note that V inherits a Riemannian metric from H×M ×M ; as usual we will write
dV for the induced Riemannian density.

For i = 1, 2, define πi := π̃i|V . Then we have the diagram

V

H V ×W

π1 π2

of C1 maps, with π2 again a surjective submersion.
In the first step of the proof we will apply the co-area formula to this diagram to

convert our main integral ∫

h∈H
#(h(V ) ∩W ) dH

to an integral over V ×W involving the normal Jacobians of π1 and π2. To estimate this
latter integral, we will need a description of the tangent spaces

T(h,p,q)V ⊂ ThH× TpV × TqW.

This is given easily by

Claim 2.1. For all (h, p, q) ∈ V we have

T(h,p,q)V = {(ḣ, ṗ, q̇) ∈ ThH× TpV × TqW : J(h,TpV,TqW )(ṗ, q̇) = d(evp)h(ḣ)}

where J(h,TpV,TqW ) : TpV × TqW → TqM is defined by

J(h,TpV,TqW )(v,w) = w − dh(v).

Proof. Differentiating the defining equation h(p) = q yields

q̇ = d(evp)h(ḣ) + dh(ṗ).

The claim follows. �
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Notice that, since d(evp)h : TpH → Th(p)M is surjective for every (h, p) ∈ H ×M , the
projection map

d(π1)(h,p,q) : T(h,p,q)V −→ ThH

(ḣ, ṗ, q̇) 7−→ ḣ

will be surjective if and only if J(h,Tp,TqW ) is surjective, i.e. iff dh(TpV )+TqW = TqM . We
summarize this observation in the following:

Proposition 2.2. The regular points of the projection map π1 : V → H are precisely those

(h, p, q) ∈ V such that h(V ) intersects W transversally at q. Thus h ∈
◦

H is a regular value
of π1 iff h(V ) ⋔W .

The restriction to the interior of H in the above statement is necessary because by

definition V ⊂
◦

H × V ×W , and thus every h ∈ ∂H is trivially a regular value of π1, even
though V gives no (immediate) information about the intersections h(V ) ∩ W for such
h. However, since ∂H has measure zero in H and dim(H) = dim(V), by applying Sard’s

theorem to the C1 map π1 : V →
◦

H we get

Corollary 2.3. h(V ) ⋔W for almost every h ∈ H.

Remark. The argument given here essentially follows the usual proof of the classical
transversality theorem. In low regularity, however, its appeal to Sard’s theorem requires
constraints on the dimensions of V and W . In particular, in the C1 category Corollary 2.3
fails when dim(V ) + dim(W ) > dim(M). This difficulty is the main reason for considering
Hausdorff measures instead of volumes of intersections in the generalization to Theorem
1.1; see §4 for details.

An immediate consequence of the formula above is that the tangent space T(h,p,q)V
depends only on p, TpV and TqW . The same is therefore true of the linear maps (dπi)(h,p,q)
(themselves just restrictions of projections), and consequently their normal Jacobians.

We would like to show that more is true, namely that NJ(π1) and NJ(π2) are continuous
when viewed as functions of h, TpV , and TqW . The next section introduces the objects
necessary to make this statement precise.

2.4. The bundles Gk → Ṽ. For each 0 ≤ k ≤ n let

Grk(TM) =
⊔

p∈M

Grk(TpM)

denote the k-Grassmanian bundle overM . This is a smooth fiber bundle overM , associated
to the tangent bundle TM in the sense that it can be obtained by gluing local trivializations
Uα ×Grk(R

n) according to the smooth clutching functions ρα,β : Uα ∩ Uβ → GL(n,R) for
TM . For each k we let pk : Grk(TM) →M denote the standard (smooth) projection map.
For σ ∈ Grk(TM) we will typically write σ = σx for x ∈ M to mean that x = pk(σ), i.e.
σ ∈ Grk(TxM). In words, σx ∈ Grk(TM) simply denotes a k-plane tangent to M at the
point x.
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Now define

Gk := {(h, σp, σq) ∈ H×Grk(TM)×Grn−k(TM) : h(p) = q} .

Clearly Gk is a C1 submanifold of H × Grk(TM) × Grn−k(TM), and indeed the map

id × pk × pn−k exhibits it as a C1 (Grk(R
n) × Grn−k(R

n))-bundle over Ṽ. (In particular,

G0
∼= Gn ∼= Ṽ.)

Claim 2.4. The map π̂k2 : Gk → Grk(TM) × Grn−k(TM), (h, σ1, σ2) 7→ (σ1, σ2) is a C1

submersion and surjective when restricted to
◦

Gk.

Proof. This follows from the observation that Gk can be obtained as the pullback of the

smooth fiber bundle Grk(TM)×Grn−k(TM) → M ×M via the C1 submersion π̃2 : Ṽ →
M ×M . More precisely, we have the following diagram:

Gk Grk(TM)×Grn−k(TM)

Ṽ M ×M.

id×pk×pn−k

π̂k
2

pk×pn−k

π̃2

In local coordinates (i.e. above any chart U ⊂ Ṽ), π̂k has the form

π̂k ∼= π̃2 × id : U × (Grk(R
n)×Grn−k(R

n)) −→ π̃2(U)× (Grk(R
n)×Grn−k(R

n)) ,

which is clearly a submersion because π̃2 is. The surjectivity of π̂k| ◦Gk

follows immediately

from that of ev
∣∣ ◦

H×M
, i.e. the k = 0 case of (A2). �

Now for each (h, σp, σq) ∈ Gk we can define

J(h,σp,σq) : σp × σq → TqM

(v,w) 7→ w − dh(v),

and

Ek(h, σp, σq) := {(ḣ, v, w) ∈ ThH× σp × σq : J(h,σp,σq)(v,w) = d(evp)h(ḣ)}.

Finally, set

Π1(h, σp, σq) : Ek(h, σp, σq) −→ ThH

(ḣ, v, w) 7−→ ḣ,

Π2(h, σp, σq) : Ek(h, σp, σq) −→ σp × σq

(ḣ, v, w) 7−→ (v,w),

and for i = 1, 2, define

ηi : Gk −→ R≥0
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by
ηi(h, σp, σq) = NJ(Πi(h, σp, σq)).

The point of these objects, immediate from the definitions and Claim 2.1, is the following:

Lemma 2.5. Let V,W ⊂ M be complementary dimensional submanifolds with dim(V ) =
k, and V their associated intersection manifold. Then for all (h, p, q) ∈ V and i = 1, 2 we
have

T(h,p,q)V = Ek(h, TpV, TqW );

d(πi)(h,p,q) = Πi(h, TpV, TqW );

NJ(πi)(h,p,q) = ηi(h, TpV, TqW ).

We will also need the following properties:

Claim 2.6. Ek is a continuous vector bundle over Gk of rank d.

Proof. Let Ωj denote the tautological vector bundle over Grj(TM), i.e. the smooth rank-
j vector bundle Ωj → Grj(TM) with fibers Ωj(σ) = σ. Observe that, since each σ ∈
Grj(TM) is a subspace of some tangent space of M , Ωj carries a natural bundle metric
obtained by restricting the Riemannian metric on M .

Let Ek denote the restriction of the vector bundle TH×Ωk×Ωn−k → H×Grk(TM)×
Grn−k(TM) to Gk. Again this carries a natural bundle metric, namely the product metric
induced from its factors.

We can now view J as a bundle map

J : Ek −→ γ∗TM,

where γ : Gk → M is given by γ(h, σp, σq) = q. Continuity of J follows from that of our

parametrization ψ : H → Diff1(M). Define

H : Ek −→ γ∗TM

by

H(h,σp,σq) : ThH× σp × σq −→ TqM

(ḣ, v, w) 7−→ d(evp)h(ḣ),

and note that H is a continuous bundle map because ev is C1. Finally set L := J −H.
Since d(evp)h is surjective for all (h, p) ∈ H ×M and J(h,σp,σq) does not depend on ḣ,

L(h,σp,σq) is surjective for all (h, σp, σq) ∈ Gk. In particular, L is a constant rank vector
bundle map, so ker(L) is a continuous vector subbundle of Ek (see e.g. [Lee13, Theorem
10.34]), with

rank(ker(L)) = rank(Ek)− rank(TM) = (d+ n)− n = d.

