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We present a new numerical tool designed to probe the dense layers of neutron star crusts. It
is based on the Time-Dependent Hartree-Fock-Bogoliubov theory with generalized Skyrme nuclear
energy density functionals, such as the Brussels-Montreal ones. We use it to study the time evolution
of a nucleus accelerating through superfluid neutron medium in the inner crust of a neutron star.
We extract an effective mass in the low velocity limit. We observe a threshold velocity and specify
mechanisms of dissipation: phonon emission, Cooper pairs breaking, and vortex rings creation. The
microscopic effects we study have impact on neutron star. Moreover, the mechanisms, we described,
are general and apply also to other fermionic superfluid mixtures like liquid helium, or ultracold
gases.

I. INTRODUCTION

Neutron stars are the compact remnants formed in the
furnace of supernova explosions from the gravitational
collapse of the core of progenitor stars with a zero-age
main sequence mass 9 ≲ M ≲ 15M⊙ [1]. Initially very
hot with temperatures reaching ∼ 1012 K, they rapidly
cool down to ∼ 109 K within days by releasing most of
their energy in neutrinos (see, e.g., Refs. [2, 3]). The
interior of a neutron star is so dense that it is highly
degenerate and is expected to undergo various quantum
phase transitions, as observed in some terrestrial materi-
als at low-enough temperatures. In particular, neutrons
present in the inner crust and in the core of a neutron
star are thought to become superfluid by forming 1S0

Cooper pairs, as in conventional superconductors. Al-
though the existence of neutron superfluidity in neutron
stars was predicted long ago before the actual discov-
ery of these stars [4] and is now well-established, little is
known about the properties of such nuclear condensates
(see, e.g., Refs. [5, 6]). The conditions prevailing inside
a neutron star are so extreme that they cannot be repro-
duced in the laboratory. The properties of their dense
matter can be probed indirectly through astrophysical
observations. However, microscopic models of cold dense
matter remain crucial for constructing global models of
superfluid neutron stars [7].

The most successful fully self-consistent approach for
modeling quantum systems is via the Density Functional
Theory (DFT). It has become a standard theoretical tool
in electronic systems, delivering high-accuracy predic-
tions while keeping the numerical cost at a reasonable
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level, being of the same order as that of a mean-field
method. In nuclear systems, the accuracy is still lower,
but constant improvement of the quality of nuclear en-
ergy density functionals makes DFT1 one of the leading
approaches for describing the properties of nuclei across
the whole nuclear chart, and beyond including nuclear
matter under extreme astrophysical conditions (see re-
view papers [11–14]). At the same time, the DFT is very
flexible. There are a variety of extensions of the formal-
ism: for static and time-dependent problems [15–17], zero
and finite temperature problems [18–20], and for systems
in normal and superconducting/superfluid states [21–26].
Implementing the DFT concept in the form of ready-to-
use packages made it a workhorse for condensed-matter
physics and quantum chemistry [27].

In this work, we provide a tool for numerical explo-
rations of dense-matter properties under conditions ex-
pected to be found inside the inner crust of neutron
stars. The tool exploits opportunities offered by DFT.
Our method relies on recent nuclear energy density func-
tional (EDF) developments. Specifically, we use a fam-
ily of Brussels-Montreal Skyrme (BSk) nuclear function-
als that have been optimized for astrophysical applica-
tions [28]. These functionals provide a high-quality global
description of various properties of finite nuclei (masses,
radii, ...) as well as properties of infinite nuclear matter
in agreement with ab-initio calculations. We combine
them with techniques of High-Perfomance Computing
(HPC) that recently reached an enormous scale, being
able to perform the order of 1018 mathematical opera-
tions per second. As a result, we construct a general-
purpose toolkit for 3D modeling of dynamical processes
that take place inside neutron stars. The toolkit that

1 Although we refer here to the DFT for both electronic and nu-
clear systems, some conceptual differences exist due to the break-
ing of symmetries in the latter [8–10].
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hereafter we call W-BSk Toolkit [29], can deal with
static and time-dependent phenomena at zero and finite
temperatures without any symmetry constraints. The
present HPC capabilities allow us to use it for model-
ing nuclear phenomena taking place in volumes exceed-
ing (100 fm)3 — volumes that are sufficient to encap-
sulate hundreds of thousands of neutrons and protons.
For example, one of the relevant scales when studying
neutron star crust is the radius of the spherical Wigner-
Seitz (WS) cell. Its precise value depends on the depth
in the crust, and microscopic calculations yield values
in the range RWS ∈ (10 − 60) fm [30]. The associated
volumes of WS cell, 4

3πR
3
WS , are within the reach of

the toolkit; thus nowadays, phenomena taking place on
the scales of WS cells can be simulated by means of the
microscopic self-consistent DFT approach. Unlike elec-
tronic systems, superfluidity is crucial for describing nu-
clear systems. Indeed, the interactions between nucle-
ons of the same species are naturally attractive at the
densities of interest here, and the formation of Cooper
pairs is therefore unavoidable. The standard way of tak-
ing into account superfluid properties requires the us-
age of nonlocal order parameter [21, 31]. Such an ap-
proach prevents its practical applications due to enor-
mous numerical complexity. However, this was circum-
vented by formulating the problem using local pairing
field [32] and the suitable framework had been developed
(see review papers [13, 33, 34] and references therein). In
this way, constructing an effective model of neutron star
crust rooted in unified macroscopic formalism becomes
feasible. In this paper we demonstrate this feasibility ex-
amining comprehensively the dynamical properties of a
nuclear cluster, called hereafter impurity, immersed in a
neutron superfluid bath at zero temperature. Such con-
figurations are expected to be present in neutron star
crust, see Fig. 1.

In Sec. II we present the general theoretical frame-
work, subsequently in Sec. III we elaborate on the phys-
ical problem where the framework can be applied. Next,
in Sec. IV, we describe the numerical experiment tailored
to tackle the physical problem. The results are presented
in Sec. V (effective mass), and Sec. VI (dissipation chan-
nels). We conclude in Sec VII.

II. DFT AS GENERAL PURPOSE
FRAMEWORK FOR NUCLEAR MATTER

The popularity of DFT methods arises from a very
good balance of the quality of predictions to the com-
putation cost. To avoid prohibitive computing times, we
only consider semi-local functionals, such as the Brussels-
Montreal BSk functionals [28]. These functionals, which
were specifically constructed for astrophysical applica-
tions, are based on generalized Skyrme effective inter-
actions with density-dependent t1 and t2 terms [36] to-
gether with microscopically deduced contact pairing in-
teraction [37–39]. The resulting partial differential equa-

FIG. 1. In panel a) we show the numerical setup considered
in this work: a nucleus accelerating to the right through a
neutron superfluid medium. The red sphere in the middle
shows the proton density. The map at the bottom shows
the neutron pairing field ∆n(rrr) for x = 0 cut. The map
beyond shows the neutron density ρn(rrr) for y = 0 cut. In
panel b) a schematic picture of the geometrical structures
in the inner crust of a neutron star. Our region of interest
corresponds to cases where protons form quasi spherical self-
bound impurities. At higher densities, exotic configurations
such as rods or slabs referred to as “nuclear pasta” might be
present. Red surfaces represent schematically boundaries of
proton clusters in dilute neutron matter, while blue surfaces
represent protonic holes in a dense nuclear matter. In panel
c) we show the 1S0 neutron pairing gap ∆n in neutron matter
as a function of the background neutron density ρBn [35], on
which the pairing part of the BSk functional is based. The
circles indicate densities for which we extract the dynamical
properties of the impurities.

tions, one needs to solve, have the same structure as
the Hartree-Fock-Bogoliubov equations with local fields.
Their generic structure is (for brevity we omit position
and time dependence)

iℏ
∂

∂t

uk↑
uk↓
vk↑
vk↓

 =


h↑↑ h↑↓ 0 ∆
h↓↑ h↓↓ −∆ 0
0 −∆∗ −h∗

↑↑ −h∗
↑↓

∆∗ 0 −h∗
↓↑ −h∗

↓↓


uk↑
uk↓
vk↑
vk↓

 , (1)
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where [uk↑, uk↓, vk↑, vk↓]T are four component quasipar-
ticle orbitals: mixtures of particles (vkσ) and holes (ukσ)
with a set of quantum numbers k and spin projections
σ = {↑, ↓}. The hσσ′ and ∆ are single particle hamil-
tonian and pairing potential, respectively. In the case
of nuclear problems, the terms h↑↓ and h↓↑ arise due to
spin-orbit interaction. It is imperative in the description
of nuclei; for example, it is responsible for the correct
reproduction of nuclear magic numbers. On the other
hand, the spin-orbit term does not contribute in homo-
geneous matter, and was shown to be very small in the
crust of neutron stars [30]. On the technical level, the
presence of h↑↓ and h↓↑ terms significantly increases the
computation cost. There are numerical packages for nu-
clear dynamics, like LISE [40], that are optimized toward
studies of nuclear reactions. We optimize our toolkit to-
wards applications to neutron stars, and in this context,
the ability to model phenomena in large volumes (com-
pared to the size of nuclei in vacuum) is of major im-
portance. Due to predicted small spatial variability of
nuclear densities, the spin-orbit coupling is of secondary
importance. For this reason, we neglect the spin-orbit
contribution. The computations savings emerging from
this simplification will allow us to consider volumes ex-
ceeding 1003 fm3.

