arXiv:2403.17412v2 [cond-mat.str-el] 27 Mar 2024

Journal of the Physical Society of Japan

FULL PAPERS

Multi-Triplon Excitations of Hubbard Ladders with Site-Dependent Potentials

Nobuya Maeshima

1,2 %

and Ken-ichi Hino?!

! Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
2Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
(Received March 28, 2024)

We study low-lying spin-singlet excitations of two-leg Hubbard ladders with site-dependent potentials. Using general
formulas of the charge disproportionation induced by the site-dependent potentials, we derive the contributions of spin
degrees of freedom to the spectral functions such as the dynamical charge structure factor N(k,w) and the optical
conductivity o, (w) along the y(= x,y)-direction of the two-leg ladders. Numerical results obtained by the Lanczos
diagonalization method have clarified that the multi-triplon singlet states, including two- and three-triplon excitations,
can be detected by observing these quantities. Furthermore, we have found that ladders with random potentials also have

non-negligible contributions of these excitations to o, (w).

1. Introduction

Quantum spin systems have long been regarded an ideal
arena for exploring quantum many-body phenomena. In par-
ticular, S = 1/2 two-leg spin ladders are notable for their
tractability and typical low-dimensional features of quantum
systems, such as disordered ground states, finite spin gaps,
and non-trivial excitations."»? The elementary excitations in
S = 1/2 two-leg ladders are quasiparticles called “triplons,”
each carrying a spin of § = 1. The triplon state is regarded as
a quasiparticle in a wide class of quantum spin systems with
finite spin gaps, and its dynamical properties have been exam-
ined in various materials.*® Also, in two-leg ladders, exper-
imental studies using inelastic neutron scattering (INS) have
successfully identified the finite energy gap and the single-
triplon dispersion.” !9

Recent experimental achievements strongly indicate that
two-leg spin ladders are excellent platforms for studying two-
triplon states; high-resolution analysis of INS experiments
has confirmed the existence of a two-triplon continuum and
bound states in the spin-triplet (S = 1) sector of the excited
states.!!*1? Besides these two-triplon states with S = 1, which
are detectable with INS, two-triplon singlet (S = 0) excita-
tions have also been observed using Raman spectroscopy ' 14
and phonon-assisted optical absorption.'> In addition, res-
onant inelastic x-ray scattering (RIXS) has been employed
to explore two-triplon § = 0 excitations.'®!? These exper-
imental results have been compared with theoretical studies
on two-triplon states. 823

Turning our attention to recent studies of other quasipar-
ticles in quantum magnets, we can see various experimen-
tal challenges to observe excited states having three or more
numbers of quasiparticles, contributing to the spectral prop-
erties of these systems in high-energy regions. The major-
ity of these studies are devoted to bound states formed by
strong inter-quasiparticle interactions and are investigated
using INS,>*25 THz spectroscopy,”®?” and infrared mag-
netospectroscopy.”® Additionally, multi-quasiparticle contin-
uum states composed of weakly interacting (or free) quasipar-
ticles have also been examined in relation to the high-energy
spectral components of INS or RIXS in 1D chains,?3? or
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those of RIXS in a kagome antiferromagnet.*" As for the
triplon states, in contrast, it has been only proposed theoret-
ically that three-triplon states of the ladder can appear in the
RIXS intensity.*? Thus, methods to detect multi-triplon states
are still lacking.

We present an alternative framework to investigate multi-
triplon excitations of the two-leg ladders in the S = 0 sector.
Our approach is based on an analytical treatment for the one-
dimensional (1D) ionic Hubbard model, a single-band Hub-
bard chain with an alternating potential,>® where the charge
disproportionation at each site is represented in terms of the
spin operators of the corresponding Heisenberg model. In this
work, the analytical method is extended to Hubbard models
on general lattices and applied to the two-leg Hubbard ladders
with site-dependent potentials. We have analytically proved
that the spin-degrees of freedom of the two-leg ladders can
have finite contributions to the dynamical charge structure
factor N(k,w) and the optical conductivity o, (w) along the
(= x, y)-direction of the ladders.

Then, we numerically demonstrate that these spectral func-
tions probe the two and three-triplon excitations of two-leg
ladders with periodic potentials and with strong rung cou-
pling, where spin dimers called “rungs” weakly couple along
one direction. The observed excitations can be selected by
tuning the periodicity of the site-dependent potential or the
wave number perpendicular to the leg. Obtained results of
N(k,w) and o, (w) calculated with the Lanczos diagonaliza-
tion elucidate that their spectral peaks lie in the two- and
three-triplon continuum and the two-triplon singlet bound
state. Also, analytical results with bond operator method>+3%
are found to be consistent with our calculated results. Fur-
thermore, we investigate the optical conductivity o (w) with
random potential and show that observed spectral signatures
result from these multi-triplon excitations.

