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We extend a recent model of temporal random hyperbolic graphs by allowing connections and
disconnections to persist across network snapshots with different probabilities, ω1 and ω2. This
extension, while conceptually simple, poses analytical challenges involving the Appell F1 series.
Despite these challenges, we are able to analyze key properties of the model, which include the
distributions of contact and intercontact durations, as well as the expected time-aggregated degree.
The incorporation of ω1 and ω2 enables more flexible tuning of the average contact and intercontact
durations, and of the average time-aggregated degree, providing a finer control for exploring the effect
of temporal network dynamics on epidemic processes. Overall, our results provide new insights into
the analysis of temporal networks and contribute to a more general representation of real-world
scenarios.

I. INTRODUCTION

Originally motivated by the parsimonious modeling of
human contact networks [1–3], a simple model of tem-
poral random hyperbolic graphs has been recently intro-
duced and analyzed, called dynamic-S1 [4]. The model
has demonstrated the ability to qualitatively and some-
times quantitatively reproduce various dynamical prop-
erties observed in real temporal networks. These prop-
erties include broad distributions of contact and inter-
contact durations, broad weight and strength distribu-
tions, narrow distributions of shortest time-respecting
paths, and formation of recurrent components [4]. In the
model, each node is endowed with an expected degree
or popularity variable κ and a similarity coordinate θ.
Each network snapshot is then independently generated
according to the S1 model, or equivalently, the hyper-
bolic H2 model [5], where nodes connect with probability
p(χ) = 1/(1 + χ1/T ). Here, χ ∝ ∆θ/(κκ′) represents the
effective distance between the nodes, ∆θ is the nodes’
angular similarity distance, κ and κ′ are the nodes’ ex-
pected degrees, and parameter T ∈ (0, 1) is called net-
work temperature. We note that the dynamic-S1 yields
realistic dynamical properties only for T ∈ (0, 1), but not
for T > 1 [6].
While the snapshots are independently generated in

the dynamic-S1, they are not independent as there are
correlations among them induced by the nodes’ effective
distances. For instance, nodes at smaller effective dis-
tances have higher chances of being connected in consec-
utive snapshots. Given the ability of the model to ad-
equately reproduce various dynamical properties of real
systems, it has been demonstrated that spreading pro-
cesses perform remarkably similar in some real networks
and their modeled counterparts [4]. Furthermore, the
model has already demonstrated its utility in real-world
epidemiological studies [7], and has been employed to
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justify the meaningful mapping of human proximity net-
works into hyperbolic spaces [8].
To better capture the average contact and intercontact

durations observed in some real systems, the dynamic-S1
has been recently extended to account for link persis-
tence, where connections and disconnections can persist,
i.e., propagate, from one snapshot to the next, irrespec-
tive of their effective distance [9–12]. This extension,
called ω-dynamic-S1 [13], introduces the probability pa-
rameter ω ∈ [0, 1), dictating the persistence of both con-
nections and disconnections. However, the assumption
that links and non-links persist with the same probabil-
ity may not generally hold in reality. Moreover, because
of this assumption, the model does not allow individual
tuning of the average contact and intercontact durations,
as both are dictated by the same parameter ω.
To address these limitations, here we generalize the

model by allowing connections and disconnections to per-
sist with different probabilities, denoted as ω1 and ω2.
We refer to the generalized model as (ω1, ω2)-dynamic-
S1. Even though this generalization is conceptually sim-
ple, it poses significant analytical challenges involving
the Appell F1 series—a two-variable generalization of the
Gauss hypergeometric function [14]. In our case, these
variables involve the persistence probabilities ω1 and ω2.
In contrast, the analysis simplifies if ω1 = ω2, requir-
ing only manipulations with the Gauss hypergeometric
function [13].
In addition to advancing modeling, incorporating dis-

tinct persistence probabilities for connections and dis-
connections, and understanding their effects on temporal
network properties, is important for better understand-
ing the performance of spreading phenomena. This point
is illustrated in Fig. 1. The figure shows that stronger link
persistence can slow down epidemic spreading, depend-
ing on the setting. This occurs as pairs of nodes remain
connected for longer durations, effectively reducing their
opportunities to connect and infect other nodes. Non-
link persistence seems to have a lesser effect, unless it is
too strong (ω2 → 1). At the same time, Fig. 1 shows
that spreading performance is also affected by the net-
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FIG. 1. Exploring epidemic spreading dynamics on temporal networks generated by the (ω1, ω2)-dynamic-S1 model. Plots
(a)-(c) depict the number of infected nodes over time averaged over 100 simulations of the Susceptible-Infected-Susceptible
(SIS) model [15]. There are N = 500 nodes with a low expected degree κ = k̄ = 0.3, yielding network snapshots in the
disconnected regime, as in human proximity networks [3, 4]. Moving from left to right, the network temperature is 0.2, 0.5, and
0.7. Results are presented for different levels of the link persistence probability ω1, while in all cases ω2 = 0. The total number
of time slots is M = 1200, with the first 200 slots used as a warm-up period for the (ω1, ω2)-dynamic-S1 to reach a steady state
(see text). The subsequent 1000 slots are used for SIS model simulations, starting with 5% of nodes randomly infected, while
the infection and recovery probabilities per slot are 0.5 and 0.005, respectively. Plots (d)-(f) show similar dynamics for the
Susceptible-Infected-Recovered (SIR) model [15], with all parameters the same as in (a)-(c).

work temperature T , with lower values of T suppressing
spreading. This is because lower values of T favor local-
ization of connections in the snapshots, as explained in
Sec. II.

Despite the increased complexity introduced by the
(ω1, ω2)-dynamic-S1, we can still analyze key properties
of the model, including its time-dependent and equilib-
rium connection probability functions, the distributions
of contact and intercontact durations, as well as the ex-
pected time-aggregated degree, elucidating their depen-
dence on ω1, ω2, and the network temperature T . We fo-
cus on the (inter)contact distributions as they constitute
perhaps the most fundamental characteristics affecting
the performance of processes running on temporal net-
works [16–21]. We show that the persistence probabilities
ω1 and ω2 affect only the averages of these distributions
but not their tails. Their tails follow power laws with
exponents that depend only on the network temperature
T , and these exponents are the same as in the case of
ω1 = ω2 [13]. Our results are proven for sufficiently large
networks that have evolved for a sufficiently long time to
reach a steady state.