Since clearly ker(L) = Ek, we are done. �

Claim 2.7. η1 and η2 are continuous.
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Proof. Π1 and Π2 can be viewed as continuous bundle maps between metric vector bundles,
namely

Π1 : Ek → (π̂k1 )
∗TH;

Π2 : Ek → (π̂k2 )
∗(Ωk × Ωn−k),

where π̂k1 : Gk → H and π̂k2 : Gk → Grk(TM)×Grn−k(TM) denote the natural projections.
Thus their normal Jacobians are continuous functions of the base. �

Claim 2.8. η2 > 0 everywhere on Gk.

Proof. Π2(h, σp, σq) has full rank for all (h, σp, σq) ∈ Gk. �

Now define

F̂σp,σq :=
(
π̂k2 | ◦Gk

)−1
(σp, σq) = (π̂k2 )

−1(σp, σq) ∩
◦

Gk.

Since π̂k2 | ◦Gk

is a surjective C1 submersion, F̂σp,σq is an embedded (d − n)-dimensional

submanifold of
◦

Gk for all (σp, σq) ∈ Grk(TM) × Grn−k(TM). As usual we let dF̂σp ,σq
denote the Riemannian density induced by the restriction of the metric on Gk to F̂σp,σq .

Claim 2.9. For all (σp, σq) ∈ Grk(TM) × Grn−k(TM), η1 is positive somewhere on the

fiber F̂σp,σq .

Proof. Let (σp, σq) ∈ Grk(TM)×Grn−k(TM). Clearly it suffices to find h ∈
◦

H such that
h(p) = q and Π1(h, σp, σq) is surjective. Observe as in Proposition 2.2 that Π1(h, σp, σq) is

surjective iff dh(σp) ⋔ σq. But by (A2) we can find h ∈
◦

H such that dh(σp) = σq
⊥, so we

are done. �

Remark. Claim 2.9 is in fact the only place where (A2) is used, and its proof makes clear
that this assumption is actually stronger than required for this result. What we really need
is the following:

(A2*) For any σp ∈ Grk(TM) and σq ∈ Grn−k(TM), there is an h ∈
◦

H such that h(p) = q
and dh(σp) ⋔ σq.

So for instance (A2), which is equivalent to the claim that for all σ ∈ Grk(TM) and q ∈M
we have

Grk(TqM) ⊂ {dh(σ) : h ∈
◦

H},

could be replaced by the requirement that for all σ ∈ Grk(TM) and q ∈M , the set

Grk(TqM) ∩ {dh(σ) : h ∈
◦

H}

has nonempty interior in Grk(TqM).4 We prefer (A2) here largely for simplicity, and
because, in the general setting we consider, it is no more difficult to construct a family

4This latter property is satisfied, in particular, if we assume that
◦

ev0 is surjective (i.e. the interior of H
acts transitively on points) and evk is a submersion for all k.



AN AVERAGE INTERSECTION ESTIMATE FOR FAMILIES OF DIFFEOMORPHISMS 13

H satisfying this hypothesis than (A2*); see §5. The sufficiency of the weaker assumption

may, however, be useful in applications where (A2*) is easy to verify for a given family H,
despite additional constraints which render (A2) unachievable.

The main result of this section is now an immediate consequence of the following
general fact. For details of the proof, see Appendix A.

Proposition 2.10 (Appendix A, Lemma 6.4). Let f : Mm → Nn be a C1 submersion
between compact Riemannian manifolds, with ∂M 6= ∅ and ∂N = ∅, and φ ∈ C0(M,R≥0).

Write Fq := f−1(q) ∩
◦

M . Then there exists CφU > 0 such that
∫

Fq

φ dFq ≤ CφU

for all q ∈ N .
Suppose in addition that f

∣∣ ◦

M
is surjective and φ is positive somewhere on each interior

fiber Fq. Then there also exists CφL > 0 such that

CφL ≤

∫

Fq

φ dFq

for all q ∈ N .

Sketch of proof. For the upper bound, it clearly suffices to show that volm−n(Fq) ≤ ĈU
for some uniform ĈU < +∞; then one can set CφU := ĈU · ‖φ‖∞. By attaching a collar

to M and extending the metric we obtain an open Riemannian manifold M̂ isometrically
containing M ; by shrinking the collar we can assume that f extends to a submersion

F : M̂ → N . Now choose a finite collection B of submersion charts for F which cover M ,
such that the plaques of elements of B have volumes bounded uniformly above by some
C1 < +∞. Since every fiber Fq intersects each submersion chart in at most one plaque,
we get vol(Fq) ≤ C1 ·#(B).

For the lower bound, one can use surjectivity of f | ◦

M
and compactness of N to find

finitely many submersion charts B1, . . . , Bℓ ⊂
◦

M for f | ◦

M
whose images cover N , with fiber

plaque volumes bounded below by some ĈL > 0 and φ ≥ δ > 0 on every Bj. Then each
Fq contains at least one plaque of some Bj , so∫

Fq

φdFq ≥ ĈLδ > 0,

as desired. �

Corollary 2.11. Let η = η1
η2

: Gk −→ R≥0. Then there exists Ck > 1 such that

1

Ck
≤

∫

F̂σp,σq

η dF̂σp,σq ≤ Ck

for all (σp, σq) ∈ Grk(TM)×Grn−k(TM).
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Proof. By Claims 2.4, 2.7, 2.8, and 2.9, this follows from Proposition 2.10 with f = π̂k2 and
φ = η. �

Remark. If we define

Φk : Grk(TM)×Grn−k(TM) −→ R≥0

by

Φk(σp, σq) =

∫

F̂σp,σq

η1
η2

dF̂σp,σq ,

then Corollary 2.11 simply says that Φk is bounded uniformly above and away from zero.
Since Grj(TM) is compact for all j and Φk > 0 by Claim 2.9, this would be obvious if
Φk were continuous, and indeed when ∂H = ∅ this is the case by an easy application of
Ehresmann’s fibration theorem. When ∂H 6= ∅, however, Ehresmann’s theorem fails, and
in fact Φk cannot be assumed continuous in general. We were led to Proposition 2.10 by
the need to fill this gap, since it shows in particular that the (non-)continuity of Φk is
inessential for the desired bounds.5

As a final aside, we note that Poincaré’s formula (as stated in Theorem 1.3) reduces
after the results of the next two sections to the claim that the functions Φk (and all
the analogously defined functions Φk,ℓ for n ≤ k + ℓ ≤ 2n, where Φk =: Φk,n−k) are
constant in the homogeneous case, and moreover positive provided the induced action on
each Grk(TM) is transitive. This is in turn a fairly straightforward (intuitively almost
obvious) consequence of some basic geometry of compact Lie groups.

3. Proof of Main Theorem

Let V,W ⊂ M be complementary dimensional submanifolds of M , say dim(V ) = k
and dim(W ) = n − k. Our proof of Theorem 1.1 now consists of two steps. First, we
convert the integral ∫

H
#(h(V ) ∩W ) dH

to an integral over V ×W . We then apply the results of §2.4 to bound the new integrand
uniformly above and away from zero, proving the result.6

3.1. The co-area formula. The key tool in the first step is the co-area formula, which
we state here for convenience. Though we choose to give only the simplest form sufficient
for our needs, note that this is a special case of a more general result; see e.g. [Fed69, §3.2],
[Nic11], [Sim14].