Under the assumptions h↑↓ = h↓↑ = 0 and h↑↑ = h↓↓ =
h, it is sufficient to solve the Hartree-Fock-Bogoliubov
equations for a two-component vector [41]

iℏ
∂

∂t

(
uq,k↑
vq,k↓

)
=

(
hq ∆q

∆∗
q −h∗

q

)(
uq,k↑
vq,k↓

)
, (2)

where we added an extra index q = n, p to indicate that
these equations must be solved for neutrons and protons
respectively. There is another set of equations for com-
ponents {uq,k↓, vq,k↑}. However, there is no need to solve
them independently, as the solution can be obtained from
{uq,k↑, vq,k↓} via suitable transformation [42].

To solve the time-dependent equations (2) one
needs to provide an initial configuration specified by
{uq,k↑(r, 0), vq,k↓(r, 0)}. It is usually obtained as a so-
lution of static HFB equations (for clarity, we omit in
notation the position dependence)(

hq ∆q

∆∗
q −h∗

q

)(
uq,k↑
vq,k↓

)
= Eq,k

(
uq,k↑
vq,k↓

)
. (3)

Solving these equations self-consistently for the nonuni-
form matter in the inner crust of a neutron star, by itself,
constitutes a challenging problem, and most of the results
presented in the literature are limited to this type of cal-
culations with the further approximation of a spherical
WS cell, as e.g. in Refs. [43–45].

The core of every DFT method is an energy density
functional E [ρq, νq, τq, jq] that depends on the normal
densities (ρq), anomalous densities (νq), kinetic densities
(τq), currents (jq) and in our case also on the gradients
of density ∇ρq. The densities are constructed from the

quasiparticle states

ρq = 2
∑
k

[
|vq,k↓|2fT (−Eq,k) + |uq,k↑|2fT (Eq,k)

]
, (4)

τq = 2
∑
k

[
|∇vq,k↓|2fT (−Eq,k) + |∇uq,k↑|2fT (Eq,k)

]
,

(5)

νq = 2
∑
k

uq,k↑v
∗
q,k↓(fT (−Eq,k)− fT (Eq,k)), (6)

jq = 2
∑
k

Im
[
vq,k↓∇v∗q,k↓

]
fT (−Eq,k)+

+ 2
∑
k

Im
[
uq,k↑∇u∗

q,k↑
]
fT (Eq,k). (7)

The factor two in the above equations comes from the
spin degeneracy of neutrons and protons. The summa-
tion over k is restricted only to the interval below the
cutoff energy 0 < Eq,k < Ecut. The thermal occupation
factors (kB is Boltzmann constant)

fT (E) =

[
1 + exp

(
E

kBT

)]−1

, (8)

have been introduced to W-BSk Toolkit to allow inves-
tigations at finite temperatures.

The energy of the system has a generic form

E =

∫
E [ρq, νq, τq, jq]dr −

∑
q=n,p

∫ (
µq − V (ext)

q

)
ρq dr

− 1

2

∑
q=n,p

∫ (
∆(ext)

q ν∗q + h.c.
)
dr

− ℏ
∑

q=n,p

∫
v(ext)
q · jq dr.

(9)

The first term in the above expression is the intrinsic en-
ergy of the system. The remaining three terms are intro-
duced as generalized Lagrange multipliers. In general ex-
ternal field V

(ext)
q , external pairing field ∆

(ext)
q , and exter-

nal velocity field v
(ext)
q are position and time dependent.

They are coupled to normal ρq, anomalous νq and current
jq densities, respectively, and allow to control them de-
pending on the problem considered. Note that from the
V

(ext)
q , we have extracted the constant part µq that has

the meaning of the chemical potential. If V (ext)
q (r, t) = 0

one recognizes that the associated term reduces to well
know form −µqNq, where Nq =

∫
ρq(r, t)dr. The in-

troduction of generalized Lagrange multipliers make the
toolkit applicable to a plethora of problems. For exam-
ple, setting v

(ext)
q = Ω × r results in the requirement of

putting our system into rotation with angular velocity Ω.
In this work, we will use the external potential V (ext)

q (r, t)
to simulate the presence of an external electric field.

In this particular study, we adopted the energy den-
sity functional BSk31 [28]. This functional from the
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Brussels-Montreal family was constructed from general-
ized Skyrme effective interactions [36] and has the follow-
ing form:

E [ρq, ∇⃗ρq, νq, τq, jq]

=
ℏ2

2Mn
τn +

ℏ2

2Mp
τp + Eτ (ρq, τq, jq) (10a)

+ Eρ(ρq) + E∆ρ(ρq, ∇⃗ρq) (10b)

+ Eπ(ρq, ∇⃗ρq, νq) + ECoul(ρp). (10c)

The different terms above have the following meaning. In
line (10a), the first two terms correspond to the kinetic
energy density of protons and neutrons, while Eτ is the
energy density arising from the momentum-dependent
part of the effective interaction. This last term is re-
sponsible for the density-dependent effective mass of the
nucleons (in contrast to the effective mass of the impurity
that we study in this paper) and for the mutual neutron-
proton entrainment effects due to current-current cou-
plings [46, 47]. The two terms in line (10b) contribute
to the mean-field potential felt by a nucleon due to its
interactions with the dense background and its spatial
fluctuations. The last two terms in (10c) account for
pairing (see Appendix A) and Coulomb interactions.

The single-particle mean-fields hq and pairing poten-
tials ∆q, are defined for a given density functional E
through variation over proper densities:

hq = −∇ δE
δτq

∇+
δE
δρq

− (µq − V (ext)
q )

− i

2

{
δE
δjq

− ℏv(ext)
q ,∇

}
, (11)

∆q = −2
δE
δν∗q

+∆(ext)
q . (12)

According to our shorthand notation the term δE/δjq
describes components x, y, z arising from the variation of
the energy with respect to the current density compo-
nents jqx, jqy, jqz. respectively. One can now recognize
the mathematical complexity of the problem: the po-
tentials hq and ∆q depend on densities (4)-(7), which
in turn are expressed through the quasiparticle states
{uq,k↑, vq,k↓}. They need to be obtained from the equa-
tions (2) and (3) that are defined via hq and ∆q.

To tackle the problem, we designed a software W-BSk
Toolkit . It is based on the numerical engine of W-SLDA
Toolkit [48], constructed for ultracold atomic gases.
The W-SLDA engine has been already applied to various
problems. Landscape of problems encapsulate: quan-
tum vortices [49–52], solitons [53], exotic states in spin-
imbalanced gases [54–57], Josephson junctions [58], Higgs
modes [59], quantum turbulence [60, 61]. In the first
stage, we adapted the code for pure neutron matter and
applied it to investigations of quantum vortices at fi-
nite temperatures [62] using the functional BSk31 [28].
Here, we accomplished the second stage, extending it to
take into account the presence of protons. In the present

study, we use the same functional BSk31. We also as-
sume the whole system is electrically charge neutral; the
positive proton charge is compensating by the presence
of a uniform electron gas The full expression of the func-
tional E and the associated mean fields can be found in
Appendix A.

