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Abstract—This paper presents a novel neural speech phase
prediction model which predicts wrapped phase spectra directly
from amplitude spectra. The proposed model is a cascade
of a residual convolutional network and a parallel estimation
architecture. The parallel estimation architecture is a core
module for direct wrapped phase prediction. This architecture
consists of two parallel linear convolutional layers and a phase
calculation formula, imitating the process of calculating the
phase spectra from the real and imaginary parts of complex
spectra and strictly restricting the predicted phase values to
the principal value interval. To avoid the error expansion issue
caused by phase wrapping, we design anti-wrapping training
losses defined between the predicted wrapped phase spectra and
natural ones by activating the instantaneous phase error, group
delay error and instantaneous angular frequency error using an
anti-wrapping function. We mathematically demonstrate that the
anti-wrapping function should possess three properties, namely
parity, periodicity and monotonicity. We also achieve low-latency
streamable phase prediction by combining causal convolutions
and knowledge distillation training strategies. For both analysis-
synthesis and specific speech generation tasks, experimental
results show that our proposed neural speech phase prediction
model outperforms the iterative phase estimation algorithms
and neural network-based phase prediction methods in terms of
phase prediction precision, efficiency and robustness. Compared
with HiFi-GAN-based waveform reconstruction method, our
proposed model also shows outstanding efficiency advantages
while ensuring the quality of synthesized speech. To the best of
our knowledge, we are the first to directly predict speech phase
spectra from amplitude spectra only via neural networks.

Index Terms—speech phase prediction, parallel estimation
architecture, anti-wrapping loss, low-latency, speech generation

I. INTRODUCTION

SPeech phase prediction, also known as speech phase
reconstruction, recovers speech phase spectra from am-

plitude spectra and plays an important role in speech gener-
ation tasks. Currently, several speech generation tasks, such
as speech enhancement (SE) [2]–[4], bandwidth extension
(BWE) [5]–[7] and speech synthesis (SS) [8]–[13], mainly
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focus on the prediction of amplitude spectra or amplitude-
derived features (e.g., mel spectrograms and mel cepstra).
Therefore, speech phase prediction is crucial for waveform
reconstruction in these tasks. However, limited by the issue
of phase wrapping and the difficulty of phase modeling, the
precise prediction of the speech phase remains a challenge
until now. In addition to phase prediction precision, the effi-
ciency, latency and robustness are also important metrics for
evaluating phase prediction methods. The efficiency represents
the generation speed and is a criterion for determining real-
time performance. The latency refers to the duration of future
input that are necessary for predicting current output. High
efficiency and low latency are strict requirements for many
practical application scenarios such as telecommunication. The
robustness reflects the general applicability of phase prediction
methods when faced with inputs of varying amplitude spectra.

In the early days, researchers mainly focused on itera-
tive phase estimation algorithms, of which the Griffin-Lim
algorithm (GLA) [14] is one of the most well-known al-
gorithms. The GLA is based on alternating projection and
iteratively estimates the phase spectra from amplitude spectra
via the short-time Fourier transform (STFT) and inverse STFT
(ISTFT). Due to its ease of implementation, the GLA has been
widely used in speech generation tasks [11]–[13]. However,
the GLA always causes unnatural artifacts in the reconstructed
speech, meaning that there is still a large gap between the
estimated phase and natural phase. Hence, several improved
algorithms, such as the fast Griffin-Lim algorithm (FGLA)
[15] and alternating direction method of multipliers (ADMM)
[16], have also been also proposed to boost the performance
of the GLA. Recently, Kobayashi et al. [17] applied three
alternating reflection-based iterative algorithms developed in
the optics community, i.e., the averaged alternating reflections
(AAR) [18], [19], relaxed AAR (RAAR) [20], and hybrid
input-output (HIO) [21]–[23] algorithms, to acoustic appli-
cations and clearly outperformed GLA families. However,
these iterative algorithms always limit the reconstructed speech
quality due to the influence of the initial phase and exhibit
poor robustness when estimating phase spectra from degraded
amplitude spectra. Besides, these iterative algorithms often
require the amplitude spectra of an entire utterance as input,
resulting in high latency.

With the development of deep learning, several neural
network-based phase prediction methods have been gradually
proposed. We roughly divide them into three categories of
methods. The first is the GLA simulation method [24]–

ar
X

iv
:2

40
3.

17
37

8v
1 

 [
cs

.S
D

] 
 2

6 
M

ar
 2

02
4



2

[26]. For example, Masuyama et al. [25], [26] proposed
deep Griffin-Lim iteration (DeGLI), which employs trainable
neural networks to simulate the GLA process and achieve
iterative phase reconstruction. However, the prediction target
of such methods is the complex spectra rather than the phase
spectra. The second is the two-stage method [27]–[29]. For
example, Masuyama et al. [27] first predicted phase derivatives
(i.e., the group delay and instantaneous frequency) by two
parallel deep neural networks (DNNs), and then the phase
was recursively estimated by a recurrent phase unwrapping
(RPU) algorithm [30] from the predicted phase derivatives.
Prior-distribution-aware method is the last category [31], [32].
Takamichi et al. [31], [32] assume that the phase follows
a specific prior distribution (i.e., the von Mises distribution
and sine-skewed generalized cardioid distribution) and employ
a DNN to predict the distribution parameters of the phase.
However, the phase predicted by the DNN still needs to be
refined using the GLA. Obviously, all the abovementioned
phase prediction methods need to combine neural networks
with some convolutional iterative algorithms, which inevitably
leads to cumbersome operations, increased complexity, low
efficiency and high latency.

In addition to the phase prediction methods mentioned
above, several speech waveform reconstruction methods, such
as vocoders [33], also include implicit and indirect phase
prediction within waveform synthesis. Recently, HiFi-GAN
[34] vocoder has demonstrated exceptional performance on
reconstructed waveform and has been widely applied in speech
synthesis. The HiFi-GAN cascades multiple upsampling layers
and residual convolution networks to gradually upsample the
input mel spectrograms to the sampling rate of the final
waveform while performing non-causal residual convolutional
operations. Hence, the phase prediction is implicitly incor-
porated within waveform prediction. The HiFi-GAN utilizes
adversarial losses [35] defined on the waveform, ensuring the
generation of high-fidelity waveforms. However, HiFi-GAN
still has limitations in terms of generation efficiency, training
efficiency and latency, due to the direct waveform prediction,
adversarial training and non-causal convolutions, respectively.
To our knowledge, predicting speech wrapped phase spectra
directly from amplitude spectra using only neural networks
has not yet been thoroughly investigated.

