arXiv:2403.17453v1 [quant-ph] 26 Mar 2024

Quadratic speed-ups in quantum kernelized binary classification

Jungyun Lee! and Daniel K. Park?3"

1Department of Physics, Yonsei University, Wonju, Republic of Korea
2 Department of Applied Statistics, Yonsei University, Seoul, Republic of Korea
3 Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea

Abstract

Classification is at the core of data-driven prediction and decision-making, representing a fundamental
task in supervised machine learning. Recently, several quantum machine learning algorithms that use
quantum kernels as a measure of similarities between data have emerged to perform binary classification on
datasets encoded as quantum states. The potential advantages of quantum kernels arise from the ability
of quantum computers to construct kernels that are more effective than their classical counterparts in
capturing patterns in data or computing kernels more efficiently. However, existing quantum kernel-based
classification algorithms do not harness the capability of having data samples in quantum superposition for
additional enhancements. In this work, we demonstrate how such capability can be leveraged in quantum
kernelized binary classifiers (QKCs) through Quantum Amplitude Estimation (QAE) for quadratic speed-
up. Additionally, we propose new quantum circuits for the QKCs in which the number of qubits is reduced
by one, and the circuit depth is reduced linearly with respect to the number of sample data. We verify
the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.

1 Introduction

In the contemporary age of big data, machine learning (ML) has become an integral part of modern
technology as an effective tool for making predictions and decisions based on data. Challenges arise when
addressing problems involving complex, high-dimensional, and large datasets, which typically require ad-
vanced learning algorithms and significant computational power. Quantum information processing (QIP)
holds promise for advancing ML beyond the limitations of classical methods. The advantages of quantum al-
gorithms in solving certain computational tasks [1-4], the ability of quantum computers to efficiently harness
exponentially large quantum state spaces [5—7], and the potential speed-ups in generating certain probability
distributions [8,9], have catalyzed the development of quantum machine learning (QML) [10-13].

One of the simplest and most well-established approaches in QML is based on the kernel method. This
is because mapping classical data into the quantum Hilbert space naturally enables the computation of a
kernel function on a quantum computer. This approach is often referred to as the quantum kernel method
(QKM) [6,14,15]. In both classical and quantum kernel methods for ML, the central operation is measuring
the similarity between two data points through a kernel function to extract and characterize patterns of
the data for effective classification or prediction [5,16]. The computational advantages of the QKM stem
from the state and measurement postulates of quantum mechanics, which allow for efficient computation of
certain kernel functions on a quantum computer. In particular, the Hadamard or swap test can be employed to
exponentially speed-up the computation of fidelity between two quantum states, each representing data points
to be compared [17,18]. The Hadamard and swap tests have been harnessed in several quantum kernelized
classification algorithms for exponential speed-ups with respect to the number of features in the data when
evaluating the classification score [19-24]. These algorithms are known as the Hadamard classifier (HC)
and swap test classifier (SC), respectively, and represent one of the simplest QML protocols with quantum
speed-up. However, these algorithms do not provide any quantum advantage concerning the number of data
samples, even though they require preparing an input quantum state containing all samples in quantum
superposition [21]. Although the ability to encode the full dataset in superposition is a distinct feature
in quantum computations, in previous works, it merely increased the size of the quantum circuits without
yielding any computational advantages.

* . corresponding author

Email addresses : dkd.park@yonsei.ac.kr

In this work, we present a protocol for integrating Quantum Amplitude Estimation (QAE) [25] into
quantum kernelized binary classifiers (QKCs), which are composed of HC and SC, resulting in a quadratic
speed-up with respect to the number of data samples used in superposition. Additionally, we introduce
simplified versions for both HC and SC by modifying the encoding process and the measurement scheme.
This modification results in a reduction of one qubit and linearly reduces the circuit depth with respect to
the number of sample data. Moreover, our proposed method does not rely on classical data processing, such
as standardization or post-selection schemes, as required in the seminal work by Schuld et al. [19]. We note
in passing that while this work primarily focuses on the quantum speed-up with respect to the number of
data samples in computing the classification score in QKCs, QAE can also be employed to expedite the
estimation of kernel matrix elements. The latter is particularly beneficial in quantum-classical hybrid ML,
where the quantum kernel matrix is utilized in classical ML algorithms, such as the support vector machine
(SVM) [6,26,27].

The remainder of this paper is organized as follows. Sec. 2 describes the QKCs, the main focus of
this work, and provides a brief review on HC and SC developed in Refs. [19,20] to construct QKCs on a
quantum computer. Sec. 3 explains how previous QKCs fail to utilize the ability to encode the entire dataset
in superposition, thereby motivating the development of this work. Sec. 4 provides a quick overview of
QAE, a key ingredient of the main protocol presented in this work. In Sec. 5, first we present generalized
and simplified QKCs developed in this work in Sec. 5.1. Then describes how to integrate QAE into these
methods for achieving the quadratic speed-up compared to the previous QKCs in Sec. 5.2. The simulation
results to verify the improvements achieved by our method are detailed in Sec. 5.3. Additionally, we discuss
the application of the maximum likelihood Quantum Amplitude Estimation (MLQAE) [28] to our classifiers,
and the maximum likelihood estimation (MLE) method for post-processing QAE results [29]. The conclusion
and outlook of our work are discussed in Sec. 6.

2 Quantum kernelized binary classifiers

The primary objective of supervised binary classification is to accurately predict the label of the test data
7§ based on the labeled sample (training) dataset D = {(z0,%0); -, (Tpr—1,yn—1)} € CV x {0,1}, where N is
the number of features. A kernelized binary classifier solves this problem by utilizing the classification score,

which is computed as
M-1

F@) =Y (“1)mwnk(m, 7), (1)
m=0

where k(x,,,Z) is the kernel function that quantifies the similarity between a sample data point z,, and the
test data Z, ¥, € {0,1} is the label for z,,, and w,, € R denotes the nonnegative weights assigned to the
training samples. Subsequently, the label of the test data is predicted as § = sign(f(Z)). On QKCs, the
classification score can be computed by applying either the Hadamard test [18] or the swap test [17] on a
quantum state that is prepared in a specific format. These methods yield classifiers known as the Hadamard
classifier (HC) [19] and swap test classifier (SC) [20], respectively. In these scenarios, the kernel function is
derived from the fidelity of two quantum states, each representing the training data and the test data. The
potential advantage of such QKCs, meaning both HC and SC, lies in the effectiveness of the quantum kernel
in capturing patterns in data and the ability of quantum computers to compute it efficiently compared to
classical counterparts [6,7,19-22].

QML algorithms, including QKCs, are naturally well-suited for datasets that are intrinsically quan-
tum [30], e.g. a final state of a quantum system prepared through certain quantum-mechanical processes.
However, they can also be applied to classical data once the data is represented as a quantum state through
the process known as quantum feature mapping [5,6,31]. Without loss of generality, we use amplitude en-
coding [32-36] as an example throughout the paper for encoding classical data into a quantum state. This
representation expresses training and test data points, each consisting of N features, as |x,,) := Zfil T ilt)
and |Z) = Zil Z;|7), respectively, using O (log,(IN)) qubits. However, we emphasize that QKCs are appli-
cable to any datasets, as long as they are supplied as quantum states that can be handled by a quantum
computer, either by an inherently quantum-mechanical system or through quantum feature mapping.

2.1 Hadamard classifier

The HC was initially introduced in [19] and garnered attention due to its relatively simple setup. More
recent works, such as [20] and [22], have presented modifications to the HC in terms of a measurement scheme
and encoding strategy, respectively. While we follow the description provided in [20] to explain the HC, we
also elaborate on the differences from the original HC. The data set D is encoded in a quantum state as,

o) = f Z Vi [0}) + [DI2)] lym), (2)

where the superscript h indicates that the state pertains to HC, and the first register is an ancilla qubit, and
the second resister |z,,) and |Z) indicate training and test data, respectively, and |y,,) € {0,1} represents
the class of the mth training data. The original HC employs uniform weights, denoted as w,,, = 1/M ¥m €
[0, M — 1], while more recent works have considered non-uniform weights for greater generality, subject to
the constraint) w,, = 1. The last register denotes the index register, which flags each training data. This
work can be achieved by using n number of index qubits for M = 2™ number of training data. Besides, the
class of the training data is represented via NOT gate controlled by index register. After preparing the state
shown in Eq. (2), HC employ the Hadamard gate to the ancilla qubit (H,) to interfere the training data with
the test data and construct the kernel to compare each similarity. It generate the quantum state H,|¥"),
expressed as

H,|0") = Zm[m [l () + (D" ()| lym o), (3)

where [(m)) = |z,,) £ |Z). Finally, performing measurements on the ancilla and class qubit can realize
kernel-based binary classification. Although the original HC used a conditional measurement selecting the
branch with the ancilla in state |0) [19], the classification result can be obtained by measuring the expectation
value of a two-qubit observable, reducing the number of experiments by about a factor of two. This can be

expressed as follows:
M—1

(020%) = D> (1) wnR((xn]2)), (4)
m=0
where the superscript a (¢) indicates that the measurement operator acts on the ancilla (class) qubit and
R(-) indicates the real part [20]. The expectation value assigns the class of the test data § as 0 when the
expectation result is positive and 1 when it is negative.