Cartesian lattice is used to discretize the space (2) and
(3). Consequently the quasiparticle wavefunctions are
expressed on a mesh of size Nx × Ny × Nz with lattice
spacings ∆x, ∆y and ∆z, respectively. Tests indicated
that ∆x ≈ 1.25 fm provides already high-quality repre-
sentation [40, 63]. The equations are solved imposing pe-
riodic boundary conditions. The lattice spacing provides
a natural energy cut-off scale Ecut = ℏ2π2/(2m∆x2). It
is located in energy window Ecut ≈ (130 − 200)MeV
for lattice spacings spanning (1.00 − 1.25)fm, which is
significantly larger than the Fermi energy of nucleons.
That implies that the number of considered states is
also much larger than the number of simulated parti-
cles. The large values of the energy cut-off are required
in order to maintain the trustable evolution of the nu-
clear system [13, 64, 65]. The lattice representation al-
lows for efficient utilization of spectral methods for com-
putation of derivatives [66]. These are high-accuracy
methods with the associated numerical cost comparable
to finite-difference methods (precisely, the computation
cost is set by the efficiency of a fast Fourier transform).
The time integration of Eq. (2) is done via the multi-
step Adams-Bashforth-Moulton (ABM) method of the 5-
th order. This integrator generates stable and accurate
length trajectories ∼ 104 fm/c. The robustness of the
time integrator with respect to the perturbations of the
initial states has been demonstrated in [67]. The static
problem (3) is solved by a series of direct diagonaliza-
tions supported by the ELPA library [68–70]. Conver-
gence of the self-consistent loop is greatly improved by
utilization of the Broyden algorithm [71]. The solvers for
static and time-dependent problems are parallelized by
MPI protocol, and GPUs are used to achieve the highest
computation performance. The implementation supports
both nVidia and AMD accelerators. The code is scalable
up to the largest HPC systems today available for open
science. For example, when running on tier-0 systems,
like LUMI [72], it can deal with problems formulated on
the lattice of size 1003 [73]. The implementation is re-
leased in the form of an open-source code. It is accessible
via the web page [29], so everyone can inspect the imple-
mentation and reuse solutions derived within this W-BSk
Toolkit project.

III. APPLICATION: NUCLEAR IMPURITY
MOVING IN A NEUTRON SUPERFLUID

In the inner crust of a cold neutron star, matter is
expected to exhibit various kinds of structures [74]. As
a demonstration of the capabilities offered by the DFT
framework, let us consider the range of average nucleon
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number densities for which protons and neutrons bind
into quasispherical clusters immersed in a neutron super-
fluid bath. The description of the dynamical properties
of such impurity poses a challenging theoretical problem,
which requires to describe properly the energy and mo-
mentum transfer between the impurity and the surround-
ing neutrons. One of the fundamental characteristics of
the impurity is its inertia, whose modifications by the
medium can be described by an effective mass. The prob-
lem of determining effective masses has in itself a long his-
tory, considered already by Landau [75] and Fröhlich [76]
in the context of electrons in solids. The situation consid-
ered here resembles the problem of a heavy impurity for
which the general solution still evades theoretical descrip-
tion [77, 78]. In the most general formulation, it concerns
a heavy impurity with a mass M ≫ m, where m is the
mass of fermions forming the environment, moving with
a velocity V ≪ vF , where vF is the Fermi velocity of the
environment particles. The interactions of the impurity
are supposed to be of short-range d ≈ n−1/3, where n
is the number density of particles in the environment.
The goal is to integrate out the fermionic degrees of free-
dom and arrive at some effective equation of motion for
the impurity alone. Such an equation should contain the
change of the impurity mass by the medium and a dis-
sipative term describing the irreversible energy flow be-
tween the the impurity and the environment. Already at
this stage, the situation is quite complicated since with-
out the presence of a gap in the energy spectrum of the
excitations of the medium, there is no natural scale that
would allow defining quantitatively departure from the
adiabatic limit. Indeed, in such cases, the motion of the
impurity with an arbitrarily small velocity would induce
many particle-hole excitations in the medium, leading to
strong dissipation. In the extreme case, it leads to a pre-
dicted paradox of a complete motionless regime, which
is a direct consequence of Anderson orthogonality catas-
trophe [79, 80]. Another parameter that governs the dy-
namics of the impurity is its radius R as compared to
the average interparticle distance d in the medium. In
the case R ≪ n−1/3, the s-wave scattering dominates
the particle-impurity interaction, whereas in the regime
R ≫ n−1/3 the impurity can be treated as a semiclassical
scatterer. The latter corresponds to the considered case
of a nuclear impurity in neutron matter.

The neutron matter inside the crust is expected to be
superfluid. In such a case, a clear distinction between adi-
abatic frictionless motion, and dissipative regimes should
be observed due to the presence of an energy gap in the
quasiparticle excitation spectrum. Although it eliminates
some of the above-mentioned difficulties, the problem re-
mains complex. The impurity is made of protons tightly
bound by nuclear forces and to which some neutrons are
also attached. Most of those neutrons would be unbound
in vacuum. They are held together with the proton clus-
ter only because continuum states are already occupied.
In other words, the impurity is closely connected to the
neutron environment and would not exist without. More-

over, the impurity is penetrable for neutrons. For these
reasons, the effective characteristics of the impurity are
not well established, and various predictions have been
made. Most studies were carried out in the framework
of classical hydrodynamics [81–85]. A quantum mechan-
ical estimation of the effective mass of an impurity was
first attempted in Ref. [86]. These calculations, however,
were not self-consistent, and superfluidity was not explic-
itly taken into account. In all these cases, the motion of
the impurity was assumed to remain stationary. This
hypothesis only holds if the relative velocity of the impu-
rity with respect to the neutron superfluid is sufficiently
small. In reality, various kinds of perturbations can ap-
pear, including the nucleation of quantized vortices. This
calls for a fully self-consistent, time-dependent quantum
treatment. Such treatment for 1D geometry (slabs) in
the inner crust of a neutron star has been recently re-
ported [87, 88].

Here we demonstrate that the time-dependent DFT
formalism provides a complementary method, which of-
fers a better insight into the physical mechanisms associ-
ated with a moving impurity. These mechanisms are hard
to describe within the static approach, especially for 3D
geometry. For example, conceptually simple calculations
of an impurity moving through the neutron superfluid,
deliver an abundance of physical information related to
the effective mass of the impurity, the presence of dis-
sipative forces, or even insight into the problem of the
nucleation of quantum vortices in the interiors of neu-
tron stars.

IV. NUMERICAL EXPERIMENT

We consider a small matter element of the inner crust:
a nuclear cluster immersed in a sea of superfluid neutrons
at zero temperature T → 0, see Fig. 1(a). The most
stable clusters expected to be present in broad regions of
the inner crust are very neutron-rich zirconium isotopes
with proton number Z = 40 [30]. In order to investigate
its dynamical properties, we accelerate it through the
superfluid medium by applying a constant electric field
in a z direction E = [0, 0, Ez]. As a results, protons move
due to the electric force F = ZeE, dragging a certain
number of neutrons. Technically, the constant force is
modeled by a linear external potential that couples only
to protons

V (ext)
p (r) = − 1

Z
F · r. (13)

The numerical simulation consists of three main steps:
i) finding a self-consistent solution for the ground state
of the cluster; ii) extracting the initial wave function
{uq,k↑(r, 0), vq,k↓(r, 0)}; iii) evolving the system in time.
In the first step, we solve self-consistently the HFB equa-
tions (3) with the constraints Np = Z = 40 and the
density of neutrons far from the nucleus ρBn. This is
achieved by properly adjusting the chemical potentials



6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  2  4  6  8  10  12  14

ρBn
rp

rn

R

ρ
 [

fm
-3

]

r [fm]

neutrons
protons

total

FIG. 2. Typical density profile for a 40Zr cluster exist-
ing in the layer of the inner crust of a neutron star at the
average nucleon density ρ̄ = 0.01481fm−3. Far from the clus-
ter, neutrons are uniformly distributed with a density ρBn =
0.01196fm−3. Solultions of the HFB equations (solid lines)
are compared with fourth-order extended Thomas-Fermi cal-
culations (dashed lines) [89]. By rp and rn we denote the root
mean square radii of protons and neutrons (after subtracting
the neutron background density).