Due to the phase wrapping property, how to design 1)
suitable architectures or activation functions to restrict the
range of predicted phases for direct wrapped phase prediction
and 2) loss functions suitable for phase characteristics, are
the two major challenges for direct phase prediction based on
neural networks. To overcome these challenges, we propose
a neural speech phase prediction model based on a parallel
estimation architecture and anti-wrapping losses. The pro-
posed model passes the input log amplitude spectra through
a residual convolutional network and a parallel estimation
architecture to predict the wrapped phase spectra directly.
To restrict the output phase values to the principal value
interval and predict the wrapped phases directly, the parallel
estimation architecture imitates the process of calculating the
phase spectra from the real and imaginary parts of complex
spectra, and it is formed by two parallel convolutional layers

and a phase calculation formula. Due to the periodic nature
and wrapping property of the phase, some conventional loss
functions, such as L1 loss and mean square error (MSE), are
disabled for phase prediction and cause error expansion issue.
To avoid the error expansion issue caused by phase wrapping,
we propose the instantaneous phase loss, group delay loss
and instantaneous angular frequency loss activated by an anti-
wrapping function at the training stage. These losses are
defined between the phase spectra predicted by the model and
the natural ones. The anti-wrapping function calculates the true
error between the predicted value and the natural value, and
we demonstrate that the function requires three properties, i.e.,
parity, periodicity, and monotonicity. We have also employed
knowledge distillation to train an all-causal convolution-based
neural phase prediction model. This approach has enabled
us to achieve precise streamable phase prediction, thereby
facilitating its effective utilization in low-latency scenarios.
Experimental results show that our proposed model outper-
forms the GLA [14], RAAR [17] and von Mises distribution
DNN-based phase prediction method [31], [32], in terms
of both phase prediction precision and efficiency. Compared
with the HiFi-GAN vocoder-based waveform reconstruction
method [34], our proposed model demonstrates a significant
efficiency advantage while maintaining the same quality of
synthesized speech. Our proposed model exhibits near-natural
reconstructed speech quality according to the mean opinion
score (MOS) results and reaches 19.6x real-time generation
on a CPU with low latency. When the proposed method
is initially applied to specific speech generation tasks (i.e.,
using degraded amplitude spectra as input), it shows better
stability and robustness than iterative algorithms. Ablation
studies also certify that the parallel estimation architecture and
anti-wrapping losses are extremely important for successful
phase prediction.

The main contribution of this work is the realization of
direct prediction of the wrapped phase spectra only by neural
networks with high prediction precision, high generation
efficiency, low latency and high robustness. Our proposed
model is easy to implement, simple to operate and adaptable
to integrate into specific speech generation tasks, such as SE,
BWE and SS, due to its trainable property.

This paper is organized as follows. In Section II, we briefly
review the representative iterative speech phase estimation
algorithms and neural network-based speech phase prediction
methods. In Section III, we provide details of the model struc-
ture, training criteria and improvements made for low-latency
streamable inference of the proposed neural speech phase
prediction model. In Section IV, we present our experimental
results. Finally, we give conclusions in Section V.

II. RELATED WORKS

In this section, we briefly introduce two iterative speech
phase estimation algorithms (i.e., the GLA [14] and RAAR
[17]) and a neural network-based speech phase prediction
method (i.e., the von Mises distribution DNN-based method
[31], [32]). They are compared with our proposed neural phase
prediction model in Section IV.
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A. Griffin-Lim Algorithm (GLA)

The GLA [14] is an alternating projection algorithm and
iteratively estimates the phase spectra from amplitude spectra
via the STFT and ISTFT. Assume that the amplitude spectrum
is A ∈ RF×N , where F and N are the total number of
frames and frequency bins, respectively. Then initialize the
phase spectrum P̂ [0] ∈ RF×N to zero matrix, i.e., the initial
complex spectrum Ŝ[0] = A⊙ejP̂

[0]

= A, where ⊙ represents
the element-wise multiplication. Finally iterate the following
formula from i = 1 to I:

Ŝ[i] = PC(PA(Ŝ
[i−1])), (1)

where I is the total number of iterations. PC and PA are two
core projection operators defined as follows:

PC(X) = STFT (ISTFT (X)), (2)

PA(X) = A⊙X ⊘ |X|, (3)

where X ∈ CF×N . ⊘ and | · | represent the element-
wise division and amplitude calculation, respectively. The
final estimated phase spectrum P̂ [I] ∈ RF×N is contained
in the complex spectrum Ŝ[I] ∈ CF×N . The final speech
waveform is reconstructed from Ŝ[I] by ISTFT. The GLA can
be easily implemented and is popular in speech generation
tasks. Since the GLA always gives a local optimal solution,
the reconstructed speech quality is limited by the influence
of the initial phase and there are obvious artifacts in the
reconstructed speech. Besides, the GLA also tends to limit the
phase estimation efficiency due to its iterative estimation mode
and extend the latency due to its whole-utterance estimation
mode.

B. Relaxed Averaged Alternating Reflection (RAAR)

The RAAR was originally developed in the optics com-
munity, and was recently successfully applied in the field of
speech phase estimation by Kobayashi et al. [17]. The RAAR
is an alternating reflection algorithm and also iteratively
estimates the phase spectra from the amplitude spectra. The
core reflection operators RC and RA for the RAAR are
designed based on the projection operators PC and PA as
follows:

RC(X) = 2PC(X)−X, (4)

RA(X) = 2PA(X)−X. (5)

The RAAR adopts the same initialization manner as the GLA
and then iteratively executes the following formula from i = 1
to I:

Ŝ[i] =
β

2
Ŝ[i−1]+RC(RA(Ŝ

[i−1]))+(1−β)PA(Ŝ
[i−1]), (6)

where 0 < β < 1 is a relaxation parameter.
In the original paper [17], Kobayashi et al. have proven

that the RAAR with β = 0.9 is an excellent speech phase
estimation algorithm which outperforms the GLA families
and other alternating reflection algorithms (i.e., the AAR and
HIO). However, the iterative formula of the RAAR is more
complicated than that of the GLA, which inevitably inhibits
the generation efficiency and latency.

C. Von Mises Distribution DNN-based Method

The von Mises distribution DNN-based method [31], [32]
realizes phase prediction by combining neural networks and
GLA. It assumes that the phase follows a von Mises distri-
bution and then uses a DNN to predict the mean parameter
of the phase distribution from the input log amplitude spectra
at current and ±2 frames. The mean parameter is regarded
as the predicted phase. The DNN is composed of three 1024-
unit feed-forward hidden layers activated by a gated linear unit
(GLU) [36] and a linear output layer. A multi-task learning
strategy with phase loss and group delay loss is adopted to
train the DNN. The phase loss and group delay loss are formed
by activating the phase error and group delay error using
a negative cosine function, respectively. Finally, the phase
predicted by the DNN is set as the initial phase and refined
by the GLA with 100 iterations.

In the original paper [31], [32], Takamichi et al. have
proven that the von Mises distribution DNN-based method
significantly outperforms the plain GLA. They also evaluate
the effect of the GLA phase refinement, and the experimental
results show that the refinement operation is necessary because
the phase predicted by the DNN directly is unsatisfactory.

III. PROPOSED METHOD

In this section, we give details on the model structure and
training criteria of our proposed neural speech phase prediction
model and improvements for low-latency streamable phase
prediction through knowledge distillation training strategy as
illustrated in Figures 1 and 2.

A. Model Structure

As shown in Figure 1, the proposed neural speech phase
prediction model predicts the wrapped phase spectrum P̂ ∈
RF×N directly from the input log amplitude spectrum logA ∈
RF×N by a cascade of a non-causal residual convolutional
network (RCNet) and a parallel estimation architecture.

As shown in Figure 2(a), the non-causal RCNet utilizes
multiple non-causal convolutional layers to effectively broaden
the receptive field, thus ensuring precise restoration of the
phase. The input log amplitude spectrum sequentially passes
through a linear non-causal convolutional layer (kernel size
= k0 and channel size = C) and P parallel non-causal residual
convolutional blocks (RCBlocks), all of which have the same
input. Then, the outputs of these P RCBlocks are summed
(i.e., skip connections), averaged, and finally activated by a
leaky rectified linear unit (LReLU) [37]. Each RCBlock is
formed by a cascade of Q non-causal sub-RCBlocks. In the
q-th sub-RCBlock of the p-th RCBlock (p = 1, . . . , P and
q = 1, . . . , Q), the input is first activated by an LReLU,
then passes through a linear non-causal dilated convolutional
layer (kernel size = kp, channel size = C and dilation factor
= dp,q), then is activated by an LReLU again, passes through
a linear non-causal convolutional layer (kernel size = kp and
channel size = C), and finally superimposes with the input
(i.e., residual connections) to obtain the output.

