
Prediction-sharing During Training and Inference

Yotam Gafni1, Ronen Gradwohl2, and Moshe Tennenholtz3

1 Weizmann Institute yotam.gafni@gmail.com
2 Ariel University roneng@ariel.ac.il

3 Technion - Israel Institute of Technology moshet@ie.technion.ac.il

Abstract. Two firms are engaged in a competitive prediction task. Each firm has
two sources of data—labeled historical data and unlabeled inference-time data—
and uses the former to derive a prediction model, and the latter to make predictions
on new instances. We study data-sharing contracts between the firms. The novelty
of our study is to introduce and highlight the differences between contracts that
share prediction models only, contracts to share inference-time predictions only,
and contracts to share both.
Our analysis proceeds on three levels. First, we develop a general Bayesian
framework that facilitates our study. Second, we narrow our focus to two natural
settings within this framework: (i) a setting in which the accuracy of each firm’s
prediction model is common knowledge, but the correlation between the respective
models is unknown; and (ii) a setting in which two hypotheses exist regarding the
optimal predictor, and one of the firms has a structural advantage in deducing it.
Within these two settings we study optimal contract choice. More specifically,
we find the individually rational and Pareto-optimal contracts for some notable
cases, and describe specific settings where each of the different sharing contracts
emerge as optimal. Finally, in the third level of our analysis we demonstrate the
applicability of our concepts in a synthetic simulation using real loan data.

Keywords: Data Sharing · Strategic Machine Learning · Strategic Classification ·
Information Sharing.

1 Introduction

Machine learning (ML) is becoming a highly distributed endeavor. Data is spread among
different firms, each of whom may have their own ML capabilities and economic utilities.
In many cases, one firm’s data and prediction capabilities are complemented by those
available to a competing firm, and each firm would benefit from access to the other’s
predictions. For example, two investment banks that attempt to predict loan defaults
could each improve their respective predictions by accessing the other’s predictions.
Indeed, this is in the spirit of one of the most fundamental ideas in ML—aggregating
weak learners into strong ones [11]. However, the distributed nature of firms’ capabilities
introduces a major obstacle: Why, and under what conditions, would firms willingly
share their predictions with competitors? And what would equilibrium behavior look
like, given such sharing?

Our main innovation in this paper is the observation that this obstacle actually consists
of two separate questions, corresponding respectively to the training and inference phases
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in ML. First, why would firms share the labels they have (about individuals in their
data logs) in the training phase? And second, why would firms share their predictions
(about new, incoming instances) in the inference phase? As we show in this paper, this
distinction has real bite.

In order to tackle the question of training/inference-stage prediction-sharing, we
proceed on three levels. First, we develop a general Bayesian model that captures the
two kinds of sharing. The Bayesian model specifies the informational environment,
while a utility model specifies the economic implications. In the Bayesian model, each
firm obtains a training signal that represents the prediction model (a.k.a. classifier)
learned by that firm via its labeled historical data. The firm also obtains an inference-time
signal that represents the classifier’s prediction on unlabeled inference-time data. In the
utility model we associate a real number with each outcome quadrant: True-positive,
true-negative, false-positive, and false-negative predictions. We moreover assume that if
both firms arrive at the same outcome, then the associated utility is split between them.

In the second level of our analysis, we apply our model to a game-theoretic study
of two natural settings. In the first setting, the accuracy of each firm’s prediction model
is common knowledge, but the correlation between the respective models is unknown.
As for utilities, each firm has a safe prediction that yields utility zero (whether right or
wrong), and a risky prediction. For example, a firm predicting a customer’s trustworthi-
ness in order to decide whether or not to issue a loan. If a loan is provided, the firm’s
utility depends on the accuracy of the trustworthiness prediction, and whether or not the
customer has other offers. If no loan is provided, the firm’s utility is fixed at 0. In the
second setting we study, there are two hypotheses regarding the optimal predictor, and
one of the firms has a structural advantage in deriving it. Furthermore, firms’ utilities
are symmetric across prediction types (unlike the first setting), and depend only on the
predictions’ correctness—e.g., a firm recommending a movie to a viewer, where the
utility depends on whether or not it accurately predicts the viewer’s tastes.

Finally, in the third level of our analysis, we demonstrate the applicability of our
ideas in a synthetic simulation using real loan data. This is intended to provide an
accessible, practical recasting of our abstract model’s results. In broad terms, if we
take a single firm’s perspective, the no-sharing contract allows it to build a classifier
based on its own historical data. Then, based on its assessment (prior) of the competitor,
it decides whether or not to act in accordance with the classifier’s prediction (signal).
An example of choosing to ignore the classifier’s signal would be if the firm knows
that its competitor can perfectly predict whether a loan would be repaid. Then, all the
benefit of issuing a good loan is split (e.g., by the random decision of the consumer as
to which of the offered loans to accept). However, since the firm knows that its own
classifier is imperfect, it knows it will also end up issuing some bad loans. If the cost of
bad loans outweighs the benefit of splitting the profit from good loans, the firm would
decide to ignore its classifier and not issue any loans. Expanding on this example, the
train-sharing contract can allow the firm to make a more refined decision: Based on
seeing how the other firm predicts on the historical data, it can assess whether or not to
follow its own classifier. The full-sharing contract allows even more intricate decision
rules: They can depend both on what the firm learns about the competitor’s predictions
on historical data, and also on the competitor’s prediction on each specific consumer.
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Lastly, the infer-sharing contract does not see the competitor’s predictions on historical
data, so it must maintain its assessment/prior over the other firm’s classifier, but it can
use the competitor’s prediction on the real-time consumer to decide whether to follow
its own classifier’s prediction. In our practical implementation of Section 5 we examine
the performance of the optimal decision rules under different contracts, and show that
each of no-sharing, full-sharing, and train-sharing is uniquely optimal for some set of
parameters.

The emphasis of our work in game theoretic terms is to require that a contract is both
individually rational and Pareto-optimal (IRPO). This follows the assumption that the
natural state of affairs is that no contract is signed (no-sharing). Thus, for the firms to
agree for any kind of prediction-sharing, it must be that for each of them, the expected
utility under the prediction-sharing contract is at least as good as under no-sharing. We
refer to this property as the contract being individually rational. Moreover, the contract
must be Pareto-optimal w.r.t. the four possible contracts. E.g., if the utilities under full-
sharing dominate these under train-sharing, even if train-sharing is by itself individually
rational, it would make sense that the firms choose to sign the Pareto-optimal contract
rather than a Pareto dominated one. As we see, there are different settings so that each of
the contract types may become uniquely IRPO.

Lastly, we note that in order for the firms to share their predictions, they need a way
to match records. Facing this issue is common in the industry and there are companies
that specialize in this task.4 This type of prediction-sharing is valuable, even if done
for identifiers both firms hold, as different firms may be exposed to different properties
of the same identifier. As an example, think of firms that know different social and
financial features associated with the same social security number. In this case, there
is a difference between sharing each firm’s binary prediction regarding the user, or the
entire data it holds for that identifier. Importantly, our model assumes that firms share
their training and inference-time signals, and not their entire data. In practice, in the
training stage the signals come in the form of true labels in the historical data, and in the
inference stage in the form of the classifier’s predictions. The fact that this still proves to
be useful is by itself interesting, as it suggests a path to data sharing that protects both
the firm’s intellectual property (in terms of both data and models used in training), and
possibly the users’ privacy.

1.1 Our Contribution

In Section 2, we provide the first model to reason about contracts that may involve
sharing prediction both in the training and inference stage. In Sections 3,4 we focus on
two natural sub-models of the general model we present:

1. A Correlation Model: Both firms know their own and their competitor’s prediction
accuracy, but not the correlation between the two prediction models. We characterize
the uniquely individually rational and Pareto-optimal contracts for some notable
cases. We also show that all contracts except inference-sharing can be optimal in
this setting.

4 E.g., in advertising, identifying the same user on different devices is called cross-device
targeting, and “attribution providers” companies such as AppsFlyer and Singular enable this.
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2. A Two Hypotheses Model: One firm is able to determine the correct hypothesis during
training, while the other has information about customers that is valuable during
inference. Here, we show that inference-sharing can be the unique individually
rational and Pareto-optimal contract.

Overall, we conclude that each of the four train/inference combination contracts can be
optimal:

• No-sharing is the optimal individually-rational contract when the cost of making a
wrong prediction is equal to the reward of making a correct prediction. We show
this first in Lemma 1, for the case where the prediction model of each firm (based
on its own data) is common knowledge, and then generalize it in Theorem 1 for the
general training-phase prior. This characterization follows from two main insights:
(1) Under full-sharing, when the two firms share their inference-time signals, the
firms will simply follow the primary firm signal. This is because a negative primary
firm signal overshadows a positive secondary firm signal. (2) Given the first insight,
the primary firm is only set to lose by sharing its signal, since the aggregate utility of
the two firms is constant (and equals the accuracy of the primary firm’s prediction).
The secondary firm becomes more informed under full-sharing, and can extract the
same utility as the primary firm.

• Full-sharing is the optimal individually-rational contract when the two firms have
the same prediction accuracy. It is at least as good as no-sharing because the firms
can use both signals to “amplify” or mitigate their individual signal (Theorem 2),
in a way that is mutually beneficial w.r.t. their equilibrium behavior under no-
sharing. Full-sharing is also at least as good as train-sharing, because in both cases
the equilibrium behavior is symmetric, but the full-sharing equilibrium is more
informed (Lemma 4). This is also true w.r.t. the infer-sharing equilibrium, even more
generally (Lemma 2), as the symmetry in the infer-sharing case stems not from
having the same prediction accuracy, but from the fact that the infer-phase signals
are shared, and the train-phase signals can not individually teach more about the
correlation than the common prior.

• Train-sharing is the optimal individually-rational contract when the two firms benefit
from reaching different equilibria given a different correlation between their signals.
In particular, the firms may prefer to each follow its signal when the correlation is
low, but have the secondary firm ’yield’ to the primary firm when the correlation is
high and exit the market. Learning ‘when to quit’ benefits the secondary firm as well,
and so can emerge as the optimal individually-rational contract when full-sharing is
‘too permissive’ for the primary firm to follow, due to loss in competitive advantage.

• Infer-sharing is harder to come up with a situation where it is the optimal individually-
rational contract. In fact, we show that in our correlation model it can not be the
uniquely optimal individually-rational contract (Lemma 2). In Section 4 we explore
a model we call “the two hypotheses model”, which has a natural interpretation in
health and scientific contexts, and show how infer-sharing may arise as the uniquely
optimal individually-rational contract there (Theorem 4).