This paper is organized as follows. In Sec. 2, our theoretical
framework for the single chain is extended to general lattices
and then applied to two-leg ladders. In Sec. 3, our numerical
and analytical results are presented, and Section 4 is devoted
to the conclusion.
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2. Theory

2.1 General Hubbard models

Here, we explain the method, which is an extension of our
previous framework for the 1D ionic Hubbard model.>® We
employ the single-band Hubbard model at half-filling with a
site-dependent potential. The Hamiltonian is given by

H = Z tﬂc c+U Z npny + Z e(n;—1), (1)

Jjlr

where L . (cjr) is the creation (annihilation) operator of an

electron w1th spin 7 at site j, nj- = cjrcﬂ, andnj = nj +nj.
The parameter U gives the on-site Coulomb interaction, and
tj represents the transfer integral between sites j and /. In ad-
dition, e; denotes the site-dependent potential at site j. Here
we set tj; = 0 and e; = €; + ¢; at site j, where ¢; is an intrin-
sic site-dependent potential and ¢; is a virtually introduced
scalar field. For the large-U case of this model, we derive the
Heisenberg Hamiltonian as’337

Z (s .85 - ) )

with the exchange interaction K = = 27 i /(U —ej+¢). The
charge disproportionation on; = n;— 1 from the half-filling for

¢; = 01s evaluated as
1
= % U/j(sl'sj—z), (3)

OH*
where §; is the spin operator at site j, and the coeflicient 7;;

onj =
L og
associating 6n; with the spin operators is given by

¢=0

8U t2 (€ —€)
= o)
W0 (@ - PP
Here, the superscript s of quantities means the contribution
from the spin degrees of freedom.
Next, let us consider the dynamical charge structure factor
N(k, w) of the Hubbard model (1) defined by

N(k,w) = Z Kalngl0)*o(w — E, + Ep), 5)
a#O
where ny = Y, ¢ *Rin,;, k denotes the wave number, N is the

system size, and R; represents the location of site /. Its coun-
terpart N°(k, w) of the spin degrees of freedom is obtained by
replacing ny in Eq. (5) with

y —ik- s —ik- 1
sy =) e Rign =" e "R'Zm,(srsj—z). (6)
1 ! J

At the same time, the eigenstate |@) and the eigenenergy E,
of the Hamiltonian (1) are also replaced by their counterparts,
|)* and E?, of the Heisenberg Hamiltonian (2).

Now, we discuss the optical conductivity of the Hubbard
model (1) given by

S D KL OPow -~ Ea + E)  (T)

a#O

(ry(U))

and o (w) in terms of the spin degrees of freedom, where J,
is the y component of the current operator of the model (1).
Following the procedure to derive N*(k, w), we represent J,
with respect to the operators of spin system (2). To this aim,

Fig. 1. A Hubbard ladder with two legs 0 and 1, and the transfer integrals
ty and t,. The arrows are the primitive translational vectors a, and ay of this
system.

let us express the electric polarization®” for y direction by
using 5n‘; of Eq. (3) as
1
Si——|, 8
j 4) (8)

Py = Z(—e)Rjén; =—¢ Z iR, (S,» .
j ij

where e is the absolute value of the charge of an electron.

Then the current operator is derived as®®
h=—r = [th ]
= -2 Y Ku® ~R)Si-(S; xS ©)
ijl
where
- 4U(ty)*
Ky = —— 10
: - (& - &) (10
and the optical conductivity is defined as
oiw) = Z |10y P(w - B + E), (1)

in

As ny and J; commute with the total spin Sy = >};5;, the

spectral functions N*(k, w) and a;(a)) can detect the singlet

excitation.”3® Also, it is noted that these formulas can be
applied to the 1D ionic Hubbard model by setting

A

= (=1)=

(=D 3

, and R; = aj, (12)

with the lattice constant a and the strength of the potential A.
Then, it can be confirmed that the same results of Refs. 33,37,
38 are obtained.

We here stress the importance of the quantity 7;; in our
framework. The point is that 7;;; appears both in N*(k, w) and
oy(w) and that m;; is proportional to the energy difference
(e — €;) between the neighboring sites / and j. Therefore, the
finite site-dependence of the potential ¢ is essential for ob-
serving these spectral functions.

lijr1 = 1, €

2.2 Two-leg ladders

Here, let us focus on two-leg ladders with only nearest-
neighbor hoppings and periodic potentials. Some notations
are introduced to discuss the ladder systems in detail. We la-
bel a site in a ladder by its location R = (x,y) and use the
primitive translational vectors a, and a,. Here, a.,) is paral-
lel to the legs (rungs), as shown in Fig. 1. A leg in a ladder is
labeled by an integer n = 0, 1, and the location of a site in the
leg n is given by R = (x, na,), where a, = |a,| is the lattice
constant along the y-direction. In addition, a site R in the leg
n is represented by the short form R € leg n. Then the transfer
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integral rgg- between R and R’ is given as

t, RR=R=+a,
ty (RelegOand R' = R + a,)
IRR = , (13)
or(Relegland R' =R - a,)
0 otherwise
and the site-dependent potential is represented by
A .
€r = _Ee—lQ'R, (14)

where A > 0 gives the strength of the potential and Q =
(Ox, Qy) is a wave vector characterizing the periodicity. Here
the y-component Q, is limited to Q, = 0 or n/a,. Then the
energy difference € — €; in Eq. (4) for a neighboring pair (/, j)
with (R;, R;) = (R, R + a,) along the y-direction is evaluated
as

