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Abstract—Distance estimation from audio plays a crucial
role in various applications, such as acoustic scene analysis,
sound source localization, and room modeling. Most studies
predominantly center on employing a classification approach,
where distances are discretized into distinct categories, enabling
smoother model training and achieving higher accuracy but
imposing restrictions on the precision of the obtained sound
source position. Towards this direction, in this paper we propose
a novel approach for continuous distance estimation from audio
signals using a convolutional recurrent neural network with an
attention module. The attention mechanism enables the model to
focus on relevant temporal and spectral features, enhancing its
ability to capture fine-grained distance-related information. To
evaluate the effectiveness of our proposed method, we conduct
extensive experiments using audio recordings in controlled en-
vironments with three levels of realism (synthetic room impulse
response, measured response with convolved speech, and real
recordings) on four datasets (our synthetic dataset, QMULTI-
MIT, VoiceHome-2, and STARSS23). Experimental results show
that the model achieves an absolute error of 0.11 meters in a
noiseless synthetic scenario. Moreover, the results showed an
absolute error of about 1.30 meters in the hybrid scenario. The al-
gorithm’s performance in the real scenario, where unpredictable
environmental factors and noise are prevalent, yields an absolute
error of approximately 0.50 meters. For reproducible research
purposes we make model, code, and synthetic datasets available
at https://github.com/michaelneri/audio-distance-estimation.

Index Terms—Distance estimation, Single-channel, Deep
Learning, Reverberation, Explainability, Attention

I. INTRODUCTION

SOURCE distance estimation (SDE) refers to the task
of estimating the interspace between a microphone and

a sound source. It is very often performed in conjunction
with direction of arrival (DoA) estimation, in which only the
direction information about the source position is obtained.
Both tasks are useful in many practical applications, including
increasing the robustness of automatic speech recognition [1]
by enhancing the performance of acoustic echo cancellers
[2] and autonomous robotics [3], [4]. Despite both DoA and
source distance being estimated using multi-channel audio in
most practical scenarios, the latter has been largely under-
researched [5]. Firstly, source distance estimation is widely
regarded a more difficult task due to distance cues vanishing
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with the increased space between the sound source and the
receiver. Secondly, DoA offers sufficient information in many
downstream spatial filtering tasks. However, many applications
such as source separation, acoustic monitoring, and context-
aware devices, would still benefit from full information about
the sound source position, hence the need for further investi-
gations on source distance estimation (SDE).

Most methods for both DOA and distance estimation rely
on arrays with more than two microphones [6]. Multichannel
data allows for exploiting spatial cues such as interchannel
time differences (ITDs) and interchannel level differences
(ILDs) to provide information for efficient DoA estimation,
positively affecting distance estimation as well [4]. However,
using multiple microphones poses certain limitations in terms
of budget and physical portability. To tackle this problem,
some studies investigated using binaural recordings for that
purpose, allowing for decreasing the number of channels to
two by exploiting the human hearing cues [7], [8]. However,
the simplest scenario of estimating distance from a single
microphone has been largely under-researched [9]. Moreover,
the vast majority of studies focus on a classification approach,
in which the distance is discretized into a set of disjunctive
categories, e.g., “far” and “near”, allowing for easier model
training and a higher accuracy [10], [11]. However, using pre-
defined categories does not allow for continuous estimation,
which puts limits on the precision of the obtained sound source
position.

Towards this direction, in this work, we propose several
novel solutions to tackle the problem of source distance
estimation. Firstly, we define the task as a regression problem,
differently from most state-of-the-art works that focus on
classification-based methods. We propose a novel approach
to distance estimation from single-channel audio signals in
reverberant environments, overcoming the need for complex
microphone arrays. In more detail, the proposed model is
a convolutional recurrent neural network (CRNN) with an
attention module, which is responsible for learning a time-
frequency attention map. By doing so, it is possible to empha-
size magnitude- and phase-related features that are the most
informative for sound source distance estimation. The effec-
tiveness of our approach is extensively tested for numerous
acoustic scenarios, obtained by simulations with randomized
configurations of room shapes, materials, and locations of
the microphone and the speaker. In addition, tests have been
carried out on real reverberant speech recordings, captured
directly or emulated with real room impulse responses (RIRs).

The remainder of the manuscript is organized as follows.
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Fig. 1. Proposed architecture for speaker distance estimation. First, acoustic features are extracted from the single-channel audio. In more detail, 3 maps
(magnitude of the STFT, sinus, and cosinus of the STFT phase) are obtained with shape T ×F , where T and F are the time and frequency bins, respectively.
Then, the maps are stacked along the channel dimension resulting in a feature tensor of size T × F × 3. To highlight the feature regions that are most
informative for distance estimation, an attention map is learned from the three-channel tensor, which is then element-wise multiplied with the input feature
tensor. The output is further processed by the convolutional layers with Pi 1 × 3 kernels, also denoted as frequency kernels, yielding a T × 2 × P tensor
that is arranged in a T ×Q matrix, where Q = 2P . Subsequently, the resulting matrix is analyzed by two GRU layers with Q neurons to model temporal
patterns. Finally, the output from recurrent layers T ×Q is fed to three fully connected layers with R, 1, and 1 neurons respectively to map the features to
the predicted distance ŷ.

Section II provides a summary of the state-of-the-art. Sec-
tion III describes the proposed methods, whereas the per-
formance evaluations are in Section IV. Section V details
the experimental results of the proposed approach on three
acoustic scenarios. Finally, Section VI includes an overall
discussion regarding the work, and Section VII draws the
conclusions.

II. RELATED WORKS

SDE involves determining the distance between a sound
source and the receiver. When compared to DoA estimation,
SDE is an area that has received significantly less attention
and is generally considered more challenging. This is primarily
due to the fact that the accuracy of distance estimation declines
rapidly for small-sized arrays commonly used in practice even
for relatively short distances from the center of the array
(up to 3-4 m). Several factors contribute to this phenomenon,
including: a) the decrease in direct-to-reverberant energy ratio
(DRR) and signal-to-noise ratios (SNRs) as the source distance
increases, b) the reduction in inter-channel level differences
and constant inter-channel time differences as the source
transitions from a spherical wave to a plane wave captured
by the array.

The majority of studies related to SDE show results in
conjunction with the DoA estimation task. Extensive research
has been conducted on this subject for various acoustic sys-
tems that commonly use distributed microphone arrays. These
systems encompass a range of setups, such as intelligent loud-
speakers [12], spherical microphones [13], triangular configu-

rations [14], and arrays of acoustic sensors [15]. Simpler audio
formats including binaural recordings have been investigated
to a much lesser extent, including few studies with classical
machine learning methods [4], [16] and very limited research
related to deep learning [7], [8].