Beyond the existence results detailed above, which help provide intuition into the
different types of prediction sharing contracts, the theorems of Section 3 also provide
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a partial characterization of our correlation model in several important cases such as
symmetric utilities, or symmetric prediction accuracy. In Section 5, and further in
Appendix D, we demonstrate how our abstract Bayesian model may be put into practice
and implemented, using a real loan dataset.

1.2 Related Work

Previous work in ML considered different aspects of strategic prediction. For example,
[1] and [9] study competition in prediction, based on shared and independent data,
respectively. Literature on federated learning [e.g. 5, 10] considers free-riding by data
providers to save costs while still benefiting from better predictions. [12] and [14] study
data aggregation between competitors: In the former, a firm aims to exploit another
firm’s contributed data but also to mislead it, putting the integrity of the data-sharing
protocol at risk. In the latter, segmentation information about consumers is split between
firms, and firms decide whether or not to share their part of the data with others during
the inference phase. The former work focuses solely on training models, while the
second only on the inference stage of a known segmentation. Finally, some papers deal
with the imbalance between firms with stronger and weaker models through the lens of
fairness, leveraging tools from cooperative game theory [4, 6]. There is also a growing
economics literature on data markets [see, e.g., the survey of 2]. However, neither this
economics literature, nor work on strategic ML consider strategic sharing of prediction
models between competitors. They also do not contrast sharing during training and
during inference, a distinction we see as crucial for ML in the distributed economy.

There is some analogy between our work and the fundamental ML idea of aggregating
weak learners into strong ones, and specifically to bagging and stacking. In bagging [3],
the ML algorithm deliberately creates subsets of the data and learns models for them
in parallel; this is somewhat analogous to how, in our setting, different firms develop
their own models. In stacking [19], there are two stages: first, models (derived, e.g., from
bagging) produce predictions over a data-set, and second, a meta-learning algorithm
learns how to generate a final authoritative prediction from the models’ predictions. In a
sense, our work can be viewed as strategic bagging and stacking.

2 Model

Informational environment There are two firms engaged in a competitive prediction
task. Each firm obtains data in two phases: training and inference. In the training phase,
examples with binary labels are drawn at random, and each firm learns a respective
prediction model (i.e., classifier). The training phase may consist of one example,
multiple examples, or “infinitely many” examples. In the inference phase firms use their
learned model in order to predict the label of a new example. Firm 1’s prediction is either
A or B and firm 2’s prediction is either a or b, where the former indicates that the firm’s
prediction model believes the label is 1 and the latter indicates the label is 0. We model
this interaction in an abstract Bayesian framework using the rich signal spaces of [16]
and [13]. We next describe the formal model, and then highlight the main elements and
their interpretations.
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A world model w consists of a prior distribution πw over {0, 1}, as well as two signal
spaces, one for each firm. For every true label t ∈ {0, 1}, each signal space partitions
[0, 1] into two sets, representing the probabilities associated with firms’ prediction
models, given true label t.5 For the first firm, the first set is denoted At

w ⊂ [0, 1], and the
second is denoted Bt

w = [0, 1] \At
w. For the second firm, the two sets are denoted atw

and btw. Given w, a random example is modeled as a label t drawn from {0, 1} according
to πw, as well as ζ drawn from [0, 1] uniformly at random.6 Firm 1’s signal (i.e., its
model’s suggested prediction under w) on this example is then 1 if ζ ∈ At

w under t,
and 0 otherwise; firm 2’s signal is 1 if ζ ∈ atw under t, and 0 otherwise. In words, ζ
chooses a “location” on the interval [0,1]. This location decides some signal for Firm 1
(according to the way it partitions the interval [0, 1]), and similarly for Firm 2 (possibly
with a different partition). Sampling ζ uniformly at random from [0, 1] is in a sense
similar to sampling a random feature vector that is used to train the firms’ prediction
models / requires a prediction at inference time.

In general, firms may not know the true w. Instead, let W be a possibly infinite set
of possible world models, and suppose there is a commonly known prior π over them.
An example of this framework is illustrated in Figure 1.

Given this informational environment, the interaction proceeds as follows. In stage 0,
Nature chooses an element w of W according to π. Then:

1. In the training stage, each firm i obtains a training signal wi about the realized
world model w. Each wi is a function of firm i’s respective signal space under w.
Given signal w1 (respectively, w2) and the prior over W , each firm i uses Bayesian
updating to derive posterior beliefs πi over world models W .

2. In the inference stage, ζ is drawn from [0, 1] uniformly at random, and a label t
is drawn from {0, 1} according to πw. Firm 1 obtains the inference-time signal
X ∈ {A,B} that satisfies ζ ∈ Xt

w′ , where w′ ∼ π1; firm 2 obtains the inference-
time signal x ∈ {a, b} that satisfies ζ ∈ xt

w′ , where w′ ∼ π2.7

3. In the action stage, each firm i takes an action ai ∈ {0, 1}. Utilities depend on both
firms’ actions, and true label t.

Next, we consider different contracts for prediction sharing. Under no-sharing, the
interaction proceeds as above. Under train-sharing, there is an additional stage between
1 and 2:

1b. Firms share their respective training signals w1 and w2.

Under infer-sharing, an additional stage between 2 and 3:

2b. Firms share respective inference-time signals X and x.

Finally, under full-sharing both 1b and 2b take place.

5 Formally, each signal space is a Lebesgue measurable bi-partition of [0, 1]× {0, 1}.
6 The uniformity assumption here is without loss of generality.
7 Notice that the inference-time signal is drawn according to the firm’s posterior, rather than

according to some specific true possible world. This is since we are interested in calculating the
firms’ equilibrium behaviors, which follow their Bayesian perspective.
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Summary and interpretation We now summarize the model elements and their interpre-
tations:

• The world model w is an information-theoretically optimal pair of classifiers for the
firms.

• The training signal wi implies a posterior πi over world models, which we interpret
as the actual classifier firm i is able to train. We interpret the signal wi as firm i’s
predictions on its labeled historical data. In practical terms, the training signal can
be interpreted as the model that best fits the training data, out of all possible models.
The firms can then share these signals (i.e., the functions or code representing their
best models given their data), without sharing the data itself.

• The inference-time signal is the prediction (X ∈ {A,B} for firm 1, x ∈ {a, b} for
firm 2) made by the trained classifier on an unlabeled inference-time example.

• Under train-sharing, firms share w1 and w2, their predictions on labeled historical
data.

• Under infer-sharing, firms share X and x, their respective predictions on the unla-
beled inference-time example.

This formulation can capture a wide range of scenarios. The prior over W implies a
prior over the relative share πw of each label, a prior over the accuracy of each firm’s
model, and a prior over the correlation between the predictions of firms’ models. The
framework is illustrated in Figure 1. See also Figure 1 and Figure 2 in [13].

Strategies A strategy si of firm i in the action stage is a mapping from the firm’s signals
to a distribution over actions ai ∈ {0, 1}. The firm’s signals depend on the contract:
under no-sharing, the respective signals are σns

1 = (w1, X) for firm 1 and σns
2 = (w2, x)

for firm 2. Under train-sharing, they are σts
1 = (w1, w2, X) and σts

2 = (w1, w2, x).
Under infer-sharing, they are σis

1 = (w1, X, x) and σis
2 = (w2, X, x). And under full

sharing, both firms obtain signals σfs
i = (w1, w2, X, x).

Utility Model As noted above, utility ui(p, t, p
′) of firm i depends on 3 variables: The

firm’s action p, the true label t, and the other firm’s action p′. For a given example, action
p is correct if it matches the example’s label t. Given a training signal wi, a contract
ct ∈ {ns, ts, is, fs}, and a pair of strategies (s1, s2), the expected utility of firm i is

uct
i (wi, s1, s2) = E

[
ui

(
s1

(
σct
1

)
, t, s2

(
σct
2

) )]
, (1)

where the expectation is over the draw of w from W according to π|wi, the draw of t
according to πw, the draw of wj under w, the draws of inference-time signals X and x
under w, and the distributions of firms’ randomization over actions.

We make some simplifying assumptions about utilities. First, we assume that

u1 = u2 (2)

. Second, we assume ui(p, t, p) =
1
2ui(p, t,¬p), i.e., that if the two firms take the same

action, the utility (whether positive or negative) is divided between them, in the sense
that:

2∑
i=1

ui(p, t, p) =

2∑
i=1

1

2
ui(p, t,¬p)

Eq. 2
= u1(p, t,¬p).
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Fig. 1: There are two world models, represented by the top two and bottom two pairs of
intervals, respectively. For both world models, πw = Pr[t = 1] = κ. In the first world,
A1

w = [0, 1] and A0
w = [0, λ]. Thus, if t = 1 firm 1 always obtains signal A, and if t = 0

firm 1 obtains signal A with probability λ—i.e., whenever ζ ∈ [0, λ]—and signal B with
probability 1− λ. Furthermore, a1w = [0, 1] and a0w = [λ, λ+ µ]. Thus, if t = 1 firm 2
always obtains signal a, and if t = 0 obtains signal a with probability µ—i.e., whenever
ζ ∈ [λ, λ+µ]—and signal b with probability 1−µ. Finally, the bottom two pairs of line
segments represent the firms’ signal spaces in the second world model, which differs
from the first only in firm 1’s signal under t = 1, namely, A1

w = ∅ and B1
w = [0, 1]. The

interval structure of each of the firms results in a joint interval structure (and an induced
joint probability over firm 1 signal A/B, firm 2 signal a/b, and the true realization 0/1),
shown on the rhs of the figure. In the infinite data model, where each of the firms learns
its own interval structure with certainty, firm 1 is able to deduce the correct world model
just by knowing its own interval structure. On the other hand, firm 2 does not learn (in
a Bayesian sense) anything from its own interval structure. This example captures our
“Two Hypotheses” model of Section 4.

To emphasize the notation, ui(p, t, p) is the utility when the other firm’s prediction p′

is equal to p, and ui(p, t,¬p) is the utility when the other firm’s prediction p′ is different
than p.

Thus, the ex-post utility is determined by four numbers: R0 = u1(0, 0, 1), R1 =
u1(1, 1, 0), C0 = u1(0, 1, 1), C1 = u1(1, 0, 0), where for example R0 is the reward
from correctly taking action 0 while the other firm takes action 1. We assume that
R0, R1 ≥ 0 and C0, C1 ≤ 0.

