
BASKEXACT: AN R PACKAGE FOR ANALYTICAL CALCULATION
OF BASKET TRIAL OPERATING CHARACTERISTICS

A PREPRINT

Lukas Baumann
Institute of Medical Biometry

University of Heidelberg
69120 Heidelberg, Germany

baumann@imbi.uni-heidelberg.de

March 26, 2024

ABSTRACT

Basket trials are a new type of clinical trial in which a treatment is investigated in several subgroups.
For the analysis of these trials, information is shared between the subgroups based on the observed
data to increase the power. Many approaches for the analysis of basket trials have been suggested,
but only a few have been implemented in open source software packages. The R package baskexact
facilitates the evaluation of two basket trial designs which use empirical Bayes techniques for sharing
information. With baskexact, operating characteristics for single-stage and two-stage designs can be
calculated analytically and optimal tuning parameters can be selected.

1 Motivation and significance

1.1 Introduction

Basket trials are a relatively new type of clinical trial in which a new treatment is tested in different subgroups. They are
most commonly used in uncontrolled early-phase oncology trials, where a binary endpoint such as tumour response is
investigated. The subgroups, also called baskets, are usually defined based on the tumour histology. All patients in the
trial typically share a common genetic feature that is targeted by the treatment under investigation [1]. Many designs
for the analysis of basket trials have been proposed, often using Bayesian techniques such as Bayesian hierarchical
modelling or Bayesian model averaging. By utilising these methods, information is shared between the subgroups
based on the observed data, which is the defining characteristic of a basket trial from a statistical point of view [2]. By
sharing information, power is increased as compared to a separate analysis in each basket. This is essential, as sample
sizes in the subgroups are often small due to their definition based on a certain genetic feature and tumour histology.

In their comprehensive review, Pohl et al. [2] categorised around 20 different basket trial designs and further designs
were published in the meantime. Since many basket trial designs are methodology complex, reliable software im-
plementation is vital for a design to be considered by researchers. However, only a fraction of the published designs
are implemented in open source software [see 3, for an overview]. Searching the package list of the Comprehensive
R Archive Network (CRAN) for the term ”basket trial” only results in three hits (besides baskexact, the package
presented in this article). basket [4, 5] implements the multisource exchangeability model design [6]. bhmbasket
[7] implements two designs based on Bayesian hierarchical modelling, one by Berry et al. [8] and the EXNEX design
by Neuenschwander et al. [9]. bmabasket [10] implements a design based on Bayesian model averaging by Psioda
et al. [11]. These methods are computationally relatively complex and thus operating characteristics are evaluated by
simulation in these R packages. The methods implemented in bhmbasket additionally require Markov Chain Monte
Carlo sampling to calculate posterior probabilities as the posterior distributions are not available in closed form when
Bayesian hierarchical modelling is applied.

In this paper, the R package baskexact [12], which implements the power prior basket trial design [13] and a design
by Fujikawa et al. [14] (henceforth referred to as Fujikawa’s design) is presented. Both designs share information
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between baskets in a similar way using empirical Bayes methods. The power prior design is based on the power prior
methodology which was initially proposed to borrow strength from historical data [15]. Since both designs are not
fully Bayesian, computation of posterior distributions is much cheaper than that of many other basket trial design.
Posterior probabilities are available in closed form and can therefore easily be calculated even for a large number of
baskets. Even analytical computation of operating characteristics is feasible in some settings. baskexact facilitates
analytical computation of operating characteristics for single-stage and two-stage designs in basket trials with the
power prior and Fujikawa’s design, with equal sample sizes per subgroup and up to 5 baskets.

1.2 Statistical background

An uncontrolled basket trial with a binary endpoint and K ≥ 2 baskets is considered. Let nk be the sample size in
basket k. The number of responses in basket k is denoted by rk, the vector of responses in all baskets is denoted by r.
The objective of the trial is to identify the baskets in which the response probabilities, denoted by pk, 0 ≤ k ≤ K, is
larger than a null response rate p0, that is of no clinical interest. Thus, the null hypotheses H0,k : pk ≤ p0 are tested
against the alternatives H1,k : pk > p0.