The parallel estimation architecture is a core module for
the direct prediction of wrapped phases. It is inspired by the
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Fig. 1. Details of the proposed neural speech phase prediction model. Here, RCNet, CONV, STFT, DF, DT, Re, Im and Φ represent the residual convolutional
network, linear convolutional layer, short-time Fourier transform, differential along frequency axis, differential along time axis, real part calculation, imaginary
part calculation and phase calculation formula, respectively. Gray parts do not appear during generation.
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Fig. 2. Details of the residual convolutional network and the training procedure of low-latency streamable neural speech phase prediction model through
knowledge distillation. Here, subfigure (a) represents a non-causal teacher model which is consistent with Figure 1. Subfigure (b) represents a causal student
model. RCNet, CONV, DCONV and Φ represent the residual convolutional network, linear convolutional layer, linear dilated convolutional layer and phase
calculation formula, respectively. k∗ and d∗,∗ denotes kernel size and dilation factor, respectively.

process of calculating the phase spectra from the real and
imaginary parts of complex spectra and consists of two parallel
linear non-causal convolutional layers (kernel size = kRI and
channel size = N for both layers) and a phase calculation
formula Φ. We call the outputs of the two parallel layers as
the pseudo real part R̂ ∈ RF×N and pseudo imaginary part
Î ∈ RF×N , respectively. Then the wrapped phase spectrum
P̂ is calculated by Φ as follows:

P̂ = Φ(R̂, Î). (7)

Equation 7 is calculated element-wise. For ∀R ∈ R and I ∈ R,
we define

Φ(R, I) = arctan

(
I

R

)
− π

2
· Sgn∗(I) · [Sgn∗(R)− 1] ,

(8)

and Φ(0, 0) = 0. Sgn∗ is a symbolic function defined as:

Sgn∗(x) =

{
1, x ≥ 0

−1, x < 0
. (9)

Therefore, the range of values for the phase is −π <
Φ(R, I) ≤ π, meaning that the phase predicted by our model
is wrapped and strictly restricted to the phase principal value
interval. Obviously, the phase value does not depend on the
absolute values of the pseudo real and imaginary parts but on
their relative ratios and signs.

B. Training Criteria

Due to the wrapping property of the phase, the absolute
error ea = |P̂ − P | between the predicted phase P̂ and the
natural phase P might not be their true error. As shown in
Figure 3, assuming that the phase principal value interval is
(−π, π], there are two paths from the predicted phase point
P̂∗ to the natural one P∗, i.e., the direct path (corresponding
to the absolute error) and the wrapping path (corresponding to
the wrapping error). Visually, we can connect the vertical line
segment between −π and π end to end into a circle, according
to the wrapping property of the phase. Obviously, the wrapping
path must pass through the boundary of the principal value
interval, and the wrapping error is ew = 2π − |P̂ − P |.
Therefore, the true error between P̂ and P is

e = min{|P̂ − P |, 2π − |P̂ − P |}. (10)

For example, in Figure 3, the true error between P̂A and PA

is the absolute error, but the true error between P̂B and PB

is the wrapping error. This means that the absolute error and
the true error satisfy |P̂ −P | ≥ e, resulting in error expansion
issue when using the conventional L1 loss or mean square
error (MSE) loss. Equation 10 can be written in another form:

e =

∣∣∣∣∣P̂ − P − 2π · round

(
P̂ − P

2π

)∣∣∣∣∣ , (11)
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Fig. 3. An illustration explanation of the error expansion issue caused by
phase wrapping.

where round represents rounding. Obviously, Equation 11 is
a function of error P̂ − P . We define a function fline(x) as
follows:

fline(x) =
∣∣∣x− 2π · round

( x

2π

)∣∣∣ , x ∈ R. (12)

fline(x) is an anti-wrapping function which can avoid the error
expansion issue caused by phase wrapping because fline(P̂ −
P ) = e.

As shown in Figure 4(a), we draw the graph of the anti-
wrapping function fline(x). Obviously, fline(x) is an even
function with a period of 2π and exhibits monotonicity over
half-periods. Actually, any function f(x) that satisfies below
parity, periodicity and monotonicity at the same time can be
used as an anti-wrapping function to activate the direct error x
and define loss between the predicted value and natural value.

• Parity: The anti-wrapping function f(x) must be an even
function because our goal is to promote the predicted
value to approximate the natural value but ignore in which
direction it is approximated.

• Periodicity: The anti-wrapping function f(x) must be a
periodic function with period 2π because this periodicity
cleverly avoids the problem of error expansion caused by
phase wrapping.

• Monotonicity: The anti-wrapping function f(x) must
be monotonically increasing in interval [0, π] because
the monotonicity ensures that the larger the true error∣∣x− 2π · round

(
x
2π

)∣∣, the larger the loss f(x), which
conforms to the definition rules of the loss function.

Figure 4(b)-(e) plot several typical convex anti-wrapping
functions. Compared with the linear function fline(x), the
rate of change of a convex function may be different at
different error values x, thereby prompting the model to
pay more attention to or ignore certain ranges of error
values. In Section IV-F1, we will further explore the effect
of different anti-wrapping functions on model performance
through experiments.

Specifically, we define the instantaneous phase (IP) loss
LIP between the wrapped phase spectrum P̂ predicted by our
model and the natural wrapped phase spectrum P = Φ(R, I)

2xy 

2xy 

2xy 

x

... ...
O
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π 2π 3π 4π-3π -2π -π-4π

π

... ...
O

flog(x)

π 2π 3π 4π-3π -2π -π-4π

π

... ...
O

fcub(x)

π 2π 3π 4π-3π -2π -π-4π

π
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O
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π 2π 3π 4π-3π -2π -π-4π

π

... ...
O

fcos(x)

π 2π 3π 4π-3π -2π -π-4π

π

(a)

(b)

(c)

(d)

(e)

x

x

x

x

Fig. 4. Graphs of five typical anti-wrapping functions, including (a) linear
function; (b) logarithmic function; (c) cubic function; (d) parabolic function
and (e) cosine function.

as follows:

LIP = E(P̂ ,P )f
(
P̂ − P

)
, (13)

where f(X) means element-wise anti-wrapping function cal-
culation for matrix X and Y means averaging all elements
in the matrix Y . R and I are the real and imaginary parts
of the complex spectrum extracted from the natural waveform
through STFT, respectively. To ensure the continuity of the
predicted wrapped phase spectrum along the frequency and
time axes, we also define the group delay (GD) loss LGD and
instantaneous angular frequency (IAF) loss LIAF , which are
both activated by the anti-wrapping function f to avoid the
error expansion issue as follows:

LGD = E(∆DF P̂ ,∆DFP )f
(
∆DF P̂ −∆DFP

)
, (14)

LIAF = E(∆DT P̂ ,∆DTP )f
(
∆DT P̂ −∆DTP

)
, (15)

where ∆DF and ∆DT represent the differential along the
frequency axis and time axis, respectively. Specifically, in
Equation 14, we have

∆DF P̂ = P̂W , (16)
∆DFP = PW , (17)

and

W = [w1, . . . ,wn, . . . ,wN ] , (18)

wn =

[
0
1st
, . . . , 0, 1

n-th
,−1, 0, . . . , 0

N -th

]⊤
. (19)