5An easy adaptation of the proof of the lower bound in Proposition 2.10 does, however, show that Φk is
always lower semicontinuous.
6For a related use of this “double fibration” method, see [ACSS22].
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Proposition 3.1 (The co-area formula, Cr case). Let f : Mn+k → Nn be a Cr map
between smooth Riemannian manifolds (without boundary), with r ≥ k+1 ≥ 1. For q ∈ N ,
write Fq = f−1(q). Then for any Borel measurable function h on M we have

∫

M
h ·NJ(f) dM =

∫

q∈N

(∫

Fq

h dFq

)
dN,

with both sides finite if one is. In particular, if h is (essentially) bounded and NJ(f) ∈
L1(M), then (

Φ : q 7−→

∫

Fq

h dFq

)
∈ L1(N),

and ∫

M
h ·NJ(f) dM =

∫

N
Φ dN.

In the special case when f is a submersion, the above holds for all k ≥ 0 assuming only
that f is C1.

Remark. Note that the function

Φ : N ∋ q 7−→

∫

Fq

h dFq ∈ R≥0 ∪ {∞}

is well-defined only at regular values q of f , for which Fq is an embedded k-dimensional
submanifold of M with induced Riemannian density dFq. But then by Sard’s theorem it
is defined a.e. on N , so (provided it is measurable) its integral over N makes sense. This
application of Sard’s is the main reason for the required relation between the regularity of
f and k = dim(M)− dim(N) and explains why this regularity assumption is unnecessary
when f is a submersion, since in that case every point of N is a regular value for f . Indeed,
in the submersive case the co-area formula is an easy consequence of Fubini’s theorem.

More general versions of the co-area formula avoid these issues entirely by replacing
dFq with the k-dimensional Hausdorff measure associated to the metric space structure on
M ; see in particular Proposition 4.3. These measures agree when Fq is a k-dimensional
submanifold of M .

We now apply the co-area formula to prove the following, the main result of this section:

Proposition 3.2. For H, V, and W as in Theorem 1.1 we have

∫

h∈H
#(h(V ) ∩W ) dH =

∫

(p,q)∈V×W

(∫

Vp,q

NJ(π1)

NJ(π2)
dVp,q

)
dV dW,

with both sides finite if one is.

Proof. Recall the diagram
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V

◦

H V ×W

π1 π2

of Riemannian manifolds and C1 maps. Since

dim(V) = dim(H) = d

and π1 is C1, we may apply Proposition 3.1 to π1 (with h ≡ 1) to obtain

(3)

∫

V
NJ(π1) dV =

∫

h∈
◦

H

(∫

π−1
1 (h)

dπ−1
1 (h)

)
dH =

∫

h∈H
#(h(V ) ∩W ) dH.

The second equality follows from the fact that π−1
1 (h) is a 0-dimensional submanifold of V

for a.e. h ∈ H, i.e. a discrete set of points, in which case we have
∫

π−1
1 (h)

dπ−1
1 (h) =

∑

x∈π−1
1 (h)

1 = #(π−1
1 (h)) = #(h(V ) ∩W ).

Note in particular that the a.e. defined function

h 7−→

∫

π−1
1 (h)

dπ−1
1 (h) = #(h(V ) ∩W )

will be in L1(
◦

H) = L1(H) provided NJ(π1) ∈ L1(V).
We now apply the co-area formula a second time, this time to the map π2 with

h = NJ(π1)
NJ(π2)

. Observe that this is well-defined because π2 is a submersion, so NJ(π2) > 0

everywhere on V. We get
∫

V
NJ(π1) dV =

∫

V

(
NJ(π1)

NJ(π2)

)
·NJ(π2) dV

=

∫

(p,q)∈V×W

(∫

Vp,q

NJ(π1)

NJ(π2)
dVp,q

)
dV dW.

Putting this together with (3) gives the desired result. �

3.2. Fiber integral bounds. By the preceding section, it now suffices to give uniform
bounds for the integrals

∫

Vp,q

NJ(π1)

NJ(π2)
dVp,q.
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Most of the necessary work has been done in §2.4. First recall Lemma 2.5, which gives

T(h,p,q)V = Ek(h, TpV, TqW ),

d(πi)(h,p,q) = Πi(h, TpV, TqW ),

NJ(π1)

NJ(π2)
(h, p, q) =

η1
η2

(h, TpV, TqW ) = η(h, TpV, TqW ).

Here i = 1, 2 and Ek, Πi, ηi are as defined in §2.4. As an immediate consequence we obtain

Lemma 3.3. For all (p, q) ∈ V ×W , the fiber Vp,q is isometric to F̂TpV,TqW . Moreover,
we have ∫

F̂TpV,TqW

η dF̂TpV,TqW =

∫

Vp,q

NJ(π1)

NJ(π2)
dVp,q.

Proof. Fix (p, q) ∈ V × W . Using the fact that the Riemannian metrics on Gk and V
are simply the restrictions of the product metrics on H × Grk(TM) × Grn−k(TM) and
H×M ×M , respectively, it is easy to see that the map

F̂TpV,TqW −→ Vp,q, (h, TpV, TqW ) 7−→ (h, p, q)

is an isometry.7 The fact that
∫

Vp,q

NJ(π1)

NJ(π2)
(h, p, q) dVp,q =

∫

F̂TpV,TqW

η(h, TpV, TqW ) dF̂TpV,TqW

then follows by change of variables. �

Corollary 3.4. If Ck ≥ 1 is the constant given by Corollary 2.11, then

1

Ck
≤

∫

Vp,q

NJ(π1)

NJ(π2)
dVp,q ≤ Ck

for all p, q ∈ V ×W .

Combining this with Proposition 3.2 and setting C = max
0≤k≤n

Ck completes the proof of

Theorem 1.1.

Remark. Our use of the rather abstract results of §2.4 and Appendix A to obtain the
constants Ck leaves their geometric meaning somewhat opaque. The advantage of this
approach is that it generalizes easily to prove Theorem 4.1, but in the complementary-
dimensional case a more concrete picture is available, which may be useful in applications
where estimates of C become desirable. We sketch this approach in Appendix B.

7Put more intuitively, both sides are just the set of h ∈
◦

H such that h(p) = q as a submanifold of H with
the induced Riemannian metric.
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4. Generalization

We now describe the generalization of Theorem 1.1 to the case when dim(V )+dim(W ) ≥
dim(M), where #(h(V )∩W ) is replaced by the appropriate-dimensional Hausdorff measure
associated to the metric space structure on M .

For r ≥ 0 and any Riemannian manifold X, let Hr
X denote the r-dimensional Hausdorff

measure on X associated to its induced metric space structure. When r = dim(X), Hr
X

agrees with the volume measure νX induced by the metric on X. More generally, if Y ⊂ X
is a k-dimensional submanifold with Riemannian metric inherited from X and induced
volume measure νY , we have

Hk
X

∣∣
Y
= Hk

Y = νY .

In particular, the volume of a k-dimensional submanifold of X is equal to its k-dimensional
Hausdorff measure in X. In this sense, for k ∈ N one can think of Hk

X as a generalization
of k-dimensional volume to non-smooth subsets of X.

We now consider a fixed closed Riemannian manifoldM of dimension n. For simplicity
we write Hr := Hr

M .

Theorem 4.1. Suppose (H, ψ) is compact C1 family of diffeomorphisms of M such that

(A1) ev : H×M →M ×M defined by ev(h, p) = (p, h(p)) is a submersion;

(A2)
◦

evk :
◦

H × Grk(TM) → Grk(TM) × Grk(TM) defined by evk(h, σ) = (σ, dh(σ)) is
surjective for all 0 ≤ k ≤ n− 1.

Then there is a constant C = C(H, ψ) ≥ 1 such that for any submanifolds V k,W ℓ ⊂ M
with k + ℓ ≥ n, we have

(4)
1

C
vol(V ) vol(W ) ≤

∫

h∈H
Hk+ℓ−n(h(V ) ∩W ) dH ≤ C vol(V ) vol(W ).