In the power prior design, at first a beta prior with parameters s1,k and s2,k is specified for each baskets. Decisions are
based on the following posterior distributions, which share the information between baskets:

π(pk|r,ωk) = Beta(s1k +

K∑
i=1

ωk,iri, s2,k +
K∑
i=1

ωk,i(ni − ri))

where ωk,i ∈ [0, 1] are the sharing weights and ωk = (ωk,1, . . . , ωk,K), with ωk,k = 1. ωk,i is thus the proportion of
information from basket i that is used in the analysis of basket k. A null hypothesis is rejected if P (pk > p0|r,ωk) ≥
λ, where λ ∈ (0, 1) is prespecified.

The information sharing mechanism in the power prior design is very similar to that of Fujikawa’s design. The
difference between the sharing approaches in the two designs is solely that in Fujikawa’s design prior parameters are
also included in the weighted sums, and thus the prior information is also considered for the information sharing.

The sharing weights can be computed in various ways. In Fujikawa’s design, they are derived from the pairwise
Jensen-Shannon divergences (JSD) between the individual posterior distributions of the baskets in the following way:

ωk,i =

{
(1− JSD(π(pk|rk), π(pi|ri))ε if (1− JSD(π(pk|rk), π(pi|ri))ε > τ,

0 otherwise,

where π(pk, rk) is the individual posterior distribution of basket k (derived from a beta-binomial model) and ε and τ
are tuning parameters. Weights based on the JSD can of course also be used in the power prior design, i.e. without
sharing the prior information as in Fujikawa’s design.

Another way to calulcate the weights is derived from the so-called calibrated power prior (CPP) approach [16]. CPP
weights are based on the Kolmogorov-Smirnov test statistic, which for binary data is simply the absolute difference in
response rates. CPP weights are calculated as follows:

ωk,i =
1

1 + exp(a+ b log(dk,i max(nk, ni)1/4))
,

where dk,i denotes the absolute difference in response rates between basket k and basket i.

In a two-stage design, an interim analysis is performed after a certain number of observations n1,k is available in
each basket. Fujikawa et al. [14] suggest interim analyses based on the posterior predictive probability, which is the
probability (based on prior information and interim data) that a result for which the null hypothesis can be rejected will
be observed at the end of the study. If this probability is below or above a certain prespecified level in basket k, then
that basket is stopped for futility or efficacy. Interim decisions may also be based on the same posterior distribution
that is used for the final analysis.

For details about the two designs, the reader is referred to Baumann et al. [13] and Fujikawa et al. [14].

2 Software description

2.1 Software architecture

baskexact is an R package, available on CRAN [13] and GitHub (https://github.com/lbau7/baskexact).
It is written using R’s S4 and S3 methods. baskexact introduces two S4 classes, OneStageDesign and
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TwoStageDesign, corresponding to a single-stage and a two-stage basket trial design, respectively. This enables
easy extension of the package. A vignette is provided which explains how baskexact can be extended.

To reduce computation times, some internal functions are implemented in C++, utilising the R packages Rcpp [17]
and RcppArmadillo [18]. The doFuture package [19, 20] is used to enable parallelisation of some functions. With
doFuture only a single function call is necessary to initialise parallelisation. The parallel backend can be chosen by
the user.

2.2 Software functionalities

baskexact facilitates the evaluation of a basket trial with the power prior design and Fujikawa’s design. It enables
the analytical computation of the operating characteristics and selection of optimal tuning parameter values for single-
stage and two-stage basket trials with equal sample sizes in all baskets. The most important functions are listed
in Table 1. baskexact provides functions to compute basic operating characteristics such as the type 1 error rate
(TOER), power and the expected sample size. In basket trials, also the expected number of correct decisions (ECD) is
important as it in a sense combines TOERs and power of all baskets to a single number which is useful for comparing
different designs and tuning parameter values.

Table 1: Main functions of baskexact

Function Description
toer computation of family-wise and basket-wise TOERs
pow computation of family-wise and basket-wise power
ecd computation of expected number of correct decisions
ess computation of expected sample size
estim computation of mean posterior means and mean squared errors
adjust lambda find λ that protects FWER at a certain level
opt design find optimal tuning paramter values based on ECD
plot weights plot a weight function

To select the type of weights that are used for information sharing, a weight function has to be passed to the argument
weight fun in each function. The key weight functions that can be selected are weights cpp, for the power prior
design with CPP weights and weights fujikawa for Fujikawa’s design, i.e. with weights based on the JSD. Both
weight functions have additional tuning parameters which are passed as a list to the argument weight params. With
the the function opt design the optimal tuning parameter values from a grid of values can be selected. Optimisation
is based on the mean ECD across one or several scenarios, while protecting the family-wise TOER (FWER) under the
global null hypothesis at a certain level.