Regarding SDE modeling in isolation, most of the research
has been focused on parametric approaches and manually
crafted features. These methods often utilize information such
as the DRR [17], RIR [18], or signal statistics and binaural
cues such as the interchannel intensity difference (IID) [4]. In
some cases, classical machine learning techniques have been
employed to leverage statistical features. For instance, a study
by Brendel et al. estimated the coherent-to-diffuse power ratio
to determine the source-microphone distance via Gaussian
mixture models (GMMs) [5]. Vesa utilized GMMs trained with
magnitude squared coherence (MSC) features to incorporate
information about channel correlation [19], [20]. In [21], the
authors used MSC on top of other features to train classifiers
with methods such as K-nearest neighbours (KNN) or linear
discriminative analysis (LDA). Georganti et al. introduced
the binaural signal magnitude difference standard deviation
(BSMD-STD) and trained GMMs and support vector machines
(SVMs) using this feature [22]. Most of these methods rely
on compound algorithms that require careful tuning to adapt
to varying acoustic conditions.

Until now, the exploration of source distance estimation
using deep neural networks (DNNs) has been quite limited.
Yiwere et al. employed an approach inspired by image classi-
fication, utilizing CRNNs trained on log-mel spectrograms to
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classify three different distances in three distinct rooms [23].
Although the models demonstrated promising outcomes for
data within the same environment, their performance sig-
nificantly deteriorated when dealing with recordings from
different rooms. In another endeavor, Sobhdel et al. introduced
relation networks to address this challenge through few-shot
learning, which exhibited enhancements over conventional
convolutional neural networks (CNNs) [24]. Both studies
conducted tests within a limited range of specific distances,
encompassing a close proximity of up to 3-4 meters at most.
In [8], the authors conducted experiments for data covering
distances for up to 8 m, however the model was classifying
them into two binary classes denoted as “far” and “near”.

Additionally, only a few works have addressed the topic
of speaker distance estimation using single-channel audio.
One of the first works employed low-level features such as
linear predictive coding (LPC), skewness, and kurtosis of the
spectrum to classify the distance of a speaker [11]. Venkatesan
et al. proposed both monaural and binaural features to train
GMMs and SVMs [25]. Regarding DNN approaches, Patterson
et al. classified “far” and “near” speech in order to perform
sound source separation from single-channel audios [9].

To the best of our knowledge, single-channel source dis-
tance estimation has been scarcely addressed as a regression
problem, prioritizing classification approaches to ease model
training. In addition, there are very few studies investigating
the use of DNNs in this task. For these reasons, a learning-
based approach for continuous estimation of the distance
of the speaker is proposed. A first step towards continuous
sound source distance estimation occurs in our preliminary
study [26] where a CRNN was defined for estimating static
speaker distance in simulated reverberant environments from
a single omnidirectional microphone. However, that study was
evaluated only on simulations, while in this work various
degrees of realism are investigated, from simulated RIRs, to
synthetic data with measured RIRs, to fully real recordings
with distance-annotated sources. Hence, the potential of the
method in a real-world scenario is demonstrated. In addition,
the preliminary study was based on a simpler architecture
without investigation on what architectural components con-
tributed the most to the SDE, while here the architecture is
refined and enhanced, with better overall performance, and
specific choices investigated in an ablation study.

To cope with these limitations, the contributions of this work
are as follows

• a major improvement of the results of the learning-based
approach, i.e., a CRNN, proposed in our preliminary
study [26] that simultaneously provides temporal frame-
wise and utterance-wise distance estimation of the static
audio source. In addition, an in-depth study regarding the
model architecture is detailed;

• definition of an attention module that estimates the most
significant time-frequency patterns from the input features
for speaker distance estimation;

• experiments have been conducted on synthetic data, both
in noiseless and noisy scenarios, to analyze the response
of the proposed approach in controlled environments.
Further tests on the CRNN have been conducted on a

constructed hybrid dataset, i.e., measured RIRs convolved
with anechoic speeches, and two real recording datasets,
demonstrating the generalization capabilities of the pro-
posed approach.

III. PROPOSED METHOD

In this section, a description of the acoustic features for the
source distance estimation is provided. To process temporal,
spatial, and spectral characteristics of these features, a CRNN
has been employed for the experiments. This type of model
has shown good results in many studies for sound event local-
ization and detection (SELD) tasks [27], [28]. In addition, an
attention module is introduced to learn an attention map on the
time-frequency audio representation. The overall architecture
is depicted in Figure 1.

A. Acoustic features extraction

All the operations on the audio files are performed at
16 kHz. The selection of this sampling frequency is because
the speech spectrum is mostly contained in the range 0-
8 kHz [29]. In addition, a lower frequency yields a lower
number of samples, reducing the computational complexity
of feature extraction and distance estimation. Initially, a pre-
processing stage is employed to extract the complex STFT
STFT{x} ∈ CT×F from the single-channel audio signal
x ∈ R1×L, where T is the number of time frames, F the
number of frequency bins, and L the number of samples.
This transformation is computed using a Hann window of
length 32 ms with 50% overlap. Subsequently, the magnitude
(|STFT{x}| ∈ RT×F ) and phase (∠STFT{x} ∈ RT×F )
components of the STFT are computed from the complex
matrix.

Sinus and cosinus maps of the phase spectrogram are com-
puted by applying sin(·) and cos(·) functions element-wise,
since the features provide a smoother continuous representa-
tion of the raw phase information. The concept of utilizing
the phase spectrogram has been adopted from contemporary
research on multichannel source separation [30], learning-
based localization [31], and speech enhancement [32] as phase
information contains cues regarding the acoustic properties of
the environment in which the sound propagates [33]. Tests
conducted using the raw complex spectrogram in our scenario,
i.e., two separate branches that processed real and imaginary
parts, yielded unsatisfactory training performance.

Finally, the magnitude of the STFT and the sinus and
cosinus maps are stacked into a T × F × 3 tensor. This
representation is then fed into the attention module and the
convolutional layers for further processing and analysis.

B. Attention Module

One of the main contributions of this work is the definition
of an attention module which computes an attention map
H ∈ R+T×F×3 from the audio features. The objective of
this learned matrix is to emphasize the regions of the features
that are most informative for the estimation of the distance.
Specifically, this module is the function fATT : RT×F×3 →
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Fig. 2. Example of spectrogram and attention map on a noiseless sample of the synthetic dataset with a speaker talking at 10 meters.
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Fig. 3. Example of spectrogram and attention map on a noisy sample (SNR = 0 dB) of the synthetic dataset with a speaker talking at 10 meters.

R+T×F×3

. Its structure is composed of 2 convolutional blocks,
having 16 and 64 3 × 3 filters, respectively. Then, a 1 × 1
convolutional layer with three filters, followed by a sig-
moid activation, is used to map the features to yield the
T ×F × 3 attention map. Finally, the output acoustic features
X̃ ∈ RT×F×3 are obtained by element-wise multiplication
(⊗) between the input acoustic features and the attention map
as

X̃ = fATT(X)⊗X. (1)

Examples of noiseless and noisy spectrograms and attention
maps are depicted in Figure 2 and in Figure 3, respectively.
It is worth highlighting how the attention module differently
focuses on the parts of the signal where the speech is most
likely to stand out from the noise, or where the characteristics
of the speech are still recognizable. In fact, the attention
map in a noiseless case is evenly distributed across the entire
frequency range since there is no noise that interferes.