The expected time-aggregated degree represents the
average number of distinct nodes that a node connects
to during an observation period, and is another impor-
tant characteristic of a temporal network [2, 3]. We

show that as ω1 or ω2 increases, or as T decreases, the
expected time-aggregated degree decreases, which can
slow down spreading (Fig. 1). Having three independent
parameters—ω1, ω2, and T—we can more flexibly adjust
the average contact and intercontact durations, as well as
the expected time-aggregated degree in the model. This
finer control allows for a more nuanced exploration of
temporal network dynamics and their impact on spread-
ing processes.
The rest of the paper is structured as follows. In the

next section, we provide a brief overview of the S1 model.
In Sec. III, we present the (ω1, ω2)-dynamic-S1 model and
analyze its connection probability function. In Secs. IV
and V, we analyze the contact and intercontact distribu-
tions in the model, show their duality, and prove their
power law tails. In Sec. VI, we analyze the expected
time-aggregated degree. Finally, in Section VII, we dis-
cuss open problems and conclude the paper.

II. PRELIMINARIES

In the S1 model [5], each node is associated with a pair
of hidden (or latent) variables (κ, θ). The hidden variable
κ represents the popularity of the node, and is propor-
tional to the node’s expected degree in the network. The
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hidden variable θ represents the angular similarity coor-
dinate of the node on a circle of radius R = N/2π, where
N is the total number of nodes [22].

To generate a network that has size N , average node
degree k̄, and temperature T ∈ (0, 1), we perform the
following steps:

(i) For each node i ∈ {1, 2, . . . , N}, we sample its de-
gree variable κi from a probability density func-
tion (PDF) ρ(κ), and its angular coordinate θi uni-
formly at random from [0, 2π].

(ii) We connect every pair of nodes i and j according
to the Fermi-Dirac connection probability

pij =
1

1 + χ
1/T
ij

, (1)

where χij is the effective distance between nodes i and j,

χij =
R∆θij
µκiκj

. (2)

In the above relation, ∆θij = π−|π−|θi−θj || represents
the similarity distance between nodes i and j. ∆θ follows
a uniform distribution on [0, π], i.e., its PDF is f(∆θ) =
1/π.

We are interested in sparse networks, where N ≫ k̄.
In such cases, the resulting degree distribution in the net-
work has a similar form as ρ(κ) [23]. We also note that
smaller values of the temperature T favor connections at
smaller effective distances, i.e., the localization of con-
nections, increasing clustering in the network. Finally,
parameter µ in Eq. (2) is derived from the requirement
that the expected degree in the network is k̄, yielding

µ =
k̄ sin (Tπ)

2κ̄2Tπ
, (3)

where κ̄ =
∫
κρ(κ)dκ.

The S1 model is isomorphic to random hyperbolic
graphs (RHGs) after a transformation of the degree vari-
ables κ to radial coordinates r on the hyperbolic disk (see
Ref. [5] for more details).

III. (ω1, ω2)-DYNAMIC-S1

The (ω1, ω2)-dynamic-S1 model generates a series of
network snapshots, Gt, t = 1, . . . ,M , where M repre-
sents the total number of time slots. In the model, there
areN nodes that are assigned hidden variables (κ, θ) as in
the S1 model, which remain fixed throughout the snap-
shots. The temperature T ∈ (0, 1) and the persistence
probabilities ω1 ∈ [0, 1) and ω2 ∈ [0, 1) are also fixed.
While each snapshot Gt can potentially have a different
average degree k̄t, to facilitate the analysis, we assume
here a uniform average degree, i.e., k̄t = k̄, ∀t. Therefore,
the model parameters are N,M, ρ(κ), k̄, T, ω1, ω2.

Let

e
(t)
ij =

{
1 if nodes i and j are connected at time t,

0 otherwise.

The snapshots in the model are generated according to
the following rules:

(1) Snapshot G1 is generated according to the S1
model, except that the connection probability is
not given by Eq. (1) but by

p̃ij =
1

1 +
(

1−ω2

1−ω1

)
χ
1/T
ij

. (4)

(2) At each time step t = 2, . . . ,M , snapshot Gt starts
with N disconnected nodes.

(3) Each pair of nodes i, j in snapshot Gt connects
according to the following conditional connection
probabilities:

P[e(t)ij = 1|e(t−1)
ij = 1] = ω1 + (1− ω1)p̃ij , (5)

P[e(t)ij = 1|e(t−1)
ij = 0] = (1− ω2)p̃ij . (6)

(4) At time t + 1, the process is repeated to generate
snapshot Gt+1.

Equation (5) represents the scenario in which the pair
i, j is connected in the previous time slot t − 1. In this
case, the pair remains connected in slot t either because
the connection persists from t − 1 (with probability ω1)
or because the connection is established according to p̃ij
(with probability 1 − ω1). Equation (6) represents the
situation where the pair i, j is disconnected in t − 1. In
this case, the pair can establish a connection in slot t
if the disconnection does not persist from t − 1 (with
probability 1 − ω2), and the connection is established
according to p̃ij .

As we show below, the choice of the connection prob-
ability function in Eq. (4) ensures that the equilibrium
connection probability in the model is given by Eq. (1).
Consequently, snapshots generated by the model are
equivalent in equilibrium to RHGs, despite the depen-
dencies introduced among them by the persistence prob-
abilities ω1 and ω2.

