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We report on a new technique for measuring the dynamic Young’s modulus, E, of quantum materials at low
temperatures as a function of static tuning strain, ϵ, in piezoactuator-driven pressure cells. In addition to
a static tuning of stress and strain, we apply a small-amplitude, finite-frequency a.c. (1Hz<∼ ω <∼ 1000Hz)
uniaxial stress, σac, to the sample and measure the resulting a.c. strain, ϵac, using a capacitive sensor to obtain
the associated modulus E. We demonstrate the performance of the new technique through proof-of-principle
experiments on the unconventional superconductor Sr2RuO4, which is known for its rich temperature-strain
phase diagram. In particular, we show that the magnitude of E, measured using this a.c. technique at
low frequencies, exhibits a pronounced nonlinear elasticity, which is in very good agreement with previous
Young’s modulus measurements on Sr2RuO4 under [1 0 0] strain using a d.c. method (Noad et al., Science
382, 447-450 (2023)). By combining the new a.c. Young’s modulus measurements with a.c. elastocaloric
measurements in a single measurement, we demonstrate that these a.c. techniques are powerful in detecting
small anomalies in the elastic properties of quantum materials. Finally, using the case of Sr2RuO4 as an
example, we demonstrate how the imaginary component of the modulus can provide additional information
about the nature of ordered phases.

I. INTRODUCTION

Recent years have witnessed a surge in the study of
elastic properties of quantum materials, driven by the
discovery of novel collective electronic phases that ex-
hibit a strong coupling to the underlying crystal lattice.
A prominent example is the observation of nematicity in
a number of unconventional superconductors1,2. Here,
measurements of the elastic constants have revealed a
huge lattice softening3, which has served as a unique ex-
perimental fingerprint of nematic fluctuations.

Similarly, the strong coupling of electronic and lat-
tice degrees of freedom makes such electronic systems
particularly susceptible to tuning by physical pressure.
Driven by novel developments of pressure-cell technology
for tuning quantum materials by hydrostatic and uniax-
ial pressure4,5, important discoveries have been made in
the field of quantum materials. Since the application of
pressure does not introduce additional disorder into the
system, pressure tuning has been instrumental in explor-
ing the fundamental properties of quantummaterials, like
superconducting Tc, in clean systems6.

As a result, the combination of the two – the ability
to measure elastic properties while tuning the physical
pressure – has proven to be a powerful addition to the
toolbox for studying quantum materials. Recently, mea-
surements of the lattice elasticity as a function of pressure
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have led to important insights into the fundamental ques-
tion of the role of the lattice in electronic matter7–9 and to
the identification of possible functionalities10. For exam-
ple, in correlated quantum materials subjected to pres-
sure tuning, nonlinear elastic behavior has been observed.
This experimental observation was taken as a strong in-
dication that the lattice profoundly affects the properties
of the electronic system and vice versa. Notable experi-
mental examples in this respect include the observation
of the breakdown of Hooke’s law11,12 around the finite-
temperature critical endpoint of the Mott metal-insulator
transition in an organic conductor. A huge lattice soft-
ening has also been observed13 at the pressure-induced
electronic Lifshitz transition14 in Sr2RuO4.

The conclusions above were obtained from measure-
ments of stress-strain relationships under continuously-
tuned pressure4,5,15–17, e.g., in piezoactuator-driven pres-
sure cells5, performed in the demanding cryogenic envi-
ronment required for the study of quantum materials.
These measurements were made possible by several re-
cent advances in measuring both the applied stress, σ,
and the resulting strain, ϵ, with high precision. In gen-
eral, stresses and strains are tensor quantities (σij and
ϵkl) and are related by the compliance matrix Sijkl (or
the inverse elastic constant matrix Cijkl), i.e., σij =∑

k,l Sijklϵkl. When stress, σ, is applied along a spe-
cific direction and the deformation, ϵ, is measured along
the same direction, i = j = k = l and the corre-
sponding modulus Siiii (or Sii in Voigt notation)18 is
the Young’s modulus, which we denote as E throughout
this manuscript. It is obtained experimentally from the
measured stress-strain relationships via
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FIG. 1. Schematic representation of a dynamic elastic mod-
ulus measurement. An a.c. stress (dotted line) is applied to
a sample, and the resulting a.c. strain (dashed line) is mea-
sured. The phase difference, δ, between the applied stress and
the measured strain characterizes the degree of viscous and
elastic behavior. For δ = 0◦ (δ = 90◦), a system exhibits
purely elastic (viscous) behavior. If 0 ◦ < δ < 90 ◦, a ma-
terial is viscoelastic, i.e., it shows an elastic response similar
to that of solids and liquids simultaneously. Note that vis-
coelastic deformation is still fully recoverable, whereas plastic
deformation is characterized by unrecoverable deformation.