µq. We solve the equations without any geometrical re-
striction on a uniform cubic grid 32 × 32 × 32 with a
lattice spacing ∆x = ∆y = ∆z = 1.25 fm. The result-
ing volume 403 fm3 is large enough to saturate the values
of bulk neutron density to the desired value ρBn that
corresponds to the layer in the inner crust with average
density ρ̄ (see Table I). The selected values of ρBn are in-
dicated by circles in Fig. 1(c). The algorithm converges
to a spherically symmetric distribution of protons and
neutrons in all considered cases. Examples of 1D density
distributions obtained for ρBn = 0.01196fm−3 are shown
in Fig. 2. We compare our results with semi-classical
predictions represented by dashed black lines and based
on fourth-order extended Thomas-Fermi calculations in
spherical Wigner-Seitz cells [89]. In this approach, the
shell and pairing effects were neglected and the nucleon-
density distributions were parametrized; thus, the den-
sity distributions are almost flat inside the impurity, con-
trary to self-consistent calculations.

From the static calculations, we may estimate the num-
ber of bound neutrons as follows:

Nbound =

∫
(ρn(r)− ρBn) dr. (14)

This definition gives the proper result in the limit ρBn →
0 (the nucleus in the vacuum), and it provides an estimate
for the effective mass of the impurity according to the
formula

M
(s)
eff = Zmp +Nboundmn, (15)

where mp and mn are masses of protons and neutrons,
respectively. In the calculations, we assume that mp ≈

mn ≈ 939.57MeV/c2. To determine the size of the impu-
rity we use the root mean square radius

R =
√

⟨R2⟩ =

√∫
ρtot(r)r2dr∫
ρtot(r)dr

, (16)

where ρtot(r) = ρn(r) − ρBn + ρp(r). Similarly, we can
define the neutron and proton root mean square radii as-
sociated with bound neutrons rn and protons rp, using
the densities ρn(r)−ρBn, and ρp(r), respectively. These
quantities are depicted in Fig. 2. The tests provide sat-
isfactory agreement with the results reported in Ref [89].
Note that the calculations presented here, apart from
neglecting the spin-orbit coupling, contain all contribu-
tions to the energy density functional (nuclear, pairing,
and Coulomb terms) taken into account in a fully self-
consistent manner (there are no other hidden approx-
imations). The good agreement with the independent
calculations demonstrates the correctness of the energy
functional implementation within our toolkit.

Next, in the stage ii), we triple the volume of the sys-
tem by adding two cubes (each of volume 403 fm3) filled
with uniform superfluid neutron matter of density ρBn

to the side of the solution from stage i). In this way,
we prepare a sufficient space for the motion of the im-
purity, which will be performed in volume 402 × 120 fm3.
(The tools allowing for the manipulations of static so-
lutions are also included in the toolkit). Note that one
does not need very accurately converged ground state,
for the time evolution procedure. Since we are inter-
ested in non-equilibrium dynamics, it is enough to be
fairly close to the ground state, i.e. within an excita-
tion energy that is small compared to excitation ener-
gies generated by the dynamics. Therefore, in the stage
(ii) it is sufficient to perform just a few iterations of
the self-consistent method, which at this stage becomes
costly since we are now diagonalizing HFB matrices of
size 2 × 322 × 96 = 196, 608. (We estimated that the
energy is minimized up to the accuracy of the order of
keV per nucleon.) At the end of this process, the wave-
functions {uq,k↑(r, 0), vq,k↓(r, 0)} are stored. The total
number of states (for protons and neutrons) in energy
interval Eq,k ∈ [0, Ec = 130MeV] exceeds slightly hun-
dred thousand, while total number of nucleons is from
456 for the lowest (ρBn ≈ 0.002fm−3) up to 8150 for the
highest (ρBn ≈ 0.051fm−3) densities.

The resulting quantum states are subsequently evolved
(step iii), using the time-dependent HFB equations (2).
At this stage, we introduce a constant electric field along
the longest side of the simulation box, that we denote
as z, via Eq. (13). We turn on the electric field Ez(t)
gradually within the time interval ∆t = 10fm/c (For ex-
plicit protocol see Appendix B). The equations of motion
are integrated with a time step dt = 0.1 fm/c. We moni-
tor the conservation of the particle number and the total
energy (after the external electric field is turned on, see
Appendix B), which is satisfied with high accuracy (the
particle number is conserved within a precision of 10−6%
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FIG. 3. a)–c) Snapshots of the impurity dynamics for selected times (550, 1400, and 2900 fm/c) as indicated in panel d). Each
frame shows proton density (red sphere in the box), neutron density cross-section ρn (behind), modulus of the neutron pairing
field |∆n| (bottom). The black arrow indicates the direction of a constant electric field. See Supplementary Material for the
full movie [90]. d) The velocity of the center of the mass of protons dragged in superfluid neutrons of density ρBn ≈ 0.0045fm
for different forces F (measured in MeV/fm). For this density, we observe three distinct regimes of dynamics: linear response,
dissipative dynamics induced by the breaking of Cooper pairs, and quantum vortex proliferation for certain moments (denoted
by blue circles). The vortices are created for velocities above the Landau velocity vL (blue dashed line). Impurity velocities
tend to the critical velocity vcrit (green dashed line). Black dotted lines show the linear fit for the short duration of dynamics.

and the total energy with a precision from 0.5% up to
0.001% over the trajectory length ∆t = 5000fm/c, de-
pending on the density). The simulations were executed
for different strengths of F ≡ ZeEz. Sample frames from
simulations are shown in Figs 1(a) and 3(a–c). All other
technical settings are provided in the Supplementary Ma-
terial [90].

The real-time dynamics provides insight into the evo-
lution of the densities (4)-(7). From them, we can obtain
the desired observables. The time evolution of the posi-
tion of the center of mass of protons

Rcm(t) =
1

Z

∫
ρp(r, t)rdr (17)

immediately reveals the existence of different dynamical
regimes. In Fig. 3(d), we show the z component of the
velocity of the center of mass (the velocity along the x
and y directions is zero)

vcm(t) =
dRcm(t)

dt
= [0, 0, vz(t)] (18)

for a few values of external forces F . As long as the
velocity is not too large, it changes linearly with time
vz(t) ∼ azt, except for the initial stage of the evo-
lution, discussed in Appendix C, which is due to the
excitation of the collective mode being an analogue of
isovector Giant Dipole Resonance (IGDR). Apart from
the effect of IGDR excitation, which can be minimized
by decreasing the rate of switching on the electric field,
the regime is essentially dissipationless, and the impurity
moves according to Newton’s law F = Meffaz. Since F
is the control parameter and az can be accurately ex-
tracted from the simulated data, we obtain an unequiv-
ocal method of extracting the effective mass. Once the
impurity is accelerated above a threshold value (which is
density-dependent), the constant external force no longer
induces a uniformly accelerated motion. This signals
that additional forces start to act on the impurity. This
regime provides insight into dissipative effects, due to ir-
reversible coupling of the impurity with the superfluid
bath. These conceptually simple numerical experiments
involving time evolution turn out to provide a plethora of
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FIG. 4. The effective mass of the nucleus calculated with dif-
ferent approaches: dynamic M

(d)
eff , static M

(s)
eff , hydrodynamic

M
(h)
eff . The details, including how we determine the error bars

are explained in the main text. The hydrodynamic approx-
imation gives qualitative behavior, while static calculations
match results in the low-density regime.

information, that is either hard or impossible to extract
from static calculations.

V. EFFECTIVE MASS

For all considered densities, we found that initially, the
impurity moves with a constant acceleration, irrespective
of the applied constant force F . The initial linear increase
of the impurity velocity is a consequence of the superflu-
idity. In the regime where the superfluid velocity does not
exceed Landau’s critical velocity, no quasiparticle can be
excited and the motion is dissipationless [91, 92]. This
peculiar feature is crucial for the successful extraction of
the effective mass. Namely, the presence of an energy gap
in the excitation spectrum of the system makes the deter-
mination of effective mass a well-posed question in con-
trast to the normal fluids, where particle-hole excitations
occur at arbitrary small velocity, making the problem of
disentangling reversible and irreversible energy exchange
between impurity and environment practically impossi-
ble. In Fig. 3(d), we plot the velocity of the center of
mass of protons extracted from the simulations, together
with fitted linear functions azt for the initial part of the
trajectory. As expected, the ratio M

(d)
eff = az/F turns

out to be almost independent of the force. We show the
fitted values of effective mass M

(d)
eff for various densities

in Fig. 4 as blue diamonds. The error bars indicate the
differences of effective mass M

(d)
eff extracted for different

magnitudes of the force accelerating the nucleus. The ef-
fective mass is significantly higher than Zmp, and the dif-
ference M

(d)
eff −Zmp is related to the number of neutrons

that are effectively bound (including those entrained by
protons).