In the paper, we largely focus on two specific utility models that capture important
settings. In Section 3, we focus on a utility model we call significant-action utilities. In
this model, there is a significant action—w.l.o.g., the action 1. For example, this action
may be choosing to issue a loan. When taking the other, safe action, both reward and cost
satisfy R0 = C0 = 0. If a firm takes a correct significant action exclusively, meaning
that the other firm takes the safe action, it gets the full reward R1. On the other hand, if a
firm takes an incorrect significant action exclusively, it pays a cost C1. When C1 = 1,
we call this the symmetric significant-action utility model.
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In Section 4, we focus on a utility model we call matching recommendations [as in,
e.g., 15]. In this model, there are no costs to a mistake—formally, C0 = C1 = 0—and
there is a symmetric reward for any correct action—formally, R0 = R1 = 1. E.g.,
consider a firm that chooses between two possible recommendations to a user, and, if it
correctly recommends what the user is looking for, the user will make a purchase.

Equilibrium, individual rationality, and Pareto optimality Given training signals w1 and
w2 and a contract ct ∈ {ns, ts, is, fs}, a pair of strategies s = (si, s¬i) form a Nash
equilibrium at (w1, w2) if for each i and each strategy s′i,

uct
i (wi, si, s¬i) ≥ uct

i (wi, s
′
i, s¬i). (3)

An equivalent and perhaps more useful formulation of the equilibrium condition
takes the perspective of the agent together with her beliefs [see the discussion in Chapter
9 of 17]. We define the utility from taking action pi ∈ {0, 1} given the collection of
signals σct

i and the other firm’s strategy s¬i as

ũct
i (σ

ct
i , pi, s¬i) = E

[
ui

(
pi, t, s¬i

(
σct
¬i

) )
| σct

i

]
, (4)

where the expectation is over the conditional draw of σct
¬i and t given signals σct

i . We
then say that s is an equilibrium for firm i if for every belief σct

i and every possible
action p′i ∈ {0, 1},

ũct
i (σ

ct
i , si(σ

ct
i ), s¬i) ≥ ũct

i (σ
ct
i , p′i, s¬i). (5)

Next, a contract ct Pareto dominates contract ct′ at (w1, w2) if there exists an
equilibrium s under ct such that, for every equilibrium s′ under ct′,

uct
1 (w1, s) ≥ uct′

1 (w1, s
′) and uct

2 (w2, s) ≥ uct′

2 (w2, s
′). (6)

If at least one of the inequalities is strict then the Pareto dominance is strict. Contract
ct Pareto dominates contract ct′ if it Pareto dominates ct′ at every (w1, w2), and in this
case we write ct ⪰ ct′. If ct ⪰ ct′ and ct′ ⪰ ct, we write ct = ct′, and say that the two
contracts are equivalent. Contract ct strictly Pareto dominates ct′ if ct ⪰ ct′ but ct′ ̸⪰ ct,
and in this case we write ct ≻ ct′.

Contract ct is individually rational (IR) at (w1, w2) either if it is the no-sharing
contract (which we consider the default contract), or if ct Pareto dominates the no-
sharing contract at (w1, w2). Contract ct is always IR if it is IR at every (w1, w2),
namely, ct ⪰ ns.

Contract ct is Pareto optimal if it is not Pareto dominated by any other contract,
Pareto-optimal IR (IRPO) if it is both Pareto optimal and always IR, and uniquely IRPO
if it is the only contract that is both Pareto optimal and always IR.

We note that although our model is general, and can handle both mixed and pure
Bayesian equilibria, our results in Section 3 onwards are for pure Bayesian equilibria.
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3 Contracts for Prediction-Sharing with Unknown Correlation

In this section we focus on the first of two specific settings within our framework. We
assume firms have significant-action utilities and “infinite data”. The latter assumption
means that each firm’s prediction model is in some sense an optimal classifier given
the data features it is able to see. We believe that this is the most natural assumption to
closely approximate massive data sets.8 The main caveat is that neither firm knows the
correlation between the firms’ classifiers, even after learning its own classifier. We further
assume that the prediction accuracy of each firm’s classifier—formally, Prπw [1|X = A]
and Prπw [1|x = a]—are common knowledge.9 Finally, for simplicity we assume that
Pr[0] = Pr[1] = 1

2 , and that the false-positive and false-negative rates are the same for
each of the firms:

α
def
= Pr[A|1] = Pr[B|0] and β

def
= Pr[a|1] = Pr[b|0]. (7)

Still, the full joint distribution of the firms’ pair of signals together with the true
realizations under w is unknown. As we see later in Section 3.2, this is equivalent to both
firms not knowing how the signals of the two firms are correlated under the no-sharing
contract, regardless of (w1, w2). Firms also do not know the true label of the outcome
they are trying to predict in the inference phase. We assume w.l.o.g. that α ≥ β ≥ 1

2 .
At one extreme, it is possible that the firms’ signals are independent. At the other

extreme, it is possible that they are fully correlated. In Appendix B we show how this
model can be formulated using our general model from Section 2.

3.1 Warm-Up: Known Correlation

We start our investigation with a simple model in which the correlation between the
firms is known. For an example in which firms’ signals are known to be conditionally
independent, see Figure 2.

When the precision accuracy of both firms is common knowledge, as we assume
throughout this section, then the correlation between the firms’ predictions fully deter-
mines the joint distribution of the pair of signals under label t. We show that formally in
Claim 3.1. By correlation we mean the Pearson correlation of the signals, namely

θt =
Pr[X = A ∧ x = a|t]− αβ√

α(1− α)β(1− β)
,

where t is the true label realization. Notice that the two Bernoulli variables are the
two firms’ signals given the true realization. For simplicity, we assume that θ1 = θ0, and
denote the correlation simply by θ.

Claim. In the correlation model, knowing the correlation θ determines the joint distribu-
tion of Firm1’s signal A/B, Firm2’s signal a/b, and the true realization 0/1.

8 See also our analysis of a finite data case in Section 4.1.
9 We use Pr[1] as shorthand for Pr[t = 1], and may omit the identifiers πw, X, x when clear

from context.
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Fig. 2: Known correlation: An example of conditionally independent signals with α =
0.7, β = 0.6. With one possible world, both firms know the joint distribution over true
realizations and inference-time signals with certainty.

Proof. To see that the correlation determines the joint distribution in our setting, recall
that for the Bernoulli variables in our settings, the Pearson correlation under label 1
satisfies θ = Pr[X=A∧x=a|1]−αβ√

α(1−α)β(1−β)
. Thus, given θ, α, and β we have

Pr[X = A ∧ x = a|1]

=
√

αβ
(√

αβ + θ ·
√
(1− α)(1− β)

)
.

(8)

This then determines Pr[X = A ∧ x = b|1] = α − Pr[X = A ∧ x = a|1], P r[X =
B∧x = a|1] = β−Pr[X = A∧x = a|1], and Pr[X = B∧x = b|1] = 1−Pr[X =
A ∧ x = a|1] − Pr[X = A ∧ x = b|1] − Pr[X = B ∧ x = a|1]. That is, it fully
determines the joint distribution. For example, when α = β and θ = 0 (i.e., the signals
are conditionally independent), we have Pr[X = A ∧ x = a|1] = α2, and when α = β
and θ = 1, we have Pr[X = A ∧ x = a|1] = α. Finally, a symmetric argument holds
under label 0.

When the correlation is known, there is no added value in sharing wi, since the
world model w is already known to both firms. Therefore, no-sharing is equivalent to
train-sharing, and infer-sharing is equivalent to full-sharing. The only question is, which
of these contracts, if any, is IRPO?

Lemma 1. With known correlation and symmetric significant-action utilities, only no-
sharing and the equivalent train-sharing are IRPO. The unique equilibrium under these
contracts has two regimes: A high β regime where both firms play by their inference-time
signals, and a low β regime where Firm 2 “gives in” and always takes action 0, while
Firm 1 matches its action to its inference-time signal.
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This matches what we learned to expect in practice: Firms develop their own clas-
sification models, and, assuming they are accurate enough, predict according to them.
In Section 3.2 we show, however, that once the correlation is not known with certainty,
this conclusion may change, and full-sharing or train-sharing contracts may be uniquely
IRPO.

We also note that the threshold that separates the high and low β regime is itself
dependent on α. The higher α is, the higher the threshold for the high beta regime, where
Firm 2 follows its prediction signal. I.e., fixing Firm 2’s prediction accuracy β, the firm
is more likely to give in the higher Firm 1’s prediction accuracy α is.

Lemma 1 deals with symmetric significant-utilities. In the asymmetric case, with a
higher cost for a mistake in the significant action C1, but not so high as to prohibit ever
taking a significant action altogether, the firms would prefer full-sharing, which enables
them to take the significant action only when both receive positive signals. We show this
in Appendix A.

3.2 Unknown Correlation

So far we have considered known correlations. However, a more natural model is that
the correlation is unknown, and only some distribution over it is known. As we will see,
this model can give rise to train-sharing as uniquely IRPO.

We begin with some preliminary lemmas. First, we show that within the specification
of this subsection, full-sharing always Pareto dominates infer-sharing.

Lemma 2. For any distribution πθ over correlations and any R1 and C1, fs ⪰ is.

Proof. In the correlation model, the private signal wi a firm gets during the training phase
does not impact its posterior regarding the correlation θ, which follows the distribution
Θ. Thus under infer-sharing, where each firm i only sees wi, we can ignore it, and we
have σis

1 = σis
2 = Xx for some pair of inference-time signal X,x.

Thus, we can conclude that the infer-sharing equilibrium is symmetric between the
firms. That is since as we argue above, the posterior for both firms after the training
phase stays the same as the common prior. In the inference phase, both firms share
their signals, and so both firms end up with the exact same information. Both firms’
equilibrium strategy is to predict 1 if and only if

Eθ∼Θ[Pr[1|X = x1, x = x2, θ]

− C1 · Pr[0|X = x1, x = x2, θ]] ≥ 0.

Under full-sharing, a similar argument shows that for every pair of signals Xx
and correlation θ (which both firms learn during the training phase), the symmetric
equilibrium strategy is to predict 1 if and only if Pr[1|X = x1, x = x2, θ] − C1 ·
Pr[0|X = x1, x = x2, θ].

We can thus write, for the symmetric equilibrium strategies s
def
= s1 = s2 of the

infer-sharing contract,

uis
i = E[ui(s(X,x), t, s(X,x)]

= Eθ∼Θ[E[ui(s(X,x), t, s(X,x)|θ]]

≤ Eθ∼Θ[E[max
s

ui(s(X,x), t, s(X,x)|θ]] = ufs
i .
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Next, we see that train-sharing and no-sharing contracts are equivalent under suffi-
cient symmetry.

Lemma 3. If R1 = C1 then ts = ns.

Proof. Suppose first that, under train-sharing, the firms follow the same equilibrium
strategies s1, s2 for any realization θ ∼ Θ. Then, it must be that, under no-sharing, s1, s2
is also an equilibrium: This is immediate since the IC conditions of Equation 5 under
no-sharing follow immediately if the more granular IC conditions of the same equation
under train-sharing are satisfied.