2.2 Swap test classifier

The SC first proposed in [20] functions similarly to HC. However, SC is based on measuring the full
quantum state fidelity, whereas HC uses only the real part of the state overlap. In other words, the primary
difference between SC and HC lies in the fact that the former fully utilizes the quantum feature map by
considering both the real and imaginary parts. The majority of the state preparation processes are also
similar to HC, however, unlike HC, the test data and training data are encoded in different registers. Thereby
the ancilla qubit can be retreated from the preparation process,

M-—1
= 3 |0}) &) g m), (5)

m=0

where the superscript s indicates that the state pertains to SC, and the first register is an ancilla qubit,
the second and the third registers denote the training data register and the test data register, respec-
tively, and |y,) € {0,1} represents the class of mth training data and the last one indicates index regis-
ter. After the encoding process, in contrast to HC, which applies the Hadamard gate, a sequence of gates,
H, - c-swap(a; x,, T) - Hy, is applied to |¥*). Here, H, represents the application of the Hadamard gate to
the ancilla, and the c-swap(a; x,,,) is the application of the swap gate between the training data qubit and
the test data qubit controlled by the ancilla qubit. The quantum state |¥*®) after this interference is

Hg - c-swap(a; Tm, I) - Ho[¥®) Z \/wTL[IO % (m)) + [1)|$2 (m)) | [ym)|m), (6)

where |¢5(m)) = |Tm)|ZT) £ |Z)|xm). The SC is finalized with the two-qubit measurements, which results in

[

S (1) w8)

=0

M
(0%0%) =

m
where the superscript a (¢) indicates that the measurement operator acts on the ancilla (class) qubit. The
sign of the expectation value determines the class of the test data.

3 Classification without data superposition

The ability to encode the entire dataset in a quantum superposition state is one of the unique properties of
quantum computing [37,38]. In QKCs, placing M training data in superposition is achieved by introducing the
index register consisting of log, (M) qubits as shown in Egs. (2) and (5). To implement this state preparation
routine manually, it requires M unitary data encoding gates applied to the data registers, controlled by
log, (M) index qubits. This setup ensures that each data sample is entangled with one computational basis
state of the index register. In this scenario, if the number of training data increases by K, the process
necessitates an additional log,(K) index qubits. Consequently, it involves a total of (M + K) unitary gates
controlled by log, (M K) qubits, resulting in a linear increase in circuit depth [39]. In summary, increasing
the number of training data in the superposition state leads to a logarithmic increase in circuit width and a
linear increase in circuit depth.

However, since all quantum operations are performed solely on the ancilla and class qubits once the
initial states are provided, the presence of the index register and the preparation of data superposition do
not contribute to computing Eqs. (4) and (7). To see this more clearly, let us express the initial state of
QKCs as

M—
(W) = V[(m)lym)m), (8)
m

=0

[

where [€ {h,s} is the label for indicating whether the state is for HC or SC, and [¢"(m)) = (|0)|z,,) +
|1)]2))/v/2 and |1*(m)) = |0)|x,,)|Z) represent the quantum state that contains the ancilla, the mth training
data and the test data. Since all subsequent quantum operations are applied only to the ancilla qubit and
data register, which are contained in [i/!(x,,, %)), and the class qubit, one can trace out the index register as
it is completely ignored in all subsequent steps. The partial trace of the index register yields the mixed state

M-1
D B m) = 3 Wl (M) (8 ()] © [y i (9)
m=0

This means that one cannot differentiate between the procedure outlined in previous sections and an alterna-
tive approach that performs Hadamard or swap test on the mixed state p(x.,, &, ym), even though they are
physically different. Furthermore, the latter process is equivalent to a protocol that independently performs
the weighted Hadamard or swap test on the state |!(m)) for each sample data, and aggregates the total of M
outcomes classically (see Appendix A). This procedure is more practical than the original HC and SC, as each
circuit does not require the index register consisting of log, (M) qubits and M controlled-gates, controlled
by those index qubits, for encoding the entire dataset. Therefore, unless the dataset is provided in the form
of [¥") in Eq. (2) or |¥*) in Eq. (5), superposing the entire dataset makes the algorithm unnecessarily more
complex without offering any computational advantage.

4 Quantum Amplitude Estimation

This section briefly reviews Quantum Amplitude Estimation (QAE) [25], a key ingredient of the main
protocol presented in this work. Since there are many comprehensive reviews on this topic [28,29,40-42],
our intention is to provide a minimalistic overview necessary for understanding our protocol.

QAE is the task of estimating the value of a for the quantum state |[¢)) = \/a|s) + /1 —als), where
a € [0,1]. This problem can be resolved by using two fundamental quantum algorithms that constitute QAE,
namely Quantum Amplitude Amplification (QAA) [25] and Quantum Phase Estimation (QPE) [38].

t—110) {H}—
i 1oy —{u] QFT?

0 10] t
[0), 0% |__{ sz |_~| ta—1|—|¢)

Fig. 1: A quantum circuit diagram illustrating the implementation of the QAE algorithm, where A represents
the state preparation task, () denotes the Grover operator, and QF'T stands for Quantum Fourier Trans-
form [38].

LI T

e QAA is a generalization of the Grover’s search algorithm [43] which finds the target state quadratically
faster than classical counterparts. QAA amplifies the probability of finding a specific state in a quantum
system even if they are not in uniform superposition like in Grover’s algorithm.

e QPE is a quantum algorithm to estimate 6, where U|y)) = €27 |y)), for a target unitary operator U
and its eigenvector |¢). The precision of the estimation depends on the number of ancilla qubits (¢)
used, which is known as ¢-bit approximation.

In simple terms, QAE can be viewed as a variant of QPE that uses the Grover operator (Q) as the target
unitary operator. Therefore, the precision of the estimation can be adjusted by controlling the number of
ancilla qubits, just as QPE. The mathematical procedure is described as follows:

When the state preparation operator is A, an initial state |¢) is defined as

Al0)®' = A0} = [¢) = Vals) + V1= als1) = sin(6)]s) + cos(8)|s.), (10)

where 0 < 6 < 7/2. Since the main goal of QAE is to estimate a, |s) is called the “good state” or “target
state”. The Grover operator (), consists of the phase oracle (Uy), and diffusion operator (V):

Q = VU where Uy = I —2|s)(s| and V = I — 2[¢) ()| = A(I —2|0),(0];) AT. (11)

The phase oracle, Uy, multiplies the good states by —1 and the whole state is reflected around the mean by V,
which performs the amplification of the specific amplitude. When |14) is the eigenvector of @ corresponding
to eigenvalues Ay = e*2¥ the initial state |)) can be expressed with the eigenvectors of @ as

i 26 —2i0)
=—|e +e —)). 12
¥ =5 (<o) -) (12)
Therefore, we can estimate 6 or —6 using the QPE algorithm. Consequently, QAE can perform ¢-bit approx-
imation of a, which is given by @ = sin?(#) = sin? (7y/2!), through the quantum circuit depicted in Fig. 1,
where y is non-negative and the decimal form of the most frequent measured state. For example, when the
number of ancilla ¢ = 2, and if |01) is the most measured state, then y is 1 and the @ = 0.5.

The estimator @ satisfies the following bounds where a = sin®() and a = sin®(d),

2v/a(l —a)r 72 T m? 1
4 L 4+ — < —+ — =0O(N, 13
N, TwSw,twe oW (13)

la—al <
with a probability of at least 8/7% (=~ 81%) [25], where N, is the number of applications of @, equal to
2t. Since @ is a probability, QAE is one of the point estimations of the specific probability. In classical
point estimation, the error bound scales as O(1/y/N,) for the number of classical sample N, whereas QAE
achieves a scaling of O(1/N,), which implies that QAE has the potential of quadratic speed-up over classical
simulation.