The extracted effective mass M (d)
eff can be compared to

other approaches. The simplest one, and most commonly
adopted, relies on the formula (15). The key idea is to
distinguish between bound and free neutrons based on
the spatial properties of the single-particle density distri-
bution. This approach has semi-classical roots as it pro-
vides a reasonable answer in the limit of kFR → ∞ and
also under the assumption that the length scale of spatial
variations of density is large compared to the Fermi wave-
length. In such a case, contributions coming from shell
effects and resonant states can be neglected. Both these
assumptions can be questioned in the context of neutron-
star crust. The other approach is based on hydrodynamic
considerations. The modification of the mass of a mov-
ing impurity comes from the excitation of the flow in the
superfluid medium, which is assumed to be incompress-
ible and irrotational. Under such assumptions, the flow
that results merely from mass conservation can be eas-
ily extracted. Namely, if the impurity is chosen to be a
sphere of radius R with a sharp surface filled with fluid
of density ρin, whereas the outside density of fluid ρout is
associated with the bulk neutrons, then the energy cost
of exciting the superfluid flow scales with the velocity V
as E ∼ V 2. The proportionality coefficient quantifies the
effective mass, and according to [83] it reads

M
(h)
eff =

4

3
πR3mn

(ρin − ρout)
2

ρin + 2ρout
. (19)

One can see that the definition (19) simplifies in two
important limits. In the absence of impurity (the mat-
ter is uniform ρin = ρout), the effective mass is zero.
On the other hand, when the impurity is in vacuum
(ρout = 0 and ρin equals nuclear matter saturation den-
sity ρ0 ≈ 0.16 fm−3 ) the effective mass reduces to the
“bare” mass obtained from the product of the nucleon
mass by number of nucleons. To compare this formula
with the effective mass extracted from TDDFT we have
identified densities ρin, ρout as densities at the center of
the impurity and the corner of the numerical box, respec-
tively. Similarly, we have used the root-mean-square ra-
dius given by Eq. (16) to determine R. Since the surface
of the realistic cluster is not sharp, we have estimated the
uncertainty of the effective mass estimation within the
hydrodynamics approach from the values corresponding
to 90%R and 110%R.

In Fig. 4 we compare the effective masses obtained
within different approaches, together with their uncer-
tainties. The dynamical approach based on TDDFT does
not rely on any assumption concerning the size and shape
of the impurity. As expected, the static prescription M

(s)
eff

matches the dynamical ones in the regimes of low densi-
ties ρ̄ ≲ 0.01 fm−3. At higher densities, ρ̄ ≳ 0.03 fm−3,
discrepancy can be observed. In static calculations, the
size of the impurity therefore also its effective mass grows
with density, while in the dynamical approach the effec-
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tive mass tends to saturate. This indicates that the sim-
ple division between bound and unbound neutrons, based
on geometrical arguments only, becomes questionable. In
contrast, the hydrodynamic approach systematically un-
derestimates the effective mass. This can be understood
from the fact that the hydrodynamics approach takes into
account only one effect related to the superfluid motion,
namely, the excitation of incompressible and irrotational
flow. Note also that the applicability of the hydrody-
namics approach can be questioned, if we recall that the
impurity size R is of the same order as the most impor-
tant length scales of the neutron superfluid, namely the
coherence length ξ = ℏkFn/(π∆nmn), where the Fermi
wave vector is given by kFn = (3π2ρn)

1/3. One would
need ξ ≪ R for hydrodynamics to be quantitatively ac-
curate. For this reason, the assumption that the impurity
can be described in terms of superfluid hydrodynamics is
too crude.

The effective mass of an impurity moving in a dense
nucleon background has been recently shown to play
an important role in the formation of clusters in a hot
newly born neutron star [93]. The clusterization of mat-
ter does not only depend on surface and Coulomb ef-
fects, but also on the (uncorrelated) translational mo-
tion of clusters, which in turn is modified by the medium
through the renormalization of their mass. Although the
motions of individual clusters are suppressed after the
crust crystallizes, their collective motion can still be de-
scribed in terms of an effective mass [94]. However, the
origin of this effective mass is different: it is due to co-
herent Bragg scattering of free neutrons by the nuclear
lattice [95, 96]. This effective mass is a key microscopic
inputs for modeling the dynamics of neutron stars and for
interpreting various observed phenomena, such as pulsar
glitches [97]. The calculation is left for future applica-
tions of the toolkit.

VI. DISSIPATION

One of the hallmarks of a superfluid state is the exis-
tence of dissipationless flow. A typical example is an ob-
stacle moving in a superfluid without creating any excita-
tion. The above statement is correct under the assump-
tion of zero temperature T = 0 and sufficiently small
velocities v < vL of moving obstacles. This characteristic
threshold velocity vL is the so-called Landau velocity. For
a uniform neutron superfluid of density ρn = kF

3
n/(3π

2),
it is approximately given by the well-known formula from
the BCS theory [98] (see Ref. [91] for the exact treatment
in the nuclear context)

vL =
∆n

ℏkFn

, (20)

where kF is the Fermi wave vector. At this velocity, there
is enough of kinetic energy to break a Cooper pair or
equivalently excite a quasiparticle above the energy gap.
In Fig. 3, we see that the uniformly accelerated motion
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FIG. 5. a) The velocity of the impurity as a function of time
for different densities, normalized to the respective values of
the Landau velocity. The data series corresponds to force
F=2MeV/fm. By dashed and dotted lines, we indicate two
characteristic velocity scales. b) The condensation energy
Econd relative to its initial value as a function of time for
the same data series as in panel a).

is lost once the impurity velocity approaches vL. The
comparison for various densities is shown in Fig. 5(a).

To demonstrate that the Cooper pair breaking is re-
sponsible for the dissipative dynamics once vL is reached,
let us consider the condensation energy of neutron
Cooper pairs defined as

Econd(t) =

∫
3

8

|∆n(r, t)|2

εFn(r, t)
ρn(r, t)dr (21)

where εFn(r, t) = ℏ2[3π2ρn(r, t)]
2/3/[2m∗

n(r, t)] is the lo-
cal Fermi energy of neutrons, and m∗

n is effective mass
of a neutron. In the case of a uniform system, it reduces
to 3∆2

nNn/(8εFn), which is a standard formula known
from the BCS theory. The quantity (21) is displayed in
Fig. 5(b). For velocities vz < vL, the velocity of the im-
purity increases linearly while the condensation energy
remains fairly constant. Once the Landau’s velocity is
reached, the condensation energy starts to drop. It is
worth noting that the onset of Cooper pair breaking does
not match exactly the velocity vL. In general, one needs
to consider the velocity field of neutrons. It can be com-
puted by noting that jn(r, t) = ρn(r, t)vn(r, t). The
extracted vn(r, t) at three selected time instants is dis-
played in panels (a)-(c) of Fig. 6. The blue color shows
regions with a velocity field below the threshold value
vn(r) < vL, white color indicate regions, where it be-
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FIG. 6. Each panel presents the neutron density cross section
through x = 0 (lower part), and local velocity in units of bulk
Landau velocity (upper part). The consecutive panels are
taken at times 550, 1400, and 2900 fm/c, which correspond
to Fig. 3a)–c). a) in the linear response regime mainly the
impurity is moving. b) in the breaking pair regime the free
neutrons in the vicinity of impurity are affected. c) in the
turbulent regime a large volume of neutrons is affected. Two
points shown behind the impurity (at z ≈ −5 fm) are the
cross section of the vortex ring generated in this regime.

comes comparable to vn(r) ≈ vL, and the red color shows
regions where the velocity exceeds vL. The figure shows
clearly that the process of destroying the Cooper pairs
takes place in the vicinity of the impurity. The relation
between vn and velocity of the impurity vz is shown in
Fig. 5(a). Inside the impurity, the neutron velocity vn
coincides with the velocity vz of the impurity.