Now, we know by Lemma 1 that for any fixed θ the equilibrium strategies under
train-sharing (which are the same as the equilibrium strategies for no-sharing given we
know that the correlation is θ) depend only on the values of α, β, and so are independent
of θ. Thus, the same equilibrium strategies are played for any θ.

Lemma 4. If α = β, then for any distribution πθ over correlations and any R1 and C1,
fs ⪰ ts.

Finally, we can use the lemmas above to identify IRPO contracts. The two theorems
below show that, under sufficient symmetry, only full-sharing or no-sharing are such
contracts.

Theorem 1. If R1 = C1 then no-sharing is uniquely IRPO.

Theorem 2. If α = β then full-sharing is either uniquely IRPO, or fs = ns are the
only IRPO.

However, outside the symmetries in Theorems 1 and 2, train-sharing can emerge as
uniquely optimal.

Theorem 3. Train-sharing is uniquely IRPO for an open subset of parameters πθ, α, β,
R1, C1.

The intuition underlying the construction in the proof of Theorem 3 is the following.
Under no-sharing, the firms play the same equilibrium regardless of their train-phase
signals w1 and w2. Under train-sharing, the equilibrium may depend on w1 and w2, and
so in some cases may improve both firms’ utilities relative to the no-sharing equilibrium.
This happens particularly when the firms learn that their signals are highly correlated,
which results in Firm 2 not taking a significant action (e.g., not issue a loan). This saves
Firm 2 from attaining negative utility, and allows Firm 1 to fully exploit the utility of its
predictions.

4 A “Two Hypotheses” Model

In Section 3 we showed that all contracts except for infer-sharing can be uniquely optimal.
In this section we complete the picture by describing a setting where infer-sharing is
uniquely optimal. We focus on the second setting described in the introduction, which
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is summarized in Figure 1 of Section 2. We assume that firms have “infinite data” and
matching-recommendations utilities: C0 = C1 = 0 and R0 = R1 = 1. This setting
captures a variety of natural circumstances, such as multi-factorial genetic disease and
chemical testing. Consider a genetic disease that only manifests itself as a result of some
environmental cause. There are two firms: Firm 1 performs genetic testing and knows (i)
what genes cause the disease (ii) for a specific person, whether these genes are present.
Firm 2, on the other hand, has users’ behavioral data (e.g., credit card histories) and can
identify the environmental cause. However, it does not understand the underlying genes
that enable the disease.

Formally, let t = 1 denote the presence of the disease, inference-time signals A
and B denote the presence of two different gene mutations in the population, and
inference-time signals a and b denote the presence and absence of the environment cause,
respectively. There are two hypotheses: (I) the disease is caused by mutation A and the
environmental cause, and (II) the disease is caused by mutation B and the environmental
cause. Thus, Hypothesis I (resp., Hypothesis II) is that firms see inference-time signals
Aa (resp., Ba) if and only if t = 1. The following are common knowledge:

• Hypothesis I is correct with probability πI , and Hypothesis II with probability
1− πI ;

• without the environmental cause, the disease remains dormant (Pr[0|b] = 1);
• the incidence rate of the disease in the general population is Pr[1] = κ; and
• the incidence rates of the two different gene mutations in the general population are
Pr[A] = κ+ (1− κ) · λ and Pr[B] = 1− Pr[A].

Our main result is that, within this setting, there are instances where infer-sharing is
uniquely optimal.

Theorem 4. Infer-sharing is uniquely IRPO for an open subset of parameters πI , κ, λ,
and µ.

The intuition underlying the construction in the proof of Theorem 4 is the following.
Generally, in the two hypotheses model, Firm 1 has the ability to deduce the correct
world model during training, even with only its own signal. In the cases we identify,
train/full-sharing makes it lose this advantage, and thus can not be beneficial for it. We
are left with no/infer-sharing as possible individually rational contracts. Since generally
in the two hypotheses model, the signal of Firm 1 by itself is not enough to decide the
user classification with certainty, infer-sharing helps in that Firm 1 can both determine
the correct hypothesis and has the pair of signals that determines the true realization, and
thus it always predicts correctly. In the cases we identify, the behavior of Firm 2 remains
the same under both contracts, because of the fact that it can not deduce the correct world
model during training. Hence, infer-sharing allows Firm 1 a “free information meal”,
similar to the example, given for a model that only captures inference stage sharing,
without consideration of the training stage, in [15].

4.1 Beyond the Infinite-data Model

So far, we focused on the infinite-data model, where the training signal allows the firm
to deduce the marginal distribution over its signal and the true realization. We conjecture
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that with enough data, the results are similar to the idealized infinite case that we analyze.
However, with few samples, the results may change significantly. To demonstrate how
the analysis may lead to different results when there is only little historical data, we
consider the setting of Section 4, but when only one labeled example of past data is
available to the firms. Thus, after the hypothesis (world) is drawn (Hypothesis I w.p. πI ,
and otherwise Hypothesis II), a sample is drawn from the joint distribution over the pair
of signals and true realizations, and each firm sees its own signal and the true realization.
I.e., if the true hypothesis is Hypothesis I , then Firm 1 sees (A, 0) w.p. α, (A, 1) w.p. β,
and (B, 1) w.p. 1− α− β. The firms then update a Bayesian posterior over the world
models. Under train-sharing and full-sharing, when historical predictions are shared,
both firms see the entire sample, i.e., the pair of signals and the true realization.

In the appendix, we prove that, in the two hypotheses model with the parameters
used for Theorem 4 but with a single labeled example, the statement of Theorem 4
breaks down, as do some of the properties of equilibria derived in the theorem’s proof.
In particular:

Theorem 5. Under the parameters of Theorem 4 but with one sample, no-sharing and
train-sharing are not necessarily equivalent, no-sharing is IRPO (rather than infer-
sharing), and Firm 1 has lower equilibrium expected utility than Firm 2.

5 Implementation for a Real Data-set

To see how our ideas may be put to practice, we use the peer-to-peer loan data of
LendingClub, popularized by recent research such as [7], and publicly available at
Kaggle [18], to conduct a synthetic simulation. We take a random subset of 25% of
the features and assign it to Firm 110. We take another subset of 10% of the features
(possibly overlapping) and assign it to Firm 2. Vertically, we split the data into train, test
and validation sets. We let each of the firms train a neural net over the training data (that
includes only its features). Each neural net was trained for 20 epochs on a 8-GB RAM
M1 MacBook Pro, which takes about half an hour. The training signal consists of the
neural net’s predictions on whether loans are good or bad. The firms use the test data
to learn the signal performance, which we assume then becomes common knowledge.
Depending on the contract, the firms choose their equilibrium strategies based on the
performance in the test data: under train-sharing and full-sharing they also see the other
firm’s predictions on the test data (rather than only knowing the aggregate performance
measurements). The firms then use their models to get a signal for every example in the
validation data. Under infer-sharing and full-sharing they see the other firm’s signals on
the validation set, and may use it to alter their final actions. They are evaluated using
their actions on the validation data, under significant action utilities with R1 = 1 and
cost C1.

Recall that our model assumes that firms share their training and inference-time
signals, and not their entire data. We thus compare the performance of full-sharing—
sharing of the firms’ signals both on the historical data (Here: the test data) and the
inference stage data (Here: the validation data)—with total-sharing—sharing of the

10 In the Appendix, we include robustness tests where we vary the choice of features.



16 Gafni, Gradwohl, and Tennenholtz

firms’ entire data, training a joint neural net model over the shared data, and dividing the
utility that this model achieves on the validation data.

There are several important aspects in which the practical implementation deviates
from our formal model:

• We do not naturally have a common Bayesian prior over the joint distribution of
signals and true realizations. We make the simplifying assumption that the signals
are independent when relevant, i.e., under no-sharing and infer-sharing. Under train-
sharing and full-sharing, we use the test data to learn the signals’ correlations.

• Simplifying symmetry assumptions—e.g., that the prediction accuracy is symmetric
across labels—do not naturally appear in the real data-set, and so our decision rules
need to adapt and do not exactly follow the ones given symmetry.

• The calculation of equilibrium strategies over the test data leads to an empirical
equilibrium that has some error when compared to a theoretical equilibrium taken in
expectation. Moreover, the average utility of different contracts as calculated on the
validation set may also have some error.

We find that the results generally follow the lines of our discussion in Section 3:
Varying by cost (going from C1 = 0 to C1 = 2.5 in 0.05 steps), as summarized in
Figure 3, we find regimes where either full-sharing, no-sharing, or train-sharing are
uniquely IRPO. While full-sharing is almost always a Pareto optimal contract, there
are significant regimes where it is not IR for firm 1, which results in the no-sharing
and train-sharing regimes. In almost all instances and cost values of the simulation,
infer-sharing is Pareto dominated by full-sharing, as predicted by Lemma 2.

The behavior of no-sharing and train-sharing is of particular interest. With low values
of C1, both contracts have the two firms issue a loan regardless of the signal. Then, with
higher values of C1, the firms move to an equilibrium where each acts according to its
signal, and later to an equilibrium where firm 1 predicts its signal while firm 2 does not
issue any loans. At each such equilibrium shift, there is a discontinuity for firm 1’s utility.
For example, moving from each firm predicting its own signal to Firm 2 not issuing
loans, allows it to get the full utility of its action instead of half.

In Figure 4, we compare the performance of full-sharing with total-sharing for differ-
ent costs. Importantly, both the full-sharing and total-sharing models are trained once
for the symmetric cost C1 = 1, and are then adapted to different costs by decision rules
decided based on the test data. Somewhat surprisingly, they achieve very comparable
performance, with even a slight advantage to full-sharing. We believe that this is due to
the richer dual signal in the full-sharing case, which allows for more granular decision
rules, mitigating the generally better prediction accuracy of total-sharing.

6 Discussion

The analysis of incentives is a crucial aspect of the general effort to encourage data
sharing, as recognized by the European Commission: “In spite of the economic potential,
data sharing between companies has not taken off at sufficient scale. This is due to
a lack of economic incentives (including the fear of losing a competitive edge)” [8].
This paper introduces a novel element of data sharing—the distinction between sharing
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Fig. 3: No Sharing, Train Sharing and Full Sharing contracts performance for both firms
and different costs. We do not include the infer sharing contract utility as they are very
similar to (and dominated by) full sharing. We mark regimes where each contract is the
optimal-welfare IR contract.

Fig. 4: Full Sharing vs. Total Sharing for different costs

during training and inference—and demonstrates its importance to understanding firms’
data-sharing incentives.

Some natural questions arise as a result of our work:
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• We have assumed a common prior over priors for the firms. What if the firms have
different beliefs? How robust is the emergence of uniquely optimal contracts to
small differences in the epistemic models of the firms?