In Equation 15, we have

∆DT P̂ = V P̂ , (20)
∆DTP = V P , (21)
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and

V = [v1, . . . ,vf , . . . ,vF ]
⊤
, (22)

vf =

[
0
1st
, . . . , 0, 1

f -th
,−1, 0, . . . , 0

F -th

]⊤
. (23)

Finally, the training criteria of our proposed neural speech
phase prediction model are to minimize the final loss

L = LIP + LGD + LIAF . (24)

At the generation stage, first, the well-trained neural speech
phase prediction model uses the log amplitude spectrum logA
as input and predicts the wrapped phase spectrum P̂ . Then,
the amplitude spectrum A and predicted phase spectrum P̂
are combined to a complex spectrum, and finally, the complex
spectrum is converted to a waveform x̂ through ISTFT, i.e.,

x̂ = ISTFT
(
A⊙ ejP̂

)
. (25)

C. Low-Latency Streamable Phase Prediction by Causal Con-
volution and Knowledge Distillation

Some application scenarios have strict requirement on the
latency and streamable inference mode such as real-time voice
communication. The latency indicates the minimum amount
of time needed for the model to initiate its operations. The
proposed neural speech phase prediction model incorporates
non-causal convolutions to enhance its modeling capacity.
However, this inevitably results in increased latency. For a
non-causal convolution operation with a kernel size of k
and dilation factor of d, the number of future input samples
required is

ζ(k, d) =

⌊
(k − 1)d

2

⌋
, (26)

where ⌊·⌋ denotes flooring. Therefore, the latency measured
in milliseconds of the proposed model is

lNSPP = {ζ(k0, 1) + max
p=1,...,P

[
Q∑

q=1

ζ(kp, dp,q) +Qζ(kp, 1)

]
+ ζ(kRI , 1)} · ws,

(27)

where ws is the window shift in milliseconds of the amplitude
and phase spectra. It can be seen that when the window shift
is long and the kernel size and dilation factor of convolutional
layers are large, it will result in significant latency, which is
undesirable in low-latency scenarios.

Therefore, as shown in Figure 2(b), we design a causal
neural speech phase prediction model which can support
low-latency streamable inference. It replaces all non-causal
convolutions in the non-causal model as shown in Figure 2(a)
with causal convolutions. Notably, the inference process of
the causal model requires at least one frame of log amplitude
spectrum input to initiate, thus, it incurs an inevitable latency
equal to the window size (i.e., low latency). However, the
use of causal convolutions, which cannot leverage future
information, will inevitably lead to a reduction in phase
prediction precision, despite achieving low latency. To bridge

the gap between causal and non-causal models, we propose
a knowledge distillation training strategy in which a non-
causal teacher model guides the training of a causal student
model. Specifically, we first train a non-causal neural speech
phase prediction model (i.e., the teacher model) using the
anti-wrapping loss depicted in Equation 24. Then, the non-
causal teacher model fixes its parameters and provide training
objectives for the causal neural speech phase prediction model
(i.e., the student model). We define the output of the input
convolutional layer, the outputs of P RCBlocks, the pseudo
real part and the pseudo imaginary part of the student model
as ÔI ∈ RF×C , ÔRCB

p ∈ RF×C(p = 1, . . . , P ), ÔPRP ∈
RF×N and ÔPIP ∈ RF×N , respectively. The outputs of
the teacher model at corresponding positions are respectively
denoted as ÕI , ÕRCB

p , ÕPRP and ÕPIP . The knowledge
distillation loss is defined as follows:

LKD = E(ÔI ,ÕI)

(
ÔI − ÕI

)2
+

P∑
p=1

E(ÔRCB
p ,ÕRCB

p )

(
ÔRCB

p − ÕRCB
p

)2
+ E(ÔPRP ,ÕPRP )

(
ÔPRP − ÕPRP

)2
+ E(ÔPIP ,ÕPIP )

(
ÔPIP − ÕPIP

)2
.

(28)

The training target of the student model is to minimize a com-
bination of the anti-wrapping loss and knowledge distillation
loss, i.e.,

LStudent = LIP + LGD + LIAF + αKDLKD, (29)

where αKD is a hyperparameter. Through training, the causal
student model aims to approach the phase prediction capa-
bility of the non-causal teacher model while maintaining its
advantage of low latency and streamable inference.

IV. EXPERIMENTS

A. Data and Feature Configuration

A subset of the VCTK corpus [38] was adopted in our
experiments1. We selected 11,572 utterances from 28 speakers
and randomly divided them into a training set (11,012 utter-
ances) and a validation set (560 utterances). We then built
the test set, which included 824 utterances from 2 unseen
speakers (a male speaker and a female speaker). The original
waveforms were downsampled to 16 kHz for the experiments.
When extracting the amplitude spectra and phase spectra from
natural waveforms, the window size was 20 ms, the window
shift was 5 ms (i.e., ws = 5), and the FFT point number was
1024 (i.e., N = 513).

B. Speech Generation Tasks

In our experiments, we apply contrastive phase prediction
methods to the analysis-synthesis task and two specific speech
generation tasks, including the BWE task and SS task. Figure

1Source codes are available at https://github.com/yangai520/LL-NSPP.
Examples of generated speech can be found at https://yangai520.github.io/
LL-NSPP.

https://github.com/yangai520/LL-NSPP
https://yangai520.github.io/LL-NSPP
https://yangai520.github.io/LL-NSPP
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5 draws a simple flowchart of three tasks. Specifically, the
detailed description of these three tasks is as follows.

1) Analysis-Synthesis Task: As shown in Figure 5, the
analysis-synthesis task just recovered the 513-dimensional
phase spectrum from the 513-dimensional natural amplitude
spectrum by phase prediction methods and reconstructed the
waveform by ISTFT.

2) BWE Task: As shown in Figure 5, the BWE task first
adopted an amplitude extension model to predict the 256-
dimensional high-frequency amplitude spectrum from the 257-
dimensional low-frequency amplitude spectrum. Then, the
513-dimensional full-band amplitude spectrum was built by
concatenating the low- and high-frequency amplitude spectra.
Finally, the 513-dimensional phase spectrum was recovered
from the full-band amplitude spectrum by phase prediction
methods and the waveform was reconstructed by ISTFT.
Here, the amplitude extension model was borrowed from our
previous work [39] and included 2 bidirectional gated recurrent
unit (GRU)-based recurrent layers, each with 1024 nodes
(512 forward ones and 512 backward ones), 2 convolutional
layers, each with 2048 nodes (filter width=9), and a feed-
forward linear output layer with 256 nodes. The generative
adversarial network (GAN) with two discriminators which
conducted convolution along the frequency and time axis [39]
was applied to the amplitude extension model at the training
stage.

3) SS Task: For the SS task, we designed a neural vocoder
framework with hierarchical generation of amplitude and
phase spectra for statistical parametric speech synthesis
(SPSS). As shown in Figure 5, the vocoder framework
first used an amplitude prediction model to complete
the mapping from the 80-dimensional mel spectrogram
to the 513-dimensional amplitude spectrum. Then, the
513-dimensional phase spectrum was recovered from the
amplitude spectrum by phase prediction methods and the
waveform was reconstructed by ISTFT. Here, the amplitude
prediction model adopted the same structure as that used
in the BWE task, except that the number of nodes in the
feed-forward linear output layer was 513.