E =
dσii

dϵii
. (1)

E remains unchanged with ϵ in linear elastic systems, i.e.,
in systems that obey Hooke’s law of elasticity. In con-
trast, the hallmark of non-linear elastic systems is that
E varies with strain11,13.
In this paper, we introduce a new method to mea-

sure E(ϵ) in piezoactuator-driven uniaxial pressure cells.
In our new approach, we make use of low-frequency a.c.
stresses and strains19,20 to determine the a.c. Young’s
modulus. In fact, at ambient pressure, so-called Dynam-
ical Mechanical Analyzer (DMA) spectroscopy measure-
ments, in which the real and imaginary elastic moduli,
E′ and E′′, are determined by the application of low-
frequency, low-amplitude forces and measurements of the
resulting strains (see Fig. 1), are well-established (see e.g.
Ref. 21). In general, as shown schematically in Fig. 1, a
sinusoidal a.c. stress, σac(t) = σac,0 sin(ωpt), induces an
a.c. strain response, ϵac(t) = ϵac,0 sin(ωpt − δ), with a
phase lag, δ. δ can take different values (see Fig. 1): for
purely elastic behavior, an instantaneous strain response
is expected (δ = 0◦ and E′ ̸= 0, E′′ = 0), whereas
liquids are characterized by a purely viscous behavior
with δ = 90◦ and E′ = 0, E′′ ̸= 0. When δ takes

values between 0◦ and 90◦, the stress-strain response is
classified as viscoelastic and both E′ and E′′ are finite.
These DMA methods are used intensively in the study
of viscoelastic properties22,23 of soft materials, tissues,
biomaterials, or polymers, e.g., to extract characteristic
energies of glassy freezing processes of structural entities.
In the context of rigid solids, the study of the dynamic
moduli, E′ and E′′, has mainly been employed to study
ferroelastic phase transitions, where strain acts as the
primary order parameter. From the frequency, ampli-
tude and temperature dependence of E′ and E′′, the con-
tribution of microstructural changes to the macroscopic
elastic Young’s modulus has been deduced (e.g., due to
domains). In this respect, the observation of superelas-
ticity in ferroelastic materials was a particularly relevant
discovery24–26. Here, the stress-induced movement of do-
main walls25 triggers significant length changes and thus
results in a large ‘superelastic’ softening.
The new setup described in this paper combines

the concepts of DMA measurements with the ability
to precisely apply static tuning uniaxial pressures in
piezoactuator-driven uniaxial pressure cells5,15. These
cells are nowadays widely used in the field of quan-
tum materials, because they are compatible with a low-
temperature and high-magnetic field environment and al-
low for in situ d.c. and a.c. stress tuning5,19. In this
context, DMA-type measurements are very promising to
investigate, e.g., the character of phase transitions, the
role of stress-induced domain dynamics27 or other collec-
tive effects28,29. In Section II, we first describe our ex-
perimental setup used for the dynamic Young’s modulus
measurements and the data analysis procedure. Then,
we show in Sec. III our proof-of-principle experiments on
Sr2RuO4, where we demonstrate that the magnitude of
the Young’s modulus obtained in our setup is in very
good agreement with previous literature results from a
d.c. technique13. We conclude the paper by discussing
the experimental results of a finite imaginary part of
the Young’s modulus under high uniaxial compression
in the magnetic phase of Sr2RuO4 as an illustration of
the DMA-type analysis, which is now possible with our
setup.

II. EXPERIMENTAL SETUP AND DATA
ANALYSIS

A. The uniaxial pressure cell and
determination of the static Young’s modulus

We use a uniaxial pressure cell, which is shown
schematically in Fig. 2 and is similar to the one described
in Ref. 15, for an in-situ control of the pressure applied
to the sample. Here, we briefly review the working prin-
ciple of the pressure cell.

The cell uses piezoelectric actuators to apply the force
to the sample. In the piezocartridge, three piezoelec-
tric actuators are combined to either apply compressive
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FIG. 2. Piezoactuator-controlled uniaxial pressure cell15 used
to measure the stress-strain relation in quantum materials.
In this cell, a set of piezoelectric actuators (green) generate
a displacement across a gap between moving block A (high-
lighted in red) and moving block B (highlighted in blue). The
sample carrier, on which the sample is mounted, connects A
and B so that the displacement is transmitted to the sam-
ple. The displacement of the gap is measured by a capacitive
sensor mounted under a shield. In addition, the cell houses
a capacitive force sensor, which is used for d.c. stress-strain
measurements. The cell’s spring constant is determined by
that of the moving blocks (kA and kB) as well that of the
actuators (kP,tot).

or tensile forces to the sample, depending on the sign
of the applied voltage. In the present design, the two
outer actuators apply compression to the sample upon
application of a positive voltage, whereas the inner one
applies tension (see Fig. 1 of Ref. 15). Accordingly, we
refer to the two actuators (one actuator) as compression
(tension) stacks (stack) throughout the manuscript.