The need to work with Hausdorff measures rather than volumes here derives from our
insistence on assuming only C1 regularity. In this context, when dim(V ) + dim(W ) >
dim(M) we can no longer assume that h(V ) ⋔W for a.e. h ∈ H; thus vol(h(V )∩W ) is not
necessarily a.e. well-defined. However, if we let h(V ) ∩T W denote the set of transversal
intersection points between h(V ) and W (which when nonempty is always a (k + ℓ − n)-
dimensional submanifold of M), we will see below that indeed

Hk+ℓ−m(h(V ) ∩W ) = Hk+ℓ−m(h(V ) ∩T W ) = vol(h(V ) ∩T W )

for a.e. h ∈ H.
Note that, since H0 is the counting measure on M , Theorem 4.1 does indeed include

Theorem 1.1 as a special case. Moreover, the proof method is essentially the same. Thus
in this section we will content ourselves with some remarks on the modifications needed to
adapt our proof of Theorem 1.1 to the general setting.
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Let V k,W ℓ ⊂M be submanifolds with k+ℓ ≥ n. The solution manifold Ṽ ⊂ H×M×M
remains defined as before, and again (A1) implies that

V :=
(
π̃2|int(Ṽ)

)−1
(V ×W )

is a C1 submanifold of Ṽ. Now, however, we have

dim(V) = (d+ n)− codim(V ×W ) = (d+ n)− (2n − k − ℓ) = d+ k + ℓ− n.

The basic observation motivating these definitions and underlying our entire proof
strategy for Theorem 1.1 was that

#(h(V ) ∩W ) = #(π−1
1 (h)),

or equivalently,
H0
M (h(V ) ∩W ) = H0

V(π
−1
1 (h)).

The reason was that there is an obvious bijection between these sets (given explicitly by
π3 : V → M , defined below), and bijections between metric spaces preserve 0-dimensional
Hausdorff measure. Obviously this fails for higher dimensional Hausdorff measures, so for
the general case we must attend to how the maps πh3 := π3|π−1

1 (h) : π
−1
1 (h) → h(V ) ∩W

transform (k+ ℓ−n)-dimensional Hausdorff measures, where π3 : V →W is defined as one
would expect, by π3(h, p, q) = q.8

First suppose that h is a regular value of π1; this is true iff h(V ) ⋔ W . In this case,
π−1
1 (h) and h(V ) ∩W are (k + ℓ− n)-dimensional submanifolds of V and M , respectively,

and πh3 is a C1 diffeomorphism. Their (k+ ℓ− n)-Hausdorff measures then agree with the
volume measures induced by their Riemannian structures, and moreover we have

Hk+ℓ−n
M (h(V ) ∩W ) = vol(h(V ) ∩W ) = vol(π3(π

−1
1 (h)))

=

∫

π−1
1 (h)

∥∥∥
∧k+ℓ−n dπh3

∥∥∥ dπ−1
1 (h)

=

∫

π−1
1 (h)

∥∥∥
∧k+ℓ−n dπh3

∥∥∥ dHk+ℓ−n
V .

Note also that
dπh3 (h, p, q) = dπ3|T(h,p,q)π−1

1 (h) = dπ3|ker(dπ1(h,p,q)),

and this last expression is well-defined even when (h, p, q) is not a regular point for π1.
Thus we can define

ρ : V −→ R≥0

by

ρ(h, p, q) =
∥∥∥
∧k+ℓ−n dπ3

∣∣
ker(dπ1(h,p,q))

∥∥∥ ,

8In fact this issue is largely an artifact of our original choice of set-up: it can be avoided by replacing Ṽ

with H × M and π̃2 : Ṽ → M × M by the map H × M → M × M , (h, q) 7→ (h−1(q), q), since for these
choices the resulting identification of π−1

1 (h) with h(V )∩W is isometric. See [BC13] for an example of this
approach.
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and the above equation becomes

(5) Hk+ℓ−n
M (h(V ) ∩W ) =

∫

π−1
1 (h)

ρ dHk+ℓ−n
V .

So far, (5) holds only when h is a regular value of π1. In the complementary dimensional
case this was enough, since when dim(H) = dim(V) Sard’s theorem applies and thus (5)
holds for a.e. h ∈ H. When dim(V ) + dim(W ) > dim(M), however, we have dim(V) >
dim(H), so Sard’s no longer applies (since π1 can only be assumed C1). We appeal instead
to the following generalization:

Proposition 4.2 ([Sim14], Theorem 6.4). Let f : Mm → Nn be a C1 map between
Riemannian manifolds, and let C ⊂ M denote the set of critical points of f . Set r =
max{0,m − n}. Then

(6) Hr
M (f−1(y) ∩ C) = 0

for Lebesgue a.e. y ∈ N .

Remark. The interesting case (and the one relevant here) is when m > n. As Simon
notes in [Sim14], this proposition is itself a straightfoward consequence of Federer’s general
co-area formula; see [Fed69, §3.2] for details.

To apply this to the present setting, first write C ⊂ V for the set of critical points of
π1, and for h ∈ H, let h(V )∩T W denote the set of transversal intersection points between
h(V ) and W , and h(V ) ∩NT W = (h(V ) ∩W ) \ (h(V ) ∩T W ). Then we have

π3(π
−1
1 (h) \ C) = h(V ) ∩T W,

π3(π
−1
1 (h) ∩ C) = h(V ) ∩NT W,

and

Hk+ℓ−n
M (h(V ) ∩W ) = Hk+ℓ−n

M (h(V ) ∩T W ) +Hk+ℓ−n
M (h(V ) ∩NT W )

=

∫

π−1
1 (h)\C

ρ dHk+ℓ−n
V +Hk+ℓ−n

M (π3(π
−1
1 (h) ∩ C)).

By Proposition 4.2, ∫

π−1
1 (h)\C

ρ dHk+ℓ−n
V =

∫

π−1
1 (h)

ρ dHk+ℓ−n
V

for a.e. h ∈ H. For the second term, observe that π3 = π̃3|π−1
1 (h), where π̃3 : π̃

−1
1 (h) →M

is a distance non-increasing diffeomorphism (indeed π̃−1
1 (h) is canonically identified with

Γ(h) ⊂M ×M , with π̃3 corresponding to projection onto the second coordinate), so that

Hk+ℓ−n
M (π3(π

−1
1 (h) ∩ C)) ≤ Hk+ℓ−n

V (π−1
1 (h) ∩ C).
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Since the right-hand side is zero for a.e. h ∈ H by Proposition 4.2, so is the left. We
conclude that

Hk+ℓ−n
M (h(V ) ∩W ) =

∫

π−1
1 (h)\C

ρ dHk+ℓ−n
V +Hk+ℓ−n

M (π3(π
−1
1 (h) ∩C))

=

∫

π−1
1 (h)

ρ dHk+ℓ−n
V

for Lebesgue a.e. h ∈ H.
To apply this formula, we need the following slightly more general form of the co-area

formula:

Proposition 4.3 (The co-area formula, C1 case). Let f :Mm → Nn be a C1 map between
Riemannian manifolds, m ≥ n. For q ∈ N , write Fq = f−1(q). Then for any Borel
measurable function h on M we have

∫

M
h ·NJ(f) dM =

∫

q∈N

(∫

Fq

h dHm−n
N

)
dN,

with both sides finite if one is.

We can now proceed as before. First, apply Proposition 4.3 twice to deduce
∫

h∈H
Hk+ℓ−n(h(V ) ∩W ) dH =

∫

h∈H

(∫

π−1
1 (h)

ρ dHk+ℓ−n
V

)
dH

=

∫

V
ρ · NJ(π1) dV

=

∫

(p,q)∈V×W

(∫

Vp,q

ρ ·NJ(π1)

NJ(π2)
dVp,q

)
dV dW,

where Vp,q = π−1
2 (p, q) as before. The proof now reduces to showing that the integrand

ρ·NJ(π1)
NJ(π2)

can be viewed as a continuous function on the appropriate Grassmannian bundle

Gk,ℓ over Ṽ, which is positive somewhere on each fiber of the submersion
◦

Gk,ℓ → Grk(TM)×
Grℓ(TM).