Equilibrium connection probability. We can express the
unconditional connection probability for any node pair
i, j at time t = 2, 3, . . ., as follows:

P[e(t)ij = 1] = P[e(t)ij = 1|e(t−1)
ij = 1]× P[e(t−1)

ij = 1]

+ P[e(t)ij = 1|e(t−1)
ij = 0]× (1− P[e(t−1)

ij = 1])

= [ω1 + (ω2 − ω1)p̃ij ]× P[e(t−1)
ij = 1]

+ (1− ω2)p̃ij . (7)
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FIG. 2. Average snapshot degree as a function of time in
the (ω1, ω2)-dynamic-S1. The network consists of N = 500
nodes, the number of time slots is M = 500, the network
temperature is T = 0.5, and all nodes have the same expected
degree κ = k̄ = 5. Results are shown for different values of the
persistence probabilities ω1 and ω2, and represent averages
across 100 simulation runs. In all cases, the average snapshot
degree converges to its target value k̄ = 5 before slot 100.
Convergence is slower the bigger the difference between ω1

and ω2. The x-axis is on a logarithmic scale.

Solving the above recurrence relation for P[e(t)ij = 1], with

the initial condition P[e(1)ij = 1] = p̃ij , yields

P[e(t)ij = 1] =
B(1−At−1)

1−A
+ p̃ijA

t−1, (8)

where A = ω1 + (ω2 − ω1)p̃ij , and B = (1− ω2)p̃ij .
We note that 0 ≤ A < 1. Hence, as t tends to infinity,

At−1 converges to 0. Therefore, assuming that the sys-
tem has evolved for a sufficiently long time, we can drop
the superscript t from Eq. (8), and write the steady-state
or equilibrium connection probability:

P[eij = 1] =
B

1−A

=
(1− ω2)p̃ij

1− ω1 + (ω1 − ω2)p̃ij

=
1

1 + χ
1/T
ij

= pij . (9)

Thus, the equilibrium connection probability in the
model is indeed as in Eq. (1). The convergence to equi-
librium depends on the values of ω1 and ω2 and generally

occurs rapidly. However, it slows down as the difference
between ω1 and ω2 increases. Figure 2 illustrates this
point. In the next section, we analyze the distribution of
contact durations in the model.

IV. DISTRIBUTION OF CONTACT
DURATIONS

For our analysis, we assume that the system has
reached equilibrium, and we consider its evolution in a
time window of τ slots.
To derive the contact distribution, we need to con-

sider the probability of observing a sequence of exactly
t consecutive time slots where two nodes i and j with
hidden degrees κi and κj and angular distance ∆θij are
connected. Any such sequence should be enclosed within
two slots where the two nodes are not connected. That
is, we ignore for now the boundary cases where the first
or last of the t slots starts or ends at the beginning or end
of the observation period τ . Therefore, t ranges from 1
to τ−2. We denote this probability by rc(t;κi, κj ,∆θij).

We note that given a sequence of length t, there exist
τ− t−1 possible starting positions for this sequence. For
example, if t = 3, the nodes can be disconnected in slot
s−1, connected in slots s, s+1, s+2, and disconnected in
slot s+3, where s ranges from 2 to τ − 3. Consequently,
the probability of observing a slot where a sequence of
length t can start is

gτ (t) =
τ − t− 1

τ
. (10)

Furthermore, we observe the following:

(i) In equilibrium, the probability that two nodes i and
j are disconnected in a slot s is 1 − pij , where pij
is given by Eq. (9).

(ii) Given that they are disconnected in slot s, the prob-
ability that i and j are connected in slot s + 1 is
(1− ω2)p̃ij , where p̃ij is given by Eq. (4).

(iii) Given that they are connected in slot s + 1, the
probability that i and j remain connected in slots
s+ 2, . . . , s+ t is [ω1 + (1− ω1)p̃ij ]

t−1.

(iv) Finally, given that they are connected in slot s+ t,
the probability that i and j are disconnected in slot
s+ t+ 1 is (1− ω1)(1− p̃ij).

The probability rc(t;κi, κj ,∆θij) is obtained by multi-
plying gτ (t) with the probabilities described in points (i)
to (iv) above,

rc(t;κi, κj ,∆θij) = gτ (t)(1− ω1)(1− ω2)(1− pij)p̃ij(1− p̃ij)[ω1 + (1− ω1)p̃ij ]
t−1. (11)

The contact distribution, denoted as Pc(t) and defined for t ≥ 1, is given by

Pc(t) =
rc(t)∑
j rc(j)

∝ rc(t). (12)
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In the last expression, rc(t) is determined by removing the conditions on κi, κj , and ∆θij from Eq. (11),

rc(t) =

∫ ∫ ∫
rc(t;κ, κ

′,∆θ)ρ(κ)ρ(κ′)f(∆θ)dκdκ′d∆θ. (13)

We note that in practice, given a set of nonzero contact
durations, the empirical Pc(t) is determined by the ratio

nt/
∑

j nj , where nt represents the number of contact
durations in the set with length t.
Removing the condition on ∆θij from Eq. (11), yields

rc(t;κi, κj) =
1

π

∫ π

0

rc(t;κi, κj ,∆θ)d∆θ

= gτ (t)
2µκiκjT

N
(1− ω1)

1+T (1− ω2)
1−Tωt−1

1

∫ 1

uij
0

u−T (1− u)1+T
(
1− ω1 − 1

ω1
u
)t−1(

1− ω2 − ω1

1− ω1
u
)−1

du,

where uij
0 =

1

1 +
(

1−ω2

1−ω1

)(
N

2µκiκj

)1/T
. (14)

To obtain the above relation, we performed the change
of integration variable u = 1/[1 + ( 1−ω2

1−ω1
)( N∆θ

2πµκiκj
)1/T ].