The piezoelectric actuators drive the motion of the
moving block A (see Fig. 2), which is guided by flexures
with a low longitudinal spring constant. This changes the
size of the gap between block A and B. When a sample
is mounted between these two blocks, it is either com-
pressed or stretched. In the present case, we mount our
sample on a sample carrier that connects between mov-
ing block A and B (details on the sample carrier design
and implications for the data analysis will be provided
in Sec. IID). The purpose of the sample carrier is to fa-
cilitate sample exchange (see e.g. Ref. 30). A capacitive
sensor is mounted below the gap between the moving
block A and B to measure the relative displacement of
moving blocks, which is related to the sample strain.

The cell contains a second capacitive sensor that acts
as a force sensor. The moving block B is connected to the
frame of the cell by flexures having a larger longitudinal
spring constant compared to the flexures of the moving
block A (see Appendix V for details). The capacitor

measures the displacement of these flexures, which can
then be converted into the applied force using the known
spring constant of these flexures.
The d.c. capacitances of the displacement and force

sensors can be measured separately using high-precision
capacitance bridges, such as the model AH2550A from
the company Andeen-Hagerling. As described in detail
in Ref. 13, these measurements, together with a precise
knowledge of the sample dimensions, can be used to cal-
culate the applied stress, σ, and the resulting strain,
ϵ, along the direction of the applied force. Taking the
derivative of σ with respect to ϵ in the post-processing
analysis then yields the Young’s modulus, E(ϵ), see Eq. 1.
Since these measurements are based on static measure-
ments of σ and ϵ, we will refer to them throughout
the text as static Young’s modulus measurements or, in
short, the d.c. method.

B. Working curve of the piezoactuator-driven
stress cell

The working principle of our new a.c. technique is
based on the fact that piezoelectric actuators them-
selves can be used to measure the spring constant of the
spring on which they exert force, called the ‘load spring’.
This capability is rooted in their characteristic working
curve15, where key working parameters of piezoelectric
actuators, such as the supplied force and the created
displacement depend on the spring constant of the load
spring.
In Fig. 3 (a), we show the simplified version of our ex-

perimental setup to illustrate the concept. The cell with
spring constant kcell, which contains the piezoelectric ac-
tuators, pushes against a load spring with spring con-
stant kmeas. kmeas is the key quantity that is to be deter-
mined in the experiment, which can be converted to the
Young’s modulus, E, of the sample. The working curve
of the cell is determined by kcell and is shown by the
brown line in Fig. 3 (b). At no load, i.e., kmeas = 0, the
cell provides a large displacement, ∆ddc,0, at essentially
no force for a given, fixed piezoactuator voltage, Vdc. In
case of an infinitely stiff sample with kmeas → ∞, the
cell provides a maximum force of F0 = kcell∆ddc,0 for
the same Vdc, but no displacement. Accordingly, the dis-
placement, ∆ddc, which is generated by the cell and de-
livered to the load spring, is a function of kmeas. For
illustration, we also include in Fig. 3 (b) two stress-strain
curves corresponding to two different load springs, kmeas,1

and kmeas,2 > kmeas,1. The applied force (displacement)
is greater (smaller) for kmeas,2 compared to kmeas,1.

This simplified picture describes the working charac-
teristic of a cell at a fixed piezoactuator voltage for dif-
ferent values of kmeas. In our experiment, we want to
measure the changes of kmeas of a single sample with
changing stress and strain, which is achieved by varying
the static voltage on the piezoelectric actuator.

Specifically, we are interested in obtaining the dynamic
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FIG. 3. (a) Simplified schematic diagram of the uniaxial pressure cell and its working principle. The cell with spring constant
kcell applies varying forces to the ‘load’ spring kmeas, whose magnitude is to be determined in the experiment (see text for
details). The displacement of the load spring, ∆d, can be measured by a capacitive displacement sensor and its magnitude is
identical to the displacement created by the cell; (b) Working curve of applied force, F , vs. generated displacement, ∆ddc, of
the piezoactuator-driven uniaxial pressure cell at a constant supply voltage on the piezoelectric actuators, Vdc. The working
curve is determined by the parameters kcell, the maximum displacement at this Vdc without a load, ∆ddc,0, and the maximum
generated force, F0, in case of an infinite load. It is shown by the brown line following the form F = F0 − kcell∆ddc. The
magnitude of the load spring constant, kmeas, determines the force/displacement provided by the cell at this particular voltage,
as seen from the working curve. This is illustrated by showing two linear stress-strain relations, corresponding to two different
values of kmeas. The intersection of these stress-strain relationships with the working curve determine the applied force and
created displacement. The larger kmeas is, the smaller (larger) the created displacement (applied force) will be; (c) Working
curve of the piezoactuator-driven uniaxial pressure cell when an a.c. voltage, Vac, is applied in addition to the d.c. voltage,
Vdc. The working range is now delineated by the two working curves at Vdc ± Vac. The alternating Vac causes an alternating
displacement, ∆dac,0, created at zero force. The alternating displacement, ∆dac, induced by Vac at finite load spring constant,
kmeas, is related to the magnitude of kmeas, see text for details.