There is another striking feature, which can be seen in
Fig. 5(b): almost in all cases, the speed of the impurity
saturates at the value

vcrit =
e

2
vL ≈ 1.4vL. (22)

(The lowest density ρBn = 0.002 is close to the limit of
an impurity moving in vacuum, where the coupling to
the environment is not expected). In Ref [91], it was
shown under the assumption that the system is uniform,
and if the superfluid velocity exceeds Landau’s velocity,
the system enters into a so-called gapless regime. It is a
regime where a normal fluid (defined by quasiparticle ex-
citations) coexists with the superfluid, even at zero tem-
perature [91]. The superfluidity in the uniform system is
destroyed once the superfluid velocity reaches vcrit. Al-
though the system considered here is not homogeneous,
our numerical simulations indicate that vcrit remains the
characteristic velocity scale. However, the normal com-

FIG. 7. The velocity scales in the system. The speed of
sound (solid line) of the system is a few times larger than
the Landau velocity vL (black and green dashed lines). We
plot the hydrodynamic velocity of a vortex ring vvr with the
dashed blue line. By red dots, we denote the nucleus velocity
at which the vortex ring is created of three different sizes for
different forces (MeV/fm): F = 0.5, 1, and 2, respectively.
The vortex rings are not produced in the blue area on the
right side.

ponent appears in the form of a vortex ring around the
moving nucleus; see Fig. 3(c).

The vortex-shedding process has been observed exper-
imentally in superfluid He [99, 100] and ultracold atomic
gases [101, 102]. It was also simulated numerically using
the Gross-Pitaevskii equation (see examples in reported
in Refs. [103–105]. In these studies, the obstacle was un-
penetrable and much bigger than the coherence length.
In the case of nuclear impurity, the situation is different.
First of all, there is no clear separation of scales. Sec-
ond, the impurity is penetrable for neutrons. Yet, in our
microscopic simulations, we find successful vortex ring
generation cases. For example, in the cases presented in
Fig. 3, we denoted the vortex rings appearance with cir-
cles. One can notice that the creation of a vortex ring
occurred always when the velocity of a nucleus/impurity
exceeds the Landau velocity vL. These vortices may be
generated one by one, preventing the impurity to move
faster than vcrit. With the increase of the magnitude of
the force F , the rate of vortex creation increases, which
we may understand by noting that the rate of energy
pumping into the system depends on the force ∼ F · v.
The velocities for which we have detected the vortex nu-
cleation are summarized in Fig. 7.

Exceeding Landau’s velocity for the relative flow gen-
erated by impurity and the sea of neutrons, is not the
only criterion that must be fulfilled. Once the vortex is
nucleated, it must propagate with a slower velocity than
the impurity, to be able to detach. The velocity of a vor-
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tex ring in the hydrodynamic regime is given by [106]:

vvr(r) =
1

4πr

h

2mn

(
ln

8r

rcore
− α

)
, (23)

where we used the fact that the circulation unit is given
by Γ = h/2mn. The coefficient α depends on the selected
vortex core model; typically, α ≈ 1/2. It assumes that
the vortex ring is a smooth circle. In reality, the line can
be wiggled due to Kelvin wave excitations that modify
the velocity of the vortex ring, which are also seen in our
simulations. The hydrodynamic formula is derived for
the limit of the vortex ring radius r, being much larger
than the vortex core radius rcore. In Fig. 7 we show the
velocity predicted by formula (23), where we use α = 1/2,
radius r = R given by formula Eq (16), and rcore =
ξ. It turns out that this velocity is very close to the
critical velocity vcrit, which provides another argument
indicating that it is one of the important velocity scales
for the construction of effective models.

Systematic studies for various densities show that vor-
tex rings are not always formed. We have not detected
nucleation of vortices for densities above ρ̄ > 0.02fm−3.
This threshold value coincides with densities at which the
coherence ξ becomes larger than the impurity size. The
coherence length ξ = ℏkFn/(π∆nmn) of superfluid neu-
trons has a nontrivial behavior. The Fermi momentum
kFn is an increasing function of density ρn, while ∆n has
a maximum at ρn ≈ 0.017 fm−3. The minimum coher-
ence length is at density ρn ≈ 0.006 fm−3. The size of
the impurity depends on the density as well. In Fig. 7,
we indicate by blue color the density range where the co-
herence length is slightly larger than the nucleus radius
ξ > 120%R. Clearly, in this regime, we do not detect the
vortex nucleation process: one cannot generate a vortex
of radius that is smaller than the size of the vortex core.

The numerical simulations demonstrate that vortex
rings can be nucleated in the crust of a neutron star in
the layers, where the density of superfluid neutrons is
below 0.02 fm−3 provided the relative superfluid velocity
exceeds (at least locally) Landau’s velocity vL. Stud-
ies of superfluid helium show that the injection of vortex
rings is a very efficient way of generating quantum turbu-
lence [107–110]. While our microscopic simulations can-
not provide a definite answer on whether quantum turbu-
lence can be present in neutron stars, they clearly show
how quantum turbulence could develop at the smallest
scale. This may have important implications for the
global dynamics of neutron stars and the interpretation
of sudden spin-ups seen as frequency glitches in some pul-
sars [111]. Although superfluidity is expected to play a
major role, the actual triggering mechanism remains un-
certain. Quantum turbulence could be one of them [112].

VII. SUMMARY

To conclude, we have demonstrated that the quality
of present DFT techniques combined with modern HPC

solutions allows for the investigation of microscopic prop-
erties of nuclear systems and their quantum dynamics at
the smallest scales relevant to neutron-star crust. This
is a critical step to construct global effective hydrody-
namical models of neutron stars by averaging the local
dynamics at smaller scales. Matter element exceeding
the size of WS cells can be considered for both static and
time-dependent HFB calculations without any symmetry
restriction. In particular, time-dependent DFT may shed
a new light on problems inaccessible so far through static
approaches. Full 3D time evolutions without making any
assumption on the weakness of external perturbations al-
low to investigate a plethora of aspects of neutron-star
crusts. As an illustration of the possibilities offered by
the toolkit, we have considered a simple numerical exper-
iment in which a nuclear impurity is accelerated through
a neutron superfluid medium by a constant force. Re-
sults of our simulations have provided new insight into
the effective mass of the impurity, the characteristic ve-
locity scales, the dissipative channels, and the mechanism
for generation of topological defects. In particular, we
have shown that low lying excitation modes, which are
analogues of IGDR in atomic nuclei, can accompany the
motion of impurity and therefore have to be included in
any low energy description of neutron-star crust.

Collecting such vast information has been possible by
combining both static and time-dependent approaches:
the system has been evolved from an initial configura-
tion generated by self-consistent HFB calculations. The
problem addressed here is only one from a large vari-
ety of questions, related to neutron stars, which can be
investigated in a similar way. Among others, we can
list the dynamics of quantum vortices in neutron-star
crust (proof of concepts were already demonstrated in
Refs. [113, 114]), pycnonuclear fusion processes, proper-
ties of exotic phases like nuclear pasta, and many oth-
ers [115, 116]. Together with this paper, we make the
associated toolkit publicly available for the community
to allow for such studies.

The abundance of open problems that are related to
neutron stars is large. Collective effort within a uni-
fied approach is needed to foster progress. In particular,
new functionals are being elaborated to fulfill the spe-
cific needs of time-dependent simulations of the kind pre-
sented here. Namely, the so-called family of functionals
Brussels-Skyrme-on-a-Grid (BSkG) is optimized towards
applications involving calculations on 3D meshes [117–
120], as presented in this paper. We strongly advocate
for the further developments of a unified set of tools for
the microscopic study of neutron stars in the future. This
work aims at stimulating this effort and providing a soft-
ware library in which other functionals can be easily im-
plemented by making the code open-source.
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Appendix A: Brussels-Montreal functionals

Here we provide the technical details concerning the
type of functionals we are using, and the expression of
the mean fields implemented into W-BSk Toolkit . Our
code can handle semi-local functionals from the Brussels-
Montreal family based on generalized Skyrme effective
interactions with density-dependent t1 and t2 terms for
the normal part [36], and a density-dependent contact
interaction for the pairing part [38]. In this work, we
have adopted the BSk31 functional, whose parametriza-
tion can be found in Ref. [28]. The expressions for the
energy density and the mean fields in the absence of cur-
rents can be found in Ref. [36]. The additional terms
depending on the currents were explicitly given in our
previous work [62] for the special case of pure neutron
matter. Here we provide expressions for arbitrary com-
position.