5 Results

In Sec. 3, we demonstrated that QKCs failed to utilize the capability of placing training data in quantum
superposition for computational advantage. In this section, we present new protocol for QKCs using QAE to

leverage the ability of the QML algorithm to process the entire dataset in superposition. Before delving into
the main protocol, we first show that QKCs can be simplified to reduce the size of quantum circuits by using
a specific encoding process. Subsequently, we modify the measurement scheme to enhance their suitability
for QAE. The main protocols that combine the simplified HC (SHC) and simplified SC (SSC) with QAE are
presented in Sec. 5.2.

5.1 Simplified quantum kernelized binary classifier

In the original QKCs, the encoding strategy is that label the class of the arbitrary encoded training data
into class qubit |y,,) by using NOT gates controlled by the index register |m) [19,20,22]. Therefore, the
number of multi-controlled gates for labeling the class of the training data increases linearly with respect
to the number of class 1 data. For the simplification of this process we use an ordered encoding strategy
which indicates encoding the training data in a specific order, e.g. encode class 1 data after class 0 data
are encoded or encode class 0 data and class 1 data alternately. With this strategy, the class information
of training data points is implicitly encoded into one of the index qubits. For brevity, we refer to this
qubit as a class-identifiable qubit. Thus, labeling the class of the data points can be achieved by a CNOT
gate from the class-identifiable qubit to the class qubit without increasing the number of control qubits or
gates by data size. However, in fact, this CNOT gate just duplicates the information that is already in the
class-identifiable qubit so that we can remove the class qubit and the work of it can be shifted to the class-
identifiable qubit. Then measuring the ancilla and class-identifiable qubits provides the same work using one
less qubit and linear reduction in circuit depth with respect to the number of training data. Furthermore, the
measurement can be further reduced to a single-qubit measurement by the Clifford transformation. Without
loss of generality, we encode the data with a class-order in the subsequent description, i.e. encode class 1 data
after class 0 data are encoded, and call it as a class-ordered encoding, which can be performed by a unitary
gate, Ueo(@m, Yym). Furthermore, our description throughout the paper is focused on the balanced data in
which the number of training data points in two classes is equal. However, this strategy is also applicable
in the case of unbalanced data as long as), w,, = 1 since we don’t need to use all the basis of the index
register. The Simplified QKCs (SQKCs) shown in Fig. 2 interfere the training data and test data which are
initialized by U (@, Ym)|0) = |2m) Vm = 0,1, ...,2" — 1, and U(Z,§)|0) = |Z), and predict the class of the test
data ¢ by harnessing its superposition. The green long-dashed box, U.o(@m, ym), indicates the class-ordered
encoding endowing the ability to identify the class of the training data to the top qubit of the index register,
|mo), meaning that |mg) becomes the class-identifiable qubit. The half-filled circles indicate that the unitary
operation is the uniformly controlled gate [22,44,45]. Therefore, the data set is prepared as,

M-1
19') = Y Vv (m))m), (14)
m=0

where [€ {h, s} is the label for indicating whether the state is for Simplified Hadamard classifier (SHC)
or Simplified swap test classifier (SSC), and |m) = |moemi..mp_1) = |ymmima...m,_1). The state after
interference between training data and test data through the Hadamard gate or swap test is

M-1

Vi [|0) [(m) + (1)L (m))] Im). (15)

m=0

DO =

The measurement scheme introduced in [20] using class-ordered encoding is depicted in the blue dashed
box, which presents performing the classification using the expectation value of two-qubit observable. The
red dotted box is our proposed measurement scheme removing class qubit and making the classification
be realized with a single qubit. To be more precise, the class qubit can be discarded when shifting the
Z-measurement of the class qubit to the class-identifiable qubit |mg), and we can reduce the measurement
operator by harnessing the NOT gate controlled by |mg) where the target is ancilla qubit using the Clifford
transformation, I® Z = (CNOT)(Z® Z)(CNOT)' [46]. Since we use the class-ordered encoding, mg (hence,
Ym) 18 0 for m € [0, M /2 — 1], and 1 for m € [M/2, M — 1]. With this encoding, the final quantum state |<I>lf>

co(Xm, Yim

o0 g iAo
P— -
— |

M-1 l
> NWmlm)

.
2

T
5 I
T I

a:10) — UG O HU G DHUE D -

—_— . — — —— —— —

L ——— O A}

_ Yeolmym) !
M—-1 | l Z : : :
> Nl T | :
=0 | & by | |
i 1 T I : >((7zaC’zC>:
100 Vo O Vo D4 | :
t: [0) U%,5) i i

(b) Simplified swap test classfier

Fig. 2: Quantum circuit diagrams for (a) Simplified Hadamard classifier (SHC) and (b) Simplified swap test
classifier (SSC). The first register is the ancilla qubit (a), and the second is the weighted index register.
M = 2™ is an acceptable number of data for n number of index qubits and |m) = |mgmy...m,_1), where
my € {0,1} Vk = 0,1,...,n — 1. There is a difference between SHC and SSC to encode the data. In SHC,
the third register is the data qubit (d) for encoding both training and test data. On the other hand, in SSC,
the training data and test data are encoded in different registers, third register and fourth register in (b),
namely the training data qubit (d) and test data qubit (t), respectively. The final register is the class qubit
(¢), which can be removed using our proposed encoding scheme, green long-dashed box.

before measurement, which is obtained after the CNOT gate, is

l 1 & l = l
[®5) =510 Y Vol m)m) + Y wldl (m)|m)
m=0

m=M/2

M/2-1 M—1
+|1>{ Y Vamlphm)m) + Y lei(m)HWH, (16)
m=0

m=M/2

where the first qubit is the ancilla register and |@[Jli(m)> contains the training data point in class 0 when
m € [0, M/2 — 1], and in class 1 when m € [M/2, M — 1]. The measurement result can be described with an
expectation value of a one-qubit observable as,

M-1

(00) = > (D wnk(@m, &), (17)

m=0

where k(x,,) is the kernel computed as R ({zy,|Z)) for SHC and as |<xm|§c>|2 for SSC. This expectation
value is equivalent to the one introduced in [20]. Thus, our SQKCs and the previous QKCs are themselves
equivalent with the same classification score, Eq. (17) with Egs. (4) and (7), which assigns the class of the
test data ¢ as 0 when the expectation result is positive and 1 when it is negative.

Fig. 3: Quantum circuit diagram for SHC-QAE, which estimates the probability amplitude of the final state
of SHC with the ancilla in state |1) using QAE. A indicates the state preparation operator (green long-dashed
box) and @ indicates the Grover operator (purple dash-dotted box). The Grover operator consists of the
phase oracle (blue dashed box) and diffusion operator (red dotted box).

5.2 Main protocols
Herein we elaborate on a method of applying QAE to SQKCs. Then, we introduce our comparison

methodology between SQKCs with QAE (SQKCs-QAE) and those without it (SQKCs).

SQKCs-QAE algorithm The final quantum states of the SQKCs, SHC and SSC, can be expressed in the
form of Eq. (10) by rewritting Eq. (16) as

1 1 M-—1 3
@) =5 |1+ > wa (1) k(2 &)

m=0

M-1
|0>|q)0> + % |:l - Z wm(_l)ymk(‘rmvj) |1>‘(I)1>7 (18)

m=0

where |®g) and |®;) are normalized states. It is evident from this expression that the classification score
can be extracted from the probability of obtaining either 0 or 1 as the outcome of measuring the first qubit,
which can be estimated through the use of QAE. For instance, if Pr(1) = 1 [1 = 3w (=1)¥"k(zp,, T)] is
estimated via QAE, the decision rule for assigning the label to the test data is as follows: if the QAE result
is smaller than 0.5, then set § to 0; otherwise, set § to 1. In this case, the phase oracle, Uf, of QAE is the
single-qubit Pauli-Z gate acting on the first qubit, since it multiplies the good state, which, in this case, is
[1)®1), by —1.