moduli from an a.c. experiment. To this end, we apply
a small a.c. voltage to the piezoelectric actuators, which
creates oscillating stresses and strains. Whereas the a.c.
component serves to probe the Young’s modulus, we use
the d.c. voltages on the piezoelectric actuators to tune
a given material. The extended working curve illustrat-
ing the situation in our experiment is shown in Fig. 3 (c).
The working range of the cell in the presence of an a.c.
voltage, Vac, is now delineated by two parallel lines, corre-
sponding to the working curves at Vdc ± Vac (see brown
area). In analogy to the previous discussion, the a.c.
displacement is given by ∆dac,0, when kmeas = 0, and
will be zero, when kmeas → ∞. It follows that ∆dac is
directly related to kmeas for constant amplitude of Vac.
Specifically, the larger kmeas, the smaller ∆dac will be.
Since the a.c. voltage is used to measure kmeas, the d.c.
voltage can be used independently to tune the elastic
properties of the material under investigation.

C. Electronic setup for determining the
dynamic Young’s modulus using the new a.c.
method

Thus, to directly measure kmeas, our technique relies on
the accurate determination of ∆dac, which is a mechani-
cal modulation induced by a finite piezoactuator voltage
Vac, through a capacitive measurement. To this end, we
have designed a home-built capacitance bridge, which al-

lows ∆dac to be measured simultaneously with ∆ddc from
a single displacement capacitor. The ability to measure
both is important to determine the probing strain (re-
lated to ∆dac) separately from the tuning strain (related
to ∆ddc).
The detailed working principle of the bridge is shown

in Fig. 4. A small a.c. voltage is superimposed on the d.c.
voltage of one of the stacks. In our case, the voltage on
the compression stacks is superimposed by an a.c. modu-
lation with frequency ωp, i.e., V (t) = Vdc + Vac sin(ωpt).
This, in turn, induces a mechanical displacement of the
gap, which is measured through a capacitive displace-
ment sensor with capacitance Cdispl. The distance of
the capacitor plates then follows the form d = ddc +
∆dac sin(ωpt) with ddc = ddc,0+∆ddc and ddc,0 the initial
distance of the capacitor plate. Accordingly, the time de-
pendence of Cdispl follows as Cdispl = Cdc+Cac sin(ωpt).
In a first approximation, if ∆dac ≪ ddc, these capaci-
tances are related to the displacements by

∆dac
ddc

=
Cac

Cdc
. (2)

To extract Cac and Cdc from Cdispl, we use a cir-
cuit consisting of a voltage source operating at a sec-
ond frequency, ωc, and two lock-in amplifiers from Stan-
ford Research Systems: specifically, a SR830 model and
a SR860 model (see Fig. 4). In general, applying an
a.c. voltage with frequency ωc to a capacitor with time-
independent value Cdc generates an a.c. current with ωc.
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FIG. 4. Electronic setup for determining the a.c. displacement, ∆dac, which is related to the sample’s Young’s modulus. The
piezocartridge, which drives the uniaxial pressure cell, consists of two compression stacks and one tension stack. A d.c. voltage
is applied to all stacks to control the static uniaxial pressure on the sample. The d.c. voltage on the compression stacks
is superimposed by a small a.c. voltage with frequency ωp. The a.c. modulation of the voltages on the compression stack
results in an a.c. change of the capacitance of the displacement sensor, Cdispl(t) = Cdc + Cac(t), with same frequency ωp. To
measure the contributions of Cdc and Cac to Cdispl independently, a home-built capacitance bridge, consisting of an a.c. voltage
supply with frequency ωc, a resistance RC and two Lock-in amplifiers (Stanford Research SR860 and SR830), is used. The
voltage across the resistor (blue line) corresponds to the modulated signal of signals with frequencies ωp and ωc (see the orange
enveloping curve). As a result, as shown in the Fourier transformation of the voltage signal, the signal is composed of signals
at ωc (blue line) as well as at |ωc ± ωp| (red line). The SR830 reads out the component of the voltage signal at ωc, which is
related to the d.c. capacitance value (blue line), whereas the SR860 in Dual Reference mode picks up the signal at the beat
frequency ωc − ωp, which is proportional to the a.c. capacitance, see text for details.