In a two-stage design, additionally the type of interim analysis has to be specified using the argument interim fun.
Available options are interim postpred for an interim analysis based on the posterior predictive probability and
interim posterior for an interim analysis based on the posterior probability. To specify the probability stopping
boundaries, both functions have two arguments: prob futstop and prob effstop for the futility and efficacy prob-
ability boundaries, respectively. These are passed as a list to interim params. Note that by setting prob effstop
to 1, a design that only allows stopping for futility can be implemented.

3 Illustrative examples

The first step to use baskexact is always to create a design object corresponding either to a single-stage or a two-stage
design (i.e. with one interim analysis) using the functions setupOneStageBasket and setupTwoStageBasket,
respectively. For example:

> library(baskexact)
> design <- setupTwoStageBasket(k = 3, shape1 = 1, shape2 = 1, p0 = 0.2)

k corresponds to the number of baskets, shape1 and shape2 to the two prior parameters of the beta prior distribution.
Note that in baskexact equal priors for all baskets are assumed. p0 refers to the response probability under the null
hypothesis. The design object is the first argument of most function calls in baskexact to select the appropriate S4
method. For example, to compute the TOER:
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> toer(
> design = design,
> n = 20,
> n1 = 10,
> lambda = 0.95,
> interim_fun = interim_postpred,
> interim_params = list(prob_futstop = 0.1, prob_effstop = 0.9),
> weight_fun = weights_cpp,
> weight_params = list(a = 1, b = 1),
> results = "group"
> )

$rejection_probabilities
[1] 0.0569416 0.0569416 0.0569416

$fwer
[1] 0.1181975

toer returns the basket-wise as well as the family-wise TOERs. n and n1 refer to the maximum total sample size
per basket and the sample size per basket for the interim analysis, respectively. lambda corresponds to the proba-
bility threshold λ that is used in the final analysis to determine whether a null hypothesis is rejected. interim fun
and interim params define the type of interim analysis. With interim postpred, interim decisions are based on
the posterior predictive probability to reach a significant result at the end of the trial. prob futstop = 0.1 and
prob effstop = 0.9 define that a basket is stopped for futility if this probability is below 0.1 and is stopped for
efficacy if this probability is above 0.9. The other functions for the calculation of operating characteristics, pow, ecd,
ess and estim, work analogously.

In the planning stage of a basket trial, it may be desirable to select the probability threshold λ, such that the FWER is
controlled at a certain level. This can be achieved with adjust lambda, which finds λ such that the one-sided FWER
under the global null hypothesis is smaller than a certain level alpha.

> adjust_lambda(
> design = design,
> alpha = 0.05,
> n = 20,
> n1 = 10,
> interim_fun = interim_postpred,
> interim_params = list(prob_futstop = 0.1, prob_effstop = 0.9),
> weight_fun = weights_cpp,
> weight_params = list(a = 1, b = 1),
> prec_digits = 3
> )

$lambda
[1] 0.982

$toer
[1] 0.04807536

Most arguments are the same as in toer. The only new arguments are alpha and prec digits. The latter specifies
the number of decimal places of lambda. As the outcomes are binary, in general there is no λ such that the FWER is
exactly α, as is seen in the output. Sometimes increasing prec digits results in a FWER closer the nominal level.
Note that changing any of the design parameters (tuning parameters of the weight function or of the interim function)
affects the FWER, i.e. the value for lambda is only valid for the given set of parameter values.

With opt design, tuning parameter values are sorted by their performance in terms of the mean ECD across a set of
scenarios. A default set of scenarios can be created using get scenarios:

> get_scenarios(design = design, p1 = 0.5)

0 Active 1 Active 2 Active 3 Active
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[1,] 0.2 0.2 0.2 0.5
[2,] 0.2 0.2 0.5 0.5
[3,] 0.2 0.5 0.5 0.5

This creates a matrix of response probability scenarios with an increasing number of baskets that are truly active.
The null response probability is taken from the design object and p1 specifies the response probability of the active
baskets. Of course this set of scenarios can be extended or modified, e.g. to include scenarios in which active baskets
have different response probabilities.