Now, for sufficiently large network sizes N , uij
0 tends

to zero. This allows us to remove the condition on κi and
κj from Eq. (14), and write, irrespective of the form of
ρ(κ),

rc(t) ≈ gτ (t)
2µκ̄2T

N
(1− ω1)

1+T (1− ω2)
1−Tωt−1

1

∫ 1

0

u−T (1− u)1+T
(
1− ω1 − 1

ω1
u
)t−1(

1− ω2 − ω1

1− ω1
u
)−1

du. (15)

The integral in Eq. (15) can be evaluated numerically.
However, we observe that it is in a form suitable for rep-
resentation using the Appell F1 series [24]. This repre-
sentation will be employed below to deduce the behavior
of the tail of rc(t). In particular, Émile Picard discovered

in 1881 that the Appell F1 series, whose definition is pro-
vided in Appendix A, has the following one-dimensional
Euler-type integral representation (cf. section 5.8.2 of
Ref. [24]):

F1[a, b1, b2, c;x, y] =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ua−1(1− u)c−a−1(1− xu)−b1(1− yu)−b2du. (16)

The above relation is valid for c > a > 0, while Γ is
the gamma function. Utilizing this representation with
α = 1 − T , b1 = 1 − t, b2 = 1, c = 3, x = ω1−1

ω1
, and

y = ω2−ω1

1−ω1
, substituting µ with its expression in Eq. (3),

and employing the identity π
sin (Tπ) = Γ(1− T )Γ(T ), we

can rewrite Eq. (15), as

rc(t) ≈ gτ (t)
k̄T (1 + T )

2N
(1− ω1)

1+T (1− ω2)
1−Tωt−1

1 F1[1− T, 1− t, 1, 3;
ω1 − 1

ω1
,
ω2 − ω1

1− ω1
]

= gτ (t)
k̄T (1 + T )

2N
(1− ω1)

2+T (1− ω2)
−TF1[2 + T, 1− t, 1, 3; 1− ω1,

ω1 − ω2

1− ω2
]. (17)
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The last equality is obtained by performing the change
of variable v = 1−u in the integral of Eq. (16), or equiv-
alently, by applying the transformation given by Eq. (1)
in section 5.11 of Ref. [24]. For ω1 = ω2 = ω the last F1

function in Eq. (17) degenerates to the Gauss hypergeo-
metric function 2F1[2+T, 1− t, 3; 1−ω] (see Appendix A
for its definition), and we recover the relation for rc(t)

found in Ref. [13].
Boundary cases. The preceding analysis did not con-

sider the boundary case where the first slot in the se-
quence of t slots, during which two nodes are connected,
starts at the beginning of the observation period τ . In
this case, gτ (t) = 1/τ , and the probability of observing
this event for two nodes i and j is given by

rbc (t;κi, κj ,∆θij) =
1

τ
(1− ω1)pij(1− p̃ij)[ω1 + (1− ω1)p̃ij ]

t−1, (18)

for t = 1, . . . , τ − 1. Similarly, the analysis did not con-
sider the case where the last slot in the sequence of t
slots, during which two nodes are connected, finishes at
the end of the observation period. It is easy to see that
the probability of observing this event is also given by

Eq. (18).
Following the same procedure to remove the conditions

on κi, κj , and ∆θij , and employing the same transforma-
tions as before, we can write that the total probability
for these two cases is given by

rbc (t) ≈
2

τ

2µκ̄2T

N
(1− ω1)

T (1− ω2)
1−Tωt−1

1

∫ 1

0

u−T (1− u)T
(
1− ω1 − 1

ω1
u
)t−1(

1− ω2 − ω1

1− ω1
u
)−1

du

=
2

τ

k̄T

N
(1− ω1)

1+T (1− ω2)
−TF1[1 + T, 1− t, 1, 2; 1− ω1,

ω1 − ω2

1− ω2
]. (19)

We note that for any finite t, rbc (t) tends to zero as τ →
∞. However, as t approaches τ , the contribution of these
boundary cases becomes significant. Accounting for these
cases, the combined probability of observing a sequence
of t consecutive slots in which two nodes are connected
is given by

r̃c(t) = rc(t) + rbc (t), (20)

for t = 1, . . . , τ − 1.

The final boundary case occurs when two nodes i and
j remain connected for the entire observation period τ .
The probability of observing this case is

rbc (τ ;κi, κj ,∆θij) =
1

τ
pij [ω1 + (1− ω1)p̃ij ]

τ−1. (21)

Removing the conditions on κi, κj , and ∆θij , and em-
ploying the same transformations as before, gives

rbc (τ) ≈
1

τ

2µκ̄2T

N

(1− ω2

1− ω1

)1−T

ωτ−1
1

∫ 1

0

u−T (1− u)T−1
(
1− ω1 − 1

ω1
u
)τ−1(

1− ω2 − ω1

1− ω1
u
)−1

du

=
1

τ

k̄

N

(1− ω1

1− ω2

)T

F1[T, 1− τ, 1, 1; 1− ω1,
ω1 − ω2

1− ω2
]. (22)

We note that previous studies related to the dynamic-S1
model [4, 13] have not considered the above boundary
cases. In Fig. 3, we validate the above analysis with
simulations, while also taking into account the boundary
cases. In all cases, we calculate rc(t) and rbc (t) using
their integral representations, as we have found it more
efficient than utilizing the corresponding Appell F1 series.

Average contact duration. It is evident from our anal-
ysis and Fig. 3 that all three parameters—ω1, ω2, and
T—affect the contact distribution. In Fig. 4, we inves-
tigate how these parameters affect the average contact
duration.
We see from Fig. 4 that the average contact duration

increases as either ω1 or ω2 increases, with the rate of
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FIG. 3. Distribution of contact durations in simulated networks with the (ω1, ω2)-dynamic-S1 model vs. theoretical predictions.
The latter are given by Pc(t) = r̃c(t)/

∑τ
j=1 r̃c(j), where r̃c(t) is given by Eq. (20) for t = 1, . . . , τ −1, and by Eq. (22) for t = τ

(yielding the rightmost point on the plots). The number of nodes is N = 500, the average node degree is k̄ = 5, and all nodes
have the same expected degree κ = k̄. The total number of time slots is M = 1200, with the first 200 slots used as a warm-up
period. Empirical distributions are computed over the subsequent τ = 1000 slots. The network temperature in (a) is T = 0.2,
and in (b) T = 0.8. Results are presented for two combinations of the persistence probabilities ω1 and ω2. The simulations
are averaged over 10 runs, and empirical distributions are logarithmically binned, excluding the rightmost point. Theoretical
predictions are represented by dashed lines. All axes use a logarithmic scale.
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FIG. 4. Average contact duration vs. ω1, ω2, and T . Plot (a) shows the average contact duration in time slots as a function
of the persistence probability of connections ω1. The persistence probability of disconnections, ω2, is set to zero. Results are
shown for different values of the network temperature T . All other parameters are the same as in Fig. 3. The dashed lines
depict theoretical predictions given by t̄c =