In our present case, where Cdispl is time-dependent, the
returned current, with characteristic frequency ωc, will
be further modulated by ωp. This modulated current is
passed through a resistor with Rc, where it produces a
voltage, VR, which reads as

VR = CdcV0Rcωc cos (ωct) + CacV0Rc

× [ωc cos (ωct) sin (ωpt) + ωp cos (ωpt) sin (ωct)].
(3)

The main task of the two lock-in setup is to perform
an electrical demodulation of the signal31. The first term
is directly proportional to Cdc and thus to ddc. It cor-
responds to the high-frequency signal represented by the
blue curve in Fig. 4 (for ωc ≫ ωp). We read out this com-
ponent of the voltage in Eq. 3 by locking the SR830 to ωc,
such that VSR830 = CdcV0Rcωc. The second and third
terms in Eq. 3 are products of waves with the character-
istic side-band frequencies |ωc ± ωp| (see also red line in
the Fourier transform in Fig. 4). To read out these volt-
ages, we use the SR860 in Dual Reference mode, which
measures the voltage at the frequency |ωc − ωp|. It then
follows that

VSR860 =
CacV0Rc|ωc − ωp|

2
, (4)

which can be directly converted to Cac. The signal-to-
noise ratio of VSR860 will be larger, the greater the differ-
ence between ωp and ωc.

Using the known calibration of the displacement sen-
sor, i.e., the functional form of Cdispl vs. d, ∆dac and
∆ddc can now be calculated from the measured voltages
VSR830 and VSR860. In Fig. 5 (a), we show an example
curve of ∆dac vs. tuning displacement, ∆ddc, taken on
Sr2RuO4. We will discuss the implications of the data in
detail below in Sec. III. For now, the plot clearly shows
that ∆dac is not constant when ∆ddc is changed, and
that the changes in ∆dac can be clearly resolved in our
setup with a resolution of ≈ 0.2 nm. As explained above,
the changing ∆dac reflects the changing kmeas (or in other
words, the changing Young’s modulus, E, of the sample).

As an aside, we would like to remark that the precise
determination of ∆dac and hence ϵac, which we demon-
strate here, is also crucial for quantitative measurements
of the elastocaloric effect19,20, where the temperature
change, ∆T , induced by a finite ϵac, is measured.
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D. Data Analysis

We now discuss how to convert the measured
∆dac(∆ddc) into absolute values of the Young’s modu-
lus E(ϵ). This requires two main steps: (i) converting
∆dac to the measured spring constant, kmeas, and (ii) ex-
tracting the sample’s spring constant from kmeas. This
second step is necessary because kmeas contains contribu-
tions from, e.g., the mounting glue and the sample car-
rier, in addition to the contribution of the sample. This
part of the analysis is also required when analyzing the
data from the d.c. method and is described in detail in
the Supplementary Information of Ref. 13.

For the first step, we refer back to the working curve
of the cell, which has been introduced in Sec. II C and is
shown in Fig. 3 (c). For example, we can compare the a.c.
displacement in case of an empty cell, ∆dac,0, with the
displacement, ∆dac, when the cell works against a load
spring with kmeas. Clearly, ∆dac < ∆dac,0 and it can be
deduced that the ratio determines kmeas via

kmeas = kcell

(
∆dac,0
∆dac

− 1

)
. (5)

Thus, kmeas can be calculated for all values of ∆dac,
when ∆dac,0 is measured, e.g. when the sample is broken
after an experiment. Alternatively, any reference point
with finite kmeas can be chosen, as long as the value of
kmeas at a particular strain is well known.

The key parameter for converting ∆dac to kmeas is
the value of the cell spring constant, kcell, which can-
not be determined during the experiment itself. In gen-
eral, it can be determined from calibration experiments
and from simulations, as shown in Ref. 15 for a cell of
similar design. Following the same procedure, we deter-
mined the cell spring constant of the present cell to be
kcell = (3.4 ± 0.5)N/µm (see Sec.V for details). Since
titanium, the material of the cell, becomes stiffer upon
cooling and calibration experiments were performed at
room temperature, we applied a correction factor of 15%
to kcell, when analyzing low-temperature data15. The
exact value of kcell will likely vary from cell to cell, even
if the design is technically the same. Once kcell is de-
termined for a specific cell, e.g., by calibration measure-
ments, it is not expected to change from experiment to
experiment and is thus not a free parameter in the anal-
ysis. Equation 5 also shows that the ability to resolve
changes in kmeas also depends on kcell. As expected from
the working curve, the setup works best when kcell and
kmeas are of similar magnitude.