The space Gk,ℓ ⊂ H×Grk(TM)×Grℓ(TM), the bundle Ek,ℓ, and the functions η1, η2,
and η are defined exactly as in §2.4 (so e.g. in our original notation, Gk = Gk,n−k). Again,
η : Gk,ℓ → R≥0 is continuous, and positive at (h, σp, σq) iff dh(σp) + σq = TqM . To extend
ρ to a function on Gk,ℓ, simply define

Π3(h, σp, σq) : Ek,ℓ(h, σp, σq) −→ TqM

(ḣ, v, w) 7−→ w,

and ρ̂ : Gk,ℓ → R≥0 by

ρ̂(h, σp, σq) =
∥∥∥
∧k+ℓ−nΠ3(h, σp, σq)

∣∣
ker(Π1(h,σp,σq))

∥∥∥ .
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Clearly we have

ρ̂(h, TpV, TqW ) = ρ(h, p, q).

Moreover, ρ̂ is continuous at all points where Π1 has full rank, that is, away from the zeros
of η. Since also 0 < ρ̂ ≤ 1, it follows that ρ̂ · η is continuous on Gk,ℓ, with the same zero set
as η, and satisfies

(ρ̂ · η)(h, TpV, TqW ) =

(
ρ ·

NJ(π1)

NJ(π2)

)
(h, p, q).

One can now apply the results of Appendix A as before to complete the proof.

5. Construction of (H, ψ)

In this section we show that Theorems 1.1 and 4.1 are non-vacuous, by constructing, for
an arbitrary closed manifold M , a compact C1 family of diffeomorphisms of M satisfying
hypotheses (A1) and (A2). This proves Theorem 1.2.

Actually, since it is no more difficult (and arguably more natural) to work in the smooth
category here, the family we construct will be C∞. In addition, we will be unconcerned
with compactness until the end. Specifically, we first obtain a C∞ family (RN , ψ) of the
form

ψ : (RN , 0) −−→ (Diff∞(M), id)

which satisfies hypothesis (A1) and (A2), such that the surjectivity requirements of (A2)
are satisfied by (BNR , ψ|BN

R
) for all R sufficiently large.9 The desired compact family is then

obtained by restricting ψ to B
N
R for some large R.

We begin with some general lemmas. Recall that for 1 ≤ r ≤ ∞, a Cr family of
diffeomorphisms of M is a pair (H, ψ), with H a smooth manifold, possibly with boundary,
and ψ : H → Diffr(M) such that the associated evaluation map evψ : H → M is Cr; this
implies in particular that ψ is continuous. Any Cr family of diffeomorphisms of M is, of
course, a Cs family of diffeomorphisms for all s < r.

One motivation for interpreting smoothness in this way—instead of via the strictly
stronger requirement that ψ ∈ Cr(H,Diffr(M)) for the standard Banach/Fréchet manifold
structure on Diffr(M)—is the following elementary fact, which shows that the class of
Cr families of diffeomorphisms in our weaker sense is in a natural sense closed under
composition.10

Lemma 5.1. Let (H1, ψ1) and (H2, ψ2) be Cr families of diffeomorphisms of M , with
∂H1 = ∂H2 = ∅. Define

ψ : H1 ×H2 −−→ Diffr(M)

9Here and below we write B
N
R ,B

N

R ⊂ R
N for the open and closed balls, respectively, centered at 0 of radius

R, with the subscript occasionally omitted in the special case R = 1, i.e. BN := B
N
1 .

10That this fails for the stronger notion is a consequence of the well-known fact that the composition map
[Diffr(M)]2 → Diffr(M) is only C0 when r < ∞.
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by ψ(h1, h2) = ψ2(h2) ◦ ψ1(h1), i.e. ψ = comp ◦(ψ1 × ψ2).
11 Then (H1 × H2, ψ) is a Cr

family of diffeomorphisms of M .

Proof. It suffices to check that the evaluation map

evψ : (H1 ×H2)×M −−−→M

(h1, h2, p) 7−−−→ ψ(h1, h2)(p)

is Cr. We have

evψ(h1, h2, p) = ψ(h1, h2)(p)

= ψ1(h1)(ψ2(h2)(p))

= evψ1(h1, ψ2(h2)(p)) = evψ1(h1, evψ2(h2, p)).

Since evψ1 and evψ2 are both Cr by assumption, so is evψ. �

This lemma means that we can assemble our C∞ family in the obvious way, namely by
composing a finite collection of smaller C∞ families supported in (and defined via) charts.
Moreover, working within charts it is easy to produce families which locally satisfy the
desired properties (A1) and (A2); see Proposition 5.3 below. The next lemma gives us a
criterion for ensuring that a composition of such families satisfies (A1) globally.

Lemma 5.2. Let (H1, ψ1), . . . , (Hk, ψk) be Cr families of diffeomorphisms of M , with
∂Hi = ∅ for all 1 ≤ i ≤ k. Suppose that for all i = 1, . . . , k, hi ∈ Hi, and p ∈M , we have

ψi(hi)(p) 6= p =⇒ d(evψi,p)hi is surjective,

where evψi,p := evψi
(•, p) : Hi → M . Finally, suppose that for all p ∈ M , there exists j

such that evψj ,p is a submersion, i.e. such that d(evψj ,p)hj is surjective for all hj ∈ Hj.
Then letting H := H1 × · · ·Hk, the map

ψ : H −→ Diffr(M)

(h1, . . . , hk) 7−→ ψk(hk) ◦ · · · ◦ ψ1(h1)

defines a Cr family of diffeomorphisms of M , and evψ,p := evψ(·, p) : H →M is a submer-
sion for all p ∈M .

Proof. The fact that (H, ψ) is a Cr family of diffeomorphisms of M follows inductively
from Lemma 5.1. Now let p ∈M and h = (h1, . . . , hk) ∈ H. We claim that

d(evψ,p)h : ThH −−→ TqM

is surjective, where q = evψ,p(h) = ψ(h)(p) = ψk(hk) ◦ · · · ◦ψ1(h1)(p). Clearly it suffices to
show that

∂hj(evψ,p)h : ThjHj −−→ TqM

is surjective for some 1 ≤ j ≤ k.

11For notational convenience we adopt the convention which defines the composition map [Diffr(M)]k →
Diffr(M) by comp(f1, . . . , fk) = fk ◦ · · · ◦ f1.
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To compute these derivatives, write p0 := p and pi = ψi(hi) ◦ · · · ◦ ψ1(h1)(p) for i ≥ 1;
in particular pk = q. Setting Fj = ψk(hk) ◦ · · · ◦ ψj+1(hj+1), we then have

∂hj (evψ,p)h = (dFj)pj ◦ d(evψj ,pj−1
)hj .

Now set ℓ = min {1 ≤ i ≤ k | d(evψi,p)hi is surjective}. Then by our assumption we
must have ψi(hi)(p) = p, and thus inductively pi = p, for all i < ℓ. Applying the above
formula gives

∂hℓ(evψ,p)h = (dFℓ)pℓ ◦ d(evψℓ,pℓ−1
)hj = (dFℓ)pℓ ◦ d(evψℓ ,p)hℓ .