The quantum circuit of SHC-QAE, which combined SHC and QAE, is depicted in Fig. 3. To apply the
QAE algorithm, we need to define the state preparation operator (A) and the Grover operator (Q). The A
operator corresponds to either SHC or SSC circuits, which prepares the final state as shown in Eq. (18). After
the state preparation, the quantum state undergoes the phase oracle (Uy), which can be easily implemented
by applying Z gate to the ancilla, since its role is to multiply —1 to the target state |1)|®;) in the case of
estimating Pr(1). On the other hand, if we set the oracle with the sequence of X ZX gate, QAE can estimate
the amplitude of |0)|®g). The second component of the Grover operator, namely the diffusion operator (V),
has a specific structure with a multi-controlled Z gate sandwiched by X gates just as shown in the red dotted
box in Fig. 3. Using this implementation of A and @, the ¢-bit approximation of the amplitude for state |1)
can be performed by means of the QPE structure.

Performance measure To validate the quadratic speed-up through numerical simulations, it is crucial
to establish a clear and rigorous evaluation criterion for comparing the performance of SQKCs-QAE and
SQKCs. In this regard, we compare the rate at which the estimation errors decrease in SQKCs-QAE and

Number of samples Error

SQKCs-QAE | 2fHINY :=2'f1 | The 81st largest value among all errors, |a — a;|, i = 1,2,..., I.

SQKCs N¢, = 2tt1 I is the number of repetitions for a given number of samples.

Table 1: An overview of variables used for comparing the performance of SQKCs-QAE and SQKCs.

SQKCs as the number of samples increases. Two variables, namely the number of samples and the estimation
error, whose relationship is analyzed and compared in the subsequent section, are summarized in Table 1.

Firstly, we define the term “sample” to represent a query to the state preparation oracle, A. In other
words, the number of samples corresponds to the instances of applying A that generate the output state
of SQKCs, which is given in Eq. (16). In the case of SQKCs-QAE, there are 2!*! — 2 ~ 2!*1 number of
samples, when t ancilla qubits are used for QAE. This is because there are Z;;lo 2% = 2t — 1 number of Q
for the entire process (see, Fig. 1), and each Grover operator involves 2 instances of the state preparation, A
and At in V = A(I — 2|O>m<0|m)AT, where QQ = VU;. For SQKCs, there are no additional operations like
the Grover operator. Therefore, we can increase the number of samples by increasing the number of shots,
N&, s~ Certainly, this principle also extends to the SQKCs-QAE, as well. Thus, the number of samples,
in SQKCs-QAE case, becomes QtHNghot. Since this value must be equal for precise comparison, we set the
number of shots for SQKCs-QAE, N¥, . . to 1 and Ng, ,, to 2!T1. Consequently, the number of samples for
both SQKCs-QAE and SQKCs becomes 2!*1. Next, we define the error as |a —a;|, where a and @; denote the
real value we want to estimate and its ith estimator, respectively. QAE satisfies the error bound, Eq. (13),
with a probability of at least 8/72 (~ 81%). This means, in other words, that if 1000 circuits are generated
with each number of samples, and each is measured to produce QAE error results, thereby resulting in 1000
QAE error results, at least 810 of them will satisfy the bound. Note that, in this scenario, I in Table 1 is 1000.
Therefore, repeating SQKCs-QAE and SQKCs multiple times for each number of samples, creating multiple
error results at each sample size, sorting them, then, comparing the 81% maximum error of SQKCs-QAE
and SQKCs at each sample constitutes a valid comparison. By repeatedly performing QAE and utilizing the
method of estimating the 81st percentile, the success probability of QAE can be boosted to nearly 100%. In
conclusion, by comparing the error scaling of SQKCs-QAE and SQKCs we can verify whether QAE achieves
any speed-up in SQKCs. Moreover, for a more concise comparison, we fitted each error result to a linear
curve using the log, function (using the log, function is justified since the number of samples increases as a
power of 2). The slope of the fitted line for SQKCs-QAE and SQKCs indicate how fast the estimation error
decreases. Thus, we can verify the speed-up quantitatively by investigating the ratio between two slopes,
namely (slope of the linear fit for SQKCs-QAE estimation error)/(slope of the linear fit for SQKCs estimation
error), which we refer to as the slope ratio.

5.3 Numerical simulation
5.3.1 SQKCs-QAE vs SQKCs

We verify the quadratic speed-up achieved by our SQKCs-QAE over SQKCs through numerical simulations
on the Iris dataset. For the simulation, we utilize the first and last classes, setosa and wvirginica (referred to
as class 0 and class 1 in this paper), based on two features of the Iris dataset: sepal width and petal length.
Specifically, we illustrate the performance of the classifiers using the following simple dataset, consisting of
two training data points (one from class 0 and the other from class 1) with uniform weights w,,, = 1/2, along
with one test data point:

|zo) = 0.9635]0) + 0.2676|1), Iris sample 23 : class 0
|z1) = 0.3526]0) + 0.9358|1), Iris sample 119 : class 1 (19)
|Z) = 0.3856]0) 4 0.9227|1), Iris sample 123 : class 1.

The SHC and SSC results for the data in Eq. (19) are approximately Pr(1) = 0.5952 and 0.6541, respectively.
This implies that the test data can be successfully classified as § = 1 through both SHC and SSC, provided
that Pr(1) is estimated with high accuracy.

We conducted 2000 repetitions for both SQKCs-QAE and SQKCs circuits, each time using a specific
number of samples. We sorted the errors in ascending order, and the 1621st value in the list corresponds to
the 81% error, which is plotted in blue curves with circles in Fig. 4(a) and (c) for SHC and SSC, respectively.

221 % SHC 81% error . SHC 81% error

“w —e— SHC-QAE 81% error) SHC fitted line
2% S -%-- SHC-QAE error bound = e SHC-QAE 81% error
. L SHC-QAE min error o o % —— SHC-QAE fitted line
g 27 0 -4
w
= s
S 2 B
5 g -6
£ 276 =}
= 0"
2] w
w S 8
278 L
510 -10
22 23 24 25 28 27 28 29 2i0 u 2 3 4 5 6 7 8 9 10 1
Number of Sample log(Number of Sample)
(a) SHC comparison result (b) Linear fitting for SHC comparison
224 % 0
o SSC 81% error
2 X —e— SSC-QAE 81% error 2
S -x-- SSC-QAE error bound -
5 272 SSC-QAE min error g 4
= R o]
w 5-a c
c ? S -6
o s
- 2—5
@ €
'g 2-8 :"J’ -8 d
n
w > SSC 81% error
-10 o -10) .
2 = SSC fitted line
512 12 e SSC-QAE §1% error
—— SSC-QAE fitted line °
22 23 24 25 26 27 28 29 Qlo ou 2 3 4 5 6 7 8 9 10 11
Number of Sample log(Number of Sample)
(¢) SSC comparison result (d) Linear fitting for SSC comparison

Fig. 4: (a) The error scaling comparison result between SHC with QAE (SHC-QAE) and SHC with respect
to the number of samples and (c¢) the comparison between SSC with QAE (SSC-QAE) and SSC. The answer
(a) that each algorithm wants to estimate is a ~ 0.5952 for SHC (also, for SHC-QAE) and a ~ 0.6541 for
SSC (also, for SSC-QAE). (b) and (d) is the linear fitting result of (a) and (c), respectively, using the log,
function. The slope ratio, the extent of speed-up, is calculated at approximately 1.957 for SHC and 2.221 for
SSC.

In these figures, the green dotted line correspond to the first element of the sorted list of SQKCs-QAE errors,
indicating the minimum error. The dashed lines with x marker represent the upper bound of the estimation
error in QAE, given by 2y/a(1 — a)n /Ny + 7% /NZ, which QAE should satisfy with a probability of at least
81% (see Eq. (13)).

Following numerical simulation, we fitted the estimation error results to straight lines in the log-log plot
for comparing the sampling efficiency of SQKCs with and without QAE. The results of the linear fit are
shown in Fig. 4(b) and (d). The slope ratio for SHC and SSC are 1.957 and 2.221, respectively. Since the
slope ratios of both SHC and SSC are approximately or exceeds 2, the linear fit results indicate that QAE
indeed achieves quadratic speed-up in sampling, as expected.

Although the minimum and the 81% error for both SHC and SSC with QAE do not decrease monoton-
ically with respect to the number of samples, they always remain below the theoretical upper bound of the
estimation error in QAE. In essence, the deviation from the monotonic behavior (such as plateaus within
certain ranges or the zig-zag pattern) can be attributed to the fact that we are estimating the continuous
parameter a via the discrete probability distribution. We elaborate further on this topic to justify such
non-monotonic behavior in Appendix B.