_e QR A(l = e¥2%)

€R — €Rza,

2
= -eC%A(0), (15)
where
A Q,=n/a,
A = 16
Q) {0 0 -0 (16)
and the corresponding 7;; is simplified as
NRR:a,(Q) = =% *0,(Q), (17)
where
SULA,(Q)
mQ) = ——— (18)

T 02— AP

In the same manner, K; of Eq. (10) for a pair (i,/) with
(R;,R;) = (R, R £ a,) is obtained as

4U7 _
L4 =K

KRrsa,(Q) = oag

@. 19)
In the following, the argument Q of 17,(Q) and fy(Q) is omit-
ted unless necessary. Here, it is valuable to note that Ey is
equal to the exchange interaction of the two-leg spin ladder

whose Hamiltonian of Eq. (2) is represented as

H* =K, ZSR - SRia, + Ky Z SR - SR+a,-
R Releg 0

(20)

Using these results, 6n;. of a two-leg ladder is expressed as

ony = 0.(k') + O,(k), (1)

where
Ok =1 ) e F N Sp-Sper,  (22)

R r==a,
O\(k')= -1y )" e RS - Ski,, (23)
R
and

K=k+0. (24)

Here, the constant (-1/4) is omitted because it has no contri-
bution to N*(k, w). The derivation of Eq. (21) is shown in Ap-
pendix A. These results show that N*(k, w) probes spin exci-
tations with the wave number k’. Therefore we represent and

Q= (mm) m

Fig. 2. Two-leg ladders with the periodic potentials characterized by Q =
(m,7) and Q = (m,0). The filled and open circles represent the periodic po-
tentials.

plot N°(k, w) as a function of k" in the following. This is the
generalization of the property of the 1D ionic Hubbard model,
where N*(k, w) probes excited states with k' = k + 7.3

Next, consider the current operator (9). Following the same
procedure as that of (5n;€, J3 is simplified as

oo e

X 7 e_iQ‘R [2ExSR : (SR+LZX X SR—aX)

+ KySk - (Skra, X Skea,) —KySk - (Sk-a, X Skia,)]. (25)

This tells us that o3(w) probes excited states with Q. For the
y-direction, we need to be more careful. The current operator
is evaluated as

Mydy€— D
LK Y D e ORS g (Spua, X Skir), (26)

h R r=xa,

5=

where
Q=0 +(0,7/ay).

These relations suggest that o7j(w) probes excited states of

27

spin systems with Q, not Q. The additional wave number r/a,
results from the boundary conditions in the y-direction; for
Releg1, R +a, = R — a,. It should also be noted that

O.(k") = J; =0 for Q, =0 and

O,(k') = J: = 0 for Q, =0, (28)

which are deduced from Eq. (18) and the definitions of the op-
erators. The derivation of Egs. (25) and (26) is also explained
in Appendix A.

3. Results

Before discussing the details of our results, we would like
to comment on our numerical calculation. We set e, %, a,,
and a, to unity for simplicity, and we limit @ in two cases;
Q = (m,m) and Q = (m,0) shown in Fig. 2. For the spec-
tral functions, the d-function is replaced with the Lorentzian
with finite broadening ¢ = 0.01z,, and we impose the pe-
riodic boundary condition along the x-direction unless oth-
erwise noted. For numerical calculations of physical quanti-
ties introduced here, we use Lanczos diagonalization. We also
note that quantities with superscript s are those of the two-
leg spin ladders. Quantities without superscripts are from the
Hubbard ladders.

First of all, we examine that N*(k’,w) and o (w) of the
spin ladder well reproduce their counterparts N(k’, w) and
0y(w) of the Hubbard ladder in the low-energy region. Fig-
ure 3 shows calculated results of N(k’, w) and N°(k’, w) for
the ladder with @ = (7, n), t,/t, = 1, U/t, = 20, A/t, = 2,
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Fig. 3. (Color online) dynamical charge structure factors, N(k’, w) (green
dashed lines) of the two-leg Hubbard ladder and N*(k’, w) (black solid lines)
of the spin ladder with @ = (m,n), t,/t, = 1, Uty = 20, A/t, = 2, and
N =16.

4e-05} 0z (w)
2e-05¢ .
1e-05¢ oy(w)

0 4 w/K, 8

Fig. 4. (Color online) Optical conductivity o, (w) (green dashed lines) of
the two-leg Hubbard ladder and o7§(w) of the spin ladder for y = x,y (black
solid lines) with Q = (m,7), t,/t, = 1, U/ty = 20, A/t, = 2, and N = 16. The
background resulting from the charge degrees of freedom is subtracted from
the result of oy (w).

and N = 16. It can be seen that N°(k’, w) well reproduce the
peak structure of N(k’, w) for each k’. The optical conduc-
tivity spectra o) (w) for y = x,y and their counterpart oy (w),
plotted in Fig. 4, also demonstrate that the contributions from
the spin degrees of freedom to these spectral functions well
explain the low-energy behaviors of the original ones.