C. Comparison among Phase Prediction Methods

We conducted objective and subjective experiments to com-
pare the performance of our proposed neural speech phase
prediction model and other phase prediction methods for
the analysis-synthesis task, BWE task and SS task. The
descriptions of the phase prediction methods for comparison
are as follows:

• NSPP: The proposed neural speech phase prediction
model with latency as shown in Figure 1. In the non-
causal RCNet, the kernel size of the input linear convolu-
tional layer was k0 = 7. There were 3 parallel RCBlocks
(i.e., P = 3) in the RCNet, and each RCBlock was
formed by concatenating 3 sub-RCBlocks (i.e., Q = 3).
The kernel sizes of RCBlocks were k1 = 3, k2 = 7
and k3 = 11, and the dilation factors of sub-RCBlocks
within each RCBlock were d∗,1 = 1, d∗,2 = 3 and
d∗,3 = 5. The channel size of all the convolutional

operations in the RCNet was C = 512. In the parallel
estimation architecture, the kernel size of two parallel
linear convolutional layers was kRI = 7. We used the
linear anti-wrapping function fline(x) as shown in Figure
4(a) at the training stage. fline(x) was given in Equation
12. The model was trained using the AdamW optimizer
[40] with β1 = 0.8 and β2 = 0.99 on a single Nvidia
3090Ti GPU until 3100 epochs. The learning rate decay
was scheduled by a 0.999 factor in every epoch with an
initial learning rate of 0.0002. The batch size was 16,
and the truncated waveform length was 8000 samples
(i.e., 0.5 s) for each training step. Based on the current
configuration, the NSPP exhibited a latency of 330 ms,
as calculated using Equation 27.

• GLn: The GLA [14] mentioned in Section II-A with
n iterations (n = 22 and n = 100 were used in the
experiments). The GLA required the amplitude spectra
of an entire utterance as input, thus the latency of the
GLn equaled to utterance length T in milliseconds.

• RAARn: The RAAR [17] mentioned in Section II-B
with n iterations (n = 13 and n = 100 were used in
the experiments). Same as the GLn, the latency of the
RAARn was also equal to T .

• DNN+GL100: The von Mises distribution DNN-based
phase prediction method [31], [32] mentioned in Section
II-C. The phase spectra were first predicted by the DNN
and then refined by the GLA with 100 iterations. We
reimplemented it ourselves. The training configuration of
the DNN is the same as that of NSPP. As mentioned in
Section II-C, the DNN adopted the amplitude spectra at
current and ±2 frames, resulting in the latency of 2ws=10
ms. The latency of the DNN+GL100 corresponded to the
maximum value between the latencies of the DNN and
GLA, i.e., max{10, T}.

To objectively evaluate the phase prediction precision, we
calculated the average IP, GD and IAF losses on the test set.
To objectively evaluate the reconstructed speech quality, two
objective metrics used in our previous work [41] were adopted
here, including the signal-to-noise ratio (SNR), which was an
overall measurement of the distortions of both amplitude and
phase spectra, and root MSE of F0 (denoted by F0-RMSE),
which reflected the distortion of F0. To evaluate the generation
efficiency, the real-time factor (RTF), which is defined as the
ratio between the time consumed to generate all test sentences
using a single Intel Xeon E5-2680 CPU core and the total
duration of the test set, was also utilized as an objective
metric. Regarding the subjective evaluation, Mean opinion
score (MOS) tests were conducted to compare the naturalness
of the speeches reconstructed by these methods. In each MOS
test, twenty test utterances reconstructed by these methods
along with the natural utterances were evaluated by at least
30 native English listeners on the crowdsourcing platform of
Amazon Mechanical Turk2 with anti-cheating considerations
[42]. Listeners were asked to give a naturalness score between
1 and 5, and the score interval was 0.5.

2https://www.mturk.com.

https://www.mturk.com
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Phase Prediction Methods
Natural 

Amplitude Spectrum
Phase Spectrum ISTFT Waveform

Amplitude Extension Model
Low-Frequency

Amplitude Spectrum
High-Frequency

Amplitude Spectrum
Concat Amplitude Spectrum Phase Prediction Methods Phase Spectrum ISTFT Waveform

Amplitude Spectrum Phase Prediction Methods Phase Spectrum ISTFT WaveformAmplitude Prediction ModelMel Spectrogram

Analysis-Synthesis Task

BWE Task

SS Task

Fig. 5. A simple flowchart of the analysis-synthesis task, BWE task and SS task. Here, Concat and ISTFT represent concatenation and inverse short-time
Fourier transform, respectively.

TABLE I
OBJECTIVE AND SUBJECTIVE EVALUATION RESULTS AMONG PHASE PREDICTION METHODS FOR THE ANALYSIS-SYNTHESIS TASK. HERE, “a×”

REPRESENTS a× REAL TIME.

SNR(dB)↑ F0-RMSE(cent)↓ IP loss↓ GD loss↓ IAF loss↓ MOS↑ RTF↓
Natural Speech – – – – – 3.93±0.063 –

NSPP 8.26 10.0 1.479 0.297 0.694 3.86±0.065 0.051 (19.6×)
GL22 2.70 66.4 1.570 0.302 0.768 2.07±0.073 0.053 (18.9×)

RAAR13 2.00 97.5 1.570 0.546 0.871 1.89±0.065 0.054 (18.5×)
GL100 3.35 32.5 1.569 0.218 0.505 3.46±0.074 0.23 (4.48×)

RAAR100 4.66 11.0 1.567 0.179 0.271 3.89±0.065 0.40 (2.48×)
DNN+GL100 5.03 13.2 1.537 0.209 0.484 3.70±0.068 0.29 (3.45×)

TABLE II
OBJECTIVE AND SUBJECTIVE EVALUATION RESULTS AMONG PHASE

PREDICTION METHODS FOR THE BWE TASK.

SNR(dB)↑ F0-RMSE(cent)↓ MOS↑
Natural Speech – – 4.15±0.050

NSPP 8.18 10.8 4.09±0.052
GL100 3.24 32.6 3.90±0.069

RAAR100 4.49 11.0 4.10±0.053
DNN+GL100 5.03 13.2 4.02±0.059

TABLE III
OBJECTIVE AND SUBJECTIVE EVALUATION RESULTS AMONG PHASE

PREDICTION METHODS FOR THE SS TASK.

SNR(dB)↑ F0-RMSE(cent)↓ MOS↑
Natural Speech – – 3.84±0.051

NSPP 6.75 19.0 3.73±0.055
GL100 3.14 39.4 3.50±0.068

RAAR100 3.92 22.7 3.64±0.061
DNN+GL100 4.02 22.5 3.66±0.062

For the analysis-synthesis task, BWE task and SS task,
both the objective and subjective results are listed in Table
I, Table II and Table III, respectively. Our proposed NSPP
obtained the highest SNR and the lowest F0-RMSE among
all methods for all three tasks. The IP loss, GD loss and IAF
loss are only calculated for the analysis-synthesis task. Our
proposed NSPP obtained the lowest IP loss but felled behind
in two other metrics when compared to iterative algorithms.
This indicates that our proposed model primarily achieved
precise phase prediction by improving the IP loss compared
with other methods. In our experiments, we discovered that
reducing IP loss is challenging, which can be attributed to
the sensitivity of instantaneous phase to waveform shifts [27].
Regarding the RTF results shown in Table I, our proposed