In addition, we calculate the mean estimation error, averaged across various values of a determined
by datasets different from the one specified in Eq. (19), as illustrated in Fig. 5. This figure represents
an average derived from 12 results, wherein 11 different datasets, including one same dataset Eq. 19 and
10 randomly selected training and test datasets, 5 each for both SHC and SSC, within the same features
of the Iris dataset. For detailed information on the computation of averages, refer to Appendix C. The
quadratic sampling advantage is also observed in this average result. Moreover, it presents a smoother error
reduction curve with fewer plateaus or zig-zag patterns, supporting the idea that the non-monotonic behaviour
depends on the specific value of the continuous parameter a. Furthermore, as this behaviour originates from

10

0
229 % SQKCs 81% error .
“w —e— SQKCs-QAE 81% error
2% " -x-- SQKCs-QAE error bound = -2
o x\\ ------- SQKCs-QAE min error o
e 22 =
= W,
pe s
S 2 2
® € -6
E 2-6 “3,
4‘;; w
w > SQKCS 81% error
2-8 o -8))
= SQKCs fitted line
® SQKCS-QAE 81% error
2 ~10] — SQKCs-QAE fitted line N
22 23 24 25 28 27 28 29 2i0 u 2 3 4 5 6 7 8 9 10 1
Number of Sample log(Number of Sample)
(a) Average comparison result (b) Linear fitting

Fig. 5: (a) Average error scaling comparison result between SQKCs-QAE and SQKCs. To obtain (a), we
calculated an arithmetic mean for each error (also error bound) from a total of 12 comparison results, 6
for SHC and else for SSC. The data for each result include Eq. (19) and 10 extra random data on the Iris
dataset. (b) is the linear fitting result of (a), and the calculated slope ratio is approximately 1.9185.

estimating the continuous parameter through the discrete distribution, it can be mitigated by transforming
the measurement results into a continuous distribution via techniques like maximum likelihood estimation
(MLE). This approach will be presented in the subsequent section.

To conclude, based on the comparative simulation results between SQKCs-QAFE and SQKCs in Fig. 4
and 5, we validate that, for a given level of precision, the estimation speed of SQKCs can be quadratically
enhanced by harnessing data superposition via QAE.

5.3.2 Maximum likelihood QAE

Recent works have demonstrated alternative forms of QAE that do not rely on QPE and can significantly
reduce the number of qubits and controlled gates needed compared to the traditional approach. Examples
include Maximum Likelihood Quantum Amplitude Estimation (MLQAE) [28] and other variants [29,41,47].
Thus, by allocating saved resources from these variants to increase the number of training data, we can
enhance the inherent performance of the classifiers while maintaining the same quadratic speed-up. More
details on how the classification performance improves with the number of training data are provided in
Appendix D. Therefore, in this section, we apply MLQAE, which is the most suitable for our comparison
method presented in Sec. 5.2, to SSC and verify it also can achieve the quadratic speed-up.

The essential idea of MLQAE is to create a likelihood function from the measurements of several amplitude
amplification processes instead of using QPE, requiring much fewer resources than the traditional QAE [28].
Since MLQAE with an exponentially incremental sequence for the power of the Grover operator achieves
an error of O(Ng- 1), we only consider this case of MLQAE. For a more explicit comparison, we also apply
post-processing to the traditional QAE with MLE. QAE with MLE post-processing can be performed by
applying MLE to the result distribution of the QAE. Applying MLE to QAE enables it to derive enhanced
estimations and confidence intervals based on the likelihood ratio [29]. This MLE post-processing converts
the distribution of QAE into a continuous one, thereby improving the estimation and mitigating the non-
monotonic behaviour observed in the previous section under traditional QAE, such as the zig-zag pattern
and the long plateaus in the estimation error profile. The majority of comparison strategies are similar to
Sec. 5.2. However, due to the nature of MLQAE and QAE with MLE requiring multiple shots to utilize
MLE, we fixed the number of shots, N2, . . to 100. Thus, the number of samples becomes 2t+1 % 100, where
t is the number of ancilla qubits, and this becomes the number of shots for SSC, N¢, ,. We generated SSC
with MLQAE (SSC-MLQAE), SSC with QAE post-processed by MLE (SSC-QAE with MLE), and SSC 1000
times for each sample size and displayed the 81st percentile value from multiple sorted errors for the result
in Fig. 6. The set of data used in this simulation is identical to the one used in the simulations presented in
Fig. 4, which is the 23rd and 119th Iris samples for training data, and the 123rd Iris samples for test data.

The slope ratio for SSC-QAE with MLE and SSC-MLQAE are approximately 2.063 and 1.845, respec-
tively. Since the slope ratios of both approaches are close to 2, the linear fit results indicate these variants
of QAE indeed achieve quadratic speed-up in sampling. It is important to note that SSC-MLQAE achieved
the quadratic speed-up is achieved while using much smaller quantum circuits. As the size of the quantum

11

24 SSC 81% error
—e— SSC-QAE with MLE 81% error
—#— SSC-MLQAE 81% error

SSC 81% error
SSC fitted line
-6 e SSC-QAE with MLE 81% error
—— SSC-QAE with MLE fitted line

N
&
log(Estimation Error)
|
®
‘o

9 11 13 17 19 21 23 25

15
log(Number of Sample)

Estimation Error

SSC 81% error
SSC fitted line
-6 = SSC-MLQAE 81% error
SSC-MLQAE fitted line

2-12

log(Estimation Error)
&

2-14

29 2]1 213 215 217 219 221 223 225 9 11 13 15 17 19 21 23 25
Number of Sample log(Number of Sample)

(a) SSC comparison result (b) Linear fitting

Fig. 6: (a) The error scaling comparison result between SSC with MLQAE (SSC-MLQAE), SSC with QAE
post-processed by MLE (SSC-QAE with MLE), and SSC. The answer (a) that each algorithm wants to
estimate is @ ~ 0.6541. The linear fitting results of each case are shown in (b). The top figure of (b)
represents the fitted line for SSC and SSC-QAE with MLE, and the bottom is for SSC and QAE-MLQAE.
The slope ratio, the extent of speed-up, is calculated at approximately 2.063 for SSC-QAE with MLE and
1.845 for SSC-MLQAE.

circuit increases with the number of training data points in the superposition state, our result suggests that,
for a fixed quantum circuit size, MLQAE has the potential to achieve higher classification accuracy by uti-
lizing more training data points. Additionally, in the error scaling result of SSC-QAE with MLE, each point
exhibits less deviation from the linearly fitted line. This observation further strengthens our argument that
the plateaus and zig-zag patterns in Fig. 4 are attributed to the discrete nature of QAE.

6 Conclusion

Quantum computing opens exciting opportunities for the development of new machine learning approaches
and methodologies. In connection with this, we outlined QKCs addressing the supervised binary classifica-
tion problem. The potential advantage of QKCs stems from their ability to evaluate the classification score
exponentially faster with respect to the number of features in the data, achieved by computing kernel using
Hadamard or swap tests. However, as demonstrated in Sec. 3, previous QKCs do not properly utilize the
ability to superpose the entire dataset. Consequently, they are indistinguishable from evaluating the classi-
fication score by computing the kernel function independently for each training data point and aggregating
them classically. The previous QKCs fail to attain any computational advantage from encoding the entire
dataset as a quantum superposition state, despite the logarithmic increase in the number of qubits and the
linear increase in circuit depth relative to the number of data samples. In response to this issue, we presented
protocols that fully leverage the unique capability of quantum computers to superpose the entire training
data, offering quadratic speed-up with respect to the number of training data via QAE. We also developed
simplified versions of the QKCs (SQKCs), enabled by using the ordered encoding strategy. This results in
a reduction of one qubit compared to previous QKCs and decreases the circuit depth linearly with respect
to the number of training data. Additionally, we modified the measurement scheme to enable classification
using a single-qubit projective measurement. This new measurement scheme is advantageous for practical
integration of QAE into our SQKCs, as the target state of QAE can be marked with a single-qubit Pauli-Z
gate (i.e. the phase oracle). Finally, we demonstrated that the quantum speed-up persists in MLQAE [28],
a variation of QAE that is more suitable for the near-term quantum devices.

The quantum classifiers discussed in this works are fully quantum in the sense that the classification score
over the full dataset is computed entirely coherently on a quantum computer. On the other hand, QKM
can solve classification problems in conjunction with classifier algorithms, such as SVM [6,27,31]. In such
a hybrid scenario, a quantum computer is used only for constructing the kernel matrix, and the potential
quantum advantage lies in the hardness of computing such kernel elements classically. Since the elements of
the quantum kernel matrix are typically given by the fidelities between two quantum states that encodes two

12

data points [6], the application of QAE can easily be extended to estimating them with quadratic speed-up.