Below we introduce the isospin index ι = 0, 1 for
isoscalar and isovector quantities, respectively. Isoscalar
quantities (also written without any subscript) are sums
over neutrons and protons (e.g., ρ0 ≡ ρn + ρp ), while
isovector quantities are differences between neutrons and
protons (e.g., ρ1 ≡ ρn − ρp ). The different terms of
the nuclear energy density functional take the following
forms [121]:

Eρ =
∑
ι

Cρ
ι [ρ]ρ

2
ι , (A1)

Eτ =
∑
ι

Cτ
ι [ρ](ριτι − jιjιjι

2), (A2)

E∆ρ =
∑
ι

C∆ρ
ι ρι∆ρι + C∇ρ

ι [ρ]∆ρι. (A3)

The coupling coefficients are related to the parameters
of the generalized Skyrme interaction as
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2
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)
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32
t5

(
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2
+ x5

)
ργ .

(A6)

The pairing contribution to the energy density func-
tional is given by Eq. (9) of Ref. [28]:

Eπ =
1

4
f±
n

(
vπn(ρn, ρp) + κn|∇ρn|2

)
ν2n

+
1

4
f±
p

(
vπp(ρn, ρp) + κp|∇ρp|2

)
ν2p , (A7)

where f±
q ≈ 1. In our calculations, we set f±

q = 1
and we drop the gradient terms. The pairing strengths
vπq(ρn, ρp) were constructed so as to reproduce exactly
the 1S0 pairing gaps obtained in Ref. [35] in pure neu-
tron matter and symmetric nuclear matter from extended
Brueckner-Hartree-Fock calculations including medium
polarization and self-energy effects. We adopt the an-
alytical approximation given in Ref. [39]:

vπq = − 8π2

√
µq

B3/2
q

[
2 ln

(
2µq

|∆q|

)
+ Λ

(
εΛ
µq

)]−1

, (A8)
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where µq is the chemical potential, εΛ is the cutoff and

Λ(x) = ln(16x)+2
√
1 + x−2 ln

(
1 +

√
1 + x

)
−4. (A9)

The single-particle Hamiltonian hq can be obtained by
varying the energy density functional E with respect to
the various densities and currents (4)–(7), and reads

hq = Uρ
q +U∆ρ

q +Uτ
q +Uπ

q −∇Bq∇− i

2
{Aq,∇}. (A10)

The first four terms are scalar potentials coming from
variation over the density ρq

Uρ
q =

∂Eρ
∂ρq

, (A11)

Uτ
q =

∂Eτ
∂ρq

, (A12)

U∆ρ
q =

∂E∆ρ

∂ρq
−∇∇∇ · ∂E∆ρ

∂ (∇ρq)
+ ∆

∂E∆ρ

∂ (∆ρq)
, (A13)

Uπ
q =

∂Eπ
∂ρq

−∇∇∇ · ∂Eπ
∂ (∇ρq)

. (A14)

We checked that Uπ
q is very small compared to other

terms, therefore we neglect it in our calculations. The
field Bq arises from the dependence of the functional on
the kinetic density τq :

Bq =
ℏ2

2Mq
+

∂Eτ
∂τq

. (A15)

The last term is a vector potential induced by the pres-
ence of a current jqjqjq :

AqAqAq =
∂Eτ
∂jqjqjq

. (A16)

The various mean fields are expressible as

Bq =
ℏ2

2Mq
+ Cτ

0 ρ+ Cτ
1 (ρq − ρq′), (A17)

AqAqAq = −2Cτ
0 jjj − 2Cτ

1 (jqjqjq − jq′jq′jq′), (A18)

Uρ
q =

dCρ
0

dρ
ρ2n +

dCρ
1

dρ
(ρq − ρq′)

2

+ 2ρCρ
0 + 2(ρq − ρq′)C

ρ
1 , (A19)

Uτ
q = Cτ

0 τ + Cτ
1 (τq − τq′) +

dCτ
0

dρ

(
ρτ − jjj2

)
+

dCτ
1

dρ

[
(ρq − ρq′)(τq − τq′)− (jqjqjq − jq′jq′jq′)

2
]
, (A20)

U∆ρ
q = 2C∆ρ

0 ∆ρ+ 2C∆ρ
1 (∆ρq −∆ρq′)

+
dC∇ρ

0

dρ
∆ρ+

dC∇ρ
1

dρ
(∆ρq −∆ρq′)

+∇∇∇ ·

(
dC∇ρ

0

dρ
∇∇∇ρ

)
+∇∇∇ ·

(
dC∇ρ

0

dρ
∇∇∇(ρq − ρq′)

)
.

(A21)

Here q′ means the complementary nucleon species to q
(if q = n, q′ = p and vice versa).
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FIG. 8. a) The zoom for short time from Fig. 3d). One
can observe damped oscillations on top of a linear increase in
velocity. b) Neutron and proton currents along z direction for
F = 2MeV/fm. We removed a linear increase of the current
seen in a) that is not relevant for the effect. See the main text
for the details.

Appendix B: Protocol for turning on the electric
field

The static solutions are generated with no external
potentials and are used as starting points for time-
dependent considerations. To initialize dynamics, we
turn on the electric field in the following way:

Ez(t) =

 0 if t < t1,
Ezs(t− t1, t2 − t1) if t1 < t < t2,
Ez if t2 < t ,

(B1)

where t is time, and t1, t2 denote over which we rise
smoothly the electric field from the initial up to the final
value. The switching function s that models the rising of
the field is:

s(t,∆t) =
1

2

{
1 + tanh

[
tan

(
π

t

∆t
− π

2

)]}
. (B2)

We used ∆t = t2 − t1 = 10fm/c in our calculations.

Appendix C: Giant Dipole Resonance in neutron
matter

If one looks closer at the first moments of our simu-
lation, the increase of velocity vz(t) is not linear. For
example, in Fig. 8(a), we present a zoom-in of the initial
stage of motion from Fig. 3(d). On top of linear behavior,
there are damped oscillations. These oscillations are gen-
erated as a side effect of our numerical setup; however,
they have a well-defined physical origin.
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The oscillations are caused by the fact that we ’turn
on’ the electric field Ez, Eq. (B1), once the static so-
lution, representing impurity at rest, is generated. Al-
though we do not do it instantaneously but smoothly
increase the interaction during a finite but short time
∆t. The smaller the period ∆t or, the larger the force F ,
the larger becomes the amplitude of oscillations. Since
only protons couple to the electric potential, they start
to move as first. Next, they begin to drag neutrons
bound to them through nuclear forces. Such a scenario
gives rise to an excitation of an analogue of isovector gi-
ant dipole resonance (GDR) mode in our system. It is
the basic excitation mode in nuclear systems, where pro-
tons vibrate (practically harmonically) against neutrons
[122, 123]. GDR is not dissipationless mode, resulting in
its finite width due to coupling to more complex nuclear
configurations or to the continuum [124]. As evidence,

that indeed we induce GDR, we plot the currents for
neutrons and protons in Fig. 8(b), but with subtracted
constant linear flow of the whole nucleus. We see that
protons and neutrons are out of phase. Moreover, we
can see from the figure that the period of oscillations
is approximately T ≈ 100fm/c. This is consistent with
the phenomenological formula for the GDR frequency
ΩGDR = 0.39A−1/3 c/fm [125], even though it has been
designed for finite-size nuclei in a vacuum not interact-
ing with neutron superfluid. The formula with A = 140
provides the oscillation period to be about 84fm/c which
is of the same order as observed.

Appendix D

We provide the table with a summary of characteristic
quantities for considered cases.

[1] Chris L Fryer, “Mass limits for black hole formation,”
The Astrophysical Journal 522, 413 (1999).

[2] J. M. Lattimer and M. Prakash, “The physics
of neutron stars,” Science 304, 536–542 (2004),
https://www.science.org/doi/pdf/10.1126/science.1090720.

[3] D. G. Yakovlev and C. J. Pethick, “Neutron Star Cool-
ing,” Ann. Rev. Astron. Astrophys. 42, 169–210 (2004).

[4] A. B. Migdal, “Superfluidity and the moments of inertia
of nuclei,” Nucl. Phys. 13, 655–674 (1959).

[5] N. Chamel, “Superfluidity and Superconductivity in
Neutron Stars,” J. Astrophys. Astron. 38, 43 (2017).