• Our work is set within the framework of mechanism design without money, i.e., we
suppose that firms share data based on mutual gain, rather than based on monetary
compensation. In some cases it is natural to consider that one of the firms may
compensate the other as part of the data sharing process. This could be interesting
as future work and may build on the framework and insights we develop.
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A Known Correlation Results and Proofs

Lemma 1. With known correlation and symmetric significant-action utilities, only no-
sharing and the equivalent train-sharing are IRPO. The unique equilibrium under these
contracts has two regimes: A high β regime where both firms play by their inference-time
signals, and a low β regime where Firm 2 “gives in” and always takes action 0, while
Firm 1 matches its action to its inference-time signal.

Proof. We first emphasize again that when the prior over priors consists of a single
possible prior, the first stage of learning is redundant, and so there is no difference
between “no-sharing” and “train-sharing”, and similarly no difference between “infer-
sharing” and “full-sharing”. Under no-sharing, a strategy snoi of firm i ∈ {1, 2} is, given
signal x, whether to predict 0 or 1. Under full-sharing, a strategy sfulli of firm i is, given
both firms’ signals x1, x2, whether to predict 0 or 1. To specify a strategy (or part of a
strategy), we sometimes use the notation signal → prediction, e.g., under no sharing
A → 0 means that the primary firm predicts 0 when it gets the signal A.

Under full-sharing, there is a unique symmetric equilibrium where Aa → 1, Ab →
1, Ba → 0, Bb → 0. I.e., both firms follow the primary firm’s signal. This holds by the
following argument. Under full-sharing, we have σfs

1 = σfs
2 . Moreover, in the known

correlation case, wi can be ignored (as there is only one possible world model) and σfs
1

is of the form Xx for some pair of inference-time signals X ∈ {A,B} of Firm1 and
x ∈ {a, b} of Firm2. Let pi = si(Xx) be the prediction of firm i if the pair of signals is

Xx, and let QXx
pi,s¬i

=

{
1 pi ̸= s¬i(Xx)
1
2 pi = s¬i(Xx)

.

When pi = 1, Equation 4 takes the form:

ũfs
i (σfs

i , 1, s¬i) = E[ui(1, t, s¬i(Xx))]

= QXx
1,s¬i

· E[ui(1, t, 0)]

= R1 · Pr[t = 1|Xx] + C1 · Pr[t = 0|Xx]

= Pr[t = 1|Xx]− Pr[t = 0|Xx],

(9)

where the first transition is since the signal that firm ¬i sees is fixed to be the same
one that firm i sees, and so the expectation is only over the true realization t. The second
transition is by the structure of our utility model. The third transition is by conditional

https://doi.org/10.1017/CBO9780511794216
https://doi.org/10.1017/CBO9780511794216
https://www.kaggle.com/datasets/wordsforthewise/lending-club
https://www.kaggle.com/datasets/wordsforthewise/lending-club
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expectation. The fourth transition is since in the symmetric significant action utility
model R1 = 1, C1 = −1.

When pi = 0, Equation 4 takes the form:

ũfs
i (σfs

i , 0, s¬i) = E[ui(0, t, s¬i(Xx))]

= QXx
0,s¬i

· E[ui(0, t, 0)]

= R0 · Pr[t = 1|Xx] + C0 · Pr[t = 0|Xx]

= 0,

(10)

where the last transition is since in the significant action utility model R0 = C0 = 0.
We conclude that to satisfy the equilibrium condition of Equation 5, it suffices to show
that for every pair of signals Xx, both agents’ strategies choose si(Xx) = 1 if and only
if Pr[t = 1|Xx]− Pr[t = 0|Xx] ≥ 0.

Moreover, we know by Bayes’ formula and our symmetry assumption (Pr[0] =
Pr[1]) that:

Pr[1|Xx]− Pr[0|Xx] =
1
2

Pr[Xx]
(Pr[Xx|1]− Pr[Xx|0]) ,

and so the left-hand-side expression is non-negative iff the right-hand-side expression
is non-negative.

Let ρ
def
= Pr[X = A ∧ x = a|1]. Then we have

Pr[Aa|1]− Pr[Aa|0] = ρ− (1− α− β + ρ)
α≥β≥ 1

2

≥ 0,

P r[Ab|1]− Pr[Ab|0] = (α− ρ)− (β − ρ)
α≥β

≥ 0,

and since Pr[1|Bb]−Pr[0|Bb] = − (Pr[1|Aa]− Pr[0|Aa]) , P r[1|Ba]−Pr[0|Ba] =
− (Pr[1|Ab]− Pr[0|Ab]) , the inequalities are reversed for these signals. The utility for
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the primary firm is thus, following Eq. 1,

ufs
1 (s1, s2) = EX,x,t[u1(s1(Xx), t, s2(Xx))]

=
∑

x1∈{A,B}

∑
x2∈{a,b}

(
Pr[X = x1 ∧ x = x2] · Pr[1|X = x1 ∧ x = x2] · u1(s1(x1, x2), 1, s2(x1, x2))

)
+ Pr[0|X = x1 ∧ x = x2]u1(s1(x1, x2), 0, s2(x1, x2))

)
Bayes formula

=
∑

x1∈{A,B}

∑
x2∈{a,b}

(
Pr[1] · Pr[X = x1 ∧ x = x2|1] · u1(s1(x1, x2), 1, s2(x1, x2))

+ Pr[0] · Pr[X = x1 ∧ x = x2|0] · u1(s1(x1, x2), 1, s2(x1, x2))
)
]

=
1

2

∑
x2∈{a,b}

(
Pr[1] · Pr[X = A ∧ x = x2|1]− Pr[0] · Pr[X = A ∧ x = x2|0]

)
=

1

2
(Pr[1] · Pr[X = A|1]− Pr[0] · Pr[X = A|0])

=
1

4
(α− (1− α)) =

2α− 1

4
.

(11)

Under no-sharing, there are two regimes. Consider if the primary firm plays A →
1, B → 0. We argue that then, the secondary firm always plays b → 0, since its utility
from b → 1 is (following Equation 4):

ũns
2 (b, 1, s1) = E[u2(1, t, s1(X))|x = b]

=
1

2
· Pr[t = 1 ∧X = A|x = b] + Pr[t = 1 ∧X = B|x = b]

− 1

2
· Pr[t = 0 ∧X = A|x = b]− Pr[t = 0 ∧X = B|x = b]

Bayes Formula
=

1

Pr[x = b]

(
1

2
Pr[x = b ∧ t = 1 ∧X = A] + Pr[x = b ∧ t = 1 ∧X = B]

− 1

2
· Pr[x = b ∧ t = 0 ∧X = A]− Pr[x = b ∧ t = 0 ∧X = B]

)
= 2

(
α− ρ

4
+

1− α− β + ρ

2
− ρ

2
− β − ρ

4

)
=

1

2
(2− 2ρ− α− 3β)

α≥β≥ 1
2

≤ 0 = ũns
2 (b, 0, s1)

As for the prediction given the signal a, the utility of Firm2 from a → 1 is
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ũns
2 (a, 1, s1) = E[u2(1, t, s1(X))|x = a]

=
1

Pr[x = a]

(1
2
Pr[x = a ∧ t = 1 ∧X = A] + Pr[x = a ∧ t = 1 ∧X = B]

− 1

2
· Pr[x = a ∧ t = 0 ∧X = A]− Pr[x = a ∧ t = 0 ∧X = B]

)
= 2

(
ρ

4
+

β − ρ

2
− 1 + ρ− α− β

4
− α− ρ

2

)
=

1

2
(3β − 1− α)

Thus, the secondary firm best response is a → 1 if and only if 3β − α− 1 ≥ 1. It is
straightforward to verify that in both cases the strategies then form a unique equilibrium.

In the case that the secondary firm plays a → 0, the equilibrium utility for the
primary firm is (following Equation 1):

uns
1 = E[u1(s1(X), t, 0)]

= Pr[X = A ∧ t = 1]− Pr[X = A ∧ t = 0]

=
1

2
(α− (1− α)) =

2α− 1

2
≥ 2α− 1

4

Eq. 11
= ufs

1 .

In the case that the secondary firm plays a → 1, the equilibrium utility for the
primary firm is

uns
1 = E[u1(s1(X), t, s2(x))]

=
1

2
Pr[X = A ∧ t = 1 ∧ x = a] + Pr[X = A ∧ t = 1 ∧ x = b]

− 1

2
Pr[X = A ∧ t = 0 ∧ x = a]− Pr[X = A ∧ t = 0 ∧ x = b]

=
1

2

(
ρ

2
+ (α− ρ)− 1− α− β + ρ

2
− (β − ρ)

)
=

1

4
(3α− β − 1) =

2α− 1

4
+

1

4
(α− β) ≥ 2α− 1

4

Eq. 11
= ufs

1 .

Lemma 5. For any β there is such α and a utility model (as defined by C0, C1, R0, R1)
so that full-sharing is the unique feasible contract with known independent correlation.

Proof. We give the idea of the construction. Consider asymmetric significant-action
utilities, and fix (normalize) R1 = 1.

Under full-sharing, as we know by the proof of Lemma 1, the equilibrium strategies
s1, s2 both have si(Xx) for a pair of signals Xx if and only if Pr[Xx|1] − C1 ·
Pr[Xx|0] ≥ 0. The expression is monotone in the pair of signals Xx: It is highest for
Aa, lower for Ab, even lower for Ba, and lowest for Bb. Thus, the equilibrium strategies
are Aa → 1 (i.e., the firms predict 1 upon seeing Aa, and 0 otherwise), if and only if:

Pr[Aa|1]− C1Pr[Aa|0] = αβ − C1(1− α)(1− β) ≥ 0

Pr[Ab|1]− C1Pr[Ab|0] = α(1− β)− C1β(1− α) < 0,
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where we use the expressions for independent correlation probabilities.
Under no-sharing, we can follow the argument of Lemma 1 (but with a para-

metric cost C1) to derive inequalities that guarantee an equilibrium where the firms
predict according to their signals (A → 1, a → 1). Lastly, given that these are the
no-sharing equilibrium strategies, assume that uns

2 ≤ uns
1 = αβ

2 + α(1 − β) −
C1

(
(1−α)(1−β)

2 + β(1− α)
)

≤ 1
2 (αβ − C1(1− α)(1− β)) = ufs

1 = ufs
2 . If all

these conditions hold, then full-sharing is the unique IRPO contract. This holds, for
example, when α = 0.9, β = 0.85, C1 = 2.5. More generally, the conditions hold for
any β when α = β and C1 = 2β2−2β−1

2(β−1)(β+1) .

B Proofs for Unknown Correlation Case

Lemma 4. If α = β, then for any distribution πθ over correlations and any R1 and C1,
fs ⪰ ts.