While QKCs and SQKCs introduced in this paper focuses on binary problems, they can also address
multi-class classification problems using heuristic strategies such as one-vs-rest or one-vs-one [48]. Further-
more, there is another interesting approach to making multi-class SSC inspired by its binary predecessor [23].
Therefore, extending our method to multi-class QKCs could establish an interesting future work. More-
over, application of QAE in other approaches in QML, such as variational quantum algorithms, remains an
interesting avenue for future research.

Acknowledgments

This research was supported by Institute for Information & communications Technology Promotion (IITP)
grant funded by the Korea government (No. 2019-0-00003, Research and Development of Core technologies
for Programming, Running, Implementing and Validating of Fault-Tolerant Quantum Computing System),
by the National Research Foundation of Korea (Grant Numbers: 2022M3E4A 1074591, 2023M3K5A 1094805,
2023M3K5A1094813), by the KIST Institutional Program (2E32941-24-008), and by the Yonsei University
Research Fund of 2023 (2023-22-0072).

References

[1] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Phys.
Rewv. Lett., vol. 103, p. 150502, Oct 2009.

[2] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,”
Physical review letters, vol. 113, no. 13, p. 130503, 2014.

[3] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nature Physics,
vol. 10, no. 9, pp. 631-633, 2014.

[4] A. Montanaro, “Quantum speedup of monte carlo methods,” Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, vol. 471, no. 2181, p. 20150301, 2015.

[6] M. Schuld and N. Killoran, “Quantum machine learning in feature hilbert spaces,” Physical review
letters, vol. 122, no. 4, p. 040504, 2019.

[6] V. Havlicek, A. D. Cércoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta,
“Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209-212,
2019.

[7] Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust quantum speed-up in supervised
machine learning,” Nature Physics, vol. 17, no. 9, pp. 1013-1017, 2021.

[8] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao,
D. A. Buell, et al., “Quantum supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, 2019.

[9] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai,
X. Yuan, L. Cincio, and P. J. Coles, “Variational quantum algorithms,” Nature Reviews Physics, vol. 3,
no. 9, pp. 625-644, 2021.

[10] P. Wittek, Quantum machine learning: what quantum computing means to data mining. Academic
Press, 2014.

[11] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contem-
porary Physics, vol. 56, no. 2, pp. 172-185, 2015.

[12] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine
learning,” Nature, vol. 549, no. 7671, pp. 195-202, 2017.

[13] Y. Zhang and Q. Ni, “Recent advances in quantum machine learning,” Quantum Engineering, vol. 2,
no. 1, p. e34, 2020.

13

[14]

[15]

[16]

[17]

[18]

[31]

[32]

[33]

R. Mengoni and A. Di Pierro, “Kernel methods in quantum machine learning,” Quantum Machine
Intelligence, vol. 1, no. 3-4, pp. 65—71, 2019.

M. Schuld and F. Petruccione, “Quantum models as kernel methods,” Machine Learning with Quantum
Computers, pp. 217-245, 2021.

T. Hofmann, B. Scholkopf, and A. J. Smola, “Kernel methods in machine learning,” The Annals of
Statistics, vol. 36, pp. 1171-1220, 6 2008.

H. Buhrman, R. Cleve, J. Watrous, and R. De Wolf, “Quantum fingerprinting,” Physical Review Letters,
vol. 87, no. 16, p. 167902, 2001.

D. Aharonov, V. Jones, and Z. Landau, “A polynomial quantum algorithm for approximating the
jones polynomial,” in Proceedings of the thirty-eighth annual ACM symposium on Theory of comput-
ing, pp. 427-436, 2006.

M. Schuld, M. Fingerhuth, and F. Petruccione, “Implementing a distance-based classifier with a quantum
interference circuit,” Europhysics Letters, vol. 119, no. 6, p. 60002, 2017.

C. Blank, D. K. Park, J.-K. K. Rhee, and F. Petruccione, “Quantum classifier with tailored quantum
kernel,” npj Quantum Information, vol. 6, no. 1, p. 41, 2020.

D. K. Park, C. Blank, and F. Petruccione, “The theory of the quantum kernel-based binary classifier,”
Physics Letters A, vol. 384, no. 21, p. 126422, 2020.

C. Blank, A. J. da Silva, L. P. de Albuquerque, F. Petruccione, and D. K. Park, “Compact quantum
kernel-based binary classifier,” Quantum Science and Technology, vol. 7, p. 045007, jul 2022.

S. M. Pillay, I. Sinayskiy, E. Jembere, and F. Petruccione, “A multi-class quantum kernel-based classi-
fier,” Advanced Quantum Technologies, vol. 7, no. 1, p. 2300249, 2024.

N. M. de Oliveira, D. K. Park, I. F. Araujo, and A. J. da Silva, “Quantum variational distance-based
centroid classifier,” Neurocomputing, vol. 576, p. 127356, 2024.

G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and estimation,”
Contemporary Mathematics, vol. 305, pp. 53-74, 2002.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273297,
1995.

H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean, “Power
of data in quantum machine learning,” Nature Communications, vol. 12, no. 1, p. 2631, 2021.

Y. Suzuki, S. Uno, R. Raymond, T. Tanaka, T. Onodera, and N. Yamamoto, “Amplitude estimation
without phase estimation,” Quantum Information Processing, vol. 19, pp. 1-17, 2020.

D. Grinko, J. Gacon, C. Zoufal, and S. Woerner, “Iterative quantum amplitude estimation,” npj Quantum
Information, vol. 7, no. 1, p. 52, 2021.

M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Challenges and opportunities in
quantum machine learning,” Nature Computational Science, pp. 1-10, 2022.

T. Hur, 1. F. Araujo, and D. K. Park, “Neural quantum embedding: Pushing the limits of quantum
supervised learning,” arXiv preprint arXiw:2311.11412, 2023.

R. LaRose and B. Coyle, “Robust data encodings for quantum classifiers,” Phys. Rev. A, vol. 102,
p. 032420, Sep 2020.

M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum classifiers,” Phys. Reuv.
A, vol. 101, p. 032308, Mar 2020.

T. M. L. Veras, I. C. S. De Araujo, K. D. Park, and A. J. da Silva, “Circuit-based quantum random
access memory for classical data with continuous amplitudes,” IEEE Transactions on Computers, pp. 1—
1, 2020.

14

[35]

[36]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

I. F. Araujo, D. K. Park, F. Petruccione, and A. J. da Silva, “A divide-and-conquer algorithm for
quantum state preparation,” Scientific Reports, vol. 11, p. 6329, Mar. 2021.

I. F. Araujo, D. K. Park, T. B. Ludermir, W. R. Oliveira, F. Petruccione, and A. J. Da Silva, “Con-
figurable sublinear circuits for quantum state preparation,” Quantum Information Processing, vol. 22,
no. 2, p. 123, 2023.

D. R. Simon, “On the power of quantum computation,” SIAM journal on computing, vol. 26, no. 5,
pp. 1474-1483, 1997.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge Univer-
sity Press, 2000.

A. J. Da Silva and D. K. Park, “Linear-depth quantum circuits for multiqubit controlled gates,” Physical
Review A, vol. 106, no. 4, p. 042602, 2022.

A. Montanaro, “Quantum speedup of monte carlo methods,” Proceedings of the Royal Society A: Math-
ematical, Physical and Engineering Sciences, vol. 471, no. 2181, p. 20150301, 2015.

K. Nakaji, “Faster amplitude estimation,” arXiv preprint arXiv:2003.02417, 2020.

P. Intallura, G. Korpas, S. Chakraborty, V. Kungurtsev, and J. Marecek, “A survey of quantum alterna-
tives to randomized algorithms: Monte carlo integration and beyond,” arXiv preprint arXiv:2303.04945,
2023.

L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pp. 212-219, 1996.

M. Mottonen, J. J. Vartiainen, V. Bergholm, and M. M. Salomaa, “Transformation of quantum states
using uniformly controlled rotations,” arXiv preprint quant-ph/0407010, 2004.

V. Bergholm, J. J. Vartiainen, M. Mo6ttonen, and M. M. Salomaa, “Quantum circuits with uniformly
controlled one-qubit gates,” Physical Review A, vol. 71, no. 5, p. 052330, 2005.