The second step in obtaining E(ϵ) from the a.c. data is
to extract the spring constant of the sample from kmeas.
Following the protocol established in Ref. 13, the samples
are cut into a narrow neck with wide anchor tabs using a
Xe Plasma Focused Ion Beam (see Fig. 5 (b)). The neck-
ing creates a rapid crossover between regions of low stress
in the anchors and high stress in the neck. The sample
can therefore be approximated by two springs in series,
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FIG. 5. (a) Experimental data of the a.c. displacement,
∆dac, as a function of the d.c. tuning displacement, ∆ddc, in-
duced by a the application of a d.c. and an a.c. voltage on the
piezoelectric actuators. dac and ddc were obtained by reading
out the displacement capacitive sensor in the piezoactuator-
driven pressure cell with our home-built capacitance bridge.
This example dataset was recorded on Sr2RuO4 at a temper-
ature of T = 5K, a frequency fp of 167Hz and an a.c. am-
plitude Vac of 5V; (b) Preparation and mounting of samples
for stress-strain measurements in uniaxial pressure cells. The
sample (in the present case: Sr2RuO4) is cut into a narrow
neck with wide anchor tabs using a Plasma Focused Ion Beam.
The anchors are epoxied to the sample carrier. The sample
shape ensures a rapid crossover from the low-stress region in
the anchor tabs to the high-stress region in the neck and min-
imizes the stress in the mounting epoxy; (c) Due to the shape
of the sample, the sample’s spring constant can be modeled
to a good approximation as a set of two discrete springs in
series, i.e., the anchor (spring constant kanch) and the neck
spring (spring constant kneck). In addition, the small carrier
spring constant, kcar, contributes to the measured spring con-
stant, kmeas, and is in parallel to kanch and kneck.

which we label as kneck and kanch. We also include the
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spring constant of the mounting glue in kanch. In the
two-spring approximation, kanch can be calculated from
the total measured signal kmeas around a reference strain
and an independently measured value of E at that refer-
ence strain13. In the case of Sr2RuO4 over the range of
displacements considered here, Ref. 13 shows that kanch
can indeed be taken as stress-independent to a good ap-
proximation.

In addition, the sample carrier has flexures with spring
constants kcar, which are in series with kneck and kanch,
as shown schematically in Fig. 5 (c). It follows that

kneck(ϵ) =

[
1

kmeas(ϵ)− kcar
− 1

kanch

]−1

. (6)

The spring constant of the carrier, kcar ≈ 0.02N/µm, is
per design much smaller than typical values of kmeas and
can also be calibrated experimentally.

Finally, the Young’s modulus is obtained from exact
knowledge of the length of the necked region, lneck, and
the cross-sectional area of the sample, Acs, via E =
knecklneck/Acs. The strain in the neck, ϵxx, follows from
the measured ddc values via (kmeas/kneck)× (∆ddc/lneck).
The sample of Sr2RuO4 used for our proof-of-principle
measurements shown in Fig. 5 (b) was cut to dimensions
of Acs =102µm × 120µm and lneck =717µm, with the
long edge of the neck oriented along the x= [1 0 0] direc-
tion of the crystal, so that kneck (ϵxx = 0) =2.72N/µm.
The anchor spring constant in our experiments was
kanch =2.36N/µm.

E. Working Parameters of the a.c. Young’s
modulus setup

In the following, we specify the working range of the
a.c. Young’s modulus setup, including accessible fre-
quency, amplitude and temperature range.

The frequency range of operation is determined by the
choice of piezoelectric actuators and the mechanical res-
onances of the cell. The multi-layer ceramic actuators32

typically used in the pressure cells operate well in the
low-frequency range 1Hz<∼ fp = ωp/(2π) <∼ 1 kHz. Fu-
ture technical developments might be able to extend the
frequency range significantly, e.g., by choosing different
type of actuators.

The second relevant frequency is that of the capaci-
tance bridge, fc. All measurements in this manuscript
were taken with fc = ωc/(2π) = 2.297 kHz, which is
of the same magnitude as the frequency of 1 kHz used
in the Andeen-Hagerling AH2550A capacitance bridges,
employed in the earlier d.c. work.

In terms of the amplitude, the maximum voltage that
can be applied to the actuators is temperature depen-
dent. At lowest temperatures, the voltage range can
typically be extended15 to -300V to 400V. With such
large d.c. voltages, tuning strains of ± 1-2% may be

achieved for a sample of the previously-mentioned di-
mensions. Since the a.c. voltage produces the probing
strain, its magnitude must be chosen to be much smaller
than the d.c. voltages. In our proof-of-principle stud-
ies on Sr2RuO4, we used a.c. voltages, Vac, up to 5V
at lowest temperatures, corresponding to typical values
of stress and strain amplitude of σac ≈ 10−2 GPa and
ϵac ≈ 1 × 10−4 . Vac and fac were chosen to optimize
signal-to-noise ratio, while ensuring that phase transition
features were not significantly smeared out by a large Vac.
The piezoacutator-driven uniaxial pressure cells are de-

signed to operate down to very low temperatures, even
down to dilution-fridge temperatures. Typically, the
lowest-accessible temperature is limited by the cooling
power of the fridge and by the heating created by the
piezoelectric actuators. In the a.c. setup, heating of the
actuators becomes a serious problem at higher frequen-
cies and/or higher a.c. voltage amplitudes. Thus, in
practical terms, the lowest accessible temperature may
be a trade-off with the frequency/amplitude range of in-
terest.
The a.c. Young’s modulus measurements can also be

performed in a finite magnetic field, which then allows
the simultaneous study of the effect of different tuning
parameters on the elastic properties of quantum materi-
als.

