
Java Classes with “-Er” and “-Utils” Suffixes Have
Higher Complexity

Anna Sukhova
agsukhova_1@edu.hse.ru

HSE
Moscow, Russia

Alexey Akhundov
anakhundov@edu.hse.ru

HSE
Moscow, Russia

Efim Verzakov
eaverzakov@edu.hse.ru

HSE
Moscow, Russia

Yegor Bugayenko
yegor256@gmail.com

Huawei, Moscow, Russia

Abstract
In object-oriented programming languages, a belief exists
that classes with “-Er/-Or” and “-Utils” suffixes are “code
smells” because they take over a lot of functional responsibil-
ity, turning out to be bulky and complicated, and therefore
making it more difficult to maintain the code. In order to
validate this intuition, we analyzed complexity and cohesion
of 13,861 Java classes from 212 unique open-source GitHub
repositories. We found out that average values of Cyclomatic
Complexity and Cognitive Complexity metrics are at least
2.5 times higher when suffixes are present.

Keywords: object-oriented programming, utility class, func-
tor class, cyclomatic complexity, cognitive complexity, cohe-
sion

1 Introduction
Some object-oriented practitioners believe that the introduc-
tion of classes with names ending in “-Er/-Or” or “-Utils”,
later called “functors” [12], is a bad design decision [18, 21]
due to the seemingly increasing level of code understand-
ability and the decreasing level of code maintainability. They
argue that functors can be less cohesive [23] and more com-
plex because they tend to provide common methods for
diverse purposes, which are reused by other classes [22], so
the methods are weakly connected with each other [1, 8].
Programmers often frame complex or repetitive proce-

dures, such as file operations, encoding/decoding, or network
interactions, in so called “Utility Classes” [14, 15]. To name
an example, Apache Commons1, a widely spread and used
series of Java libraries, have a significant portion of their
classes named with the “-Utils” suffix. These classes are
frequently criticized for violating the object-oriented design
principles [3] and making design less structured [22].
We also presume that functors, which typically execute

operations on behalf of other classes and amalgamate numer-
ous responsibilities, lead to code that is more complex and
less cohesive [23]. However, these assertions lack empirical

1https://commons.apache.org/

support and are often based on personal experience. To vali-
date our hypothesis, we analyzed 13,861 Java classes from
1,000 unique open-source GitHub repositories and discov-
ered that, on average, the complexity of methods in functor
classes is more than 2.5 times higher than in other classes.
We didn’t find, though, that functor classes are less cohesive.
Despite the relatively small dataset under examination, we
conclude that functor classes represent poor design.
This article is structured as follows: Section 2 presents a

review of works related to the research, Section 3 outlines
practical steps taken during the study, Section 4 describes
obtained results, Section 5 provides interpretations of our
findings, Section 6 explores limitations, and Section 7 offers
a summary of the paper.

2 Related Work
Among others, Al Dallal and Briand [1], Bugayenko [7], Cun-
ningham [12] have emphasized that functor classes pose a
problem for maintainability, as they typically serve as mere
aggregates of procedures that are barely related to each other.
Bugayenko [6] even argued that functors are not “true” ob-
jects and do not belong in the domain of object-oriented
programming [24] because they do not encapsulate anything
and thus have no state, which, according to Booch et al. [5],
is a paramount quality of an object.
Oizumi and Garcia [19] described a technique used for

identifying potential design-related issues in software and
illustrated the example of a design problem, termed “Fat
Interface,” which describes a situation where an interface
exposes multiple functionalities through a general interface.
This example includes “-Er/-Or” classes as well as their inter-
relationships. The paper includes further elaboration on such
code anomalies as Long Method and God Class.
Griggs [13] highlighted another problem related to

“-Er/-Or” classes: such classes concentrate on behavior
rather than data that they store. They argue that this is a
violation of object-oriented paradigm: “We want to create
objects that describe what they are, and then bind behavior
to them.” They even proposed a re-naming convention for

ar
X

iv
:2

40
3.