Let us discuss how the multi-triplon excited states appear
in these spectral functions. For this purpose, we consider lad-
ders with large t,, where the series expansion method works
well to evaluate the dispersion curves of multi-triplon ex-
cited states.'®3 Figure 5 displays N*(k’,w) of the ladder
with @ = (7,0), t,/t, = 2, U/ty, = 20, A/ty = 2, and
N = 28. In addition, spectra of the multi-triplon states are
also plotted. For details on these multi-triplon states, please
see Appendix B. In the upper panel of this figure, we com-
pare N*(k}, k;, = 0, w) with the dispersions of the two-triplon
continuum and the two-triplon singlet bound state. The re-
sult of o%(w) is also shown at the wave number (7, 0) because
o (w) probes excited states with Q as discussed before. These
results demonstrate that N*(k%, k;, = 0, w) and o(w) well ob-
serve the above-mentioned two-triplon excitations, including
the continuum and the singlet bound state. In addition, a sig-

nificant part of the spectral weight of N*(k, k; = 0,w) lies
close to the lower boundary of the 2-triplon continuum. In
contrast, N*(k/, k;, = 7, w), plotted in the lower panel of Fig. 5,
is not so concentrated near the lower boundary of the three-
triplon continuum; its spectral weight lies mainly in two ellip-
tical regions, one centered at (k. /7, w /Ey) = (0.5,2.8) and the
other at (k./m, w/Ey) = (1.5,2.8). Here, we make a comment
on the relation between our results and those of Ref. 32; the
cited paper theoretically shows that the three-triplon bound
states formed by the three-body interaction have significant
intensities in the RIXS spectrum of the two-leg ladder with
fx > f_y.”) On the other hand, N*(k’,, k; = 7, w) of our study
does not detect the three-triplon bound state. This is because
the ladder treated here has a weaker EX than Ey, where the
three-triplon bound states are not clearly visible in the spectral
functions.?? Therefore, N°(k/, k|, = m, w) would show some
signature of the bound state for EX > fy, which is beyond the
scope of this paper.

These behaviors of N°(k,w) are qualitatively reproduced
using the bond operator method,*3® where the spin oper-
ators on a rung are represented by boson operators, rung-
singlet and rung-triplet bosons. We use the procedure of
Ref. 35 for the two-leg ladder in order to evaluate N*(k’, w) of
the ladder with Q = (r, 0), and the results are shown in Fig. 6.
The analytical form of N*(k’, w) is shown in Appendix C. We
can see that the spectral weight of N S(k;,k; = 0,w) lies in
the region enclosed between the lower and the upper bound-
aries of the two-triplon continuum. In particular, the domi-
nant part exists in the vicinity of the lower boundary. It can
also be seen that there is no signal of the bound state below
the continuum, and a non-negligible amount of the weight is
found near the upper boundary of the continuum. This is be-
cause the bond operator theory of Ref. 35 does not contain
the inter-triplon interaction.*® The result of N*(k}, k| = 7, w)
also proves that the two ellipsoidal-shaped structures emerge
in the three-triplon continuum.

We also find that N*(k;, k;, = 0, w) vanishes completely at
k' = m, which is explained as follows. Equation (28) shows
that O,(k’) = 0 at Q = (x,0). Thus on;, = O,(K’) in this case.
In addition, O,(k’) is reformulated as

Ok') = =n (1 + ) )" RS - S, (29)
R

which indicates that O,(k’) = 0 at k, = 7. Hence N*(k’, w) for
0 = (7, 0) must be zero at k" = (r, k,) and around its vicinity
N*(k’,w) becomes small. On the other hand, o3(w) has a fi-
nite spectral weight at k€’ = (,0) and detects the two-triplon
singlet bound states at this point. The results of N*(k’, w) and
o3(w) show that they complement each other well for observ-
ing the two-triplon singlet states.

Next, we focus on the results of the ladder with Q = («, 7).
Figure 7 shows N*(k’, w), oi(w), O';(Q)), and dispersions of
two-triplon and three-triplon continuum for Q@ = (m, 7). As
shown in Egs. (26) and (27), oy (w) is plotted at Q@ = (r,0),
while 05(w) is shown at Q = (r, 7). Physical parameters ex-
cept Q are the same as those of Fig. 5. The obtained results
demonstrate that the two-triplon and three-triplon excitations
are detected using these spectral quantities. Especially, it is
noteworthy that by changing the wavenumber @, one can se-
lect a multi-triplon state observable in terms of optical con-
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Fig. 5. (Color online) dynamical charge structure factors N*(k’, w) (black
solid lines) and optical conductivity o§(w) (green solid line) of the two-leg
spin ladder with Q@ = (x,0), t,/t, = 2, U/t, = 20, A/ty = 2, and N = 28.
Light blue regions show the two-triplon continuum for &} = 0 and the three-
triplon continuum for &;, = . The blue solid line shows the dispersion of the

two-triplon singlet bound state.
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Fig. 6. (Color online) N°(k’, w) of the ladder with Q = (7,0), t,/t, = 2,
U/t = 20, and A/t, = 2, calculated with the bond operator method. Green
solid lines show upper and lower bounds of the two-triplon continuum for
kj, = 0 and the three-triplon continuum for kj, = 7.

ductivity o3(w).