III. PROOF-OF-PRINCIPLE RESULTS

To demonstrate the functionality of our new a.c.
Young’s modulus setup, we performed proof-of-principle
experiments on the ruthenate Sr2RuO4, whose Young’s
modulus under finite strain has recently been doc-
umented with high precision by d.c. stress-strain
measurements13. Before discussing our proof-of-principle
a.c. data taken on Sr2RuO4, we first present the main
aspects of the phase diagram of Sr2RuO4 under uniaxial
pressure that are relevant for the present work.
The unconventional superconductor Sr2RuO4

has been extensively studied in uniaxial pressure
experiments6,13,14,20,30,33 in the last decade. These
studies have uncovered a rich phase diagram under
uniaxial stress, σxx, applied along the [1 0 0] axis of the
tetragonal lattice. Upon increasing compression, the
Fermi surface of Sr2RuO4, consisting of so-called α, β
and γ sheets (see sketches on top of Fig. 6), becomes
distorted. The γ sheet shows the strongest changes.
When a compressive [1 0 0] strain of ϵxx ≈ −0.45% is
applied, the γ sheet undergoes a Lifshitz transition,
at which the Fermi surface drastically changes its
topology14 from a closed to an open configuration.
Although the Lifshitz transition involves only a fraction
of the conduction electrons, it has recently been shown
by Noad et al.13 that these conduction electrons drive a
very large lattice softening. The significant renormaliza-
tion of the Young’s modulus upon crossing the Lifshitz
transition, that is reported with high accuracy, provides
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an excellent testbed to benchmark our new a.c. method.
In addition, a recent set of experiments20,33, including
thermodynamic measurements of the elastocaloric effect,
suggests that Sr2RuO4 undergoes a transition into a
magnetically-ordered state for higher compression be-
yond the Lifshitz strain and for temperatures T <∼ 8K.
This additional phase transition is expected to lead to
anomalous behavior in E(ϵxx).

In the following, we first discuss the results of the mag-
nitude of the dynamic Young’s modulus of Sr2RuO4. For
low-enough frequencies, it may be expected that the mag-
nitude of the a.c. Young’s modulus agrees with the one
inferred from d.c. measurements. Afterwards, we discuss
our measurements of the phase shift in the dynamic sig-
nal as we tune the material into its magnetically ordered
regime.

A. Results: Magnitude of the dynamic Young’s
modulus of Sr2RuO4, determined from the a.c.
technique

In Fig. 6 (a) we compare the results of Young’s mod-
ulus measurements conducted at a temperature of 4K
with the d.c. method13 (closed symbols) vs. the new a.c.
method (open symbols), taken on the exact same sam-
ple of Sr2RuO4 in the same experimental run. Clearly,
the two data sets as a function of tuning strain, ϵxx, are
in very good agreement. The quantitative agreement is
achieved by using kcell = (3.7 × 1.15)N/µm in the anal-
ysis (see Sec. IID). This value is within the error bars of
the simulation results for kcell (see Sec.V).
Importantly, the data show a set of anomalies associ-

ated with the rich phase diagram of Sr2RuO4 under [1 0 0]
stress. The pronounced softening of E at the electronic
Lifshitz transition at around −0.45% strain is clearly re-
solved. Upon further increasing compression, a second,
albeit smaller, anomaly can be discerned in the E(ϵxx)
data around ϵxx ≈ −0.64%. Although the anomaly is
visible in both d.c. and a.c. data sets, it is slightly more
evident in the a.c. data. That this small drop in E(ϵxx)
does indeed correspond to a thermodynamic phase tran-
sition, becomes clear when comparing to the results of
elastocaloric measurements, which were performed simul-
taneously to the E(ϵxx) measurements. The elastocaloric
temperature amplitude, ∆T , manifests an anomaly at
the same strain as where the small drop in E occurs. In
the previous work by Li et al., this feature was associated
with the transition into the magnetically ordered phase33