17
43

0v
1 

 [
cs

.P
L

] 
 2

6 
M

ar
 2

02
4

https://orcid.org/0009-0000-8931-8813
https://orcid.org/0009-0003-8218-0710
https://orcid.org/0009-0006-7459-5782
https://orcid.org/0000-0001-6370-0678
https://commons.apache.org/


Anna Sukhova, Alexey Akhundov, Efim Verzakov, and Yegor Bugayenko

some patterns, which may help avoid functor classes, e.g.
“-Registry” instead of “-Manager” and “-Analysis” instead
of “-Analyzer”.
Pescio [20] pointed that a class name keeps functions

together and describes what code is truly doing. They ex-
plained for bad naming conventions (the “-Er” suffix, the
“-Able” suffix, the “-Object” suffix, and the “I-” prefix) and
their influence on bad properties of objects. For example,
“-Manager” and “-Managed” classes are procedures doing
the real work and plain old data structure, these classes do
not represent real objects. Also, they discovered the inter-
face “IValidatableObject“ from the .NET Framework 4.0,
which “provides a way for an object to be invalidated” and
“contains three of four bad class naming practices.”

However, none of the articles arguing against functor
classes had any metrical proof of how “bad” names of classes
are correlated with their complexity or cohesion.

3 Method
The goal of this study was to statistically verify that functors
are bad design decisions due to decrease of cohesion and
increase of complexity by analyzing large number of open-
source projects and evaluating code quality metrics. We were
interested in answering the following research questions:

RQ1 Do functors have lower cohesion?
RQ2 Do functors have higher complexity?
First, we took an existing “Classes and Metrics” (CAM)

dataset [9], where Java classes were already collected from
open-source repositories and more than 40 metrics were
already calculated. We chose CAM because it enabled us
to collect open-source data conveniently and provided pre-
existing metrics.

Our preference for open-source data was based on the di-
versity of open-source projects, the variety of tasks they han-
dle, and their wide range of applications. We also aimed to
make it easy for other researchers to replicate our work. Ad-
ditionally, we didn’t consider closed-source projects, either
due to limitations of access or a lack of research permissions.

Then, we split all Java classes into three groups: 1) classes
with the “-Utils” suffix, 2) classes with “-Er/-Or” suffixes,
and 3) all other classes. To the first group we also put classes
with the following suffixes: “-Utils,” “-Util,” “-Utilities,”
and “-Utility.” Additionally, we filtered out classes from
the second group with subsequent suffixes:

1 Inner, Actor, Logger, Member, Order, Parameter,
2 Error, Calculator, Vector, Computer, Customer,
3 Trigger, Cluster, Cipher, Cursor, Number, Owner,
4 Meter, Letter, Answer, Author, Folder, Other,
5 Cashier, Broker, Motor, Mirror, Spider, Color,
6 Center, Layer, Never, Browser, Either, Tensor,
7 Cylinder, Meteor, Flower, Banner, Chapter,
8 Developer.

Then, from the dataset we took the followingmetrics avail-
able for each Java class: LCOM5 [16], Normalized Hamming
Distance (NHD) [11], Total Cyclomatic Complexity (CC) [17]
of all methods in a class, Total, Mimimum, Maximum and
Average Cognitive Complexity (CoCo) [10] of all methods
in a class.
LCOM5 metric displays classes cohesion, more formally,

the lack of it, by focusing on related methods and variables.
By definition [16], LCOM5 is calculated for a class as follow-
ing:

LCOM5 =
𝑎 − 𝑘 · 𝑙
𝑙 − 𝑘 · 𝑙

where 𝑙 is the number of class attributes, 𝑘 is the number of
methods and 𝑎 is the sum of the number of distinct attributes
that are accessed by each method in a class. Thus, the higher
the value of metric the lower the cohesion, which indicates
that introducing the evaluated class is considered to be a bad
design decision.
NHD metric shows classes cohesion by using types of

method’s attributes, using the following formula [11]:

NHD = 1 − 2
𝑙𝑘 (𝑘 − 1)

𝑙∑︁
𝑗=1

𝑥 𝑗 (𝑘 − 𝑥 𝑗 )

where 𝑙 is the number of distinct parameter types, 𝑘 is the
number of methods, 𝑎 is the sum of the numbers of distinct
parameter types of each method in the class and 𝑥 𝑗 is the
the number of methods that have a parameter of type j. In
contrast to LCOM5, this metric reaches the highest cohesion
at its maximum.