By the definition of ℓ, d(evψℓ,p)hℓ is surjective; since Fℓ is a diffeomorphism, it follows that
∂hℓ(evψ,p)h : ThℓHℓ → TpkM is surjective as well, so we are done. �

We can now proceed with the construction of H. Our approach is the “obvious”
one, beginning with the observation that Isom+(Rn) ∼= SO(n,R)⋉ R

n acts smoothly and
transitively on Grk(TR

n) ∼= Grk(R
n) × R

n for all 0 ≤ k ≤ n − 1. In particular, for
every σ ∈ Grk(TR

n), evσ : SO(n,R) × R
n → Grk(TR

n) is a surjective submersion. To
realize these properties inside an arbitrary manifold M , we first “cut off” this action to a
smooth family of (uniformly) compactly supported diffeomorphisms of Rn, which satisfies
the submersion property (A1) on the interior of its support, and “acts transitively” on
the restrictions of the Grassmann bundles to some slightly smaller ball. Using charts this
family can be be realized inside any coordinate ball in M by a locally supported family of
diffeomorphisms. The lemmas above then allow us to obtain the desired “action” of RN

on M by composing sufficiently many such families.

5.1. Step 1: Local construction. Choose β ∈ C∞(R≥0, [0, 1]) such that

• β|[0,2] ≡ 1
• β|[3,+∞) ≡ 0

• β′(x) < 0 for all x ∈ (2, 3).

Define

L : son −→ Diff∞
c (Rn, 0)

by

L(v)(p) = exp(β(|p|)v)(p),

where exp : son → SO(n,R) denotes the Lie exponential. Thus L(v) preserves each sphere
S
n−1
r := {x ∈ R

n : |x| = r}, and acts on S
n−1
r by exp(β(r)v) ∈ SO(n,R). In particular,

L(v)|Bn
2
= exp(v), and supp(L(v)) = B

n
3 for all nonzero v ∈ son.

Define smooth vector fields V1, . . . , Vn ∈ Γ∞
c (Rn) = C∞

c (Rn,Rn) by

Vi(p) = β(|p|)ei, 1 ≤ i ≤ n.

For each i let hti denote the flow associated to Vi. By composing these flows, we obtain a
map

τ : Rn −→ Diff∞
c (Rn)

(t1, . . . , tn) 7−→ htnn ◦ · · · ◦ ht11 .
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Finally, we define

ψ : Rn × son −→ Diff∞
c (Rn)

by

ψ(t, v) = τ(t) ◦ L(v).

Proposition 5.3. The map

evψ : (Rn × son)× R
n −→ R

n

(t, v, p) 7−→ ψ(t, v)(p)

is C∞, and for all p ∈ B
n
3 , the map evψ,p = evψ(·, p) is a submersion. Moreover, for all

0 ≤ k ≤ n− 1 and σp, σq ∈ Grk(TB
n), we have

d(ψ(t, v))(σp) = σq.

for some (t, v) ∈ B
n
2 ×Bson(0, R), where R > 0 is such that exp(Bson(0, R)) = SO(n,R).

Proof. To see that evψ is smooth, first observe that smoothness of

evL : son × R
n −→ R

n

(v, p) 7−→ L(v)(p) = exp(β(|p|)v)(p)

follows from that of the Lie exponential exp and β. Also, since each Vi is smooth,

evi : R× R
n −→ R

n

(t, p) 7−→ hti(p)

is smooth for all 1 ≤ i ≤ n. Smoothness of evψ then follows inductively from Lemma 5.1.
Now let p ∈ B

n
3 and (t, v) ∈ R

n× son. Writing t = (t1, . . . , tn), we set q0 = L(v)(p) and

qj = (h
tj
j ◦ · · · ◦ ht11 )(q)

for 1 ≤ j ≤ n; in particular, qn = ψ(t, v)(p). Observe that since every L(v) and h
tj
j

preserves Bn3 , qi ∈ B
n
3 for all i.

We would like to show that that

d(evψ,p)(t,v) : TtR
n × Tvson −→ TqnR

n

is surjective. Clearly it suffices to show that this is true for

∂t(evψ,p)(t,v) : TtR
n −→ TqnR

n.
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Fix 1 ≤ j ≤ n. We compute

∂tj (ψ(t, v)(p)) = ∂tj (τ(t)(q0)) = ∂tj (h
tn
n ◦ · · · ◦ ht11 (q0))

= ∂tj (h
tn
n ◦ · · · ◦ h

tj
j (qj−1))

= d(htnn ◦ · · · ◦ h
tj+1

j+1 )
(
∂tj (h

tj
j (qj−1))

)

= d(htnn ◦ · · · ◦ h
tj+1

j+1 ) (Vj(qj))

= d(htnn ◦ · · · ◦ h
tj+1

j+1 ) (β(|qj |)ej)

= β(|qj|) · d(h
tn
n ◦ · · · ◦ h

tj+1

j+1 ) (ej)

= β(|qj|) (ej + αj+1,jej+1 + · · ·+ αn,jen) ,

for some αi,j ∈ R. In particular, ∂t(evψ,p)(t,v) is lower triangular, with diagonal entries
β(|q1|), . . . , β(|qn|). Since |qj| < 3 and thus β(|qj |) > 0 for all 1 ≤ j ≤ n, it follows that
∂t(evψ,p)(t,v) is surjective.

For the final statement, let σp, σq ∈ Grk(TB
n) = B

n ×Grk(R
n), say σp = (p, σ1), σq =

(q, σ2). Pick A ∈ SO(n,R) such that Aσ1 = σ2 and v ∈ Bson(0, R) such that exp(v) = A.
Since L(v)|Bn = A we have

d(L(v))(σp) = (Ap,Aσ1) = (Ap, σ2).

Observe that, for all 1 ≤ j ≤ n, if b and h
tj
j (b) ∈ B

n
2 , then h

tj
j : x 7→ x + tjej in a

neighborhood of b, so that d(h
tj
j )b = id. Writing q = (q1, . . . , qn), r = (r1, . . . , rn) = Ap,

and t = (t1, . . . , tn) = q − r ∈ B
n
2 , for all 0 ≤ j ≤ n we have

h
tj
j ◦ · · · ◦ ht11 (r) = (q1, . . . , qj, rj+1, . . . , rn).

Thus |h
tj
j ◦ · · · ◦ ht11 (Ap)| ≤ |q|+ |r| < 2. By the comment above, we inductively conclude

that

d(htnn ◦ · · · ◦ ht11 )Ap = id .

It follows that

d(ψ(t, v))(σp) = d(htnn ◦ · · · ◦ ht11 ) ◦ d(L(v))(σp)

= d(htnn ◦ · · · ◦ ht11 )(Ap, σ2)

= (q, σ2) = σq,

so we are done. �

5.2. Step 2: Patching together. Choose a finite collection {(Ui, φi)}
L
i=1 of smooth charts

φi : Ui
∼=

−−−→ B
n
4 for M such that

M =

L⋃

i=1

φ−1
i (Bn1 ).
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Set Wi = φ−1
i (Bn1 ), and let D denote the diameter of the Čech 1-complex associated to the

cover {Wi}
L
i=1 of M .12 Since M is connected clearly we have D ≤ L− 1 <∞.

Now for each i = 1, . . . , L we can define

ψi : R
n × son −→ Diff∞(M)

by

ψi(t, v) =

{
φ−1
i ◦ ψ(t, v) ◦ φi on Ui

id on M \ Ui.

Then define

ψ̂ : (Rn × son)
L −→ Diff∞(M)

by ψ̂ = comp ◦(ψ1 × · · · × ψL), i.e.

ψ̂((t1, v1), . . . , (tL, vL)) = ψL(tL, vL) ◦ · · · ◦ ψ1(t1, v1).

Finally, define

Ψ : ((Rn × son)
L)D+1 → Diff∞(M)

by

Ψ(q1, . . . , qD+1) = ψ̂(qD+1) ◦ · · · ◦ ψ̂(q1).