It should be also found that N*(k}, k|, = 7, w) for Q = (7, )
is quite similar to that of @ = (r, 0), although N*(k}, k}; = 0, )
of Q = (m,n) is clearly different from that of Q = (71, 0). The
former similarity at k}, = 7 results from the fact that Oy(k") =

0 for k;, = 7 since

O\(k) = —ny(1 +¢®) > e ™ ERGp - Spog.  (30)
Re leg 0
Hence, for k)’, = 7 we obtain
ony = O (k") 3D

and thus NS(k;,k; = m,w) for @ = (7, 7) shows almost the
same (k’, w)-dependence as that of N*(k}, k; = 7, w) for @ =
(mr, 0).

The latter difference of N*(k, k|, = 0, w) is a little bit com-

plicated; the spectral weight of N‘Y(k;.,k; = 0,w) for Q =
(m,7) is concentrated around k) = 7 while N*(k}, k| = 0, w)

2 BLN| (Ko Ky = A w)fx1 B
oy [w)lx R x 10%)
<, & s
3
Y
1.5r ]
N (k) K] =, o) (4107) I
3.5} au (W) (X q % 10%) I
= E
3 3t I
i
2.5}
0 1k 2

Fig. 7. (Color online) N*(k’,w) (black solid lines), o5(w) (green solid
line), and a';(a)) (red solid line) of the two-leg spin ladder with Q = (7, 7),
ty/ty =2, U[ty =20, Aty = 2,and N = 28. Light blue regions show the two-
triplon continuum for &}, = 0 and the three-triplon continuum for &}, = 7. The
blue solid line shows the dispersion of the two-triplon singlet bound state.

for Q = (m,0) vanishes at k’, = &. This point originates from
the finite O, for Q = (7, 7). In addition, N*(k, k; = 0, w) of
0 = (m,m) has a small contribution around &, = 0, which is
understood as follows. It can be found that A,(Q) = A for

Q = (m, ) and thus

8UEA —
m(Q) = AP - 2AUK,. (32)
Consequently, we obtain
ony_0) = ~4AUH", (33)

which leads to (alén;,_ |0) = 0 for |a) # |0) and N°(k, =
k, =0,w) = 0.

Now, we discuss how to observe these spectral quanti-
ties experimentally. Unfortunately, not so many materials
are thought to realize the Hubbard models with periodic
potentials. Besides TTF-CA and its derivatives,***? which
are quasi-one-dimensional organic compounds with alternat-
ing potentials, cold atom systems have been considered as
promising realizations.*> Although spectral quantities of cold
atom systems are also observed experimentally,***> their
spectral resolution seems insufficient to detect the spectral
weights associated with the spin degrees of freedom discussed
here.

Here, we explore materials with randomness as alternative
systems with site-dependent potentials. As a typical example,
it has been pointed out that an organic ladder material (a-
DT-TTF),[Au(mnt),] has a weak disorder due to the donor
molecule a-DT-TTF.*47 This molecule has two types of
structures, called cis- and trans-forms, which are randomly
arranged in the ladder material.*® The difference in the struc-
tures naturally leads to the difference in the energy level,
which can lead to randomness in the site-dependent potential
in the form that two types of sites with different potential en-
ergies are randomly arranged. Furthermore, X-ray irradiation
has been known to introduce randomness into organic corre-
lated systems,*® which may allow us to treat various organic
ladders with random potentials.

With (a-DT-TTF);[Au(mnt);] in mind, we treat a two-leg
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Fig. 8. (Color online) (a) oj(w) of the two-leg ladder with #,/t, = 2,
U/t, = 20, A/t, = 2 and N = 28 under the random potential. (b) The semi-
log plot of o}(w) shown in (a) (black solid lines). The results for ladders with
periodic potentials, oy(w) for @ = (7, 0) (green dot-dashed line), oj(w) for
Q = (nm, ) (red dashed line), and o§(w) for @ = (7, 7) (blue dotted line) are
also shown here. The wave number Q for each quantity is depicted as the
subscript.