NSPP was also an efficient model, reaching 19.6x real-time
generation on a CPU. At the same generation speed, the GLA
and RAAR could only iterate 22 rounds and 13 rounds (i.e.,
GL22 and RAAR13), respectively, and their reconstructed
speech quality was far inferior to that of NSPP. It is also
worth mentioning that the training speed of the NSPP was
also fast, with a training time of 27 hours on this dataset using
a single Nvidia 3090Ti GPU. Regarding the subjective results,
the MOS score of the NSPP approached that of the natural
speech for the analysis-synthesis task as shown in Table I,
and the difference between the NSPP and Natural Speech
was slightly insignificant (p = 0.055 of paired t-tests). The
GL100, although fully iterated, still performed significantly
worse than our proposed NSPP (p < 0.01) for all three
tasks due to the audible unnatural artifact sounds. Compared
with the GL100, the performance of the DNN+GL100 was
significantly improved (p < 0.01), which was consistent with
the conclusion in the original paper [31], [32]. Nevertheless,
our proposed NSPP still outperformed DNN+GL100 in terms
of both the reconstructed speech quality and generation speed
for all three tasks. These results proved the precise phase
prediction ability of our proposed model. Besides, compared
with the DNN+GL100, the proposed NSPP was a fully neural
network-based method without the extra phase refinement
operation, which can be easily implemented. However, the
subjective differences between the NSPP and RAAR100 were
not significant for both the analysis-synthesis task (p = 0.38)
and the BWE task (p = 0.98). Interestingly, for the SS task,
the MOS score of the NSPP was significantly higher than that
of the RAAR100 (p < 0.01). Obviously, the amplitude spectra
used to recover the phase spectra in the analysis-synthesis task
and BWE task were natural and semi-natural, respectively, but
the amplitude spectra in the SS task were completely degraded.
These results illustrated that our proposed NSPP had good
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robustness, while the quality of the phase spectra recovered
by the iterative algorithms (i.e., the GLA and RAAR) from
the degraded amplitude spectra were obviously restricted. The
proposed neural speech phase prediction model was more
suitable for specific speech generation tasks.

D. Comparison with Waveform Reconstruction Method

Unlike iterative and neural network-based phase prediction
methods, the waveform reconstruction methods were not
originally designed for phase prediction. However, these wave-
form reconstruction methods implicitly incorporated phase
prediction within waveform prediction. In this subsection, we
compared our proposed NSPP with the HiFi-GAN vocoder
(denoted by HiFi-GAN) using both objective and subjective
evaluations. The description of the HiFi-GAN is as follows:

• HiFi-GAN: The v1 version of the HiFi-GAN vocoder
[34]. We reimplemented it using the open source imple-
mentation3. We made small modifications to the open
source code to fit our configurations. For a fair com-
parison with the NSPP, the input of the HiFi-GAN is
513-dimensional log amplitude spectra rather than 80-
dimensional mel spectrograms. The upsampling ratios
were set as h1 = 5, h2 = 4, h3 = 2 and h4 = 2. The
latency calculation manner for the HiFi-GAN is similar
with the NSPP. Although the HiFi-GAN incorporated
more convolutional layers, the majority of its operations
are conducted at a higher sampling rate (i.e., ws is much
smaller in Equation 27) relative to the original amplitude
spectrum. Consequently, the latency of the HiFi-GAN
amounted to a mere 101.4375 ms.

The objective evaluation results for the analysis-synthesis
task are listed in Table IV. Our proposed NSPP slightly
outperformed HiFi-GAN on the SNR and F0-RMSE metrics.
However, considering the phase prediction precision, the phase
continuity of the proposed NSPP was significantly superior
to that of the HiFi-GAN according to the results of the
GD loss and IAF loss, which confirmed the effectiveness of
our proposed direct phase prediction manner. Regarding the
generation efficiency, the RTF of HiFi-GAN on GPU was
comparable to our proposed NSPP because GPUs allowed
for parallel accelerated computations. However, on CPU,
the NSPP exhibited significantly higher generation efficiency
compared to the HiFi-GAN. Besides, due to the absence of
GAN, the training time of NSPP is also much shorter than that
of HiFi-GAN when using the same training mode and total
number of training epochs (i.e., 3100 epochs). This validated
the efficiency advantage of the NSPP.

Regarding the subjective evaluations, we conducted ABX
preference tests on the Amazon Mechanical Turk platform to
compare the subjective quality of the speeches generated by
the NSPP and HiFi-GAN. In each ABX test, twenty utterances
were randomly selected from the test set reconstructed by two
comparative models and evaluated by at least 30 native English
listeners. The listeners were asked to judge which utterance in
each pair had better speech quality or whether there was no

3https://github.com/jik876/hifi-gan.

TABLE IV
OBJECTIVE EVALUATION RESULTS BETWEEN NSPP AND HIFI-GAN FOR

THE ANALYSIS-SYNTHESIS TASK. HERE, “a×” REPRESENTS a× REAL
TIME.

NSPP HiFi-GAN
SNR(dB)↑ 8.26 7.37

F0-RMSE(cent)↓ 10.0 13.2
IP loss↓ 1.479 1.483

GD loss↓ 0.297 0.352
IAF loss↓ 0.694 1.011

RTF (GPU)↓ 0.0065 (154×) 0.0092 (109×)
RTF (CPU)↓ 0.051 (19.6×) 0.60 (1.66×)

Training Time(h)↓ 27 326

35.71
%

27.72
%

36.57
%

NSPP N/P HiFi-GAN

(p=0.79)

36.77
%

27.35
%

35.88
%

NSPP N/P HiFi-GAN

(p=0.79)

43.24
%

17.84
%

38.92
%

NSPP N/P HiFi-GAN

(p=0.19)

Analysis-Synthesis Task

BWE Task

SS Task

Fig. 6. Average preference scores (%) of ABX tests on speech quality between
NSPP and HiFi-GAN, where N/P stands for “no preference” and p denotes
the p-value of a t-test between two models.

preference. In addition to calculating the average preference
scores, the p-value of a t-test was used to measure the
significance of the difference between two models. The results
are shown in Figure 6. There was no significant difference
(p > 0.01) in subjective perception between the NSPP and
HiFi-GAN, whether in analysis-synthesis, BWE or SS tasks.
This finding suggests that the NSPP was on par with the HiFi-
GAN in terms of reconstructed speech quality and robustness,
while also offering a remarkable efficiency advantage.

It should be noted that the objective of this study is not
to compare with other end-to-end speech generation methods.
We are solely comparing the performance of different phase
prediction methods when given different amplitude inputs.
However, due to the trainable nature of the proposed neural
speech phase prediction model, it can be easily integrated
into end-to-end speech generation tasks to improve the phase
quality, where the APNet vocoder [43] and MP-SENet [44]
speech enhancement model serve as illustrative examples.

E. Evaluation on Low-Latency Streamable Phase Prediction

As discussed in Section IV-C and IV-D, our proposed
NSPP exhibited a distinct advantage in latency compared
to the GLn, RAARn and DNN+GL100 when dealing with
lengthy utterances. However, compared to the HiFi-GAN, the
latency of our proposed NSPP was somewhat disappointing.
Therefore, it is highly necessary to further reduce the latency
of the proposed model, as discussed in Section III-C.

To validate the effectiveness of the low-latency streamable
phase prediction method proposed in Section III-C, we com-
pared the NSPP with the following two models:

https://github.com/jik876/hifi-gan
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TABLE V
OBJECTIVE EVALUATION RESULTS OF NSPP, NSPP CAUSAL AND

NSPP CAUSAL KD FOR THE ANALYSIS-SYNTHESIS TASK.