∑τ
t=1 tPc(t), where Pc(t) is computed as in Fig. 3. Plot (b) is similar to (a), except

that ω1 is set to zero, and we vary ω2. The y-axes use a logarithmic scale. Deviations of analytical predictions from simulation
results are due to finite network size effects and are more pronounced for values of T or ω2 closer to 1.

increase becoming more pronounced as these parameters
approach 1. Moreover, we observe that the average con-
tact duration is more sensitive to and increases more
rapidly with ω1 than with ω2. This is expected, as ω1

directly impacts the probability that two nodes remain
connected, given by Eq. (5). In particular, as ω1 → 1,
the probability in Eq. (5) approaches 1, irrespective of the
value of ω2. On the other hand, ω2 indirectly affects this
probability via p̃ij (Eq. (4)). Indeed, as ω2 → 1, p̃ij → 1,
and Eq. (5) tends to 1, irrespective of the value of ω1. In
other words, as ω1 → 1 or ω2 → 1, the contact distribu-
tion degenerates to Pc(t) → 1 for t = τ , and Pc(t) → 0,
for t < τ , while the average contact duration tends to
the value of the observation interval τ . This convergence

occurs faster with ω1 → 1 than with ω2 → 1.
Lastly, Fig. 4 shows that the average contact duration

also increases as T decreases. A lower T favors connec-
tions at smaller effective distances, thereby increasing the
probability that connected pairs remain connected. For
T → 0, we obtain the same result as in the case of ω1 → 1
or ω2 → 1.
Tail of the contact distribution. We conclude our anal-

ysis in this section by deducing the behavior of Pc(t) at
large t. To this end, we utilize an asymptotic result given
by Eq. (20) in section 3.5.1 of Ref. [25]. This result states
that for x < 0 and |y| < 1, we can express the Appell
function F1[a, b + λ, b′, c;x, y] as a sum of Gauss hyper-
geometric functions,
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F1[a, b+ λ, b′, c;x, y] =

m−1∑
n=0

(
−b′

n

)
(a)n(−y)n

(c)n
2F1[b+ λ, a+ n, c+ n;x] +O(λ−m−a), (23)

where (q)n denotes the Pochhammer symbol, defined as:
(q)n = 1 for n = 0 and (q)n = q(q + 1) . . . (q + n− 1) for

n > 0. Furthermore, we utilize the transformation given
by Eq. (2) in section 5.11 of Ref. [24], which states that

F1[a, b, b
′, c;x, y] = (1− x)−aF1[a, c− b− b′, b′, c;

x

x− 1
,
y − x

1− x
]. (24)

Using the above transformation, we can rewrite the F1 function in Eq. (17), which we refer to as h1, as

h1 := F1[2 + T, 1− t, 1, 3; 1− ω1,
ω1 − ω2

1− ω2
] = ω

−(2+T )
1 F1[2 + T, 1 + t, 1, 3; 1− 1

ω1
, 1− 1− ω1

ω1(1− ω2)
]. (25)

Now, using Eq. (23) with a = 2+T , b = 1, λ = t, b′ = 1, c = 3, x = 1− 1
ω1

, and y = 1− 1−ω1

ω1(1−ω2)
, we can write

h1 = ω
−(2+T )
1

m−1∑
n=0

(2 + T )n
(3)n

(
1− 1− ω1

ω1(1− ω2)

)n

2F1[1 + t, 2 + T + n, 3 + n; 1− 1

ω1
] +O

( 1

t2+T+m

)
. (26)

To write the above relation, we also utilized that
(−1

n

)
=

(−1)n for n ∈ N.
As shown in Appendix B, the 2F1 function inside the

sum in Eq. (26) can be approximated for large t as

2F1[1 + t, 2 + T + n, 3 + n; 1− 1

ω1
] ≈

Γ(3 + n)(1/ω1 − 1)−(2+T+n)

Γ(1− T )

1

t2+T+n
. (27)

Consequently, at large t, the term corresponding to n = 0
in Eq. (26) dominates, and we can approximate h1 as

h1 ≈ 2(1− ω1)
−(2+T )

Γ(1− T )

1

t2+T
. (28)

This approximation is validated in Fig. 5.
We note that Eq. (26) holds for x = 1 − 1

ω1
< 0 and

|y| =
∣∣1 − 1−ω1

ω1(1−ω2)

∣∣ < 1. The first inequality always

holds (as ω1 < 1), while the second imposes the con-
straint ω2 < 3ω1−1

2ω1
. Additionally, the approximation in

Eq. (27) requires |1 − 1
ω1

| < 1, which imposes the con-

straint ω1 > 1/2. Combined, these constraints define the
region R1 of ω1 and ω2 depicted in Fig. 6, for which the
preceding analysis leading to Eq. (28) holds. However,

100 101 102 103
10-6

10-4

10-2

100

102

FIG. 5. Function h1 in Eq. (25) (dotted lines) vs. the
approximation for large t in Eq. (28) (solid line). Results are
shown for different values of ω2, while ω1 = 0.8 and T = 0.5.
All axes use a logarithmic scale.

in Appendix B, we prove that Eq. (28), which is estab-
lished here for the region R1, holds in fact true for any
combination of ω1, ω2 ∈ [0, 1).
The above analysis (and the corresponding analysis

in Appendix B) can be repeated for the function F1 in
Eq. (19), which corresponds to the boundary cases. This
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FIG. 6. Region R1 := {(ω1, ω2) ∈ R2 | 1
2
< ω1 < 1, 0 ≤

ω2 < 3ω1−1
2ω1

}.