For convenience, let N =
(
2n +

(n
2

))
(D + 1)L, and fix some isomorphism ((R2n ×

son)
L)D+1 ∼= R

N . Then we have

Proposition 5.4. The evaluation map

evΨ : RN ×M −→M ×M

associated to Ψ is a C∞ submersion. Moreover, if for all 0 ≤ k ≤ n we define

êvkΨ : Rn ×Grk(TM) −→ Grk(TM)×Grk(TM)

(w, σ) 7−→ (σ, d(Ψ(w))(σ)),

then êvkΨ
∣∣
BN
R
×Grk(TM)

is surjective for all R sufficiently large.

Proof. The fact that evΨ is a smooth submersion follows immediately from Lemma 5.2 and
Proposition 5.3. The surjectivity of êvkΨ

∣∣
BN
R
×Grk(TM)

for R ≫ 0 follows from the second

half of Proposition 5.3 and the definition of D. �

Corollary 5.5. The hypotheses of Theorem 1.1 are satisfied by the family (B
N
R ,Ψ).

12Explicitly, D is the smallest number such that for all 1 ≤ k, ℓ ≤ L, there exist i0, i1, . . . , iD−1, iD ∈
{1, . . . , L} such that i0 = k, iD = ℓ, and Wij ∩Wij+1

6= ∅ for all 0 ≤ j ≤ D − 1.
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6. Appendix A: Submersions from Manifolds with Boundary

Our inclusion of the case ∂H 6= ∅ necessitates a discussion of some basic properties of
submersions from compact Riemannian manifolds with boundary. These maps are messier
than submersions from compact manifolds without boundary, essentially because their
fibers can intersect the boundary badly. Most dramatically, the fibers need not be manifolds
(even with boundary) in general. For similar reasons, submersions from manifolds with
boundary need not be open maps at boundary points, and (most relevant for our purposes)
the locally trivial fibration property enjoyed by proper submersions between manifolds
without boundary (known as Ehresmann’s theorem) fails completely in this setting.13

Here we circumvent these issues rather naively, by restricting our maps to the interiors
of the manifolds in question. An obvious drawback of this approach is the loss of com-
pactness. Nevertheless, this trick turns out to be sufficient for our purposes because the
geometry of such maps is still tamer than that of submersions from general open manifolds.
The purpose of this section is to state and prove the needed constraints.

Let f :Mm → Nn be a C1 map between smooth manifolds without boundary. Recall
that a box chart (or submersion chart) adapted to f on M is a triple (B,φ, ψ) consisting
of an open set B ⊂M and a pair of C1 diffeomorphisms φ : B → (−r, r)m and ψ : f(B) →
(−r, r)n such that ψ ◦ f ◦ φ−1 : (−r, r)m → (−r, r)n is given by projection onto the first n
coordinates. For convenience we will use the following nominal refinement of this notion:

Definition 6.1. We say that a box chart (B,φB , ψB) is nice if B is precompact, and there
is another box chart (B′, φB′ , ψB′) such that B ⊂ B′, φB = φB′ |B, and ψB = ψB′ |f(B). In
this case we say that the box chart B′ cocoons B.

The fundamental fact about submersions from manifolds without boundary is that
their domains can be covered by box charts. Observe that nothing is lost in this statement
by restricting our attention to nice box charts, since for f : M → N a smooth map with
∂M = ∅ it is immediate that

f is a submersion ⇐⇒ f can be covered by box charts

⇐⇒ f can be covered by nice box charts.

On the other hand, we have the following straightforward fact:

Lemma 6.2. Let f : Mm → Nn be a C1 submersion between smooth Riemannian man-
ifolds without boundary and (B,φB , ψB) a nice box chart adapted to f . Then there are
constants 0 < CBL < CBU such that

CBL ≤ volm−n(f
−1(q) ∩B) ≤ CBU

for all q ∈ f(B).

13All these pathologies are easily illustrated by maps of the form π : D → R where D ⊂ R
2 is a compact

planar domain with smooth boundary curves and π denotes (the restriction of) projection onto some one-
dimensional subspace. One can of course also obtain examples with closed codomain by post-composing π

with a smooth covering map R → S
1.
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Proof. Such an inequality holds trivially for the standard projection πn : Rm → R
n and

any (precompact) box (−r, r)m ⊂ R
m, with CL = CU = rm−n. For the general case, let B

be a nice box chart for f and (B′, φB′ , ψB′) a box chart cocooning B. By definition B ⊂ B′

is compact and φ′B is C1; it follows that φB′

∣∣
B
: B →֒ R

m distorts Riemannian metrics by

a uniformly bounded amount, i.e. for some C > 1 we have C−1g ≤ (φB′)∗η ≤ Cg on B,
where g denotes the metric on M and η the (Euclidean) metric on R

m. Moreover, for all
q ∈ f(B) we have

f−1(q) ∩B = φ−1
B′

(
π−1
n (ψB′(q)) ∩ φB′(B)

)
.

The general result then follows trivially from the Euclidean case. �

Lemma 6.3. Let f :Mm → Nn be a C1 submersion between compact Riemannian mani-

folds, with ∂M 6= ∅ and ∂N = ∅. Then volm−n(f
−1(q) ∩

◦

M) is finite for all q ∈ N , and

in fact uniformly bounded above. If f
∣∣ ◦

M
is also surjective, then volm−n(f

−1(q) ∩
◦

M) is

bounded away from zero.

Proof. Let Fq := f−1(q) ∩
◦

M = (f | ◦

M
)−1(q), and note that, since

◦

M is a manifold without

boundary and f
∣∣ ◦

M
is a submersion, each Fq is either empty or an embedded (m − n)-

dimensional submanifold of
◦

M . Now define

ν(q) := volm−n(Fq) =

∫

Fq

dFq.

A priori we have ν : N → [0,+∞]. We first show that in fact sup ν < +∞.
Upper bound: By attaching a collar Cǫ ∼= ∂M × [0, ǫ) to M and extending the

metric, we obtain an open Riemannian manifold without boundary M̂ containing M as
an isometrically embedded compact submanifold. Choose an extension of f to a C1 map

F : M̂ → N ; since the set {p ∈ M̂ : dFp is surjective} is an open set containing M , by
shrinking the collar width ǫ we may assume that F is a submersion as well.

Now pick a cover B of M̂ by nice box charts adapted to F ; by compactness of M we
can find a finite subset {B1, . . . , Bk} ⊂ B such that M ⊂ B1 ∪ · · · ∪ Bk. By Lemma 6.2
there are CiU < +∞, 1 ≤ i ≤ k, such that vol(F−1(q) ∩ Bi) < CiU for all q ∈ N . Since
clearly every fiber F−1(q) intersects each Bj in at most one plaque, for all q we have

ν(q) = vol(f−1(q) ∩
◦

M) ≤ vol


F−1(q) ∩




k⋃

j=1

Bj






≤

k∑

j=1

vol
(
F−1(q) ∩Bj

)

≤ k · max
1≤j≤k

CjU < +∞.

Lower bound: It remains to show that inf ν > 0 if
◦

f := f | ◦

M
is surjective. This assumption

implies that for all q ∈ N , there is a nice box chart Eq ⊂
◦

M adapted to
◦

f such that
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Eq ∩
◦

f−1(q) 6= ∅. For each such Eq,
◦

f(Eq) = f(Eq) ⊂ N is an open neighborhood of q,
and

N =
⋃

q∈N

f(Eq).

Since N is compact we may extract a finite subcover {f(E1), . . . , f(Eℓ)}; in particular,

every fiber Fq =
◦

f−1(q) intersects and thus contains a fiber plaque in some Ej , 1 ≤ j ≤ ℓ.
On the other hand, the lower bound in Lemma 6.2 implies that every plaque in any Ej has

volume at least CL := min{CE1
L , . . . , CEℓ

L } > 0, so

ν(q) = vol(
◦

f−1(q)) ≥ CL > 0

for all q ∈ N , as desired. �

Lemma 6.4. Let f,M,N be as in Lemma 6.3. Suppose φ ∈ C0(M,R≥0) is such that for

all q ∈ N , we have φ(p) > 0 for some p ∈ Fq = f−1(q) ∩
◦

M . Then there exists Cφ > 1
such that

1

Cφ
≤

∫

Fq

φ dFq ≤ Cφ

for all q ∈ N .