C. Convolutional Layers

The architecture employs three convolutional blocks for
feature extraction. In more detail, the structure of each block
involves a 2D convolutional layer comprising Pi 1× 3 filters,
i.e., along the frequency axis with values of 8, 32, and 128
assigned to the respective layers. We denote these filters
as frequency kernels whereas 3 × 1 filters are named time
kernels. Square kernels, known for their capability to capture
time-frequency patterns, are commonly used in convolutional
layers applied to spectrograms due to their effectiveness in
capturing local patterns and structures along the frequency
axis. In this work, the proposed model adopts rectangular
filters, and temporal information is modeled by recurrent layers

at the end of the model. In fact, rectangular filters can be
more parameter-efficient compared to square kernels. Since the
former has fewer parameters than square kernels of the same
receptive field size, they can lead to a more compact model,
making training and inference more computationally efficient
and potentially reducing the risk of overfitting, especially when
working with limited data.

Following this layer, a batch normalization [34] step is
applied, along with max and average pooling operations along
the frequency dimension. Then, the results of which are
summed.

The activation function utilized after each convolutional
layer is the exponential linear unit (ELU) [35], which is
denoted as

ELU(x) =

{
x, x ≥ 0

α(ex − 1), x < 0
(2)

where α is a coefficient that regularizes the saturation of
negative values. Notably, each layer employs a specific pooling
rate denoted by MPi, with values of 8, 8, and 2 assigned to
the respective layers.

D. Recurrent Layers

To process the feature maps from the convolutional layers,
two bi-directional GRU layers are utilized with tanh(·) as
the activation function. These layers have exhibited promising
results in audio and speech processing tasks, demonstrating
parameter efficiency compared to long short-term memory
(LSTM) networks [36].

The output of the CNN with shape T×2×P is stacked along
the channel dimension to produce a T × Q matrix to be fed
to the recurrent layers. Then, in the proposed configuration,
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the extraction of reverberation-related information primarily
relies on integrating information over time with the recurrent
layers. Within this implementation, two bi-directional GRUs
with Q = 2P = 128 neurons each for every time frame are
employed.

Then, to predict the distance, three fully connected layers
are employed, where an independent mapping between each
time frame is performed in each layer. Firstly, the initial
linear layer projects time-wise features from the last GRU
onto a matrix of dimensions T × R, where R = 128.
Subsequently, the second linear layer independently maps each
time frame of the T ×R matrix onto a vector of size T × 1,
denoted as the time-wise distance estimation ŷ. Specifically,
this vector represents the distance estimation for each time
frame. Finally, the last fully connected layer is employed to
perform regression and thus estimate the predicted distance,
denoted as ŷ ∈ R.

E. Loss function

The mean squared error (MSE) loss is used to train the
DNN system. Let y ∈ R be the true distance of a static sound
source. In addition, let y ∈ RT×1 be the vector consisting of
frame-wise ground truth distances. Then, the loss used in the
training phase for a single sample is

L(y, ŷ,yt, ŷt) = (y − ŷ)2 + ||yt − ŷt||2, (3)

where the loss is averaged across the batch dimension to be
exploited by the backpropagation algorithm. Thanks to the
imposition of the loss, the model predicts a distance for each
time bin and, from this information, a single-valued distance.
Having two losses in a static source scenario operates as a
regularization term since it forces the proposed approach to
return coherently both time-wise and single-distance estima-
tions. However, in the context of dynamic sound sources, it is
important to highlight that only frame-wise loss is required.

F. Metrics

The performance evaluation of our approach utilizes the
mean absolute error (MAE) (L1) as the performance measure
for the entire test dataset

L1(y, ŷ) = |y − ŷ|, (4)

where the ground truth y ∈ R and the prediction ŷ ∈ R
are considered. Additionally, the performance is assessed by
calculating the MAE within different distance ranges. This
analysis allows us to quantify the relative error of our model
concerning source distance. We define the relative MAE (rL1),
which includes the real speaker distance in the evaluation, as
follows:

rL1(y, ŷ) =
L1(y, ŷ)

y
=

|y − ŷ|
y

. (5)

For the sake of clarity and brevity, MSE has not been consid-
ered in the performance evaluation.

IV. PERFORMANCE ASSESSMENT

This section describes how the performance assessment of
the proposed approach has been carried out. To validate the
work, three levels of realism have been addressed in the scope
of speaker distance estimation:

• Synthetic: simulated RIRs of an image-source room
simulator are convolved with anechoic speech;

• Hybrid: measured RIRs are convolved with anechoic
speech;

• Real: on-field reverberant speech recordings.
Figure 4 depicts the histograms of distances in each dataset
employed in the experimental results.

A. Synthetic Dataset

The dataset used for experiments follows the same setup
as in [37]. Briefly, anechoic speech recordings obtained from
the TIMIT dataset [38] are convolved with the simulated
omnidirectional RIRs from an image-source room simulator
for shoebox geometries [39].

This simulator allows for frequency-dependent wall absorp-
tion and directional encoding of image sources in 5th order
Ambisonics format. The elevation range between the source
and the receiver spanned from −35° to 35°. To compile a list of
materials and their respective absorption coefficients for each
surface type (ceiling, floor, and wall), we refer to widely used
acoustical engineering tables [40]. For each unique simulated
room with its room-source-distance configuration, a random
material is assigned to each surface, resulting in 2912 possible
material combinations. Compared to randomizing directly the
target RT60 for each simulated room, this randomization
approach allows us to avoid matching unnatural reverberation
times to specific room volumes (e.g., a very long RT60 for
a small room) and ensure a more natural distribution of
reverberation times.

The final distribution of reverberation times exhibits a me-
dian, 10th percentile, and 90th percentile of 0.83 s, 0.42 s, and
2.38 s, respectively. Furthermore, the positions of the sound
sources are uniformly distributed in terms of the azimuth angle
relative to the receiver.

The experiments include 2500 audio files of 10 s duration
at 16 kHz in compliance with the speech dataset. In the
evaluation, 5-fold cross validation is used where 1500, 500,
and 500 files are assigned to training, validation, and testing
in each fold.

To assess the performance of the proposed approach un-
der different noise levels, real background noise is added
into the synthetic dataset. Specifically, environmental noise
recordings from the WHAM! [41] dataset, captured in various
urban settings such as restaurants, cafes, and bars, are em-
ployed. Random segments of the same length as the simulated
speech recordings are injected, mirroring the same split as the
WHAM! dataset, with several SNRs levels ([50, 40, 30, 20,
10, 5, 0] dB).

In addition to estimating the mean absolute distance esti-
mation error, the errors are calculated separately for separate
distance intervals that are {[1, 2), [2, 4), [4, 8), [8, 14)} meters.
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Fig. 4. Distributions of distances in each dataset.

The MAE errors are averaged using a 5-fold cross-validation
split, and the 95% mean confidence intervals are evaluated.