Proof. Under train-sharing, the agents are symmetric, as they share their signals at the
training phase, and have the same prediction accuracy at the inference phase. Since the
agents are symmetric, we can assume a symmetric equilibrium is being played. Then,
as we saw in the proof of Lemma 2, this means the equilibrium strategy is to take a
significant action (predict 1) if and only if the expected utility is positive given the
correlation learnt in the training phase (and without knowledge of the other firm’s signal,
as we are under train-sharing). Under full-sharing, the added information of the other
firm’s signal allows for more granular decisions when to take a significant action, and so
fs ⪰ ts.

Theorem 1. If R1 = C1 then no-sharing is uniquely IRPO.

Proof. We know by Lemma 2 that full−sharing ≥ infer−sharing and by Lemma 3
that train−sharing = no−sharing. Thus, the only possibly IRPO contracts are no−
sharing or full−sharing. However, in the symmetric case, we know from the proof of
Lemma 1 that regardless of the correlation θ, full-sharing always results in a symmetric
equilibrium s, s where Aa → 1, Ab → 1 (and 0 otherwise). In essence, this is since these
are the pairs of signals with probability Pr[1|Xx] > 1

2 . Under no-sharing, also by the
proof of Lemma 1, the equilibrium strategies s1, s2 do not depend on θ, and uns

1 ≥ ufs
1

for any fixed θ. Thus, the expected utility for the primary firm under full-sharing and
any fixed correlation is 2α−1

4 , and since the expression does not depend on θ, we have
uns
1 = Eθ∼Θ[E[u1(s1(X), t, s2(x)|θ]] ≥ Eθ∼Θ[E[u1(s(X,x), t, s(X,x)|θ]] = ufs

1 .

Theorem 2. If α = β then full-sharing is either uniquely IRPO, or fs = ns are the
only IRPO.

Proof. We consider both symmetric and asymmetric no-sharing equilibria. In a symmet-
ric no-sharing equilibrium s1, s2, the symmetry means that (s1(A) = 1) ↔ (s2(a) =
1), (s1(B) = 1) ↔ (s2(b) = 1). Under such a symmetric equilibrium, since α = β, the
utilities of the firms are the same. The utilities of the firms are the same for full-sharing
as well, under the symmetric equilibrium s, s. The sum of utilities of the firms satisfies
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uns
1 + uns

2

= E[u1(s1(X), t, s2(x)) + u2(s1(X), t, s2(x))]

= Eθ∼Θ[E[u1(s1(X), t, s2(x)) + u2(s1(X), t, s2(x))|θ]]
= Eθ∼Θ[E[1[s1(X) = 1 ∨ s2(x) = 1]u1(1, t, 0)|θ]]
= Eθ∼Θ[E[1[s1(X) = 1 ∨ s2(x) = 1](R1 · Pr[t = 1|Xx]

− C1 · Pr[t = 0|Xx])|θ]]
≤ Eθ∼Θ[E[(R1 · Pr[t = 1|Xx]− C1 · Pr[t = 0|Xx])+|θ]]
= Eθ∼Θ[E[1[s(X,x, θ) = 1](R1 · Pr[t = 1|Xx]

− C1 · Pr[t = 0|Xx])|θ]]

= ufs
1 + ufs

2 ,

where we use the notation (x)+ = max{x, 0}. We also use the fact that full-sharing
takes a significant action if and only if R1 · Pr[t = 1|X,x, θ]− C1 · Pr[t = 0|Xx, θ]

holds, as we have seen in previous proofs. Therefore, and since ufs
1 = ufs

2 , each of
the firms has at least as much expected utility under full-sharing than under no-sharing,
which yields the theorem statement.

As for asymmetric no-sharing equilibria, it can be directly calculated that the only
possible such equilibrium when α = β is where s1 is A → 1, B → 0, and s2 always
predicts 0. Given this equilibrium, we know that

Eθ∼Θ[R1

(
Pr[1|Aa, θ]

2
+ Pr[1|Ba, θ]

)
− C1 ·

(
[Pr[0|Aa, θ]

2
+ Pr[0|Ba, θ]

)
] < 0.

(12)

by the equilibrium condition that determines a → 1.
Thus,

uns
1 = Eθ∼Θ[R1 (Pr[1|Aa, θ] + Pr[1|Ab, θ])− C1 · ([Pr[0|Aa, θ] + Pr[0|Ab, θ])]

= Eθ∼Θ[R1 ·
Pr[1|Aa, θ]

2
− C1 ·

Pr[0|Aa, θ]

2
]

+ Eθ∼Θ[R1 ·
Pr[1|Aa, θ]

2
+ Pr[1|Ab, θ]− C1 ·

(
[Pr[0|Aa, θ]

2
+ Pr[0|Ab, θ]

)
]

Eq. 12
< Eθ[R1 ·

Pr[1|Aa, θ]

2
− C1 ·

Pr[0|Aa, θ]

2
]

≤ Eθ[

(
R1 ·

Pr[1|Aa, θ]

2
− C1 ·

Pr[0|Aa, θ]

2

)+

]

≤ ufs
1 .

Theorem 3. Train-sharing is uniquely IRPO for an open subset of parameters πθ, α, β,
R1, C1.
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Proof. We describe the general settings that yield our example, and then state such
πθ, α, β,R1, C1 values that implement it. Consider two possible worlds, with probability
w and 1−w, respectively: In the first, signals are independent, and in the second, signals
are totally correlated, i.e., θ is the maximal correlation possible between two firms with
prediction accuracies α, β. Notice that since

β = Pr[x = a|1] ≥ Pr[X = A ∧ x = a|1] Eq. 8
=

√
αβ

(√
αβ + θ ·

√
(1− α)(1− β)

)
,

we have θ ≤
√

β(1−α)
α(1−β) , and θ is maximized when this inequality holds as an equality.

When this happens, we have Pr[X = A ∧ x = a|1] = β, Pr[X = A ∧ x = b|1] =
α − β, Pr[X = B ∧ x = a|1] = 0, P r[X = B ∧ x = b|1] = 1 − α, and the mirror
image of it conditional on 0: Pr[X = B ∧ x = B|0] = β, Pr[X = B ∧ x = a|0] =
α − β, Pr[X = A ∧ x = b|0] = 0, P r[X = A ∧ x = A|0] = 1− α. See Figure 6 for
an illustration of the case when α = 0.7, β = 0.6.

For conciseness, in this proof we specify the strategies by what signals lead to
predicting 1, and all other signals lead to predicting 0. Now, consider a case where
the train-sharing equilibrium in the independent correlation case is A → 1, a → 1,
and in the total correlation case is A → 1, while under no-sharing the equilibrium is
A → 1, a → 1. With probability w, θ = 0 and the equilibrium the firms play under both
regimes is the same and so are the utilities. But w.p. 1−w, the equilibrium played under
the two regimes is not the same. This benefits the secondary firm by the fact that this is
the train-sharing equilibrium: It means that given that θ = θmax and the primary firm
plays A → 1, the secondary firm’s best response is to not take a significant action given
any signal. But this also benefits the primary firm, since now it does not need to share
its reward of R1 · Pr[1|Aa, θmax]− C1 · Pr[0|Aa, θmax] with the secondary firm, and
this expression is strictly positive as part of the equilibrium condition for the primary
firm. Overall, this establishes (train− sharing > no− sharing).

It is then enough, in order for train− sharing to be the unique feasible contract,
to require that it does not hold that full − sharing > no − sharing (recall that by
Lemma 2, full − sharing ≥ infer − sharing). This holds whenever the primary
firm’s utility is larger under no-sharing than under full-sharing.

We can require that the full-sharing equilibrium both in the independent case and the
totally correlated case is Aa → 1, Ab → 1, and this implies

ufs
1 =

1

4
(w (R1α− C1(1− α)) + (1− w) (R1α− C1(1− β))) .

We also have:

uns
1 =

1

2

(
w

(
R1

(
αβ

2
+ α(1− β)

)
− C1

(
(1− α)(1− β)

2
+ (1− α)β

))
+ (1− w)

(
R1

(
β

2
+ α− β

)
− C1 ·

1− β

2

))
,

and we impose the condition uns
1 > ufs

1 .
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Finally, we note that the open set 0.72 < α < 0.721, 0.513 < β < 0.514, 0.755 <
C1 < 0.756, 0.999 < R1 < 1.001, 0.5 < w < 0.50001 satisfies all the above condi-
tions.

B.1 Representing the Correlation Model of Section 3 in our General Framework
of Section 2

First, we show how to describe our model of unknown correlations within the framework
of our general model for firms’ prediction-sharing. Consider the following construction.
Fix some α, β and correlation distribution Θ. We draw η ∼ Uniform([0, 1]) and θ ∼ Θ,
and describe how the two parameters determine a world wη,θ. In a world wη,θ, the
interval structure of firm 1 satisfies

Aw =

{[η, η + α]× {1} ∪ ([0, 1] \ [η, η + α])× {0}}
η + α ≤ 1

{[η, 1] ∪ [0, η + α− 1]× {1}
∪([0, 1] \ ([η, η + α] ∪ [0, η + α− 1)))× {0}}

η + α > 1

.

We let ρ =
√
αβ(

√
αβ + θ ·

√
(1− α)(1− β) as in Equation 8. Let

ew =

[η + α− ρ, η + α− ρ+ β]

η + α− ρ+ β ≤ 1

[η + α− ρ, 1] ∪ [0, β − (1− (η + α− ρ))]

η + α− ρ+ β > 1 ∧ η + α− ρ ≤ 1

[η + α− ρ− 1, β + η + α− ρ− 1]

η + α− ρ > 1 ∧ η + α− ρ+ β ≤ 2

[η + α− ρ− 1, 1] ∪ [0, β − (1− (η + α− ρ− 1))]

η + α− ρ > 1 ∧ η + α− ρ+ β > 2

.

The interval structure of firm 2 then satisfies aw = {ew × {1} ∪ ([0, 1] \ ew)× {0}}.
The main technical claim for the construction is that not only firm 1, but also

firm 2, gets a uniform draw over its intervals aw. That is, if frac(x) = x − ⌊x⌋ is
the fractional part of a number x, then frac(η + α − ρ) ∼ Uniform([0, 1]) (up to a
measure zero adjustment at 0 and 1). To see this, observe that, for every ρ, frac(η + α−
ρ)|ρ ∼ Uniform([0, 1]), and so the probability density function p̃(frac(η + α+ ρ)) =
Eρ∼ρ(Θ)[frac(η + α+ ρ)|ρ] = 1.