IP loss↓ GD loss↓ IAF loss↓
NSPP 1.479 0.297 0.694

NSPP causal 1.497 0.372 1.02
NSPP causal KD 1.499 0.309 0.766

37.19
%

26.72
%

36.09
%

NSPP N/P NSPP_causal

(p=0.20)

41.67
%

27.00
%

31.33
%

NSPP N/P NSPP_causal

(p<0.01)

38.98
%

29.87
%

31.15
%

NSPP N/P NSPP_causal

(p<0.01)

Analysis-Synthesis Task

BWE Task

SS Task

27.97
%

41.41
%

30.62
%

NSPP N/P NSPP_causal_KD

(p=0.38)

45.44
%

14.12
%

40.44
%

NSPP N/P NSPP_causal_KD

(p=0.16)

41.71
%

11.97
%

46.32
%

NSPP N/P NSPP_causal_KD

(p=0.17)

Fig. 7. Average preference scores (%) of ABX tests on speech quality
for NSPP causal, NSPP causal KD and NSPP, where N/P stands for “no
preference” and p denotes the p-value of a t-test between two models.

• NSPP causal: The causal neural speech phase prediction
model trained only using the anti-wrapping losses (i.e.,
Equation 24).

• NSPP causal KD: The causal neural speech phase pre-
diction model trained using the combination of anti-
wrapping losses and knowledge distillation losses (i.e.,
Equation 29).

The aforementioned two models both have a 20 ms latency
(i.e., the window size) and support streamable inference. We
first compared the NSPP and NSPP causal. The objective
(i.e., three phase losses) and subjective (i.e., ABX tests)
evaluation results are shown in Table V and Figure 7, re-
spectively. Unsurprisingly, replacing non-causal convolutions
with causal convolutions led to a significant decrease in the
performance of the proposed model. Specifically, there is a
noticeable increase in the GD and IAF losses of phase spectra
predicted by NSPP causal. In terms of perceptual quality,
the NSPP causal lagged significantly (p < 0.01) behind the
NSPP in BWE and SS tasks, indicating a lack of robustness.
To provide further evidence, we plotted the spectrograms of
the reconstructed speech from the NSPP and NSPP causal
for the BWE task. As shown in Figure 8, the NSPP causal
experienced severe spectral interference, which may be the
reason for the decline in auditory perception.

When the causal neural speech phase prediction model
is integrated into the training process with knowledge dis-
tillation loss, remarkable improvements are observed. The
GD and IAF losses of the NSPP causal KD approached
the upper bound NSPP as listed in Table V. There are
no significant subjective difference (p > 0.05) between
the NSPP and NSPP causal KD for all tasks as shown in
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Fig. 8. A comparison among the spectrograms of the natural speech and
speeches generated by NSPP, NSPP causal and NSPP causal KD for the
BWE task.

Figure 7. Compared with the NSPP causal, the issue of
spectral distortion also disappeared in the NSPP causal KD
as shown in Figure 8. Through knowledge distillation, the
student model successfully learned the knowledge from the
teacher model. The above results strongly demonstrate that the
combination of causal convolution and knowledge distillation
reduced the latency of the proposed neural phase prediction
model from a very high 330 ms to an extremely low 20 ms,
while maintaining phase prediction precision, efficiency and
robustness of the model.

F. Discussions

1) Effects of Different Anti-Wrapping Functions: As in-
troduced in Section III-B, any function that conforms to the
properties of parity, periodicity, and monotonicity can be used
as an anti-wrapping function to activate the error between the
predicted value and the natural value at the training stage. In
this experiment, we studied the effect of different types of
anti-wrapping functions on the performance of our proposed
neural speech phase prediction model. The models used for
comparison with the NSPP are shown as follows.

• NSPP-log: The proposed neural speech phase predic-
tion model using the logarithmic anti-wrapping function
flog(x) as shown in Figure 4(b) at the training stage.
In the primary period, flog(x) = π

ln(π+1) ln(x + 1), x ∈
(−π, π].

• NSPP-cub: The proposed neural speech phase prediction
model using the cubic anti-wrapping function fcub(x) as
shown in Figure 4(c) at the training stage. In the primary
period, fcub(x) = 4

π2

(
x− π

2

)3
+ π

2 , x ∈ (−π, π].
• NSPP-para: The proposed neural speech phase predic-

tion model using the parabolic anti-wrapping function
fpara(x) as shown in Figure 4(d) at the training stage. In
the primary period, fpara(x) = 1

πx
2, x ∈ (−π, π].

• NSPP-cos: The proposed neural speech phase prediction
model using the cosine anti-wrapping function fcos(x) as
shown in Figure 4(e) at the training stage. In the primary
period, fcos(x) = −π

2 cos(x) +
π
2 , x ∈ (−π, π].
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TABLE VI
SUBJECTIVE EVALUATION RESULTS AMONG FIVE NEURAL SPEECH PHASE

PREDICTION MODELS FOR THE COMPARISON OF ANTI-WRAPPING
FUNCTIONS ON THE ANALYSIS-SYNTHESIS TASK.

MOS↑
Natural Speech 3.96±0.048

NSPP 3.91±0.049
NSPP-log 3.90±0.048
NSPP-cub 3.93±0.048
NSPP-para 3.79±0.050
NSPP-cos 3.84±0.053

The above four models and the NSPP shared the same
settings except for the anti-wrapping function used during
training. We compared the performance of these five models
using the subjective evaluation for the analysis-synthesis task.
MOS tests were conducted to compare the naturalness of the
speeches reconstructed by these models. The subjective results
are listed in Table VI. Obviously, the NSPP, NSPP-log and
NSPP-cub all achieved excellent performance because their
MOS scores were close to the natural one. However, NSPP-
para and NSPP-cos were inferior to the other models. As
shown in Figure 4, the commonality of fline(x), flog(x) and
fcub(x) is that when the true error

∣∣x− 2π · round
(

x
2π

)∣∣
is smaller, the rate of change of these functions is faster
or remains the same. The above conclusion is opposite for
functions fpara(x) and fcos(x). These results indicated that an
anti-wrapping function that paid less attention to activations
for small error segments leads to a decrease in the phase
prediction performance of the model (i.e., the fpara(x) and
fcos(x)). At the small error segment (e.g., x ∈

[
−π

2 ,
π
2

]
), the

rate of change of the function should be faster than the rate
of change of the error. For example, by comparing NSPP-
log and NSPP-para, when they reduced the same loss value
at the training stage, NSPP-log shrank the true error faster
than NSPP-para. Quickly reducing the true error is the goal
of model training. However, although the rates of change
of function fline(x), flog(x) and fcub(x) were significantly
different at the large error range (e.g., x ∈

(
−π,−π

2

]
∪
[
π
2 , π

]
),

the results of NSPP, NSPP-log and NSPP-cub were not
significantly different. It is reasonable because we find that the
true error was mostly concentrated in the small value segment
(i.e., most x ∈

[
−π

2 ,
π
2

]
). Taking the NSPP as an example, the

converged mean values of the true errors of the IP, GD and
IAF on the test set were 1.48, 0.297 and 0.694 respectively.

2) Ablation Studies: We then conducted several ablation
experiments to explore the roles of some key modules in our
proposed NSPP. Here, experiments were performed only on
the analysis-synthesis task. The ablated variants of the NSPP
for comparison included the following:

• NSPP wo PEA: Removing the parallel estimation archi-
tecture from the NSPP. The output of the residual con-
volutional network passes through a linear layer without
activation to predict the phase spectra, which is the same
way as used in the von Mises distribution DNN-based
method [31], [32].