B. Hybrid Dataset - QMULTIMIT

The RIRs used in the hybrid dataset, contained in the C4DM
RIR database [42], were measured in three rooms located at
Queen Mary, University of London, London, UK. A Genelec
8250A loudspeaker was employed as the source for measuring
all IRs, while each receiver position was measured using
both an omnidirectional DPA 4006 and a B-format Soundfield
SPS422B.

A collection of 130 RIRs was captured in a classroom with
dimensions 7.5×9×3.5 m (236 m3) and consist of reflective
surfaces such as a linoleum floor, painted plaster walls, ceiling,
and a sizable whiteboard.

The second room, denoted as the Octagon, is a Victorian
structure that was finalized in 1888. Presently serving as a
conference venue, the walls of this building still showcase
book-lined interiors, complemented by a wooden floor and
plaster ceiling. As the name implies, this room features eight
walls, each measuring 7.5 m in length, and a domed ceiling
towering 21 m above the floor, resulting in an estimated

volume of 9500 m3. In the center of the room, a total of
169 RIRs were measured.

The third room is The Great Hall which possesses a seating
capacity of approximately 800. It encompasses a stage and
seating sections both on the floor and a balcony. To capture
the audio, the microphones were positioned within the cleared
seating area on the floor, spanning an area of approximately
23×16 m. The microphone placements mirror the layout used
for the Octagon, encompassing 169 RIRs over a 12 × 12 m
region.

Following the same setup of the synthetic dataset, anechoic
speech recordings are convolved from TIMIT [38] and real
background noises from WHAM! [41] are added with the mea-
sured RIRs, generating the hybrid QMULTIMIT dataset. For
each RIR, 5 random speech recordings are selected from the
TIMIT dataset, yielding 2340 audio files. RIRs are randomly
divided into training, validation, and testing splits following a
percentage ratio of 70-10-20. Finally, the MAE errors averaged
across all the distance bins are provided.

C. Real Dataset

VoiceHome - 2 [43]. This dataset is specifically made for
distant speech processing applications in domestic environ-
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ments. It consists of short commands for smart home devices
in French, collected in reverberant conditions and uttered by
twelve native French speakers facing the microphone. The
data is recorded in twelve different rooms corresponding to
four houses, with fully annotated geometry, under quiet or
noisy conditions. More precisely, VoiceHome - 2 includes
everyday noise sources (with no annotations regarding their
SNRs) such as competing talkers, TV/radio, footsteps, doors,
kitchenware, and electrical appliances. Five speaker positions
per room, comprising standing and sitting postures, are se-
lected to encompass a broad range of angles and distances
concerning the microphone array, which maintains a single,
fixed position throughout all the room recordings. The sound is
then captured by a microphone array consisting of eight micro-
electromechanical systems (MEMS) placed near the corner of
a cubic baffle. For this study, only the first channel has been
extracted. In total, VoiceHome - 2 encompasses 752 audio
recordings, lasting approximately 10 seconds for all the twelve
rooms and the five noise scenes. The dataset is then randomly
split using a percentage ratio of 70-10-20 training, validation,
and testing splits, respectively, for the experiments.
STARSS22 [44]. The dataset includes recordings of human
interaction scenes with spatio-temporal event annotations for
thirteen target classes, primarily focusing on speech. It is part
of the DCASE Challenge 2022 Task 3 development set. The
recordings were made at two sites, Tampere University in
Finland and Sony headquarters in Japan, in a total of eleven
rooms maintaining a consistent organization and procedure
regarding equipment, recording, and annotations. The dataset
utilizes the Eigenmike spherical microphone array, offering
two spatial formats. One format involves a tetrahedral sub-
array of omnidirectional microphones mounted on a rigid
spherical baffle. The corpus is more challenging compared to
the other datasets due to the natural movement and orientation
of multiple speakers during discussions, as well as the pres-
ence of intentional and unintentional sound events other than
speech. It also contains diffuse and directional ambient noise at
significant levels. Finally, audio data from a single microphone
of the Eigenmike array has been processed, extracting 2934
two-second single-speech excerpts that do not overlap with
other annotated directional sources. As done before with the
other datasets, STARSS22 is split using a percentage ratio of
70-10-20 training, validation, and testing splits, respectively.

It is worth noticing that, as can be inspected in Figure 4, real
dataset distances are differently distributed with respect to the
synthetic and hybrid ones. The motivations of this behavior
are as follows:

• in many real-world scenarios, as in STARSS23 [45],
sound sources are not always at a fixed distance from
the recording device;

• different recording environments can introduce variations
in the speaker distance distribution. For example, in a
controlled studio setting, speakers may be positioned
at specific distances from the microphone to achieve
desired sound characteristics. In contrast, field recordings
or recordings made in everyday settings can have a wider
range of distances due to the uncontrollable nature of

the environment. Indeed, in this context, VoiceHome-
2 [43] has been recorded in a domestic environment
whereas STARSS23 [44] has been collected in office-like
environments;

• audio datasets are often curated to suit specific appli-
cations or scenarios. For instance, a dataset focused on
speaker recognition in far-field scenarios may deliberately
include more examples with distant speakers to simulate
real-world challenges. On the other hand, a dataset for
speech enhancement in close-proximity situations may
prioritize examples with close speaker distances. Voice-
Home - 2 has been curately designed for enhancing
distant-microphone speech whereas STARSS23 focuses
on SELD, yielding dissimilar distance distributions.

Accordingly with the distributions of distances in real
scenarios, the distance bins used are {[1, 2), [2, 3), [3, 4.5)}
and {[1, 2), [2, 2.5), [2.5, 3)} meters for VoiceHome - 2 and
STARSS22, respectively. The final MAE errors are averaged
using a percentage ratio of 70-10-20 training, validation, and
testing splits, respectively.

V. EXPERIMENTAL RESULTS

In this section, the experimental results are shown for each
realistic scenario, as detailed in Section IV. First, the proposed
architecture is tested on the synthetic dataset, both in noiseless
and noisy scenarios, for the selection of hyperparameters.
Next, the performance of the approach is evaluated on hybrid
and real recordings by comparing the selected solution with
different hyperparameters. Finally, an ablation study is pro-
vided to demonstrate the effectiveness of the attention module
in all scenarios.

A. Implementation details

For both training and fine-tuning procedures on all scenar-
ios, the model is trained for 60 epochs at a learning rate of
0.001 with batch size of 16 samples. A scheduled reduction
(80%) of the learning rate is performed every 5 epochs when
the MSE of the validation set does not improve. In this work,
fine-tuning is carried out by training again the model, hence
without the random initialization of the weights.

B. Results on noiseless synthetic data

The proposed approach efficiently estimates speaker dis-
tance with an average error of 11 cm in a noiseless scenario,
as it can be inspected from Table I. Since there is no other
published method that attempts regression-based SDE with a
single microphone, for comparison purposes we present results
on binaural SDE following the recently published work of
[46]. The binaural estimation model is similar to the CRNN
model used herein; however, we modify it to include the
attention operation proposed in this work for better comparison
purposes. A similar simulator, range of acoustic conditions,
and number of rooms was used in [46] as herein. The same
spectrogram and binaural features are also used as in the
original work. The binaural estimation results (86 cm) we
obtain are, on average, better than the ones in [46] (151 cm),
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TABLE I
HYPERPARAMETERS SELECTION ON THE SYNTHETIC DATASET WITH CLEAN SPEECH. THE GRAY ROW HIGHLIGHTS THE PROPOSED APPROACH.