yields, for large t,

F1[1 + T, 1− t, 1, 2; 1− ω1,
ω1 − ω2

1− ω2
]

≈ (1− ω1)
−(1+T )

Γ(1− T )

1

t1+T
. (29)

Utilizing the approximations given by Eqs. (28)
and (29), we can approximate r̃c(t) in Eq. (20) for large
t as

r̃c(t) ≈
k̄T

N

(1− ω2)
−T

Γ(1− T )

[
gτ (t)

(1 + T )

t2+T
+

2

τ

1

t1+T

]
∝ 1 + T + (1− T )t/τ

t2+T
. (30)

We can now see that for t ≪ τ , such that t/τ ≈ 0, r̃c(t),
and consequently, the contact distribution Pc(t), decay
according to the power law 1/t2+T . However, as t ap-
proaches the value of the observation interval τ , the decay
deviates from pure power-law behavior. This deviation
is solely a consequence of the finiteness of the observa-

tion interval. The scaling Pc(t) ∝ 1/t2+T is illustrated in
Fig. 3. Next, we analyze the intercontact distribution.

V. DISTRIBUTION OF INTERCONTACT
DURATIONS

The intercontact distribution is dual to the contact dis-
tribution, and to derive it, we follow a similar procedure.
Specifically, here we need to consider the probability of
observing a sequence of exactly t consecutive time slots
where two nodes i and j with hidden degrees κi and κj

and angular distance ∆θij are disconnected. Any such se-
quence should be enclosed within two slots where the two
nodes are connected. Here we do not consider boundary
cases, where the first or last of the t slots starts or ends
at the beginning or end of the observation period τ , since
by definition an intercontact duration should be enclosed
within two contacts. Therefore, t ranges from 1 to τ − 2.
We denote the above probability by ric(t;κi, κj ,∆θij).

We observe the following:

(i) In equilibrium, the probability that two nodes i and
j are connected in a slot s is pij , where pij is given
by Eq. (9).

(ii) Given that they are connected in slot s, the proba-
bility that i and j are disconnected in slot s+ 1 is
(1− ω1)(1− p̃ij), where p̃ij is given by Eq. (4).

(iii) Given that they are disconnected in slot s+ 1, the
probability that i and j remain disconnected in
slots s+ 2, . . . , s+ t is [1− (1− ω2)p̃ij ]

t−1.

(iv) Finally, given that they are disconnected in slot
s+ t, the probability that i and j are connected in
slot s+ t+ 1 is (1− ω2)p̃ij .

The probability ric(t;κi, κj ,∆θij) is obtained by multi-
plying gτ (t) in Eq. (10) with the probabilities described
in points (i) to (iv) above,

ric(t;κi, κj ,∆θij) = gτ (t)(1− ω1)(1− ω2)pij p̃ij(1− p̃ij)[1− (1− ω2)p̃ij ]
t−1. (31)

The intercontact distribution, denoted as Pic(t) and
defined for t ≥ 1, is given by

Pic(t) =
ric(t)∑
j ric(j)

∝ ric(t), (32)

where ric(t) is determined by removing the conditions on

κi, κj , and ∆θij from Eq. (31),

ric(t) =

∫ ∫ ∫
ric(t;κ, κ

′,∆θ)ρ(κ)ρ(κ′)f(∆θ)dκdκ′d∆θ.

(33)
Following the same procedure as before to remove the

conditions on κi, κj , and ∆θij , and employing the same
transformations, we can write that for sufficiently large
networks
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ric(t) ≈ gτ (t)
2µκ̄2T

N
(1− ω1)

T (1− ω2)
2−T

∫ 1

0

u1−T (1− u)T [1− (1− ω2)u]
t−1

(
1− ω2 − ω1

1− ω1
u
)−1

du

= gτ (t)
k̄T (1− T )

2N
(1− ω1)

T (1− ω2)
2−TF1[2− T, 1− t, 1, 3; 1− ω2,

ω2 − ω1

1− ω1
]. (34)

We can observe the perfect duality between ric(t) and
rc(t), in the sense that Eq. (34) becomes Eq. (17), if
we exchange ω2 with ω1, T with −T , and multiply the
resulting relation by −1. The above analysis is validated
in Fig. 7.

Average intercontact duration. In Fig. 8, we investi-
gate how parameters ω1, ω2, and T affect the average
intercontact duration. As with the case of the average
contact duration, we see that the average intercontact
duration also increases with ω1 or ω2, with the rate of
increase becoming more pronounced as these parameters
approach 1. Further, we see that the increase is more
rapid with ω2 than with ω1, especially as these param-
eters approach 1. This is expected, as ω2 directly im-
pacts the probability that two nodes remain disconnected
via Eq. (6). It can be shown that as ω2 approaches
1, Pic(t) becomes proportional to gτ (t), and the aver-
age intercontact duration tends to τ/3. On the other
hand, as ω1 approaches 1, Pic(t) becomes proportional to
gτ (t)2F1[1−T, 1−t, 2; 1−ω2], while the average intercon-
tact duration is upper-bounded by τ/3. The average in-
tercontact duration also increases with T , while remain-
ing upper-bounded by τ/3. This is because higher values
of T increase randomness in the connections, thereby re-
ducing the probability of pairs reconnecting.

Tail of the intercontact distribution. Finally, given the
duality between Eqs. (34) and (17), we can follow exactly
the same procedure as in the case of Eq. (17), to show
that for large t, ric(t) can be approximated as

ric(t) ≈ gτ (t)
k̄T (1− T )(1− ω1)

T

NΓ(1 + T )

1

t2−T
∝ gτ (t)

t2−T
. (35)

The above result holds true for any combination of
ω1, ω2 ∈ [0, 1). For t ≪ τ , gτ (t) ≈ 1, and thus ric(t),
and consequently, the intercontact distribution Pic(t),
decay according to the power law 1/t2−T . The scaling
Pic(t) ∝ 1/t2−T is illustrated in Fig. 7. In the next
section, we turn our attention to the expected time-
aggregated degree.