D. Gottesman, “Theory of fault-tolerant quantum computation,” Physical Review A, vol. 57, no. 1,
p. 127, 1998.

A. Manzano, D. Musso, and A. Leitao, “Real quantum amplitude estimation,” EPJ Quantum Technology,
vol. 10, no. 1, pp. 1-24, 2023.

R. Giuntini, F. Holik, D. K. Park, H. Freytes, C. Blank, and G. Sergioli, “Quantum-inspired algorithm
for direct multi-class classification,” Applied Soft Computing, vol. 134, p. 109956, 2023.

S. Suthaharan and S. Suthaharan, “Support vector machine,” Machine learning models and algorithms
for big data classification: thinking with examples for effective learning, pp. 207-235, 2016.

15

Appendix A Calculating classification score without data super-
position

Recall that the mixed state obtained from the partial trace of the index register in QKCs is p(zy,, &, Ym) =
Zﬁ{;@l Wi [P (M) (P (M)| @ |Ym) (Ym|. We mentioned in the main manuscript that performing weighted
Hadamard or swap test on the state |[¢)'(m)) individually and aggregating the total of M outcomes classically
can yield the same classification score without data superposition. In this section, we explicitly demonstrate
the unnecessity of superposing the training data points in the previous HC and SC by introducing the
weighted Hadamard test (WHT) and weighted swap test (WST) and constructing classifiers with them.

10)
10y {R, 100 {UG————
10 10)

(a) Weighted Hadamard test (b) Weighted swap test

Fig. A.1: Quantum circuit diagrams for (a) weighted Hadamard test (WHT) and (b) weighted swap test
(WST), used to implement the QKCs without data superposition. By aggregating the expectation values of
the circuit for each training data point, the QKCs can be constructed without data superposition.

The quantum circuit diagrams for WHT and WST are depicted in Fig. A.1, where U(x,,) and U(Z)
indicate the data encoding (e.g. amplitude encoding) operator for mth training data and test data to
initialize them as |z,,) and |Z), respectively. The output of both circuits can be described by the expectation
value of the one-qubit observable as, (o)., = sin(A\)k(x,,Z), where | € {h,s} is the label for indicating
whether the state is for WHT or WST and k(z,,,Z) is the kernel computed as R ((z,,|Z)) for WHT and
|(@m |Z) |2 for WST. For supervised classification, one can choose A such that sin(A) = (—1)¥"w,,. Therefore,
each circuit can obtain the weighted kernel of one training data, (o), = (=1)¥"wk(z,Z), so that if
we aggregate every expectation value for mth circuit, (o),,, we can calculate the classification score for M
number of training data as

M-—1 M-1
<0lz> = Z <Ui>m = Z (=1)Y" wmk(2m, 7). (A1)
m=0 m=0

It is the same measure as Eqgs. (4) and (7), which can be gained from HC and SC, respectively. Consequently,
the classification score of the QKCs can also be evaluated by computing the kernel function for the test data
and each training data independently via WHT or WST and aggregating every expectation value classically.

Appendix B Interpretation of the QAE results

In this section, we elaborate on the theoretically expected nature of the two non-monotonic behaviors
observed in the minimum and the 81% error of QAE with respect to the sample size, as shown in Fig. 4.

The first behavior, referred to as plateaus in the text, describes instances where the estimation error of
QAE remains constant within a specific range, instead of monotonically decreasing with the sample size. This
phenomenon is primarily observed in Fig. 4(a). For example, solely considering the results after 26 samples
in the figure might be misleading, because comparing the slope of the linear fit using only those points in that
flat region could suggest that the performance of SHC-QAE is worse than that of SHC without QAE. Such
flat regions can emerge because QAE estimates the continuous value a using a discrete number of bits, and
in some cases, the addition of a few more bits may not necessarily enhance the approximation. For example,
when aiming to estimate a = 0.01 using QAE, the estimation error remains constant when using between one
and four ancilla qubits. This is because, among the values that QAFE with four ancilla qubits can estimate,
the smallest non-zero value is 0.0381, calculated as sin(7/2%)2. Moreover, with fewer ancilla qubits, this value
would be even larger. Therefore, the QAE outputs an estimate @ = 0, since this is a better estimate of a
than 0.0381, until using more than four ancilla qubits. With five ancilla qubits, the smallest non-zero value
that QAE can output is 0.0096, which is a better estimate than 0. In other words, the minimum error of
QAE with up to four ancilla qubits is 0.01, resulting in the plateau. However, this minimum error reduces
to 0.0004 when the number of ancilla is five. It is important to note that even though the flat region exists,
all estimation errors are below the QAE error bound and agree with the theory.

16

1.0 T T
0.9f |
5 0.598
0.6 4 I
0.8 :
—— min error : —— min error : I
— = 81% error B — = 81% error : |
_ai‘o 6| == target value (a) _é‘o P target value (a) : 1
3 | e expectation value Q e expectation value |
© ©
Q Q |
0 0.4 o 0.271
o o I
- 0.2 : 1
021 i |
5 0.061 :
3 : 0.048
0.036 : 0.064 0.022 : !
0.0 . 0.0 - ' : I
0.0 0.5 1.0 0.0 0.1465 0.5 0.8536 1.0
Estimated values Estimated values

(a) SSC-QAE result distribution for two ancilla (b) SSC-QAE result distribution for three ancilla

Fig. B.1: Probability distribution of (a) two-ancilla SSC-QAE result and (b) three-ancilla SSC-QAE result
to estimate the value a = 0.6541, which is represented in red ticker solid vertical line. In both cases, the
QAE result indicating the minimum error is 0.5 shown in blue thin solid line and its derivation probability is
0.9 and 0.598 in (a) and (b), respectively. Therefore, in two-ancilla QAE, the results associated with an 81%
error, black dashed line, is 0.5. In contrast, it is 0.8536 in three-ancilla QAE. The green dotted vertical line
represents the expectation value of the probability distribution. It is closer to a in three-ancilla QAE than in
two-ancilla QAE, indicating that three-ancilla QAE performs better in predicting a than two-ancilla QAE.

The second issue, primarily observed in Fig. 4(c), is the zig-zag shape of the SSC-QAE 81% error, unlike
the monotonic decrease of the SSC 81% error with the sample size. While the minimum SSC-QAE error
remains constant, several jumps in the estimation error are observed in the QAE 81 percentile error. This
zig-zag pattern arises due to the fact that the resolution of the discrete probability distribution corresponding
to the QAE result improves with the number of samples, and that the 81 percentile largest error is selected
from such a discrete distribution.

For example, Fig B.1 shows the probability distribution of SSC-QAE results depicted in Fig. 4(c), espe-
cially for cases using two and three ancilla qubits, respectively. In this example, the true answer is a = 0.6541.
In the two-ancilla QAE, the resolution of the discrete probability distribution is low, such that it can only
output 0, 0.5, or 1. Although the true value lies between 0.5 and 1, the probability to obtain 1 is very small,
whereas the probability to output 0.5 is approximately 0.9. Therefore, the 81st largest value among all errors
would likely be the difference between [0.5 — a| = 0.1541. On the other hand, the resolution improves in
the three-ancilla QAE, enabling it to output 0, 0.1465, 0.5, 0.8536, or 1. The true value lies between 0.5
and 0.8536. There is now approximately a 0.27 probability of obtaining 0.8536. Thus, the 81st largest value
among all errors would likely be |0.8536 —a| = 0.1995; the 81 percentile error has increased as ¢ increases from
2 to 3. However, the most frequent outcome in both two- and three-ancilla QAE are 0.5, which yields the
minimum error in both cases. Again, it is important to note that even though the zig-zag pattern is observed,
all estimation errors are below the QAE error bound and agree with the theory. As a side note, the expected
outputs of two-ancilla QAE and three-qubit QAE are (i.e. expectation values of the probability distributions
in Fig B.1) 0.5140 and 0.5873, respectively. Thus, the expected estimation improves as ¢ increases from 2 to
3.

Appendix C Data for average results

We calculate the arithmetic mean of 12 comparison results, 6 for the SHC-QAE vc SHC and else for
the SSC-QAE vs SSC, in the manuscript to explore the average results. The Figs. C.1 and C.2 are specific
comparison results used in Fig. 5, and among them, the left top data is the dataset that we already treated
in Sec. 5, and others are the results of random test and training dataset in the Iris data set, where classes :
setosa and virginica, features : sepal width and petal length. The random dataset used in Figs. C.1 and C.2
is organized in Table C.1.