Kernels # params # GRUs Average [1, 2) [2, 4) [4, 8) [8, 14)
L1 rL1 L1 rL1 L1 rL1 L1 rL1 L1 rL1

Binaural [46] 650 k 2 0.86± 0.10 0.29± 0.05 1.06± 0.35 0.72± 0.22 0.70± 0.13 0.25± 0.05 0.81± 0.10 0.15± 0.02 1.34± 0.61 0.13± 0.05

Time 123 k 0 0.55± 0.02 0.18± 0.01 0.50± 0.04 0.35± 0.03 0.50± 0.03 0.18± 0.01 0.57± 0.03 0.11± 0.01 0.79± 0.09 0.08± 0.01
Squared 149 k 0 0.70± 0.02 0.23± 0.01 0.59± 0.04 0.42± 0.03 0.68± 0.04 0.24± 0.01 0.71± 0.04 0.13± 0.01 1.03± 0.12 0.11± 0.01
Frequency 123 k 0 0.86± 0.03 0.30± 0.01 0.83± 0.05 0.60± 0.04 0.80± 0.04 0.28± 0.02 0.86± 0.04 0.16± 0.01 1.17± 0.14 0.12± 0.01

Time 353 k 1 0.16± 0.01 0.05± 0.00 0.15± 0.01 0.11± 0.01 0.13± 0.01 0.05± 0.00 0.19± 0.01 0.03± 0.00 0.27± 0.03 0.03± 0.00
Squared 379 k 1 0.15± 0.01 0.05± 0.00 0.13± 0.01 0.09± 0.01 0.11± 0.01 0.04± 0.00 0.16± 0.01 0.03± 0.00 0.27± 0.04 0.03± 0.00
Frequency 353 k 1 0.13± 0.01 0.04± 0.00 0.12± 0.01 0.08± 0.01 0.10± 0.01 0.04± 0.00 0.13± 0.01 0.02± 0.00 0.24± 0.04 0.02± 0.00

Time 650 k 2 0.13± 0.01 0.04± 0.00 0.12± 0.01 0.09± 0.01 0.10± 0.01 0.04± 0.00 0.13± 0.01 0.02± 0.00 0.24± 0.07 0.02± 0.01
Squared 676 k 2 0.11± 0.00 0.04± 0.00 0.12± 0.01 0.08± 0.01 0.09± 0.00 0.03± 0.00 0.12± 0.01 0.02± 0.00 0.18± 0.03 0.02± 0.00
Frequency 650 k 2 0.11± 0.00 0.04± 0.00 0.12± 0.01 0.08± 0.01 0.10± 0.00 0.03± 0.00 0.11± 0.01 0.02± 0.00 0.16± 0.02 0.02± 0.00

with the improvement most likely attributed to the use of the
attention layers. However, the most striking difference is that
of the monophonic omnidirectional results (11 cm) versus the
binaural ones (86 cm). It seems that the complex frequency-,
direction-, and orientation-dependent effects imposed by head-
related transfer functions (HRTFs) make it harder for the
model to associate spectrotemporal reverberation patterns with
the source distance. However, a definite conclusion on differ-
ences between single-channel omnidirectional versus binaural
SDE requires further study.

An increasing trend of the errors with respect to the distance
is notable. This behavior is expected due to the dominant influ-
ence of the late reverberant component compared to the direct
and early reflection components of the signal at long distances.
These late reverberation cues exhibit statistical diffusion [47],
meaning that short-term magnitudes and phases resemble
noise-like characteristics. Consequently, extracting meaningful
information from these dominant late reverberation cues may
pose challenges for the model in effectively estimating speaker
distance.

Such behaviour is demonstrated in Figure 5. Considering
that the balance between direct speech energy versus early and
late reverberant energy is exemplified in the DRR, measured
from the simulated RIRs, it is clear that dominance of the
reverberation at low DRRs impacts negatively distance estima-
tion. There seems to be an optimum balance where both direct
sound and reverberation contribute to estimation, after which
direct sound can start to mask reverberation-related cues for
higher DRRs, with a subsequent small drop in performance. A
closer investigation of distance estimation at very high DRRs
or very small distances at the near-field of the microphone is
left for future work.

Moreover, the results of the study demonstrate that the GRU
layers play a crucial role in the model’s performance. The
GRU layers likely contribute to the model’s ability to capture
sequential patterns and dependencies effectively. Additionally,
the study found that using rectangular kernels, as opposed to
square kernels, in combination with GRU layers improves the
model’s efficiency. In this scenario, the rectangular kernels are
better at capturing different types of patterns and features in
the data, leading to more effective and efficient information
processing within the model. This statement, however, does
not hold when no GRU layers are present.

In addition, it is worth noting that using a single GRU
layer slightly impacts the overall performance of the proposed
approach, approximately halving the number of learnable
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parameters.

TABLE II
EXPERIMENTAL RESULTS ON NOISY SYNTHETIC DATA WITH FIXED SNR

AND FREQUENCY KERNELS. GRAY ROW HIGHLIGHTS THE PROPOSED
APPROACH.

SNR Feature set L1 rL1

50 dB
w/|STFT| 0.48± 0.02 0.14± 0.01

w/sinus and cosinus 0.37± 0.02 0.11± 0.01
|STFT| + sinus and cosinus 0.41± 0.02 0.12± 0.00

40 dB
w/|STFT| 0.77± 0.03 0.21± 0.01

w/sinus and cosinus 0.71± 0.03 0.21± 0.01
|STFT| + sinus and cosinus 0.87± 0.04 0.24± 0.01

30 dB
w/|STFT| 1.11± 0.04 0.30± 0.01

w/sinus and cosinus 1.51± 0.06 0.45± 0.02
|STFT| + sinus and cosinus 1.14± 0.04 0.31± 0.01

20 dB
w/|STFT| 1.20± 0.04 0.33± 0.01

w/sinus and cosinus 1.76± 0.06 0.56± 0.02
|STFT| + sinus and cosinus 1.21± 0.05 0.33± 0.01

10 dB
w/|STFT| 1.30± 0.05 0.36± 0.01

w/sinus and cosinus 1.70± 0.06 0.56± 0.02
|STFT| + sinus and cosinus 1.27± 0.05 0.35± 0.01

5 dB
w/|STFT| 1.34± 0.05 0.38± 0.01

w/sinus and cosinus 1.73± 0.06 0.58± 0.02
|STFT| + sinus and cosinus 1.26± 0.05 0.34± 0.01

0 dB
w/|STFT| 1.47± 0.05 0.44± 0.02

w/sinus and cosinus 1.77± 0.06 0.61± 0.02
|STFT| + sinus and cosinus 1.39± 0.05 0.42± 0.02
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C. Analysis of the impact of noise on synthetic data

To assess the quality of the predictions in relation to noise
strength, seven SNR values have been specifically chosen dur-
ing training. More precisely, a separate model is trained from
scratch for each SNR level. Table II depicts the results where a
notable discrepancy between the noiseless and noisy scenarios
becomes evident. This divergence is primarily attributed to
the disruptive influence of background noise on the phase
information [26], which has been also demonstrated in speech
enhancement studies [48]. It is worth noting from Figure 6 that
the performance of the proposed method remains consistent
across all SNR levels for distances up to 6 meters.
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Fig. 6. Comparison between noisy and noiseless performance of the proposed
approach on the synthetic dataset.

