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Abstract
Sentiment analysis is a continuously explored area of

text processing that deals with the computational analysis
of opinions, sentiments, and subjectivity of text. However,
this idea is not limited to text and speech, in fact, it could
be applied to other modalities. In reality, humans do not
express themselves in text as deeply as they do in music.
The ability of a computational model to interpret musical
emotions is largely unexplored and could have implications
and uses in therapy and musical queuing. In this paper,
two individual tasks are addressed. This study seeks to
(1) predict the emotion of a musical clip over time and (2)
determine the next emotion value after the music in a time
series to ensure seamless transitions. Utilizing data from the
Emotions in Music Database, which contains clips of songs
selected from the Free Music Archive annotated with levels
of valence and arousal as reported on Russel’s circumplex
model of affect by multiple volunteers, models are trained
for both tasks. Overall, the performance of these models
reflected that they were able to perform the tasks they were
designed for effectively and accurately.

INTRODUCTION
Although sentiment analysis is well researched, stud-

ies focus on text-based emotion and represent emotions
categorically.[6] People often express strong emotions
through speech and audio, with more emphasis than in text.
Other works focus largely on speech sentiment[10], not nec-
essarily incorporating other sounds in an audio file. A com-
putational model to interpret musical emotions can have
medical uses, including therapeutic purposes, and also com-
mercial uses in queueing music for streaming services. This
project seeks to explore the capability of Long Short-Term
Memory (LSTM) models to (1) predict the emotion of a
musical clip over time and (2) determine the next "emotion
value" after in a time series to ensure seamless transitions
between audio sentiments.

BACKGROUND
Representing Emotion

Typically, text-based sentiment analysis attempts to clas-
sify text into categories of basic emotions as is supported
by neuroscience studies on distinct neural circuits for
emotions.[13] On the other hand, Russel’s circumplex model
of affect proposes that emotions arise as a product of two
separate circuits: arousal and valence. These can also be
renamed as activation and pleasantness, respectively.[8] This
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redefines the sentiment analysis task as a regression task with
two outputs rather than a classification task. The database
used also utilizes Russel’s model on audio samples as the
samples are annotated to show the emotion intended to be
induced by the clip. Furthermore, the model can be divided
into regions to represent emotions with more precision and
can additionally describe intensity/severity as can be seen
in Fig. 1. This is useful in the applications of audio analysis
and provides a quantitative measure of emotion.

Figure 1: Russel’s Circumplex Model of Affect

Audio Processing
There are many ways to represent audio files for input to

a model, but this study uses Logarithmic Mel Spectrograms.
This works by taking the raw audio waveform, applying a
Fourier Transform, creating a spectrogram of the frequen-
cies, applying the Mel scale to represent human frequencies
better, and applying a logarithmic transformation.[4] Ran-
dom Gaussian noise is also added to the Mel Spectrogram to
improve the robustness of the model. The audio clips were
spliced into half-second clips, sampled at 44100 Hz, and the
Mel spectrogram has 128 frequency bins, an FFT length of
512, and a hop length of 2048 with Librosa. The output was
a NumPy array or PyTorch tensor with a shape of 128 by 44
for 128 bins and 44 timesteps. Alternatively, the model could
have used Mel Frequency Cepstral Coefficients (MFCCs)
which tend to represent speaker data well[2], however, the
model should not have to depend on speech features and
should instead be able to understand purely instrumentals
tracks as well. The extracted Mel Spectrogram dataset was
then tied to its continuous arousal and valence coordinates.
The full pipeline is demonstrated in Fig. 2.

Long Short-Term Memory Models
LSTM models are a subset of recurrent neural networks

(RNNs). These models have a hidden state encoding pre-
vious information to keep a stateful memory of previous
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Figure 2: The full pipeline of audio processing includ-
ing clipping, mel spectrogram, and storage format.

entries to the model. Traditional RNNs have a vanishing
gradient problem where previous inputs are forgotten over
time, but LSTMs solve this problem with a more sophisti-
cated architecture. This type of model is able to outperform
traditional models where long-term dependencies play a part
in prediction, such as in audio where data takes place over
time.