VI. TIME-AGGREGATED DEGREE

To analyze the expected time-aggregated degree, we
need to consider the probability that two nodes i and j
with hidden degrees κi and κj and angular distance ∆θij
do not connect during the observation period τ . This
probability is given by

r0(κi, κj ,∆θij) = (1− pij)[1− (1− ω2)p̃ij ]
τ−1, (36)

where pij and p̃ij are given by Eqs. (9) and (4).
The expected time-aggregated degree, denoted as

k̄aggr, is given by

k̄aggr = (N − 1)(1− r0), (37)

where r0 is determined by removing the conditions on κi,
κj , and ∆θij from Eq. (36),

r0 =

∫ ∫ ∫
r0(κ, κ

′,∆θ)ρ(κ)ρ(κ′)f(∆θ)dκdκ′d∆θ.

(38)
Following the same procedure as before to remove the

condition on ∆θij , we can write

r0(κi, κj) =
2µκiκjT

N

(1− ω1

1− ω2

)T
∫ 1

uij
0

u−(1+T )(1− u)T [1− (1− ω2)u]
τ−1

(
1− ω2 − ω1

1− ω1
u
)−1

du, (39)

where uij
0 is as in Eq. (14).

The integral in Eq. (39) diverges for N → ∞, i.e.,

for uij
0 → 0. Therefore, we cannot consider its “large-

N approximation” by setting uij
0 = 0 as its lower limit.

In particular, as shown for the case of ω1 = ω2, k̄aggr is
sensitive to finite size effects, especially at larger network
temperatures [4, 13], and to accurately compute it in
general one needs to numerically evaluate the integrals

in Eqs. (39) and (38).
The above analysis is validated in Fig. 9. We see from

the figure that k̄aggr decreases as the link persistence
probability ω1 increases, or as the network temperature
T decreases. In particular, in sufficiently large networks,
as ω1 approaches 1 or T approaches 0, k̄aggr converges
to the average snapshot degree k̄. Further, we see that
k̄aggr remains virtually unaffected by the non-link persis-
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FIG. 7. Distribution of intercontact durations in simulated networks with the (ω1, ω2)-dynamic-S1 model vs. theoretical
predictions. The latter are given by Pic(t) = ric(t)/

∑τ−2
j=1 ric(j), where ric(t) is given by Eq. (34). Results are presented for

two combinations of the persistence probabilities ω1 and ω2. All other simulation parameters are the same as in Fig. 3.
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FIG. 8. Same as in Fig. 4, but for the average intercontact duration. The theoretical predictions (dashed lines) are given by
t̄ic =

∑τ−2
t=1 tPic(t), where Pic(t) is computed as in Fig. 7.

k̄aggr t̄c t̄ic
T ↗⋆ ↘ ↗⋆

ω1 ↘⋆ ↗⋆ ↗
ω2 ↘ ↗ ↗⋆

TABLE I. Summary of dependencies of k̄aggr, t̄c, and t̄ic, on
parameters T , ω1, and ω2. Arrows indicate an increase (↗)
or decrease (↘) of the corresponding average as T , ω1, or ω2

increases. Stars indicate the averages that generally change
more rapidly with a change in the corresponding parameter.

tence probability ω2. However, at the limit ω2 → 1, k̄aggr
tends again to k̄. This explains why the performance
of epidemic spreading processes may not be significantly
affected by non-link persistence, unless it is extremely
strong (ω2 → 1).

Table I provides a summary of how k̄aggr, as well as
the average contact and intercontact durations (t̄c and
t̄ic) change with parameters T , ω1, and ω2.

VII. DISCUSSION AND CONCLUSION

We have generalized temporal random hyperbolic
graphs by introducing distinct probabilities ω1 and ω2

for link and non-link persistence, and elucidated the non-
trivial dependence of key temporal network properties on
link and non-link persistence strength, and on the net-
work temperature T . The generalized model can be used
to study more diverse scenarios in the context of epidemic
spreading and other dynamical processes running on tem-
poral networks. This is because it allows more flexible
tuning of the average contact and intercontact durations,
and of the average time-aggregated degree. Specifically,
these quantities are now controlled by three parameters
(ω1, ω2, T ) instead of two (ω, T ).
We have also proven that the tails of the contact and

intercontact distributions decay as power laws with ex-
ponents 2 + T and 2 − T , respectively, as in the case
of ω1 = ω2 [13]. An outstanding question is whether
there exists a simple model extension in which the tails
of these distributions are not coupled by the common
parameter T , but can be tuned more independently. An-
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FIG. 9. Average time-aggregated degree vs. ω1, ω2, and T . Plot (a) shows the average time-aggregated degree as a function
of the persistence probability of connections ω1. The persistence probability of disconnections, ω2, is set to zero. Results are
shown for different values of the network temperature T . All other parameters are the same as in Fig. 3. The dashed lines
depict theoretical predictions given by Eqs. (37)-(39). Plot (b) is similar to (a), except that ω1 is set to zero, and we vary ω2.

other question is whether there exist model extensions in
which the (inter)contact distributions deviate from pure
power laws, as may be observed in real-world systems.
Other interesting directions for future work include the
derivation and analysis of models of temporal RHGs in
higher dimensions [26], temporal RHG models where dif-
ferent pairs of nodes can have different link and non-link
persistence probabilities [9], as well as temporal RHG
models for bipartite networks [12, 27].
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Appendix A: Appell F1 series and Gauss
hypergeometric function

In this section, we provide an overview of the Appell
F1 series and the Gauss hypergeometric function [14].