• NSPP wo AWF: Removing the anti-wrapping function
f from the NSPP and adopting L1 losses for LIP , LGD

TABLE VII
OBJECTIVE EVALUATION RESULTS AMONG NSPP AND ITS ABLATED

VARIANTS FOR THE ANALYSIS-SYNTHESIS TASK.

SNR(dB)↑ F0-RMSE(cent)↓
NSPP 8.26 10.0

NSPP wo PEA 4.65 36.9
NSPP wo AWF 8.51 12.0

NSPP wo IP 4.95 21.2
NSPP wo GD 8.95 10.1
NSPP wo IAF 8.69 12.1

44.06
%

35.16
%

20.78
%

NSPP N/P NSPP wo PEA

(p<0.01)

50.00
%

24.24
%

25.76
%
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(p<0.01)
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%
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%
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(p=0.044)
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(p=0.059)

44.31
%
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%
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%

NSPP N/P NSPP wo IAF

(p<0.01)

Fig. 9. Average preference scores (%) of ABX tests on speech quality between
NSPP and its ablated variants for the analysis-synthesis task, where N/P stands
for “no preference” and p denotes the p-value of a t-test between two models.

and LIAF at the training stage.
• NSPP wo IP: Removing the IP loss LIP from the NSPP

at the training stage.
• NSPP wo GD: Removing the GD loss LGD from the

NSPP at the training stage.
• NSPP wo IAF: Removing the IAF loss LIAF from the

NSPP at the training stage.
We also utilized SNR and F0-RMSE as objective metrics

here for evaluating the reconstructed speech. Regarding the
subjective evaluations, we conducted ABX preference tests
on the Amazon Mechanical Turk platform to compare the
differences between the NSPP and its ablated variants. The
objective and subjective results are listed in Table VII and
Figure 9, respectively. Additionally, we also provided the
spectrograms of the speeches generated by the NSPP and its
ablated variants in Figures 10 and 11 for visual analysis.

As expected, we can see that the NSPP outperformed
the NSPP wo PEA significantly (p < 0.01) by analyzing
both objective and subjective results listed in Table VII and
Figure 9, respectively. Specifically, the speech reconstructed
by the NSPP wo PEA exhibited annoying loud noise similar
to electric current, which significantly affected the sense of
hearing due to the imprecise phase prediction. By comparing
the spectrograms of the speeches generated by the NSPP and
NSPP wo PEA in Figure 10, we can find that the spectrogram
of the NSPP wo PEA was a little blurred. One possible reason
is that it was difficult for neural networks without the parallel
estimation architecture to restrict the range of predicted phases,
leading to a failure of anti-wrapping losses. These results
indicated that the parallel estimation architecture was essential
to wrapped phase prediction.

By comparing NSPP and NSPP wo AWF in Table VII,
the SNR of the NSPP wo AWF was even higher and the F0-
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Fig. 10. A comparison among the spectrograms of the natural speech and
speeches generated by NSPP, NSPP wo PEA, NSPP wo AWF, NSPP wo
GD and NSPP wo IAF for the analysis-synthesis task.

RMSE of the NSPP wo AWF was comparable to that of the
NSPP. However, the subjective results in Figure 9 indicated
that the NSPP outperformed the NSPP wo AWF significantly
(p < 0.01) in terms of speech quality, which proved that
the anti-wrapping function was helpful for avoiding the error
expansion issue. As shown in Figure 10, the high-frequency
energy of the speech reconstructed by the NSPP wo AWF
was completely suppressed, resulting in an extremely dull
listening experience. This may be the reason for the poor ABX
scores. Interestingly, there was no obvious mispronunciation
or F0 distortion in the speech reconstructed by the NSPP wo
AWF (F0-RMSE=12.0 cent, comparable to that of NSPP). The
above experimental results also confirmed that the absence
of high-frequency components had little effect on the SNR
metric.

For the three losses, removing any loss led to poor per-
formance of the model. However, each loss played a very
different role. Removing LIP (i.e., NSPP wo IP) led to a
sharp drop in all objective metrics in Table VII. Regarding
the ABX test results in Figure 9, the subjective difference
between the NSPP and NSPP wo IP was slightly insignificant
(p was slightly larger than 0.01). However, we found that
the reconstructed speech quality of the NSPP wo IP indeed
degraded. Figure 11 shows the low-frequency F0 and harmonic
details of the spectrograms of the NSPP and NSPP wo IP.
Obviously, the speech reconstructed by the NSPP wo IP
exhibited few low-frequency spectrum corruption issues (see
the range of 0.5∼2 seconds in Figure 11), resulting in F0 and
harmonic structure distortion and blurry pronunciation. This
is also the reason why the F0-RMSE of the NSPP wo IP
was relatively poor. However, removing LGD (i.e., NSPP wo
GD) and LIAF (i.e., NSPP wo IAF) did not cause significant
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Fig. 11. A comparison among the low-frequency (0∼2000Hz) spectrograms
of the natural speech and speeches generated by NSPP and NSPP wo IP for
analysis-synthesis task.

deterioration on all objective metrics in Table VII. Although
the subjective difference between the NSPP and NSPP wo
GD was slightly insignificant (p was slightly larger than 0.01)
in Figure 9, we can see from Figure 10 that the NSPP wo
GD attenuated the overall spectral energy of the reconstructed
speech, resulting in a mild dull listening experience. As shown
in Figure 9, removing LIAF (i.e., NSPP wo IAF) led to a
significant subjective performance degradation (p < 0.01),
manifested in the presence of obvious spectral horizontal
stripes in the reconstructed speech (see Figure 10), causing
annoying loud noise. Interestingly, the removal of LGD and
LIAF did not destroy the F0 and harmonic structure, nor did
it lead to mispronunciation (their F0-RMSEs were comparable
to that of NSPP).

In conclusion, all ablated elements were indispensable for
our proposed neural speech phase prediction model. The
parallel estimation architecture and IP loss prevented the
destruction of the F0 and spectral structure of speech. The
anti-wrapping function and GD loss avoided the attenuation
of high-frequency energy and dull hearing of speech. The
IAF loss suppressed the appearance of loud noise caused by
spectral horizontal lines.

V. CONCLUSION

In this paper, we have proposed a novel neural speech
phase prediction model, which utilizes a residual convolu-
tional network along with a parallel estimation architecture
to directly predict the wrapped phase spectra from input
amplitude spectra. The parallel estimation architecture is a key
module which consists of two parallel linear convolutional
layers and a phase calculation formula, strictly restricting
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the output phase values to the principal value interval. The
training criteria of the proposed model are to minimize a
combination of the instantaneous phase loss, group delay
loss and instantaneous angular frequency loss, which are all
activated by an anti-wrapping function to avoid the error
expansion issue caused by phase wrapping. The anti-wrapping
function should possess three properties, i.e., parity, periodicity
and monotonicity. Low-latency streamable phase prediction
is also achieved with the help of causal convolutions and
knowledge distillation training strategies. Experimental results
show that the proposed model outperforms the GLA, RAAR
and von Mises distribution DNN-based phase prediction meth-
ods for both analysis-synthesis and specific speech generation
tasks (i.e., the BWE and SS) in terms of phase prediction
precision, efficiency and robustness. The proposed model is
significantly faster in generation speed than HiFi-GAN-based
waveform reconstruction method, while also having the same
synthesized speech quality. Besides, the proposed model is
easy to implement and also exhibits a fast training speed.
Integrating the neural speech phase prediction model to more
end-to-end speech generation tasks will be the focus of our
future work.
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