[6] Armen Sedrakian and John W. Clark, “Superfluidity in
nuclear systems and neutron stars,” Eur. Phys. J. A 55,
167 (2019).

[7] Nils Andersson, “A superfluid perspective on neu-
tron star dynamics,” Universe 7 (2021), 10.3390/uni-
verse7010017.

[8] J. Engel, “Intrinsic-density functionals,” Phys. Rev. C
75, 014306 (2007).

[9] Jérémie Messud, Michael Bender, and Eric Suraud,
“Density functional theory and kohn-sham scheme for
self-bound systems,” Phys. Rev. C 80, 054314 (2009).

[10] T Duguet and J Sadoudi, “Breaking and restoring sym-
metries within the nuclear energy density functional
method,” Journal of Physics G: Nuclear and Particle
Physics 37, 064009 (2010).

[11] T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, and K.
Yabana, “Time-dependent density functional descrip-
tion of nuclear dynamics,” Rev. Mod. Phys. 88, 045004
(2016).

[12] G. Colò, “Nuclear Density Functional Theory,” Adv.
Phys. X 5, 1740061 (2020).

[13] P. Magierski, “Nuclear Reactions and Superfluid Time-
Dependent Density Functional Theory,” Progress of
Time-Dependent Nuclear Reaction Theory 2, 57–71
(2019).

[14] A. Bulgac, “Time-Dependent Density Functional The-
ory for Fermionic Superfluids: From Cold Atomic Gases
- To Nuclei and Neutron Stars Crust,” Phys. Status So-
lidi (b) 256, 1800592 (2019).

[15] R. M. Dreizler and E. K. U. Gross, Density Functional
Theory: An Approach to the Quantum Many-body Prob-
lem (Springer, 1990).

[16] C. Fiolhais, F. Nogueira and M. A. L. Marques, ed., A
Primer in Density Functional Theory (Springer Berlin
Heidelberg, 2003).

[17] M. A.L. Marques, N. T. Maitra, F. M.S. Nogueira,
E.K.U. Gross and A. Rubio, ed., Fundamentals of Time-
Dependent Density Functional Theory (Springer Berlin
Heidelberg, 2012).

[18] N. D. Mermin, “Thermal properties of the inhomo-
geneous electron gas,” Phys. Rev. 137, A1441–A1443
(1965).

[19] H. Eschrig, “T>0 ensemble-state Density Functional
Theory via Legendre transform,” Phys. Rev. B 82,
205120 (2010).

[20] S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C.
Bersier, K. Burke, and E. K. U. Gross, “Exact Con-
ditions in Finite-Temperature Density Functional The-
ory,” Phys. Rev. Lett. 107, 163001 (2011).

[21] L. N. Oliveira, E. K. U. Gross and W. Kohn, “Density
Functional Theory for Superconductors,” Phys. Rev.
Lett. 60, 2430–2433 (1988).

[22] O. J. Wacker, R. Kümmel and E. K. U. Gross, “Time-
Dependent Density Functional Theory for Superconduc-
tors,” Phys. Rev. Lett. 73, 2915–2918 (1994).

[23] M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A.
Floris, G. Profeta, L. Fast, A. Continenza, S. Massidda
and E. K. U. Gross, “Ab initio theory of superconduc-
tivity. I. Density functional formalism and approximate
functionals,” Phys. Rev. B 72, 024545 (2005).

[24] M. A. L. Marques, M. Lüders, N. N. Lathiotakis, G. Pro-
feta, A. Floris, L. Fast, A. Continenza, E. K. U. Gross
and S. Massidda, “Ab initio theory of superconductiv-
ity. ii. application to elemental metals,” Phys. Rev. B
72, 024546 (2005).

[25] A. Bulgac, “Local Density Functional Theory for super-
fluid fermionic systems: The unitary gas,” Phys. Rev.
A 76, 040502 (2007).

http://dx.doi.org/10.1126/science.1090720
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1090720
http://dx.doi.org/10.1146/annurev.astro.42.053102.134013
http://dx.doi.org/ 10.1016/0029-5582(59)90264-0
http://dx.doi.org/ 10.1007/s12036-017-9470-9
http://dx.doi.org/ 10.1140/epja/i2019-12863-6
http://dx.doi.org/ 10.1140/epja/i2019-12863-6
http://dx.doi.org/ 10.3390/universe7010017
http://dx.doi.org/ 10.3390/universe7010017
http://dx.doi.org/10.1103/PhysRevC.75.014306
http://dx.doi.org/10.1103/PhysRevC.75.014306
http://dx.doi.org/10.1103/PhysRevC.80.054314
http://dx.doi.org/10.1088/0954-3899/37/6/064009
http://dx.doi.org/10.1088/0954-3899/37/6/064009
http://dx.doi.org/10.1103/RevModPhys.88.045004
http://dx.doi.org/10.1103/RevModPhys.88.045004
http://dx.doi.org/ 10.1080/23746149.2020.1740061
http://dx.doi.org/ 10.1080/23746149.2020.1740061
http://dx.doi.org/ 10.1002/pssb.201800592
http://dx.doi.org/ 10.1002/pssb.201800592
https://books.google.pl/books?id=1txmQgAACAAJ
https://books.google.pl/books?id=1txmQgAACAAJ
https://books.google.pl/books?id=1txmQgAACAAJ
http://dx.doi.org/10.1007/3-540-37072-2
http://dx.doi.org/10.1007/3-540-37072-2
http://dx.doi.org/ 10.1007/978-3-642-23518-4
http://dx.doi.org/ 10.1007/978-3-642-23518-4
http://dx.doi.org/ 10.1103/PhysRev.137.A1441
http://dx.doi.org/ 10.1103/PhysRev.137.A1441
http://dx.doi.org/10.1103/PhysRevB.82.205120
http://dx.doi.org/10.1103/PhysRevB.82.205120
http://dx.doi.org/ 10.1103/PhysRevLett.107.163001
http://dx.doi.org/ 10.1103/PhysRevLett.60.2430
http://dx.doi.org/ 10.1103/PhysRevLett.60.2430
http://dx.doi.org/10.1103/PhysRevLett.73.2915
http://dx.doi.org/ 10.1103/PhysRevB.72.024545
http://dx.doi.org/10.1103/PhysRevB.72.024546
http://dx.doi.org/10.1103/PhysRevB.72.024546
http://dx.doi.org/10.1103/PhysRevA.76.040502
http://dx.doi.org/10.1103/PhysRevA.76.040502


15

ρ̄[fm−3] ρBn[fm−3] ∆n[MeV] kF[fm−1] εF[MeV] ε∗F[MeV] N ξ[fm] R[fm] Meff[mn]

0.0023 0.0016 0.826 0.363 2.723 2.694 376.6 5.79 5.32 150.75 ± 1.8
0.0058 0.0045 1.236 0.512 5.436 5.301 934.4 5.47 5.21 139.30 ± 1.0
0.0104 0.0084 1.483 0.628 8.165 7.840 1696.8 5.58 5.64 164.70 ± 3.1
0.0148 0.0120 1.562 0.707 10.37 9.839 2385.3 5.98 5.79 155.25 ± 2.9
0.0187 0.0152 1.557 0.766 12.15 11.421 3032.5 6.49 6.21 174.45 ± 4.1
0.0237 0.0193 1.621 0.829 14.24 13.248 3789.3 6.75 5.28 168.55 ± 6.3
0.0267 0.0217 1.566 0.863 15.42 14.268 4258.0 7.27 5.55 168.80 ± 7.1
0.0300 0.0244 1.514 0.898 16.70 15.368 4847.1 7.82 7.46 171.85 ± 8.3
0.0338 0.0276 1.467 0.935 18.10 16.558 5430.9 8.40 7.27 166.15 ± 8.3
0.0428 0.0351 1.327 1.013 21.28 19.260 6925.0 10.1 8.71 150.50 ± 8.8
0.0510 0.0422 1.097 1.077 24.05 21.618 8070.6 13.0 9.03 150.60 ± 8.8
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In this Supplementary Material, we provide a list of accompanying movies.

The table below provides the list of accompanying movies, with information about applied external force F and
density of the inner crust ρ̄. We have selected only these cases where quantum vortices are nucleated.

ρ̄ [fm−3] F [MeV/fm] �le name YouTube link

0.0023 0.5 n0.002F0.5r1.mp4 https://youtu.be/PaOM3R9bJww
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