17

Table C.1: Data of (a) SHC-QAE vs SHC experiments and (b) SSC-QAE vs SSC experiments each depicted
in Figs. C.1 and C.2. |Z) and |z,,) is test data and training data, respectively, where subscript m indicates
the class of the training data and the number within parentheses represents the index of each data in the Iris

0.3856/0) + 0.9227|1) (123)

0.9635(0) + 0.2676/1) (23)

0.3526(0) + 0.9358|1) (119)
0.5952

0.3436]0) + 0.9391|1) (33)

0.3162|0) + 0.9487|1) (17)

0.8882]0) + 0.4594/1) (105)
0.4343

0.8882/0) + 0.4594|1) (130)
0.3714/0) + 0.9285/1) (1)
0.8914/0) + 0.4532|1) (103)
0.4391

0.4158]0) + 0.9095/1) (44)

0.4229]0) + 0.9062|1) (13)

0.8638|0) + 0.50391) (127)
0.5456

0.3757]0) + 0.9267|1) (22)

0.4356|0) + 0.9002|1) (10)

0.9358]0) -+ 0.3526/1) (119)
0.5799

0.3443|0) + 0.9389[1) (14)

0.4472|0) + 0.8944[1) (21)

0.8838|0) + 0.4679(1) (102)
0.4375

(a) Data used in SHC-QAE vs SHC experiments

0.3856/0) + 0.9227|1) (123)

0.9635(0) + 0.2676/1) (23)

0.3526(0) + 0.9358/1) (119)
0.6541

0.8944|0) + 0.4472|1) (129)

0.3162]0) + 0.9487|1) (34)

0.8882|0) + 0.4594|1) (105)
0.6250

0.3482/0) + 0.9374|1) (37)

0.4258|0) + 0.90481) (27)

0.8973|0) + 0.4413[1) (136)
0.6164

0.8779]0) + 0.4789|1) (117)

0.3482|0) + 0.93741) (41)

0.8720(0) + 0.48951) (121)
0.3924

0.8662]0) + 0.4997|1) (148)

0.3162|0) + 0.9487|1) (17)

0.8720|0) -+ 0.4895/1) (121)
0.6101

0.8944]0) + 0.4472|1) (133)

0.3511/0) + 0.9363|1) (36)

0.8838|0) + 0.4679|1) (143)
0.3844

sample.

Estimation Error

Estimation Error

Fig. C.1: The error scaling comparison result between SHC-QAE and SHC on 6 different data (the left top
one is for the dataset shown in Eq. (19) and the rest are random data which are organized in Table C.1(a))

(b) Data used in SSC-QAE vs SSC experiments

SHC 81% error

—e— SHC-QAE 81% error
. =%-- SHC-QAE error bound 2°
’&\ «-- SHC-QAE min error

Estimation Error
~

. SHC 81% error

* —e— SHC-QAE 81% error
N -%=- SHC-QAE error bound
‘x\ -+ SHC-QAE min error

Estimation Error

X SHC 81% error
S, —e— SHC-QAE 81% error
~ -%-- SHC-QAE error bound

«++ SHC-QAE min error

x
21
23 25 27 2 o 23 25 27 29 3t 2 25 27 29 on
Number of Sample Number of Sample Number of Sample
SHC 81% error 22 % SHC 81% error NN SHC 81% error
“x. —e— SHC-QAE 81% error S —e— SHC-QAE 81% error 2 o —e— SHC-QAE 81% error

==+ SHC-QAE error bound
-+ SHC-QAE min error

Estimation Error

-%-- SHC-QAE error bound
-+ SHC-QAE min error

Estimation Error

N === SHC-QAE error bound
X «- SHC-QAE min error

25 27 20
Number of Sample

23 25 27 2°
Number of Sample

for calculating the average result in the figure 5.

18

23 25 27 20
Number of Sample

29 X SSC 81% error 2 % SSC 81% error NN SSC 81% error
2 X —e— SSC-QAE 81% error . % —e— SSC-QAE 81% error 2 % —e— SSC-QAE 81% error
“x, -%-- SSC-QAE error bound 2 " -%-- SSC-QAE error bound X -%+ SSC-QAE error bound
-2 SSC-QAE min error . - SSC-QAE min error 5 2" = SSC-QAE min error
g g 27 £
Wy w w3
[=4 c . c
S s 2* s
Sop-6 =4 E=1
© © © 55
E £ 2 £
=P = 2
it 4 w7
2-10
212 210 2
2 > 57 2 oh > > 27 > on 2 > 27 B on
Number of Sample Number of Sample Number of Sample
N SSC 81% error 2 % SSC 81% error Sl SSC 81% error
2 “x. —e— SSC-QAE 81% error . % —e— SSC-QAE 81% error X —e— SSC-QAE 81% error
. -+ SSC-QAE error bound 2 Ny -x-- SSC-QAE error bound 21 % --- SSC-QAE error bound
5271 3 S " SSC-QAE min error = -+ SSC-QAE min error . o SSC-QAE min error
e R g 272 2 23
= = =
w w w
23
.5 S 274 g 2-5
B 3]
s -
£’ E 2 E?
= = =
W, i 8 o2
58
Pty
2-9 2-10
213
% 3 37 2 B > > 57 > on > > > 2 o

Number of Sample Number of Sample Number of Sample

Fig. C.2: The error scaling comparison result between SSC-QAE and SSC on 6 different data (the left top
one is for the dataset shown in Eq. (19) and else are random data which are organized in Table C.1(b)) for
calculating the average result in the figure 5.

Appendix D Classifier inherent error

0.040 - 0.040 -
0.035 A 0.035 -
—— two training data —— two training data

o —— four training data . —— four training data
g 0.030 1 —— eight training data g 0.0301 —— eight training data
w i}
- -
0 wn
00257 MM__‘ | 0:0251 W&—\

o M,\/”‘*A—'\/\M .

- - W\/\/‘\M

1000 20000 40000 60000 80000 100000 1000 20000 40000 60000 80000 100000

Number of iteration Number of iteration

(a) SHC error (b) SSC error

Fig. D.1: Classifier inherent error for two (one pair), four (two pairs), and eight (four pairs) training data.
In both SHC and SSC, the test error converges after multiple iterations to approximately 0.037, 0.024, and
0.018, respectively, when there are 2, 4, and 8 training data.

Figure D.1 shows error convergences between three different numbers of data in both classifiers, respec-
tively. We iterated the classifiers 100000 times for random data and accumulated the number of wrong
classifications plotting the error rate each 10 iterations after the first 1000 iterations. For the random data,
we used the first two features and classes in the IRIS dataset, classes : setosa and versicolor, features : sepal
length and sepal width. The reason why we used different features of data from the main text is that the two
features used in Sec. 5 had a 0.00 classification error for the two training data in both classifiers since the
dataset is perfectly separable. However, note that it does not imply that our algorithms did not require data
pre-processing on account of this fact. The original HC used the post-selection scheme, and standardizing
data to a zero mean and unit standard deviation was necessary to elevate the probability of selecting the
appropriate branch to around 1/2. The effectiveness of SQKCs for the dataset used here can be significantly
enhanced by implementing feature maps, such as polynomial feature maps [49], to the data. Additionally, it
can also be improved by increasing the number of training data while maintaining the full quantumness of

19

the classification. According to the results, the convergence error is approximately 1.3 to 1.5 times smaller
when the amount of training data is doubled for both classifiers. In other words, if the number of data
points increases by a factor of four, the errors decrease by a factor of two. However, since the rate at which
errors are reduced appears to be gradually decreasing, it would be inappropriate to claim that increasing the
number of training data is unconditionally efficacious. Nevertheless, it is evident that using more training
data can effectively reduce error rates. Therefore, adapting variants of QAE, such as MLQAE, which allow
for the utilization of more data within the constraints of a given circuit size, can be beneficial not only for
executing the algorithms in the NISQ era but also for achieving higher classification accuracy.

20

	Introduction
	Quantum kernelized binary classifiers
	Hadamard classifier
	Swap test classifier

	Classification without data superposition
	Quantum Amplitude Estimation
	Results
	Simplified quantum kernelized binary classifier
	Main protocols
	Numerical simulation
	SQKCs-QAE vs SQKCs
	Maximum likelihood QAE

	Conclusion
	Calculating classification score without data superposition
	Interpretation of the QAE results
	Data for average results
	Classifier inherent error