ladder with the simple random potential expressed by

A
€= —Efla (34)

where ¢; is the random variable which takes 1 or -1 with the
same probability. Figure 8 (a) displays the calculated results
of the optical conductivity o}(w) of the ladder with the ran-
dom potential. The physical parameters are set to t,/t, = 2,
U/t, = 20, A/t, = 2, N = 28, and we take the average
for 200 samples. In addition, we use the same energy scale
Zv = 8Ut}2,/ (U? — A)? as that of the case with the periodic

potential of Q = (i, 1) because of its usefulness although fy
is no longer the exact exchange interaction along the rung.
We have confirmed that the ladder with the random potential
has the characteristic spectral structures in o(w); there are
a sharp peak at w/fy ~ 1.8, a shoulder structure at around
w/f, = 2.1, and a small broad peak at around w/Ey =2.8.
Judging from the energy scales where these structures appear,
the sharp peak and shoulder are thought to originate from the
two-triplon states, and the broad peak from the three-triplon
states. For further examination, the semi-log plot of the same
data is shown in Fig. 8 (b), where numerical results of ladders
with periodic potentials are also plotted. Comparisons among
these data suggest that the sharp peak stems from the two-
triplon bound state and the shoulder from the continuum. In
addition, the broad peak corresponds to the three-triplon con-
tinuum.

Whether the spectral signature of the three-triplon state is
well separated from that of the two-triplon states depends
strongly on the competition between two energy scales, Ey

Fig. 9. (Color online) optical conductivity o(w) of the two-leg ladders
Eldg the random potential with U/t, = 10, A/t, = 1, N = 28, with increasing
K)C/K)' = ([x/ty)z-

and K. The former is roughly equal to the creation energy of
one triplon, and the latter is proportional to the bandwidth of
the triplon band. Figure 9, which shows o{(w) for U/t, = 10,
N = 28, and A/t, = 1, demonstrate how these spectral struc-
tures change with increasing EX/KV = (tx/ty)z. For small
K. /Ey, the peak of the three-triplon band around w ~ SK},
is far from that of the two-triplon band for w ~ ny. As
fx/fy increases, the shoulder structure at w/fy ~ 2 orig-
inating from the two-triplon continuum becomes larger and
broader. At K, /EV = 1/2, the shoulder merges with the peak
of the three-triplon continuum, and the resulting broad shoul-
der ranging from w/K, ~ 2 to w/K, ~ 3.5 is reminiscent
of the multi-triplon state. At K, /fy = 1, it becomes difficult
to find out the signature of the three-triplon state. Since the
ladder material (a-DT-TTF),[Au(mnt),] is considered to be
(tc/ ty)2 = 0.54,% the broad shoulder structure state might be
detected experimentally. Furthermore, materials with smaller
K./K,, such as (CsH;oN),CuBry (K./K, ~ 1/4),'>% irradi-
ated with X-rays could be much better ones to observe these
multi-triplon states.

4. Summary

In this work, we have studied the low-energy spectral prop-
erties of the two-leg Hubbard ladders with site-dependent
potentials. Our approach combining the analytical treatment
for the Hubbard models with the numerical diagonalization
demonstrated that the spectral functions N*(k’, w) and oy (w),
the contributions of the spin degrees of freedom to the dynam-
ical charge structure factor and the optical conductivity along
the y = x,y direction, detect the two- and three-triplon exci-
tations of the two-leg spin ladders. The key ingredient to de-
tect these multi-triplon excitations is the finite site-dependent
potential of the ladder. In our framework, this point is ex-
pressed in terms of the quantity 17;;, which appears in the def-
initions of N*(k’,w) and oj(w). Numerical results obtained
using the Lanczos diagonalization are consistent with the re-
sults of bond operator theory. We have also examined that, by
tuning the periodicity of the potential, o)(w) can select de-
tectable excited states; for example, o5(w) probes either the
two-triplon bound state or the three-triplon continuum. Fur-
thermore, we confirmed that the two-leg ladder with the ran-
dom potential also has finite spectral weights in o3(w) stem-
ming from the two- and three-triplon states, which suggest
that ladder materials with intrinsic or acquired randomness
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and strong intra-rung couplings are good candidates for exper-
imentally observing and identifying these multi-triplon states.
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Appendix A: Operators of Two-leg Ladders

Here, we derive some relations between operators used in
this work. Now let us start with the derivation of Egs. (21-24)
for the two-leg ladders with the nearest-neighbor hoppings
and the periodic potentials. Since the summation in Eq. (6)
with respect to [ and j is restricted to the nearest-neighbor
pairs, we obtain

s —ik’-R
6nk:—77xze’ ZSR'SR+r
R r=+a,

—ik’-R
— Ty Z e " "Sg 'SR+ay
Releg 0

-1y Z e RSk - Sk_a,. (A-1)

Releg 1
where the coefficient 7;; for the pair (/) is replaced by n7gR+a,
of Eq. (17), and the constant (-1/4) in Eq. (3) is omitted as
noted above. Then using the periodic boundary condition for
the y-direction, R + a, = R — a, for R € leg 1, the second and
third terms are summarized as

ony = —sz e R Z SR - SRr+r

R r=+a,

iR
— Ny Z e Sk - SR+a,-
R

(A-2)