Dataset[1],[11]

The Emotion in Music Database (EmoMusic/1000 songs)
consists of about 700 free-use songs that have been annotated
by volunteers. The crowdsourced data consists of annota-
tions sampled at 2 Hz (every 0.5 seconds) for arousal and
valence of a clip on a scale from -1 to 1 each. The continu-
ously sampled data points are the average of 10 volunteers’
annotations at that instant to ensure stability of data. The
standard deviations of the continuous annotations are also
provided, averaging about 0.35 across all samples. This aver-
aged standard deviation is the goal for the first model’s root
mean square error (RMSE) because it means the model’s
variation can be accounted for by the human variation in the
dataset. The first 15 seconds of annotations in the data were
dropped due to instability and the 45-second clips of audio
are provided with the dataset.

TASK 1: PREDICTING EMOTION

Input/Output
The first task is to predict the arousal and valence values

of a 0.5-second clip of audio’s mel spectrogram. The input
is a tensor of shape 128 by 44 representing the clips’ mel
spectrogram with specific settings (described in the back-
ground). The output will be a two-value tensor representing
arousal and valence.

Evaluation Metric
The model will use mean squared error (MSE) for its

evaluation metric and loss function. MSE penalizes heavily
for deviation as it the square of the output unit. The target
for model loss is 0.09 (or RMSE of 0.3) as described in the
background section. Since human annotations vary by about
0.3 on average on the same songs, the error produced by the
model can be accounted for by human error in the dataset.

Hyperparameter Optimization
This model uses the Adam optimizer. Experimenting with

hyperparameters, the learning rate had the highest influence
on results, and a low number of hidden layers performed
best. To determine the number of epochs an early stopping
technique was used in which the model automatically ended
training after loss converged and stopped decreasing. A
fixed batch size of 58 samples was used, where each batch
contained every clip from one audio file. The best results
found are shown in Table. 1 and Fig. 3. Although decreasing
the learning rate from 5 × 10−5 may slightly improve the
convergence of MSE, the final MSE is very similar whereas
training time and epochs increase.

Table 1: Task 1 Best Results

Parameter Value

Learning Rate 5 × 10−5

Hidden Size 20
No. of Modules1 2
No. of Layers (per module) 2
No. of Layers (total) 4
Dropout Probability 0.1
Epochs 67
Train MSE 0.044
Validation MSE 0.054

Figure 3: Loss graphs (MSE) for training and valida-
tion varied with number of epochs for task 1 using the
most optimal hyperparameter found. Shows conver-
gence for training but slight possible overfitting.

1 Where a "module" is an nn.LSTM object in the model and layers within
a module are stacked
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4 TASK 2: INTELLIGENT QUEUING
Input/Output

The second task is to predict the next pair of arousal and
valence values from an arbitrarily chosen time sequence of
length 10. The input is a tensor of shape 2 by 10 representing
the arousal and valence over ten timesteps. The output will
be a two-value tensor representing the next (11th) arousal
and valence point.

Evaluation Metric
The model will also use MSE for its evaluation metric and

loss function for the same reasons as in Task 1. The target
MSE/RMSE are similar due to natural variation in humans
but are expected to be lower in a simpler task.

Hyperparameter Optimization
Similar to the previous task, hyperparameter optimization

was largely experimental with learning rate and epoch count
having a high influence on results. This model still uses the
Adam optimizer and mean squared error, however, batching
is randomized and the task in simpler. The best results found
are shown in Table. 2 and Fig. 4.