The Appell F1 series is defined for |x| < 1 and |y| < 1
by

F1(a, b1, b2, c;x, y) =

∞∑
m=0

∞∑
n=0

(a)m+n(b1)m(b2)n
(c)m+nm!n!

xmyn,

(A1)
where (q)n is the Pochhammer symbol. For values of x
and y outside the range |x| < 1 and |y| < 1, the function
F1 can be extended through analytic continuation [24].
Such continuations can be achieved by manipulating inte-
gral representations, similar to the one in Eq. (16), where
changing the integration variable can allow the expres-
sion of the original F1 series through another F1 series,

e.g., see Eq. (17). Such transformations enable the defi-
nition of the F1 series for a broader range of x and y.
The Gauss hypergeometric function is defined by the

series

2F1[a, b, c; z] =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (A2)

for |z| < 1, and by analytic continuation elsewhere.
The Appell F1 series F1(a, b1, b2, c;x, y) degenerates to

the Gauss hypergeometric function when x = y,

F1(a, b1, b2, c;x, x) = 2F1[a, b1 + b2, c;x]. (A3)

Appendix B: Tail of the contact distribution for any
ω1, ω2 ∈ [0, 1)

Here we establish that Eq. (28) in the main text holds
true for any combination of ω1, ω2 ∈ [0, 1). To this end,
we utilize the transformation given by Eq. (1) in sec-
tion 5.11 of Ref. [24], which states that

F1[a, b, b
′, c;x, y] = (1− x)−b(1− y)−b′

× F1[c− a, b, b′, c;
x

x− 1
,

y

y − 1
]. (B1)

Applying this transformation to the F1 function on the
left-hand side of Eq. (25), allows us to rewrite h1 as

h1 = ωt−1
1

(1− ω2

1− ω1

)
× F1[1− T, 1− t, 1, 3; 1− 1

ω1
,
ω2 − ω1

1− ω1
]. (B2)

Now, using Eq. (23) with a = 1 − T , b = 1, λ = −t,
b′ = 1, c = 3, x = 1− 1

ω1
, and y = ω2−ω1

1−ω1
, we can write
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h1 = ωt−1
1

(1− ω2

1− ω1

)m−1∑
n=0

(1− T )n
(3)n

(ω2 − ω1

1− ω1

)n

2F1[1− t, 1− T + n, 3 + n; 1− 1

ω1
] +O

( 1

(−t)1−T+m

)
=

(1− ω2

1− ω1

)m−1∑
n=0

(1− T )n
(3)n

(ω2 − ω1

1− ω1

)n

2F1[2 + T, 1− t, 3 + n; 1− ω1] +O
( 1

(−t)1−T+m

)
. (B3)

The last equality follows from Pfaff’s transformation
(Eq. (22) in section 2.1.4 of Ref. [24]), which states that

2F1[a, b, c; z] = (1− z)−a
2F1[a, c− b, c;

z

z − 1
]. (B4)

We also utilized that 2F1[a, b, c; z] = 2F1[b, a, c; z], which

follows from Eq. (A2).
Utilizing the asymptotic expansion for the hyperge-

ometric function 2F1[a, b, c; z] for |b| → ∞, given by
Eq. (15) in section 2.3.2 of Ref. [24], we can express the

2F1 function inside the sum in Eq. (B3), as

2F1[2 + T, 1− t, 3 + n; 1− ω1] =

{
Γ(3 + n)

Γ(1− T + n)

(1− ω1)
−(2+T )

(t− 1)2+T
+

Γ(3 + n)

Γ(2 + T )

e−(1−ω1)(t−1)

[(1− ω1)(1− t)]1−T+n

}

×
[
1 +O

( 1

(1− ω1)(t− 1)

)]
. (B5)

At large t the dominant term in Eq. (B5) is the first term inside the brackets, and we can write

2F1[2 + T, 1− t, 3 + n; 1− ω1] ≈
Γ(3 + n)

Γ(1− T + n)

(1− ω1)
−(2+T )

t2+T
. (B6)

Consequently, for large t we can approximate Eq. (B3) as

h1 ≈
(1− ω2

1− ω1

) (1− ω1)
−(2+T )

t2+T

∞∑
n=0

(1− T )n
(3)n

(ω2 − ω1

1− ω1

)n Γ(3 + n)

Γ(1− T + n)

=
(1− ω2

1− ω1

) (1− ω1)
−(2+T )

t2+T

2

Γ(1− T )

∞∑
n=0

(ω2 − ω1

1− ω1

)n

=
2(1− ω1)

−(2+T )

Γ(1− T )

1

t2+T
. (B7)

We see that the above analysis also leads to Eq. (28). We
validate the analysis in Fig. 10.

We note that in Eq. (B7), we let the summation run
to infinity, since there is no single dominant term. The
summation converges to (1−ω1)/(1−ω2) when |ω2−ω1

1−ω1
| <

1. This defines the region R2 of ω1 and ω2, depicted in

Fig. 11, for which the above analysis holds. The union
of R2 with R1 in Fig. 6 covers the full range of ω1, ω2 ∈
[0, 1). Therefore, Eq. (28), and hence the scaling Pc(t) ∝
1/t2+T , hold for any combination of ω1 and ω2.
Proving Eq. (27). Equation (27) in the main text is

obtained by using the same asymptotic expansion for
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FIG. 10. Function h1 in Eq. (B2) (dotted lines) vs. the
approximation for large t in Eq. (B7) (solid lines). Results
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All axes use a logarithmic scale.
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| < 1}.

the hypergeometric function 2F1[a, b, c; z] for |b| → ∞
as above (given by Eq. (15) in section 2.3.2 of Ref. [24]).
Specifically, utilizing this expansion, we can write

2F1[2 + T + n, 1 + t, 3 + n; 1− 1

ω1
] =

{
Γ(3 + n)

Γ(1− T )

(1/ω1 − 1)−(2+T+n)

(t+ 1)2+T+n
+

Γ(3 + n)

Γ(2 + T + n)

e−(1/ω1−1)(t+1)

[(1− 1/ω1)(t+ 1)]1−T

}

×
[
1 +O

( 1

(1/ω1 − 1)(t+ 1)

)]
. (B8)

At large t, the dominant term in the above relation is the first term inside the brackets. Utilizing also that

2F1[a, b, c; z] = 2F1[b, a, c; z], we can write

2F1[1 + t, 2 + T + n, 3 + n; 1− 1

ω1
] ≈ Γ(3 + n)(1/ω1 − 1)−(2+T+n)

Γ(1− T )

1

t2+T+n
. (B9)
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