As for the current operator J3, Eq. (9) for y = x is evaluated
as

e — .
i = 2K, [; e @R (—a)Sk - (Sk+a, X SR-a,)

+ > R (@)Sk - (Sk-a, X Skra,)
R

e — _i0-
+ %nxKy Z e QR(_ax)SR : (SR+a1 X SR+ay)
Releg 0
+ > e @R@a)Sk - (Sk-a, X Skra,)
Releg 0
+ > e 2Ra)Sk - (Skea, X Skoa,)
Releg 1

+ > e ®@)Sk - (Sk-a, X Ska)|-
Releg 1

(A-3)

Now, using the same boundary condition for y-direction, we
obtain
e

Jy =~y ; @R [2K Sk - (Skra, X Sk-a,)

+K,Sk - (Sk+a, X Sk+a,)

— K,Sk - (Sk-a, X Sk+a, )] .

For J§, we need a slightly different treatment. The defini-
tion (9) for y = y is evaluated as

(A-4)

en, K,

s

DL @R N (—a)Sk - (Skea, X Sker)
Releg 0

r=+a,

+ 3 R N (@)Sk- (Srea, X Sren)|- (AS)

Releg 1 r=+a,
Here we introduce the modified wave number Q = Q+
(O, n/ay) of Eq. (27), and then obtain
o IOR _ e—iQiRR forR € legO' (A6)
—e R forR € leg 1

Therefore, Equation (A-5) is summarized as

ey o
B==2K Y ) Sk (Skia, X Sker). (AT)
R

h

r=+a,
Appendix B: Dispersion of Multi-Triplon States

In this part, we make some comments on the dispersion
relations of multi-triplon states. As for the one-triplon disper-
sion, we use the result of Ref. 39. The dispersion w;(k,) of
the one-triplon with the wave number k, along x-direction is
given by

8§ 8
wl(kx) = ?y Z Z an,m/ln cos(mky),

n=0 m=0

B-1)

where 1 = K, /Ey is the expansion parameter and the coeffi-
cient a, , is shown in Table III of Ref. 39.

An eigenvalue of an n-triplon unbound state with the wave
number py is given by the following simple summation

Wp(Prot) = Z wi(pi)

=1, n

(B-2)

under the limitation of ;... , pi = pwt. By taking all al-
lowed combinations of (py,--- , p,), we obtain the n-triplon
continuum at k, = py. Here, we note that one triplon carries
the wave number k, = 7 along y-direction. Hence n-triplon
states have the wave number k, = nsr (mod 2).

As for the two-triplon singlet bound state, we follow the
procedure of Ref. 23; we employ the results of Ref. 18 for
the dispersion relation wgt(kx) of the two-triplon singlet bound
state, which is given by
3 19 9

R o

wy (k) :[_(’[2_2 16" 32

11, 51,
(zﬁ g/l + ﬁ/l )COS(kx)

5 5, 21 4
= — 2
(16/1 + 32/1 )cos( k)

—ﬂﬁ cos(3kx)] ) (B-3)
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Appendix C: Bond Operator Theory

We here review the bond operator theory,>*3% which was
developed to investigate the ground state phase diagram of
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S = 1/2 two-dimensional frustrated Heisenberg model.>®  formation
The application to the two-leg ladder was made by Gopalan et _ . ¥
al.,’> and more excellent treatment of the ladder is discussed Yka = COSh Otk + sinh Okl (C9)
later.>® Here, we follow the procedure of Ref. 35 and pick  with
up only essential points to reproduce our calculations for the 1 A
. k
convenience of the reader. coshf, = — | — +1 (C-10)
Let us introduce the bond operators. The a-component of V2 Vo
the spin operator of the site R = (,n) onthelegn =0or 1is and
represented as . 1 Ag
1. » . sinh 6, = ?sgn(Ak) - 1, (C-11)
S5 = Skoan = 58] e + 1,51 = apyligley) (C-1) . ' 2 e
we diagonalize the mean-field Hamiltonian as
and —
I ; 0N (2K P —us? )= Ne| K
ST =Sk = 5(—57% - tzTaSl - saﬁvtl‘ﬁth'): (C2) Hin(p, 5) _Nx( 4Kys 1S +,u) 2 [ z K
where s; and t,,(@ = x,y,z) are bond operators for the sin- + 1
glet and triplet states of a rung labeled by I. Here, we use the + Z Wk (71«;7/«* + E) : (C12)
summation convention for repeated indices and the totally an- k
tisymmetric tensor &,4,. These operators have bosonic statis- ~ Here, the quantity
tics to satisfy the algebra of the spin operator S%. In addition, 5
they follow the hard-core condition Wk = A A = QA? (C-13)

IS] + l‘;{y

liw = 1 (C3)

for each rung.
Using the bond operators, we rewrite the Hamiltonian of
the two-leg ladder (20) as