Table 2: Task 2 Best Results

Parameter Value

Learning Rate 1 × 10−4

Hidden Size 32
Batch Size 64
No. of Modules2 1
No. of Layers (per module) 2
No. of Layers (total) 42
Dropout Probability 0
Epochs 10
Train MSE 4 × 10−4

Validation MSE 5 × 10−4

Figure 4: Loss graphs (MSE) for training and valida-
tion varied with number of epochs for task 2 using
the most optimal hyperparameter found. The loss con-
verges very quickly after the first two epochs.

2 Where a "module" is an nn.LSTM object in the model and layers within
a module are stacked

Linear Regression Approach
Since the LSTM results showed that the task may have

been too simple and revealed a possible exploding gradient
issue, instead a linear regression approach was used. One in
which arousal was the dependent variable and the other in
which valence was the dependent variable with both having
time as the independent variable. When the arousal and
valence are plotted against time, they appear linear/constant
(Fig. 5), but, zooming in, some clips show erratic, nonlin-
ear behavior (Fig. 6). The linear regression showed that
the data’s overall trend may be able to be modeled by a re-
gression, however, the model was not suitable for predicting
exact values, especially within the songs (Fig. 7).

Figure 5: Arousal and valence for one song plotted
against time on the z-axis. Dotted lines represent the
centerlines and edges of the circumplex model.

Figure 6: A zoomed view of Figure 5 that shows more
erratic and nonlinear patterns in arousal and valence.

Figure 7: The linear regression results of one particular
song. Shows a good model of the trend but a clear lack
of accuracy around the center of the time axis.
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4 RESULTS AND CONCLUSIONS
Task 1

The emotion prediction model got an MSE loss of about
0.055 in validation and 0.044 in training meaning that RMSE
are 0.235 and 0.21, respectively. These RMSE values can be
accounted for by the natural variation in even human choice
annotation of this data, indicating the model is doing well,
matching human predictions.

Task 2
The "next value" predictor model showed an MSE of

about 0.0004 in training and 0.0005 in validation. These
results indicate that the model performed well. The linear
regression model proved to be less effective in predicting
exact values but may be effective in considering general
trends.

DISCUSSION
The ability to automatically determine quantitative values

to describe emotion of a music clip can have uses in the real
world. In the medical field, music is well known as having
psychological effects on mood but has also been found to
have effects on other neurological disorders including mul-
tiple sclerosis and Parkinson’s.[9] Commercial applications
of this software also include intelligent queueing of music
to maintain a smooth flow of mood in music playback. A
demonstrative implementation of this model is included in
the public repository.3

FUTURE DIRECTION
For task 1 a broad, automated hyperparameter search may

be able to refine and optimize hyperparameter for even better
regression results. Different batching strategies and model
complexities may also result in an overall superior model.
The second task would benefit from many of the improve-
ments of task 1, as well as using a statistic to objectively
measure the performance of different models such as the lin-
ear regression. Adding variable length time-sequence input
is also a possibility. Implementing this code in an open-
source library that can be used in applications could greatly
help those who use it. The code could also be implemented
alongside the queuing algorithms of major streaming ser-
vices (e.g. Spotify) to offer improved experiences to users.

ERROR ANALYSIS
Limited hyperparameter scope, input format, noise added,

and human error could have resulted in errors in both task
one and two’s LSTM models. In model one it is important to
note the slight overfitting occurring indicating that hyperpa-
rameters could likely be further optimized and in model two
there may be an exploding gradient problem. In the second
model, the predicted value tended to hold the arousal and
valence constant due to the mostly constant nature of data,
3 Please reference the GitHub repository for more information in the

demo.py file

however, in songs with greater changes, the model reflected
those changes. In implementation, adding a tolerance to
allow for changes between songs would avoid holding the
arousal and valence constant unintentionally.

DATA AVAILABILITY
The Emotion in Music Database (1000 songs) dataset is

available online after filling out a request form.[1],[11]

CODE AVAILABILITY
The code, models, and results from this dataset have been

open-sourced under the MIT license and are available at
https://github.com/etashj/Exploring-and-App
lying-Audio-Based-Sentiment-Analysis.
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