However, beyond this distance, the error increases rapidly.
This behavior can be attributed to the quadratic inverse rela-
tionship between distance and sound intensity, i.e., Is ∝ 1

d2 .
Due to this physical behavior, the direct sound and early
distinct echoes exhibit similar energy levels compared to the
late reverberant cues, hindering long-distance information.

D. Results on hybrid data

As done with the synthetic dataset, five SNR values have
been selected to assess the performance of the proposed
architecture by training a separate model from scratch for
each SNR level. Table III shows the experimental results,
highlighting the superiority of the chosen configuration. The
notation [30,+∞) dB denotes the results of the model both
in noiseless case and with at most 30 dB of SNR. It is worth
noting that, differently from the synthetic scenario, the impact
of background noise is smaller even at low SNR. In fact,
comparing Table II with Table III, it is evident how synthetic
RIRs are more affected by noise at higher SNR with respect
to measured ones.

Interestingly, the use of only sinus and cosinus maps yields
poor performance at all SNRs levels whereas the STFT mag-
nitude is essential for the task. This result agrees with the
previous study [26] where the use of only sinus and cosinus
features in noisy audio recordings is ineffective.

E. Results on real data

Table IV and Table V depict the results on VoiceHome -
2 [43] and STARSS23 [44], respectively. Following the same
rationale of the synthetic and hybrid scenarios, the selected

TABLE III
DISTANCE ESTIMATION ERRORS FOR THE QMULTIMIT HYBRID

DATASET. GRAY ROW HIGHLIGHTS THE PROPOSED APPROACH. ALL
FEATURES ARE USED IF NOT MENTIONED

.
SNR Hyperparameters # GRUs L1 rL1

[30,+∞) dB

Time 0 2.49± 0.16 0.28± 0.02
Squared 0 2.38± 0.15 0.25± 0.02
Frequency 0 2.97± 0.17 0.33± 0.03
Time 1 1.58± 0.12 0.16± 0.01
Squared 1 1.52± 0.12 0.15± 0.01
Frequency 1 1.68± 0.12 0.17± 0.01
Time 2 1.70± 0.12 0.17± 0.01
Squared 2 1.48± 0.13 0.14± 0.01
Freq. w/|STFT| 2 1.67± 0.13 0.17± 0.01
Freq. w/sinus and cosinus 2 2.17± 0.14 0.23± 0.02
Frequency 2 1.52± 0.12 0.15± 0.01

20 dB

Time 0 2.22± 0.15 0.24± 0.02
Squared 0 2.36± 0.15 0.25± 0.02
Frequency 0 2.88± 0.17 0.32± 0.02
Time 1 1.67± 0.12 0.16± 0.01
Squared 1 1.46± 0.12 0.14± 0.01
Frequency 1 1.71± 0.12 0.17± 0.01
Time 2 1.66± 0.13 0.16± 0.01
Squared 2 1.60± 0.13 0.16± 0.01
Freq. w/|STFT| 2 1.64± 0.13 0.16± 0.01
Freq. w/sinus and cosinus 2 1.98± 0.13 0.21± 0.02
Frequency 2 1.48± 0.11 0.14± 0.01

10 dB

Time 0 2.23± 0.14 0.24± 0.02
Squared 0 2.20± 0.14 0.24± 0.02
Frequency 0 2.55± 0.14 0.28± 0.02
Time 1 1.71± 0.12 0.17± 0.01
Squared 1 1.58± 0.13 0.16± 0.01
Frequency 1 1.60± 0.12 0.16± 0.01
Time 2 1.65± 0.12 0.16± 0.01
Squared 2 1.56± 0.13 0.15± 0.01
Freq. w/|STFT| 2 1.55± 0.12 0.15± 0.01
Freq. w/sinus and cosinus 2 1.97± 0.12 0.21± 0.01
Frequency 2 1.65± 0.13 0.17± 0.01

0 dB

Time 0 2.54± 0.14 0.28± 0.02
Squared 0 2.74± 0.15 0.30± 0.02
Frequency 0 3.01± 0.15 0.33± 0.02
Time 1 1.75± 0.12 0.18± 0.01
Squared 1 1.83± 0.12 0.19± 0.01
Frequency 1 1.82± 0.13 0.19± 0.01
Time 2 2.46± 0.15 0.23± 0.01
Squared 2 1.98± 0.12 0.21± 0.02
Freq. w/|STFT| 2 1.63± 0.13 0.17± 0.01
Freq. w/sinus and cosinus 2 2.24± 0.13 0.25± 0.02
Frequency 2 1.66± 0.13 0.17± 0.01

−10 dB

Time 0 3.03± 0.14 0.34± 0.03
Squared 0 3.03± 0.14 0.33± 0.02
Frequency 0 3.04± 0.14 0.33± 0.02
Time 1 3.02± 0.14 0.33± 0.02
Squared 1 3.01± 0.14 0.33± 0.03
Frequency 1 3.00± 0.14 0.33± 0.03
Time 2 3.06± 0.14 0.34± 0.03
Squared 2 2.57± 0.13 0.28± 0.02
Freq. w/|STFT| 2 2.28± 0.13 0.25± 0.02
Freq. w/sinus and cosinus 2 3.01± 0.14 0.33± 0.03
Frequency 2 2.34± 0.13 0.25± 0.02

configuration outperforms the other models. The results ob-
tained from the analysis of real data demonstrate the clear
superiority of the proposed model in accurately estimating dis-
tances. Across both datasets, the proposed model consistently
outperforms different configurations of the models, showcas-
ing its robustness and effectiveness. However, it is worth
noting that a few outliers surfaced in the results, particularly
within the VoiceHome - 2 dataset where large confidence
intervals are present. This occurrence can be attributed to the
limited size of the datasets as the model overfits the training
dataset. With a larger dataset, these outliers are expected to be
mitigated, and the model’s performance is likely to become
even more reliable and precise. This observation underscores
the potential for further advancement in distance estimation
when working with more extensive datasets.
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TABLE IV
DISTANCE ESTIMATION ERRORS FOR THE VOICEHOME - 2 DATASET. GRAY ROW HIGHLIGHTS THE PROPOSED APPROACH. ALL FEATURES ARE USED IF