H* = H() + AH,, (C4)
where
=( 3 1.
Hy = Z Ky (_Zsl S; + Ztlntl")
_ i T
D] i+ 1,1 = 1) (C5)
I
and
X,
7 Z tlatl+1‘7sl+lsl + tlatl+1aslsl+1 + H.C.) . (C06)

l

Here we note that the chemical potential y; is introduced to
impose the hard-core condition (C-3) and the quartic term
with respect to #\” (H, in Ref. 35 ) is omitted here follow-
ing the theoretical treatment.>>

Now, the replacement s(T) (sf)) = § using the mean
field 5 is introduced to dlagonalize the Hamiltonian (C-4).
In addition, the chemical potential y; is replaced by the site-
independent one u because of the translational invariance of
the ladder system. Applying the Fourier transformation of
the operations #;, = N;' Y tx,e’, we obtain the mean-field
Hamiltonian

3_
H,(u, 5) =N, (_ZK)'EZ _/152 +/J)

+Z[Akr tha + Mty + tral k)] (CT)

where

1 _
Ay = 1 u+ /leEZ cosk,

and N, is the number of rungs. Using the Bogoliubov trans-

1—
Ay = EKyEZ cosk, (C-8)

is the dispersion of the Bogoliubov boson, which corresponds
to the triplon of the two-leg ladder.

The next step is to obtain physical quantities within this
mean-field theory. Following the method in the original pa-
per,>> we calculate the mean fields 5 and yu at the ground state
by numerically solving the saddle-point equations

aHﬂl
=0and OH =0.
ou 85

Then, we evaluate the dynamical charge structure factor

N*(k', w) for Q = (m,0), where the charge disproportionation
ony, of Eq. (21) is given by

(C-14)

ony = O(k)
- —nxz KD Sr- S (C15)
r=zta,
For this purpose, we represent
ony, = onp,  for k' =(K,,0) (C-16)
= 6nzi for k' = (kl,n), (C-17)

and then express these quantities with the boson operators.
First, we deal with

Sy, = = Z e ! Z(Soz “Sorer + 81 Si14r)s

1 r=x1

(C-18)

which is necessary to calculate N*(k}, k’ = 0,w). Here, we
use the boson representation

Sor-Soj +S1-S1;

=2
S
(tT ti +10 1

=3 ol * Chytia + tatia)

(C19)
where the replacement s( Y - §is introduced, and only the
two-body terms of the boson operators are left. Using the
Fourier transformation and the Bogoliubov boson y(') 6n2,
is expressed as '

6n2; = 1,5 Z {—[cos p + cos(p — k)] cosh 6,y sinh 6,
P
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X Vl—k;(ﬂ’i pa €08 pcosh ).y, cosh prjp_k;ay;a
+ cos(p — k) sinh 6),_y, sinh pr; k;ayi pa

— [cos p + cos(p — k)1 sinh 6, cosh 0, y_pikia ¥ pa
+ cos psinh 8. sinh 6,y p 0¥ -pa

+ cos(p — k) cosh 6,y cosh pr_erk;ayp(,} ,  (C20

where the two-boson creation or annihilation terms are left
to treat the two-triplon continuum contributing to N*(k’, k;, =
0, w). Then N*(k’,, k;, = 0, w) is represented as
N (K, K, = 0,w) = )" Kelon, [0)26(w — Eq + Eo)
a#0

’

= 625" Z [cos (p + %)cos(kzl ) smh(& + H,Hkr)

— cosp cosh(9p + 917+k.’r)]

X

K, K,
cos p+? cos 5 smh(@ +0p+k/)

k', k',
—cos|p+ E cos cosh(H + 9,,”{/) 0w — wp — Wpii).

2
(€21
As for
ong, =~ Z e ! Z(Soz “Soter =81+ S1er), (C22)

1 r=+1

we use the same notation as

Sor - Soj — S-S

is
+ +
=~ s (tlatjﬁtjb + tatlgtis + 11, Iﬁth; + tj(,tlﬁtlé), (C23)

and then obtain

is "
ony, = —Enxeaﬂg(l + e k) Z [ iktp) 4 e p]
VN, rq
. . ¥
x (cosh ), — sin §,)(cosh §, sinh 6, [,Jrqy;(yyqﬁyik;_p_q s

+ sinh 8, cosh O 4 p+qV—paY-g8Yk,+p+q5)- (C-24)

It should be noted that the three-boson creation or annihila-
tion terms are left in Eq. (C-24). Finally, N*(k}, k; = m, w) is
expressed as

NO(K,, k; =7, W)

D Kalon 10)P8(w — Ey + Ey)

a#0
(1+cosk’)Zcos +E
PT5

121735
x cosh 8, sinh 6,44 (cosh 6, — sinh ,,)

X

X

k/
cos (p + ?") (cosh, —sinh 6,) sinh(9p+q+k;+ - Gq)

’

k
+ cos (p + 3)‘) (cosh @, — sinh 6,) smh( Opigik+ )

’

k
+ cos (p +q+ 3") (cosh Opgir, — sinh O gir) sinh(Gq7 - Hp)}

X 0(W — Wy — Wy — Wprg+i,)- (C-25)
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