Proof. Let C1 = sup
p∈M

φ < +∞. Then for all q ∈ N we have

Iφ(q) :=

∫

Fq

φ dFq ≤ C1 vol(Fq) ≤ CC1,

where C is the upper bound on fiber volumes guaranteed by Lemma 6.3.
Thus it remains only to show that Iφ(q) is uniformly bounded away from 0. This

follows from an easy adaptation of the proof of the fiber volume lower bound. Consider
the set B of all nice box charts Bi for f | ◦

M
such that

inf
p∈Bi

φ(p) > 0.

Since φ is continuous and positive somewhere on each fiber of f | ◦

M
, the image of B under

f forms an open cover of N . Extract a finite subcover {f(B1), . . . , f(Bk)} ⊂ f(B). Then
for some δ > 0 we have φ(p) > δ for all p ∈ B1 ∪ · · · ∪Bk, and by Lemma 6.2 there exists
C2 > 0 such that the volumes of the plaques of each Bi are uniformly bounded below by
C2. Since {f(Bi)}

k
i=1 covers N , each Fq contains at least one full plaque in some Bi; thus∫

Fq

φ dFq ≥ δC2

for all q ∈ N . Setting

Cφ = max

{
CC1,

1

δC2

}

we are done. �
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7. Appendix B: Normal Jacobians formula

Recall that our proof of Theorem 1.1 hinges on the existence of uniform bounds for
the fiber integrals ∫

Vp,q

NJ(π1)

NJ(π2)
dVp,q.

The key point is that these integrals can be identified with fiber integrals of a universally
defined function η on a slightly larger compact manifold with boundary which submerses
onto Grk(TM)×Grn−k(TM). By the results of Appendix A, it then suffices to show that
η is (i) continuous, and (ii) positive somewhere on the interior of each fiber.

There are two main benefits to this approach. First, by using only what is required to
apply Lemma 6.4, it avoids obscuring the logic of the argument. Second, and largely as a
consequence, it generalizes easily to the case when dim(V ) + dim(W ) > M .

The downside is that the constant C remains somewhat opaque. In particular, this
method gives no further analysis of the function η, on which C depends, or equivalently of
the function(s)

NJ(π1)

NJ(π2)
: V −−→ R≥0.

This is unsatisfying, especially given the fairly straightforward geometric intuition moti-
vating the bounds. In addition, the mere existence of some constant is clearly insufficient
for applications where more precise control over the constant is needed.

In the complementary dimensional case, a more transparent expression for NJ(π1)
NJ(π2)

is

available, which in particular allows us to decompose C into more tractable factors:

Proposition 7.1. For (H, ψ) satisfying the hypotheses of Theorem 1.1 and any comple-
mentary dimensional submanifolds V,W ⊂M , we have

NJ(π1)

NJ(π2)
(h, p, q) =

|det(J(h,TpV,TqW ))|

NJ(d(evp)h)

for all (h, p, q) ∈ V. Here J is defined as in Claim 2.1, and evp as usual denotes the map

evp := evψ(·, p) : H −→M

given by evp(h) = h(p).

The purpose of this section is to prove this statement. We begin with

Lemma 7.2. Let V , W be finite dimensional inner product spaces and suppose S ⊂ V ×W
is a linear subspace such that π1|S is an isomorphism. Then if

G := π2 ◦ (π1|S)
−1 : V → W,

we have S = Γ(G). If in addition π2|S is surjective and S is endowed with the inner product
inherited from the product structure on V ×W , then

(7) det(GG∗)−1/2 =
|det(π1|S)|

det((π2|S) · (π2|S)∗)1/2
.
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Proof. The first statement is obvious. The second follows from some elementary linear
algebra computations; see [BCSS98, pp. 241-243] for details. �

Remark. In terms of normal Jacobians, this result specifies a context in which the
innocent-looking formula

(8)
1

NJ(AB−1)
=

NJ(B)

NJ(A)

holds. Note however that this formula fails in general: normal Jacobians of general (not
necessarily invertible) linear maps between inner product spaces are not typically multi-
plicative under composition. In particular, the fact that (8) holds in the setting of Lemma
7.2 depends on the assumption that the metric on V ×W (and thus the metric on S) is
the product metric induced by the metrics on V and W .

Proof of Proposition 7.1. As in the discussion following Claim 2.1, observe that

NJ(π1)(h, p, q) = |det((dπ1)(h,p,q))| = 0 ⇐⇒ det(J(h,TpV,TqW )) = 0.

Thus it suffices to consider the case when both dπ1 and J are invertible. Let (h, p, q) be a
regular point for π1. Then we can define

G := (dπ2)(h,p,q) ◦ (dπ1)
−1
(h,p,q) : ThH −→ TpV × TqW.

Since Γ(G) = T(h,p,q)V, with metric induced by the product metric on ThH× TpV × TqW,
Lemma 7.2 applies to give

(9) det(GG∗)−1/2 =
NJ(π1)

NJ(π2)
(h, p, q).

Moreover, the description of T(h,p,q)V given in Claim 2.1 immediately implies that the
following diagram commutes:

T(h,p,q)V

ThH TpV × TqW

TqM

dπ1 dπ2

d(evp)h

G

J(h,TpV,TqW )

In particular,

G = J−1
(h,TpV,TqW ) ◦ d(evp)h,
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so by (9) we compute

NJ(π1)

NJ(π2)
(h, p, q) = det(GG∗)−1/2

= det((J−1 ◦ d(evp)h) · (J
−1 ◦ d(evp)h)

∗)−1/2

= det(J−1 · d(evp)h · d(evp)
∗
h · (J

−1)∗)−1/2(10)

=
[
det(J−1) · det(d(evp)h · d(evp)

∗
h) · det((J

−1)∗)
]−1/2

=
[
det(J−1)2 · det(d(evp)h) · d(evp)

∗
h)
]−1/2

=
|det(J)|

det(d(evp)h) · d(evp)
∗
h)

1/2
. �

Remark. Up to a uniformly bounded factor, we have

|det
(
J(h,σp,σq)

)
| ≈ sin∡(dh(σp), σq).

The multiplicative error involved is at most ηk, where η is the supremum of max
{
‖dhq‖ ,

∥∥dh−1
q

∥∥}

over all h ∈ H and q ∈M .
Similarly, the fact that ev is a C1 submersion implies that det(d(evp)h) · d(evp)

∗
h)

1/2 is
uniformly bounded above and away from 0, i.e. constant up to a uniform factor.

Combining both errors we conclude that

NJ(π1)

NJ(π2)
(h, p, q) ≈ sin∡(dh(σp), σq)

up to a bounded multiplicative constant (which is itself a function of the constants bounding
NJ(evp)h, ‖dhp‖, and

∥∥dh−1
p

∥∥ for all (h, p) ∈ H×M).
This means that one can view Theorem 1.1 as reducing to the following claim:

Proposition 7.3. For all 0 ≤ k ≤ n there is a constant Ck > 1 such that for all (σp, σq) ∈
Grk(TM)×Grn−k(TM),

1

Ck
≤

∫

h∈Hp,q

sin∡(dh(σp), σq) |dHp,q| ≤ Ck.

Here Hp,q = {h ∈
◦

H : h(p) = q}; this is a submanifold of
◦

H, with Riemannian metric
induced from H, which can be canonically (and isometrically) identified with Vp,q (indeed
Vp,q = Hp,q × {p} × {q}).

Using the results above, our original constant C can be estimated as a function of the
constants Ck and the bounds on NJ(evp)h, ‖dhp‖, and

∥∥dh−1
p

∥∥.
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