CC metric is aimed at quantifying a program’s complexity
and understandability by counting its linearly independent
paths, using the following formula [17]:

𝐶 = 𝐸 − 𝑁 + 2

where 𝐸 is the number of edges of the graph representation
of code, 𝑁 is the number of nodes in the graph.
CoCo remedies CC’s shortcomings by punishing devia-

tions of linear control flow which normally goes from top
to bottom but not from left to right [10]. It adds penalty
for nesting more code: for example, adding loops in loops,
maintenance of which requires more efforts. We examined
aggregated values of CoCo for all methods in each class,
such as aggregated total, average, minimum and maximum
values.

Then, we filtered outliers—classes, for which the difference
between the lines of code and number of blank lines was
beyond thresholds of 0.01- and 0.99-quantilies amongst the
whole data.

Then, we divided resulting data by the considered groups
of classes as follows: classes with the “-Utils” suffix, classes
with “-Er/-Or” suffixes and rest of classes. For the last group
we selected classes that do not contain static methods and
attributes, because it could also be considered bad practice



Java Classes with “-Er” and “-Utils” Suffixes Have Higher Complexity

LCOM5 NHD

“-Er/-Or” 0.835 0.533
“-Utils” 0.810 0.566
Rest 0.704 0.562

Table 1. The values of cohesion metrics for all three groups
of Java classes, where LCOM5 and NHD refer to the corre-
sponding cohesion metrics. The worst cases with the lowest
cohesion are underscored (higher values of LCOM5 mean
lower cohesion).

and makes it harder to distinguish between ’normal’ classes
and “-Utils” classes, which usually contain static methods.
Then, to answer RQ1, we investigated the difference in

cohesion metrics, specifically any increases or decreases, for
“-Utils” and “-Er/-Or” classes.

Then, in responding to RQ2, we observed the disparity in
complexity metrics, particularly any upward or downward
shifts, for classes with “-Utils” and “-Er/-Or”.

During research, we did not account for constructors and
did not consider them in calculations of metrics, because
they are implicitly connected with class’s methods due to
initialization of attributes and therefore affect class cohesion
as it is shown by Bieman and Kang [4]. This connection also
was demonstrated by Bugayenko [8].

4 Results
First, we took an existing dataset “2023-10-22” from the CAM
framework [9]. This dataset comprises 863,000 Java classes
out of 1000 open-source projects with associated metrics. We
had to filter out the classes that didn’t have any of the six
metrics required for the research. We also removed outliers—
classes, for which the difference between the lines of code
and number of blank lines was beyond thresholds of 0.01-
and 0.99-quantiles amongst the whole data. In the end, 13,861
classes were left in the dataset, classified into three groups,
as shown in Table 3: there are 5,610 classes with “-Er/-Or”
suffixes, 72 classes with the “-Utils” suffix, and 8,179 classes
with no specific suffix.

After performing calculations described in Section 3, we
received metrics’ values for three groups of interest corre-
sponding to those with the prefix “-Er/-Or”, those with the
suffix “-Utils”, and the rest of the classes. The obtained val-
ues for classes are shown in Tables 1 and 2, where metrics are
columns and classes are rows. The results show that functor
classes, on average, are less cohesive and more complex. The
values of both complexity metrics (CC and CoCo) for functor
classes are almost three times larger than for other classes.

Furthermore, Figs. 1 to 4 illustrate separate bar charts for
corresponding metrics. It is visually obvious that the classes
without “-Er/-Or” or “-Utils” suffixes show the highest
cohesion and the lowest complexity among all of the groups,

-E
r/O

r

-U
til

s

Re
st

class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

LC
OM

5-
cv

c

0.835 0.81

0.704

Figure 1. The average values of total LCOM5 for three
groups of Java classes, not taking into account class con-
structors.

-E
r/O

r

-U
til

s

Re
st

class

0.0

0.1

0.2

0.3

0.4

0.5

NH
D-

cv
c

0.533
0.566 0.562

Figure 2. The average values of total NHD for three groups
of Java classes, not taking into account class constructors.