NOT MENTIONED

Hyperparameters # GRUs Average [1, 2) [2, 3) [3, 4.5)
L1 rL1 L1 rL1 L1 rL1 L1 rL1

Time 0 0.95± 0.10 0.49± 0.06 1.00± 0.14 0.73± 0.11 0.69± 0.12 0.28± 0.05 1.20± 0.25 0.32± 0.06
Squared 0 0.90± 0.11 0.46± 0.07 0.90± 0.16 0.69± 0.14 0.57± 0.11 0.23± 0.04 1.34± 0.26 0.35± 0.07
Frequency 0 0.83± 0.09 0.43± 0.06 0.85± 0.13 0.63± 0.11 0.67± 0.13 0.27± 0.05 1.02± 0.20 0.27± 0.05
Time 1 0.76± 0.09 0.38± 0.05 0.73± 0.12 0.55± 0.10 0.47± 0.10 0.19± 0.04 1.19± 0.23 0.32± 0.06
Squared 1 0.74± 0.09 0.40± 0.07 0.85± 0.15 0.65± 0.13 0.43± 0.09 0.17± 0.04 0.96± 0.20 0.26± 0.05
Frequency 1 0.74± 0.08 0.37± 0.05 0.73± 0.12 0.54± 0.10 0.53± 0.10 0.21± 0.04 1.06± 0.21 0.28± 0.05
Time 2 0.64± 0.08 0.31± 0.05 0.59± 0.12 0.44± 0.10 0.49± 0.09 0.20± 0.03 0.94± 0.21 0.25± 0.05
Squared 2 0.70± 0.10 0.35± 0.06 0.67± 0.14 0.51± 0.12 0.43± 0.12 0.17± 0.05 1.11± 0.21 0.29± 0.05
Freq w /|STFT| 2 0.66± 0.08 0.33± 0.05 0.63± 0.13 0.48± 0.11 0.47± 0.10 0.19± 0.04 0.98± 0.17 0.27± 0.05
Freq w /sinus and cosinus 2 0.91± 0.11 0.46± 0.07 0.88± 0.14 0.68± 0.13 0.52± 0.11 0.21± 0.04 1.49± 0.21 0.40± 0.05
Frequency 2 0.63± 0.08 0.32± 0.05 0.64± 0.11 0.48± 0.10 0.48± 0.11 0.19± 0.04 0.80± 0.20 0.21± 0.05

TABLE V
DISTANCE ESTIMATION ERRORS FOR THE STARSS23 DATASET. GRAY ROW HIGHLIGHTS THE PROPOSED APPROACH. ALL FEATURES ARE USED IF NOT

MENTIONED

Hyperparameters # GRUs Average [1, 2) [2, 2.5) [2.5, 3)
L1 rL1 L1 rL1 L1 rL1 L1 rL1

Time 0 0.51± 0.03 0.23± 0.01 0.30± 0.04 0.16± 0.02 0.55± 0.03 0.24± 0.01 0.76± 0.10 0.29± 0.04
Square 0 0.50± 0.03 0.22± 0.01 0.29± 0.04 0.16± 0.02 0.53± 0.03 0.23± 0.01 0.85± 0.09 0.33± 0.03
Frequency 0 0.51± 0.03 0.23± 0.01 0.35± 0.05 0.19± 0.03 0.54± 0.03 0.24± 0.01 0.76± 0.10 0.29± 0.04
Time 1 0.45± 0.02 0.20± 0.01 0.26± 0.03 0.14± 0.02 0.49± 0.03 0.21± 0.01 0.70± 0.08 0.27± 0.03
Square 1 0.42± 0.02 0.19± 0.01 0.33± 0.04 0.18± 0.02 0.42± 0.03 0.18± 0.01 0.62± 0.09 0.24± 0.03
Frequency 1 0.46± 0.02 0.20± 0.01 0.30± 0.04 0.16± 0.02 0.48± 0.03 0.21± 0.01 0.69± 0.08 0.26± 0.03
Time 2 0.46± 0.02 0.21± 0.01 0.27± 0.03 0.15± 0.02 0.49± 0.03 0.22± 0.01 0.69± 0.09 0.26± 0.03
Square 2 0.50± 0.02 0.22± 0.01 0.34± 0.04 0.19± 0.02 0.51± 0.03 0.23± 0.01 0.79± 0.09 0.30± 0.03
Freq w /|STFT| 2 0.46± 0.02 0.21± 0.01 0.28± 0.03 0.15± 0.02 0.49± 0.03 0.21± 0.01 0.71± 0.09 0.27± 0.03
Freq w /sinus and cosinus 2 0.46± 0.02 0.20± 0.01 0.28± 0.03 0.16± 0.02 0.48± 0.03 0.21± 0.01 0.74± 0.09 0.28± 0.03
Frequency 2 0.42± 0.02 0.19± 0.01 0.33± 0.05 0.18± 0.03 0.43± 0.03 0.19± 0.01 0.55± 0.09 0.21± 0.04

F. Ablation study of the attention module

To demonstrate the effectiveness of the attention module,
an ablation study is performed on all the scenarios. First, per-
formance assessment is carried out without the module. Then,
instead of returning a T×F×3 matrix, a spectrogram attention
map, i.e., T × F , is learned by a module. Then, an element-
wise multiplication is performed between the magnitude of the
STFT and the attention map.

These three modalities are analyzed in Table VI, depicting
the errors for each bin with their confidence intervals. Predict-
ing an attention map for each feature provides better distance
estimation on average. Moreover, the results demonstrate that
all the approaches perform similarly in the short range, up to
8 meters. Conversely, applying the attention map on each of
the feature maps in the feature set produces better outcomes
in the long range with respect to the other two cases. When
the speaker is far from the microphone, the learned attention
maps enhance the features set, facilitating the extraction of
features of the convolutional layers. Indeed, as the distance
between the speaker and the microphone increases, detecting
these patterns becomes more challenging due to their reduced
salience [47].

Moreover, an ablation study has been carried out also on
the hybrid and real data, as it can be inspected in Table VII.
The attention map yields the best performance in the hybrid
case when it is only applied to the STFT magnitude channel.
This fact highlights the ineffectiveness of phase features in
this specific use case. Instead, the results demonstrate the
superiority of the attention map applied on all the channels
in the real scenario.

G. Cross-corpus generalization

Tests have been carried out in a cross-corpus training-
testing setup, e.g., synthetic-hybrid, synthetic-real, hybrid-
real, VoiceHome-STARSS. The model yields very large errors
in case no finetuning is performed, as it can be inspected
in Table VIII. This behavior highlights the discrepancy of
feature patterns among different acoustic scenarios, levels
of acoustical realism, and different distance distributions. If
the model is fine-tuned to a different realistic scenario, the
performance is slightly worse that the case when the model
starts with random weights. The results of this situation is
shown in Table IX.