In opt design, for each combination of tuning parameter values that is passed to weight params, at first λ is selected
to control the FWER at a certain level and then, using the selected posterior threshold, the ECD is calculated for each
scenario. Tuning parameters are then sorted by their mean ECD, where the mean over all scenarios is calculated.
opt design can be run in parallel. For example, for a single-stage design:

> design <- setupOneStageBasket(k = 3, p0 = 0.2)
> plan(multisession, workers = 4)

> opt_design(
> design = design,
> n = 20,
> alpha = 0.05,
> weight_fun = weights_cpp,
> weight_params = list(a = 1:3, b = 1:3),
> scenarios = get_scenarios(design = design, p1 = 0.5),
> prec_digits = 3
> )

a b Lambda 0 Active 1 Active 2 Active 3 Active Mean_ECD
1 2 1 0.981 2.932813 2.639612 2.636642 2.923344 2.783103
2 3 2 0.984 2.926667 2.655575 2.683766 2.859488 2.781374
3 3 3 0.983 2.928806 2.606198 2.661209 2.923073 2.779822
4 3 1 0.984 2.938167 2.703022 2.668577 2.803763 2.778382
5 2 2 0.978 2.919353 2.544335 2.590948 2.958013 2.753162
6 2 3 0.974 2.914952 2.438605 2.542111 2.976533 2.718050
7 1 1 0.973 2.917011 2.463110 2.468328 2.980259 2.707177
8 1 2 0.974 2.917205 2.365146 2.371869 2.989490 2.660927
9 1 3 0.971 2.888808 2.253843 2.360286 2.992850 2.623947

Since the doFuture package is used for parallelisation, calling plan is enough to initialise evaluation in parallel. The
code in the example makes all code run on 4 cores on the local machine.

For each combination of tuning parameter values, the output contains the value for λ which controls the FWER at the
specified level, the ECD for each scenario and the mean ECD. The first row corresponds to the results of the tuning
parameter values which achieve the highest mean ECD, the tuning parameter values are sorted in decreasing order by
mean ECD.

The amount of information that is shared between two baskets can be visualised with plot weights:

> plot_weights(
> design = design,
> n = 20,
> r1 = 10,
> weight_fun = weights_cpp,
> weight_params = list(a = 1:3, b = 1:3)
> )

Figure 1 shows the created plot. The argument r1 refers to the number of responses observed in one of the two baskets.
The responses in the other basket are varied on the x-axis. The weights resulting from different choices of the tuning
parameters a and b are shown on the y-axis. As r1 is set to 10, the weight is maximal when 10 responses are also
observed in the other basket. The weights decline as the difference in responses increases, depending on the choice of
tuning parameters values.
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Figure 1: Weight function created with plot weights

4 Impact

While many designs for the analysis of basket trials have been proposed in the literature, open source software imple-
mentation is the exception. However, without reliable, user-friendly and well documented software, it is unlikely that
a design will be widely adopted. Software implementation is also necessary to enable comparison studies between dif-
ferent designs. Many basket trial designs were only evaluated in the manuscripts in which they were proposed. Thus,
there is a large gap in the literature [2]. Neutral comparison studies are necessary [21] to determine which designs
work best under which scenarios. Many questions regarding the application of basket trial designs are still open, e.g.
the optimal type and timing of interim analyses. baskexact can thus be used to investigate the performance of the
power prior and Fujikawa’s design. As the package is easily extendable, new weight functions for the power prior
design can be implemented and evaluated which may further increase its impact.

5 Conclusions

In this manuscript, the R package baskexact was presented which implements two closely related basket trial de-
signs, the power prior design and Fujikawa’s design, which both share information using an empirical Bayes method
and are therefore computationally much cheaper than other Bayesian basket trial designs. baskexact enables ana-
lytical computation of operating characteristics for up to 5 baskets and single-stage and two-stage designs. The main
limitation of baskexact is that currently only equal sample sizes per basket are supported. Nevertheless, baskexact
is a valuable tool for the evaluation of the two implemented designs and can be used by researchers to further compare
the performance of different basket trial designs.
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