We can then verify that the firms’ posterior over the correlation between the firms’
signals is Θ regardless of the training signal wi—their own interval structure—that they
observe. As we show in Section 3.1, knowing Pr[X = A∧x = a|1] uniquely determines
θ, and vice-versa. In our construction, any world has Pr[X = A∧x = a|1] = ρ, which is
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a 1-to-1 function of θ. So, firm 1, upon learning Aw, knows that the distribution over ρ is
determined by Θ, and so concludes that the distribution over correlations is Θ. Similarly,
firm 2, upon learning aw (which is determined by η + α − ρ), knows that η is drawn
uniformly over [0, 1], and so by Bayes’ rule p̃(ρ|η+α−ρ) = p̃(η+α−ρ|ρ) p̃(ρ)

p̃(η+α−ρ) =

p̃(ρ), where the last transition follows from the firms’ uniform prior over world models.
To further illustrate this construction, let us use the example we repeatedly use in

our proofs, where the correlation (conditioned on the true realization) between the firms’
signal is either 0 (conditional independence) or the maximal possible (total correlation).
Figure 5 shows an intuitive but incorrect way to model this case within our general
framework. Figure 6 shows a simple correct modelling using a finite number of worlds
(which is not our general construction). Figure 7 shows how we model this case using
our general construction.

Fig. 5: Incorrect Modelling of the unknown correlation within the general prediction-
sharing framework. In this modelling, we have α = 0.7, β = 0.6, and there are two
possible worlds, one appears w.p. z, and results in independent signals A, a and B, b
given the true realization (whether 0 or 1). The other appears w.p. 1 − z and results
in totally correlated signals. However, this modelling does not capture our model of
unknown correlation, since firm 2 can deduce the correlation based only on its own
information.
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Fig. 6: Correct Modelling of the unknown correlation within the general prediction-
sharing framework. In this modelling, we have α = 0.7, β = 0.6, and there are four
possible worlds, appearing respectively w.p. z2, (1− z)z, (1− z)z, and (1− z)2. The
first and third possible worlds result in independent signals A, a and B, b given the true
realization (whether 0 or 1). The second and fourth possible worlds result in totally
correlated signals. In this modelling, whatever interval structure firm 1 sees, a Bayesian
updating of the posterior would lead it to believe that the correlation between the firms’
signal is independent w.p. z and totally correlated w.p. 1− z. The same holds for firm 2.
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Fig. 7: General & Correct Modelling of the unknown correlation within the general
prediction-sharing framework, using our general construction. In this modelling, we have
α = 0.7, β = 0.6, and there are infinite possible worlds, drawn either from the upper
type (representing the independent signals case) w.p. z or the lower type (representing
the totally correlated signals case) w.p. 1 − z, and then the intervals as described in
the figure are shifted cyclically with an offset η ∼ Uniform([0, 1]). In this modelling,
whatever interval structure firm 1 sees, a Bayesian updating of the posterior would lead it
to believe that the correlation between the firms’ signal is independent w.p. z and totally
correlated w.p. 1− z, and the same holds for firm 2.
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C Two Hypotheses Model Proofs

Fig. 8: For the reader’s convenience we include Figure 1 again here.

Theorem 4. Infer-sharing is uniquely IRPO for an open subset of parameters πI , κ, λ,
and µ.

Proof. We describe conditions that yield the stated result.
(Conditions that yield no− sharing = train− sharing)
Consider

(1− κ)µ > 2κ,
1

2
(1− κ)(1− λ− µ) > κ >

(1− κ)λ

2
. (13)

Then,
Since w1 (the signal that Firm1 receives regarding the true model) is enough to

determine the correct hypothesis with certainty, under train-sharing both firms know
the correct hypothesis given σts

i . Let σts
2 = {w1, w2, a}, i.e., Firm2 sees w1, w2 in the

training phase and the signal a in the inference phase. For any strategy s1 of Firm1, and
train-phase signals w1, w2, we have

ũts
2 ({w1, w2, a}, 0, s1) = E

[
u2

(
0, t, s1({w1, w2, X})

)
| {w1, w2, a}

]
≥ E

[
u2

(
0, t, 0

)
| {w1, w2, a}

]
=

1

2
Pr[t = 0|{w1, w2, a}]

=
1

2
Pr[t = 0|a] = 1

2

(1− κ)µ

κ+ (1− κ)µ
Eq. 13
>

κ

κ+ (1− κ)µ
= Pr[t = 1|{w1, w2, a}] = E

[
u2

(
1, t, 0

)
| {w1, w2, a}

]
≥ E

[
u2

(
0, t, s1({w1, w2, X})

)
| {w1, w2, a}

]
= ũts

2 ({w1, w2, a}, 1, s1),
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i.e., it is dominant for secondary firm to play a → 0 regardless of the hypothesis or
the primary’s firm action. Since the signal b always coincides with true realization 0,
the secondary firm always plays b → 0 as well. But since predicting 0 is the dominant
strategy for any training-phase signal under train-sharing, as we saw in previous proofs,
this is also the dominant strategy under no− sharing for the secondary firm.

As for the primary firm, because it has a different signal for the true realization 1 under
each hypothesis, it can determine which hypothesis is true both in the no− sharing and
train− sharing contracts. Overall, this means that the equilibrium for both contracts
is that the secondary firm always predicts 0, and the primary firm, given that it finds that
hypothesis I is correct, predicts A → 1, B → 0, and given that it finds that hypothesis II
is correct, always predicts 0 (by a direct calculation of the conditional utilities for Firm1
and using Equation 13).

(Condition that prevents full − sharing being always individually rational)
Consider

κ > (1− κ)λ. (14)

Under full-sharing, both firms can determine the true hypothesis and given the pair
of signals can also follow up with predicting the correct true realization with certainty.
Thus, the expected utility under any w1, w2, for each firm, is 1

2 . To show that it does
not hold that full-sharing is always individually rational, it thus suffices to show that
uns
1 > 1

2 with some (w1, w2). There are two possible w1 for the primary firm: Either that
the true realization 1 always coincides with A (which happens if and only if Hypothesis
I is true), or that it always coincides with B. If the first holds, and by our assumption
in Equation 14, for the equilibrium strategies we saw in our analysis of no-sharing,
uns
1 = κ+ (1−κ)(1−λ)

2 = 2κ+1−κ−λ+κλ
2 = 1+κ−(1−κ)λ

2 > 1
2 = ufs

1 .
(Conditions for infer − sharing > no− sharing)
We note that under infer-sharing, the primary firm can both determine the correct

hypothesis and has the pair of signals that determines the true realization, and thus
always predicts correctly. We wish to find a condition so that the secondary firm has
the same strategy as under no− sharing, to always predict 0. Under both hypotheses,
the secondary firm should predict Ab,Bb → 0. As for signal Aa, the secondary firm
predicts 0, as long as (1− πI)(1− κ)µ > πIκ. Similarly for signal Ba, the secondary
firm predicts 0 as long as πI(1− κ)µ > (1− πI)κ. When this holds, the primary firm
gains utility through its ability to differentiate between the Ba and Bb signals under
hypothesis II. This “free meal” phenomenon is similar to the example in the introduction
of [15].

We wrap up by noting that all the above conditions are satisfied when 0.2 < µ <
0.38, 0.05 < κ < 0.06, 0.011 < λ < 0.02, and 0.65 < πI < 0.75.

Theorem 5. Under the parameters of Theorem 4 but with one sample, no-sharing and
train-sharing are not necessarily equivalent, no-sharing is IRPO (rather than infer-
sharing), and Firm 1 has lower equilibrium expected utility than Firm 2.

Proof. We consider additional conditions, on top of these of Theorem 4, that would
yield the stated result: An example where firm 2 has higher expected utility in the
IRPO contract than firm 1, and that all contracts besides no-sharing are not individually
rational.
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(Under train-sharing) In the two hypotheses model with one sample, the pair of
signals Aa and Ba, together with their true realization, determines with certainty the true
hypothesis. On the other hand, the signals Ab or Bb together with their true realization
(that can only be 0) maintains the same posterior as the prior. Thus, we conclude that
under the train-sharing and full-sharing contracts, there is a probability of κ+ (1− κ)µ
that both firms learn the true hypothesis, and otherwise the firms maintain their prior.

The secondary firm always predicts 0 (the dominance argument of Theorem 4
generalizes regardless of the training-phase signal), and the primary firm predicts A →
1, B → 0 if it knows Hypothesis I is correct, and always predicts 0 if it knows Hypothesis
II is correct. Otherwise, its posterior is the same as the prior, and so its prediction for A
is 0 if and only if (1−κ)(λ+(1−πI)µ)

2 ≥ πIκ, and its prediction for B is 0 if and only if
(1−κ)(1−λ−(1−πI)µ)

2 ≥ (1− πI)κ. For the parameters used in Theorem 4, this results in
A → 1, B → 0. The expected utility of the primary firm is thus

Pr[HypothesisI] ·
(
Pr[A ∧ 1|HypothesisI] +

1

2
Pr[B ∧ 0]

)
+ Pr[HypothesisII]

(
Pr[s1 = A → 0, B → 0|HypothesisII] · 1

2
Pr[0|HypothesisII]

+ Pr[s1 = A → 1, B → 0|HypothesisII] ·
(
1

2
Pr[B ∧ 0|HypothesisII]

))
= πI · (κ+

(1− κ)(1− λ)

2
) + (1− πI)((κ+ (1− κ)µ) · 1− κ

2
+ (1− κ)(1− µ) · (1− κ)(1− λ− µ)

2
),

and the utility of the secondary firm is

Pr[HypothesisI] ·
(
Pr[A ∧ 0|HypothesisI] +

1

2
Pr[B ∧ 0]

)
+ Pr[HypothesisII]

(
Pr[s1 = A → 0, B → 0|HypothesisII] · 1

2
Pr[0|HypothesisII]

+ Pr[s1 = A → 1, B → 0|HypothesisII] ·
(
Pr[A ∧ 0|HypothesisII] · 1

2
Pr[B ∧ 0|HypothesisII]

))
= πI · ((1− κ)λ+

(1− κ)(1− λ)

2
) + (1− πI)((κ+ (1− κ)µ) · 1− κ

2

+ (1− κ)(1− µ) · (1− κ)(λ+ µ) + (1− κ)(1− λ− µ)

2
).