-E
r/O

r

-U
til

s

Re
st

class

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 20.106
20.931

7.731

3.79 3.514
1.8761.867 1.583 1.218

9.327
8.194

3.627

coco
acoco
mncoco
mxcoco

Figure 3. The average values of total CoCo for three groups
of Java classes: the classes with “-Er/-Or” and “-Utils” suf-
fixes are at least 2.5 times more complex.



Anna Sukhova, Alexey Akhundov, Efim Verzakov, and Yegor Bugayenko

CC Co
Co

A
Co

CO

M
xC

oC
o

M
nC

oC
o

“-Er/-Or” 14.26 20.106 3.790 9.327 1.867
“-Utils” 15.444 20.931 3.514 8.194 1.583
Rest 5.983 7.731 1.876 3.627 1.218

Table 2. The values of code complexity metrics for all three
groups of Java classes, where ACoCo refers to the average
CoCo of all methods in the class and MxCoCo/MnCoCo refer
to the maximum/minimum values of all methods. The values
of the highest complexity are underscored.

Classes LoC L/C

“-Er/-Or” 5,610 743337 132.502
“-Utils” 72 9959 138.319
Rest 8,179 590892 72.245

Table 3. Sizes of all three groups of Java classes under anal-
ysis, where “Classes” is the total count of Java classes that
belong to the group, “LoC” is the total number of lines of
code in all classes together, and “L/C” is a ratio of LoC per
class.

-E
r/O

r

-U
til

s

Re
st

class

0

2

4

6

8

10

12

14

16

Cy
clo

m
at

ic 
Co

m
pl

ex
ity

14.26
15.444

5.983

Figure 4. The average values of total CC for three groups of
Java classes: the classes with “-Er/-Or” and “-Utils” suffixes
are at least 2.5 times more complex.

except for the NHD metric. The classes with the “-Utils”
suffix have a slightly higher NHD value, thus better cohesion.

The entire dataset together with the scripts for its analysis
is available at the open GitHub repository: ILilliasI/sqm.

5 Discussion
Why only LCOM5 and NHD were considered as cohe-
sion metrics? In fact, there are many other metrics aimed

at showing the degree of cohesion, complexity and other as-
pects of the code. It is best to include all the metrics possible,
nevertheless, due to limited time we picked the described
above as reflecting the core measurement of code analyzed
in our research. It is also important to notice that all met-
rics were calculated exactly how they had been designed by
authors.
Is cohesion drop an indicator of proxy methods?

The analysis of the collected data indicates that class names
ending in “‘-Er/-Or” and “-Utils” are associated with a de-
crease in cohesion. This trend is evidenced by a decline in
several key metrics. A deeper exploration into the causes
reveals that utility classes, which are prevalent in these sce-
narios, often employ an excess of proxy methods. These
proxy methods are designed to simplify the interface for the
users, allowing them to bypass certain arguments when call-
ing a “central” utility method, as those arguments are set to
default values. This approach, while seemingly convenient,
may contribute to the overall reduction in cohesion.
Moreover, a common practice observed among develop-

ers handling “-Er/-Or” named classes is the aggregation of
an extensive range of responsibilities within a single, bulky
.java file. This approach to class structuring poses signif-
icant challenges to maintainability. Such files can quickly
become unwieldy and difficult to manage.
How close functor classes are to “God classes”? In-

deed, an examination of “-Er/-Or” classes frequently uncov-
ers the presence of what are colloquially known as “God
Classes.” These are classes that are overly burdened with
a multitude of responsibilities, attempting to oversee and
execute an overly broad array of functions. This not only
confuses the readers and users of such classes but also ex-
acerbates the complexity of the codebase. Another issue is
that they might induce is what is known as “Fat Interface,”
where an interface offers more methods than clients require
often mixing a variety of responsibilities similar to regular
“God classes,” making the software difficult to extend or use.

How exactly functors negatively affect quality of
design? The presence of functors may act as an indicator of
deeper structural and design issues within the code. Address-
ing these issues may not require only a reconsideration of
naming practices but also an effort to adhere to principles of
good software design, such as maintaining cohesion, ensur-
ing modularity, and avoiding the pitfalls of creating overly
complex classes that hinder the readability, maintainability,
and extensibility of the code. In the context of utility classes,
they typically encompass a “central” method that includes
all essential arguments required to execute a particular task.
This primary method is referred to by other similar meth-
ods, which supply default values to some arguments. This
practice, however, tends to reduce cohesion and increase
complexity.

https://github.com/ILilliasI/sqm


Java Classes with “-Er” and “-Utils” Suffixes Have Higher Complexity

6 Limitations and Future Work
First, in our dataset there was no information about whether
a class is abstract or not. Because of this, we could not
identify and exclude abstract classes as it had been done by
Barker and Tempero [2].
Next, in this work we considered metric values for a rel-

atively small amount of utility classes due to a lack of sus-
tainable data for those classes in dataset.