VI. DISCUSSION

From the results of the noisy scenario in the synthetic
dataset, it is important to highlight that even a minimal amount
of noise severely corrupts phase-based features, which have
been identified as the most critical information in our analysis
of clean speech. For instance, the presence of direct sound
and echo patterns, characterized by transients in the clean
signal, becomes blurred over time due to the presence of
noise and late reverberation, resulting in a loss of phase
coherence across frequencies. This behavior, however, does
not occur in the hybrid dataset where the effect of high SNR
in the recordings does not correspond to a similar increase in
estimation performance. That may be due to the recordings of
the RIRs having a level of inherent measurement noise, which
limits the effective SNR that we can achieve in the hybrid
simulations.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, MARCH 2024 11

TABLE VI
ABLATION STUDY OF ATTENTION MAP USING FREQUENCY KERNELS ON SYNTHETIC DATA WITH CLEAN SPEECH. GRAY ROW HIGHLIGHTS THE

PROPOSED APPROACH.

Attention Average [1, 2) [2, 4) [4, 8) [8, 14)
L1 rL1 L1 rL1 L1 rL1 L1 rL1 L1 rL1

None 0.14± 0.01 0.05± 0.00 0.13± 0.01 0.09± 0.01 0.12± 0.01 0.04± 0.00 0.15± 0.01 0.03± 0.00 0.28± 0.05 0.03± 0.00
on spectrogram 0.12± 0.00 0.04± 0.00 0.12± 0.01 0.08± 0.01 0.10± 0.01 0.04± 0.00 0.13± 0.01 0.02± 0.00 0.22± 0.03 0.02± 0.00
on everything 0.11± 0.00 0.04± 0.00 0.12± 0.01 0.08± 0.01 0.10± 0.00 0.03± 0.00 0.11± 0.01 0.02± 0.00 0.16± 0.02 0.02± 0.00

TABLE VII
ABLATION STUDY OF ATTENTION MAP USING FREQUENCY KERNELS ON

HYBRID AND REAL DATA. GRAY ROW HIGHLIGHTS THE PROPOSED
APPROACH.

Attention QMULTIMIT VoiceHome - 2 STARSS22
L1 rL1 L1 rL1 L1 rL1

None 2.01± 0.06 0.21± 0.01 0.78± 0.09 0.40± 0.06 0.45± 0.02 0.20± 0.01
on spectrogram 1.87± 0.06 0.19± 0.01 0.73± 0.10 0.36± 0.06 0.45± 0.02 0.20± 0.01
on everything 1.90± 0.06 0.20± 0.01 0.63± 0.08 0.32± 0.05 0.42± 0.02 0.19± 0.01

TABLE VIII
CROSS-DATASET GENERALIZATION TESTS WITHOUT FINETUNING.

Test w/o finetuning

Tr
ai

ni
ng

Synthetic Hybrid Real
Synthetic 0.11± 0.00 4.28± 0.45 4.14± 0.08
Hybrid 6.80± 0.59 1.52± 0.12 3.76± 0.56

Real 2.26± 0.38 8.22± 0.54 0.42± 0.02

TABLE IX
CROSS-DATASET GENERALIZATION TESTS WITH FINETUNING.

Test w/ finetuning

Tr
ai

ni
ng

Synthetic Hybrid Real
Synthetic 0.11± 0.00 1.57± 0.23 0.47± 0.05
Hybrid 0.18± 0.04 1.52± 0.12 0.45± 0.05

Real 0.11± 0.02 1.54± 0.22 0.42± 0.02

The imposition of the loss in (3) is required for predicting
a time-wise distance vector. Due to the lack of baselines and
datasets in the literature, only a single value of distance of the
sound source is assigned for each time bin to ease the distance
tracking task. Generally, this characteristic in audio datasets
is referred as weak labels [49]. Without time-wise distance
references, denoted as strong labels, the model encounters
challenges in fine-tuning its predictions, decreasing its overall
performance. This scenario has been studied in literature for
tasks that require a fine temporal resolution output, such as
sound event detection (SED) [50] and SELD [51].

Furthermore, it is important to acknowledge that certain
portions of the audio data encompass segments where speech
information is absent or indiscernible. Consequently, this
scarcity of informative speech content can considerably un-
dermine the effectiveness and reliability of the predictors.

In this direction, the proposed attention module can improve
the ability of the model (Tab. VII) to identify the speech
information that is relevant for the estimation of the distance.
However, it is important to note that the attention module is
learned by the model itself, without any direct supervision.

To address these limitations, a potential avenue for im-
provement emerges, centering around the generation of more
comprehensive and fine-grained labels. By augmenting the
dataset with strong labels that introduces both speech activity
and speaker distance estimation, the model may acquire a

better understanding of the room acoustics. In addition, this
augmentation enables the model to leverage additional contex-
tual cues and refine its predictions, enhancing its performance
in accurately estimating speaker distances and capturing the
dynamics of speech activity.

Moreover, one of the key areas for improvement is the
availability of larger datasets of real recordings with a greater
number of rooms and various speaker-microphone configura-
tions. A larger dataset would enable the model to learn more
diverse and representative acoustic characteristics, leading to
improved performance in distance estimation tasks. Moreover,
it could also improve the generalization ability of the ap-
proach, as it has been demonstrated how the performance
of the proposed model is dependent on the nature of the
audio recording (synthetic, hybrid or real). Additionally, by
including different room types and microphone placements,
the model can better generalize across various real-world
scenarios. Furthermore, the use of a transformer-based [52]
approach could be explored, leveraging a larger amount of
data. Transformer models have shown remarkable success in
various natural language processing tasks and have the poten-
tial to capture complex patterns and dependencies in acoustic
data. Exploiting transformer architectures could enhance the
model’s ability to estimate distances accurately.

Another possibility for future research is the integration of
time-wise distance ground truth, as previously mentioned in
the discussion section. By considering temporal information in
addition to spatial cues, the model could potentially estimate
the distance of a sound source more accurately. This would
provide valuable insights in scenarios where multiple sound
sources are present. Estimating and tracking the distance of
a moving source is an application of interest that is scarcely
explored in the literature.

VII. CONCLUSIONS

This work has explored the task of speaker distance esti-
mation in noisy and reverberant environments. Multiple con-
figurations, in terms of kernel size and recurrent layers of the
model, have been provided, motivating the proposed architec-
ture. In fact, the use of rectangular filters across the frequency
dimension and the presence of GRUs layers yields the best
performance in terms of distance errors. The experimental
results obtained from the proposed model have demonstrated
remarkable precision in scenarios where several types of RIRs
are employed. In a noiseless synthetic scenario where RIRs
have been generated with a room-source simulator, the model
has achieved an absolute error of only 0.11 meters. With
recorded RIRs, an absolute error of about 1.30 meters has been
obtained. In the real scenario with on-field recordings, where
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unpredictable environmental factors and noise were prevalent,
the model yielded an absolute error of approximately 0.50
meters. These results underscore the model’s resilience and its
capacity to effectively manage various realistic scenarios. Vari-
ations in performance across these scenarios can be attributed
to differences in the distribution of acoustic parameters, such
as the distance from the sound source. Analysis on moving
sound sources in single-channel recordings will be carried out
as a future work.
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