(Under no-sharing)
The secondary firm always predicts 0. Thus, the strategy of the primary firm follows

a direct application of Equation 5 where we have the strategy s2 = 0 of firm 2.
The primary firm knows Hypothesis I is correct with certainty when it sees (A, 1)

(which happens w.p. πIκ), and then predicts A → 1, B → 0. It knows Hypothe-
sis II is correct with certainty when it sees (B, 1) (which happens w.p. (1 − πI)κ)
and then always predicts 0. For (A, 0), we have Pr[(A, 0)|HypothesisI] = (1 −
κ)λ, Pr[(A, 0)|HypothesisII] = (1−κ)(λ+µ), and so w′ = Pr[HypothesisI|(A, 0)] =
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Pr[(A, 0)|HypothesisI]Pr[HypothesisI]
Pr[(A,0)] = (1−κ)λ· πI

πI(1−κ)λ+(1−πI)(1−κ)(λ+µ) . Sim-

ilarly, for (B, 0), we have w′′ = Pr[HypothesisI|(B, 0)] = (1−κ)(1−λ)πI

(1−κ)(1−λ)πI+(1−πI)(1−κ)(1−λ−µ) .
We conclude (similarly to as we did in the train-sharing case for the original prior) that
if the primary firm sees (A, 0) it always predicts 0, and if the primary firm sees (B, 0), it
predicts A → 1, B → 0. The primary firm’s expected utility is then

Pr[HypothesisI] ·
(
Pr[(B, 0) ∨ (A, 1)|HypothesisI] ·

(
Pr[A ∧ 1|HypothesisI] +

1

2
Pr[B ∧ 0]

)
+ Pr[(A, 0)|HypothesisI] ·

(
1

2
Pr[0|HypothesisI]

))
+ Pr[HypothesisII] ·

(
Pr[(B, 1) ∨ (A, 0)|HypothesisII] · 1

2
Pr[0|HypothesisII]

+ Pr[(B, 0)|HypothesisII] ·
(
1

2
Pr[B ∧ 0|HypothesisII]

))
= πI ·

(
(1− (1− κ)λ)(κ+

(1− κ)(1− λ)

2
) + (1− κ)λ

1− κ

2

)
+ (1− πI) ·

(
(1− (1− κ)(1− λ− µ))

1− κ

2

+ (1− κ)(1− λ− µ)

(
(1− κ)(1− λ− µ)

2

)
,

and firm2’s expected utility is

Pr[HypothesisI] ·
(
Pr[(B, 0) ∨ (A, 1)|HypothesisI] ·

(
Pr[A ∧ 0|HypothesisI] +

1

2
Pr[B ∧ 0]

)
+ Pr[(A, 0)|HypothesisI] ·

(
1

2
Pr[0|HypothesisI]

))
+ Pr[HypothesisII] ·

(
Pr[(B, 1) ∨ (A, 0)|HypothesisII] · 1

2
Pr[0|HypothesisII]

+ Pr[(B, 0)|HypothesisII] ·
(
Pr[A ∧ 0|HypothesisII] +

1

2
Pr[B ∧ 0|HypothesisII]

))
= πI ·

(
(1− (1− κ)λ)((1− κ)λ+

(1− κ)(1− λ)

2
) + (1− κ)λ

1− κ

2

)
+ (1− πI) ·

(
(1− (1− κ)(1− λ− µ))

1− κ

2

+ (1− κ)(1− λ− µ)

(
(1− κ)(λ+ µ) +

(1− κ)(1− λ− µ)

2

)
.

(Under infer-sharing)
The Bayesian updating phase based on the historical sample is the same as in the

no-sharing case, and so the primary firm attains the various posteriors under the same
probabilities. The secondary firm, regardless on the sample, has the same posterior as the
prior, as the two hypotheses look the same for its signal structure. For the pair of signals
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Ab and Bb, both firms always predict 0. For the signal Ba, since πI(1−κ)µ
2 > (1−πI)κ,

it is dominant for the secondary firm to predict 0 regardless of how the primary firm
predicts, and similarly for Aa, since (1−πI)(1−κ)µ

2 > πIκ, it is also dominant for the
secondary firm to predict 0.

For the signal Ba, since the secondary firm always predicts 0, the primary firm
predicts 1 for it when its posterior is w′, or when it knows with certainty that Hypothesis
II is correct. It predicts 0 for it when its posterior is w′′, since

w′′ (1− κ)µ

2
> (1− w′′)κ,

and also when it knows with certainty that Hypothesis I is correct.

For the signal Aa, since the secondary firm always predicts 0, the primary firm
predicts 0 for it when its posterior is w′, or when it knows with certainty that Hypothesis
II is correct. It predicts 1 for it when its posterior is w′′, since

w′′κ > (1− w′′)
(1− κ)µ

2
,

and also when it knows with certainty that Hypothesis I is correct.

The primary firm’s utility is then:

Pr[HypothesisI]

(
Pr[(B, 0) ∨ (A, 1)|HypothesisI] · (Pr[1|HypothesisI] +

1

2
Pr[0|HypothesisI])

+ Pr[(A, 0)|HypothesisI](
1

2
Pr[0 ∧ b|HypothesisI])

)
+ Pr[HypothesisII]

(
Pr[(B, 0)|HypothesisII] · (1

2
Pr[0 ∧ b|HypothesisII])

+ Pr[(A, 0) ∨ (B, 1)|HypothesisII](
1

2
Pr[0|HypothesisII] + Pr[1|HypothesisII])

)
= πI

(
(1− (1− κ)λ)(κ+

1− κ

2
) + (1− κ)λ

(1− κ)(1− µ)

2

)
+ (1− πI)

(
(1− κ)(1− λ− µ)

(1− κ)(1− µ)

2

+ (1− (1− κ)(1− λ− µ))(
1− κ

2
+ κ)

)
.

The utility of the secondary firm is:
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Pr[HypothesisI]

(
Pr[(B, 0) ∨ (A, 1)|HypothesisI] · (1

2
Pr[0|HypothesisI])

+ Pr[(A, 0)|HypothesisI](
1

2
Pr[0 ∧ b|HypothesisI] + Pr[0 ∧ a|HypothesisI])

)
+ Pr[HypothesisII]

(
Pr[(B, 0)|HypothesisII] · (1

2
Pr[0 ∧ b|HypothesisII]

+ Pr[0 ∧ a|HypothesisII]) + Pr[(A, 0) ∨ (B, 1)|HypothesisII] · (1
2
Pr[0|HypothesisII])

)
= πI

(
(1− (1− κ)λ)(

1− κ

2
) + (1− κ)λ(

(1− κ)(1− µ)

2
+ (1− κ)µ)

)
+ (1− πI)

(
(1− κ)(1− λ− µ)(

(1− κ)(1− µ)

2
+ (1− κ)µ)

+ (1− (1− κ)(1− λ− µ))(
1− κ

2
)

)
.

(Under full-sharing) The Bayesian updating phase based on the historical sample is
the same as in the train-sharing case, and so both firms (that see the full single sample
together) either know the hypothesis with certainty, or maintain the prior πI .

Given that the firms maintain the prior πI , upon seeing the signals Ab or Bb they
both predict 0. If they see the signal Ba, since

πI
(1− κ)µ

2
> (1− πI)κ,

both firms predict 0. If they see the signal Aa, since

(1− πI)
(1− κ)µ

2
> πIκ,

both firms predict 0.
We thus have that the utility of firm 2 is, if we denote

p∗ = Pr[(Aa, 1) ∨ (Ba, 1) ∨ (Aa, 0) ∨ (Ba, 0)] = κ+ (1− κ)µ,

is
1

2
(p∗ + (1− p∗)(1− κ)) =

1

2
(κ(κ+ (1− κ)µ− 1) + 1).

Finally, we note that the parameter choice κ = 5
32 , λ = 1

8 , µ = 1
2 , πI = 1

2 satisfies
both the conditions detailed above and the conditions detailed in the proof of Theorem 4.

D Robustness of Our Results in Section 5

We wish to deepen our empirical results of Section 5. In particular, we wish to add more
variability into the feature selection process. For this purpose, we introduce the follow-
ing sampling method. First, for every ϵ ∈ {1, 0.85, 0.7, 0.55, 0.4, 0.25}, we randomly
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sample ϵ of the data-set features. Denote the resulting partial set of features X . Next, we
randomly sample 0.25

ϵ of the features in X to decide the features for Firm1. Similarly,
we sample 0.1

ϵ of the features in X to decide the features for Firm2. The end result is,
as in Section 5, that Firm1 sees 25% random features out of the original, and Firm2
sees 10%. However, one could hope that the features (and so, the resulting models after
training) will be more correlated as ϵ is smaller, since an overlap of the features the firms
see is more likely. For each value of ϵ, we run 32 random experiments, where we repeat
the above process, followed by the analysis described in Section 5. Overall this results in
32 · 7 = 224 experiments where we train a random model for each of the firms.

We then quantify the emergence of optimal contracts in the following way. For each
cost in the range 0.5 to 1.5 in 0.05 steps, we find what are the optimal contracts (in the
IRPO sense). We break equivalencies in favor of the more “natural” contracts, i.e., if any
contract has exactly the same expected utilities as no-sharing, we would not consider it
optimal, and if train-sharing or infer-sharing are equivalent to full-sharing, we would
similarly not consider them optimal. If by the end of this process we have more than
one optimal contract for a specific cost, we divide the ‘benefit’ between all the optimal
contracts. Overall, for each experiment, we get a score for each contract of the frequency
it is optimal. Since we are interested in seeing the possible influence of correlation on
optimality, we directly calculate the correlation of Firm1’s model and Firm2’s model
predictions over the validation set, using the Matthews correlation for a confusion matrix.
In this way, we can directly compare the two variables we are interested in, instead of
using the indirect ϵ parameter we use as part of our process, which we only expect to
have a probabilistic negative connection with the correlation (i.e., as ϵ higher, we could
expect lower correlation).

We present our results in Figure 9. We also provide a smoothed presentation of
our results in Figure 10, where for every 0.1 range of the correlation that appeared in
the experiments (i.e., −0.1 to 0, 0 to 0.1, and so on, up to 0.8 to 0.9), we average the
correlation that appear in the range, and the frequencies associated with them.

Fig. 9: Contract Optimality vs. Firm Models’ Correlation
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Fig. 10: Smoothed Contract Optimality vs. Firm Models’ Correlation

Overall, the results reiterate the findings we detail in Section 5. A few surprising
aspects to notice are the following:

• Infer-sharing appears as a unique IRPO contract, contrary to our prediction. We
believe that this is likely due to the full-sharing empirical decision that is based on
the test data, where infer-sharing turns out to be better on the validation data.

• Train-sharing, which our example shows to emerge with high correlation rates,
appears mostly with lower (or negative) correlations. It is reasonable, however, to
expect that with negative correlation rates there could be examples of it as well. This
is interesting as an indication of where train-sharing might be most relevant.

• In our implementation, the decision rules for no-sharing and infer-sharing are
determined based on an assumption of independence (i.e. no correlation). We would
thus expect the contracts to be more frequently optimal when this assumption is
justified (low correlation rates). However, no-sharing is found to be somewhat more
frequently optimal when the correlation is high.
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