Additionally, to split all the classes in the dataset into con-
sidered groups, we made some assumptions. Primarily, we
picked utility classes by criteria for a class name to end with
“-Utils” (and a few similar suffixes), but have not analyzed
the underlying structure of a class to conclude whether it
belongs to this group. The same applies to the “-Er/-Or”
classes except for manual exclusion of all the classes which
name ends in “-User,” “-Server” as well as other suffixes.
The full list can be found in Section 3.

7 Conclusion
The main goal of our research was to find our whether func-
tor Java classes have higher complexity and lower cohesion
than all other classes. We took 13,861 Java classes from 212
open source repositories, divided them into three groups
(“-Er/-Or” classes, “-Utils” classes, and all other classes),
and evaluated CC, CoCo, LCOM5, and NHD metrics in each
group. Because average values of CC and CoCO in the first
two groups were almost three times larger that the values in
the third group, we concluded that functor classes may be
considered bad design decisions.

To further solidify the claims, more source code could be
analyzed and more metrics could be calculated. Additionally,
more sophisticated and robust classification algorithms for
utility and “-Er/-Or” source code classes could be employed
in future work. Moreover, several other object oriented pro-
gramming languages could be observed, that is, for example,
Python or C++.

References
[1] Jehad Al Dallal and Lionel Briand. 2012. A Precise Method-Method

Interaction-Based Cohesion Metric for Object-Oriented Classes. ACM
Transactions on Software Engineering and Methodology-TOSEM 21, 1
(2012), 1–34. https://doi.org/10.1145/2089116.2089118

[2] Richard Barker and Ewan Tempero. 2007. A Large-Scale Empirical
Comparison of Object-Oriented Cohesion Metrics. In Proceedings of
the 14th Asia-Pacific Software Engineering Conference. 414–421. https:
//doi.org/10.1109/APSEC.2007.7

[3] Karl Beecher. 2018. Classes and Objects; Bad Programming Practices
101: Become a Better Coder by Learning How (Not) to Program. ,
145–167 pages.

[4] James M. Bieman and Byung-Kyoo Kang. 1995. Cohesion and Reuse in
an Object-Oriented System. In Proceedings of the SIGSOFT Symposium
on Software Reusability. https://doi.org/10.1145/211782.211856

[5] Grady Booch, Robert A. Maksimchuk, Michael Engle, Bobbi Young,
Jim Conallen, and Kelli Houston. 2007. Object-Oriented Analysis and
Design With Applications. Addison-Wesley Professional. https://doi.
org/10.5555/1407387

[6] Yegor Bugayenko. 2014. OOP Alternative to Utility Classes. https:
//www.yegor256.com/140505.html. [Online; accessed 05-03-2024].

[7] Yegor Bugayenko. 2016. Elegant Objects. Amazon.
[8] Yegor Bugayenko. 2020. The Impact of Constructors on the Validity of

Class Cohesion Metrics. In Proceedings of the International Conference
on Software Architecture Companion (ICSA-C). 67–70. https://doi.org/
10.1109/ICSA-C50368.2020.00021

[9] Yegor Bugayenko. 2024. CAM: A Collection of Snapshots of
GitHub Java Repositories Together With Metrics. https://github.com/
yegor256/cam. https://doi.org/10.48550/arXiv.2403.08488 [Online;
accessed 15-03-2024].

[10] G. Ann Campbell. 2018. Cognitive Complexity — an Overview and
Evaluation. In Proceedings of the International Conference on Technical
Debt (TechDebt). 57–58. https://doi.org/10.1145/3194164.3194186

[11] Steve Counsell, Stephen Swift, and Jason Crampton. 2006. The Inter-
pretation and Utility of Three Cohesion Metrics for Object-Oriented
Design. ACM Transactions of Software Engineering Methodology 15, 1
(2006), 123–149. https://doi.org/10.1145/1131421.1131422

[12] Ward Cunningham. 2014. Functor Object. https://wiki.c2.com/
?FunctorObject. [Online; accessed 13-03-2024].

[13] Travis Griggs. 2011. One of the Best Bits of Programming Advice I
Ever Got. https://objology.blogspot.com/2011/09/one-of-best-bits-of-
programming-advice.html. [Online; accessed 13-03-2024].

[14] Yann-Gael Guéhéneuc. 2004. A Systematic Study of UML Class Di-
agram Constituents for Their Abstract and Precise Recovery. , 265–
274 pages.

[15] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. 2004. Reasoning
About the Concept of Utilities. , 10–22 pages.

[16] Brian Henderson-Sellers, Larry L. Constantine, and Ian M. Graham.
1996. Coupling and Cohesion (towards a Valid Metrics Suite for Object-
Oriented Analysis and Design). , 143–158 pages.

[17] Thomas J. McCabe. 1976. A Complexity Measure. IEEE Transactions
on Software Engineering 2, 1 (1976), 308–320. https://doi.org/10.1109/
TSE.1976.233837

[18] C. J. Neill and B. Gill. 2003. Refactoring Reusable Business Components.
IT Professional 5, 1 (2003), 33–38. https://doi.org/10.1109/MITP.2003.
1176488

[19] Willian Oizumi and Alessandro Garcia. 2020. Synthesis of Code Anom-
alies: Revealing Design Problems in the Source Code. , 7–12 pages.
https://doi.org/10.5753/ctd.2016.9131

[20] Carlo Pescio. 2011. Your Coding Conventions Are Hurting
You. http://www.carlopescio.com/2011/04/your-coding-conventions-
are-hurting-you.html. [Online; accessed 17-03-2024].

[21] Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. 2017. How
Do Developers Select and Prioritize Code Smells? A Preliminary Study.
In Proceedings of the International Conference on Software Maintenance
and Evolution (ICSME). 484–488. https://doi.org/10.1109/ICSME.2017.
66

[22] Richard W. Selby and Victor R. Basili. 1991. Analyzing Error-Prone
System Structure. IEEE Transactions on Software Engineering 17, 2
(1991), 141–152. https://doi.org/10.1109/32.67595

[23] Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. 1974.
Structured Design. IBM Systems Journal 13, 2 (1974), 115–139. https:
//doi.org/10.1147/sj.132.0115

[24] David West. 2004. Object Thinking. Pearson Education.

https://doi.org/10.1145/2089116.2089118
https://doi.org/10.1109/APSEC.2007.7
https://doi.org/10.1109/APSEC.2007.7
https://doi.org/10.1145/211782.211856
https://doi.org/10.5555/1407387
https://doi.org/10.5555/1407387
https://www.yegor256.com/140505.html
https://www.yegor256.com/140505.html
https://doi.org/10.1109/ICSA-C50368.2020.00021
https://doi.org/10.1109/ICSA-C50368.2020.00021
https://github.com/yegor256/cam
https://github.com/yegor256/cam
https://doi.org/10.48550/arXiv.2403.08488
https://doi.org/10.1145/3194164.3194186
https://doi.org/10.1145/1131421.1131422
https://wiki.c2.com/?FunctorObject
https://wiki.c2.com/?FunctorObject
https://objology.blogspot.com/2011/09/one-of-best-bits-of-programming-advice.html
https://objology.blogspot.com/2011/09/one-of-best-bits-of-programming-advice.html
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/MITP.2003.1176488
https://doi.org/10.1109/MITP.2003.1176488
https://doi.org/10.5753/ctd.2016.9131
http://www.carlopescio.com/2011/04/your-coding-conventions-are-hurting-you.html
http://www.carlopescio.com/2011/04/your-coding-conventions-are-hurting-you.html
https://doi.org/10.1109/ICSME.2017.66
https://doi.org/10.1109/ICSME.2017.66
https://doi.org/10.1109/32.67595
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.1147/sj.132.0115

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	4 Results
	5 Discussion
	6 Limitations and Future Work
	7 Conclusion
	References