of Sr2RuO4.
The a.c. Young’s modulus data in Fig. 6 were taken at

fp = 167Hz, fc = 2.297 kHz, and Vac = 5V. In Fig. 7,
we now show our data at different fp (a) and different
Vac (b) to demonstrate experimentally that our setup is
operational over wider ranges of fp and Vac. Both data
sets demonstrate that the magnitude of Young’s modu-
lus is essentially independent of the exact frequency or
amplitude within the ranges of 17Hz≤ fp ≤ 927Hz and
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FIG. 6. (a) Young’s Modulus, E, of Sr2RuO4 as a function
of strain, ϵxx, at a temperature of T = 4K, extracted from
the new a.c. method (open symbols) and compared to re-
sults from the d.c. method (closed symbols) on the same
sample. The data in the a.c. method was taken at a fre-
quency of fp =167Hz and at a piezoactuator a.c. voltage of
Vac = 5V; (b) Elastocaloric temperature oscillation ampli-
tude, ∆T , measured in the same experiment as the Young’s
modulus data shown in (a). In both panels, the dashed line
indicates the strain at which Sr2RuO4 undergoes a Lifshitz
transition of the Fermi surface, which is schematically shown
in the insets. The dotted line indicates the strain at which
Sr2RuO4 undergoes a transition to magnetic order.

2V≤ Vac ≤ 5V. Specifically, in Fig. 7 (a), the feature of
the Lifshitz transition, which is the prominent feature at
T = 5K, is clearly visible in all data sets at different
fp and the absolute value of E agrees between the data
sets within the signal-to-noise ratio. However, the lat-
ter is smaller at higher frequency, as expected, since the
absolute signal depends on ωc − ωp, as seen in Eq. 4.

We now demonstrate that the chosen Vac are small
enough to not smear out phase transitions. To this end,
we show in Fig. 7 (b) the amplitude dependence of the
Young’s modulus at a temperature of 2.5K, where the
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FIG. 7. Dependence of the Young’s modulus, E, of Sr2RuO4

on frequency (a) and stress amplitude (b), as obtained by
the new a.c. method. The data are plotted as a function
of strain, ϵxx. In (a), different actuator frequencies, fp, are
applied in the range between 17Hz and 927 Hz at a temper-
ature of 5K and an a.c. voltage of 5V. This voltage induces
a stress amplitude of σac =0.027 GPa. In (b), the data for
different a.c. voltage amplitudes, Vac, between 2V and 5V
are shown at a temperature of 2K and an actuator frequency
of 167Hz. The corresponding stress amplitudes, σac, vary be-
tween 0.011 GPa and 0.027 GPa. All data shown were taken
with a capacitance-bridge frequency of fc = 2.297 kHz.

feature associated with the magnetic phase at ϵxx ∼
−0.62% is more pronounced, and thus serves as a good
benchmark for this analysis. For the range of Vac between
2V and 5V, corresponding to a range of σac (ϵac) between
0.011GPa and 0.027GPa (6 × 10−5 and 1.5 × 10−4), no
significant smearing of Young’s modulus anomalies can
be detected. Overall, all the data agree quantitatively
very well, and only the signal-to-noise ratio changes with
decreasing Vac, as expected.
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FIG. 8. Magnitude (a) and phase (b) of the dynamic Young’s
modulus of Sr2RuO4 under in-plane strain, ϵxx. Data of the
dynamic modulus are shown at temperatures of 2.5K and 8K.
The strain region, in which Sr2RuO4 is magnetically ordered
at 2.5K, is indicated by the grey area. The transition into
the magnetically-ordered phase at 2.5K and ϵxx ≈ −0.62%
is also clearly identified in the elastocaloric temperature am-
plitude, ∆T , which is also included in (a) on the right axis.
At 8K, Sr2RuO4 remains non-magnetic over the strain range
shown here20. The dashed line indicates the position of the
Lifshitz transition at 2.5K. All data shown were taken at a
frequency of fp =167Hz and an amplitude of Vac =5V. Er-
ror bars for the phase value are exemplarily indicated in (b)
at strain of ∼ −0.7%.

B. Results: Phase of the dynamic Young’s
modulus of Sr2RuO4

We now turn to the additional phase information that
is provided by performing our measurements in the a.c.
mode. As introduced in Sec. I, dynamic measurements
reveal information on the real and imaginary part of the
Young’s modulus (E′ and E′′). In particular the latter
is of interest to investigate dissipative processes. In the
following, we describe our results in this respect by pre-
senting the Young’s modulus in terms of its magnitude
and phase. Phase and magnitude are related to the real

and imaginary part of the modulus via E′ =
|σac,0|
|ϵac,0| cos δ

and E′′ =
|σac,0|
|ϵac,0| sin δ, i.e., a finite δ corresponds to a

finite E′′.

Figure 8 summarizes our measurement results of δ in
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our experiments on Sr2RuO4 at a probing frequency of
fp = 167Hz and Vac = 5V. To this end, we now com-
pare the results at two different temperatures, T = 2.5K
and T =8K. Whereas Sr2RuO4 was reported to en-
ter a magnetically-ordered phase at high compression at
T =2.5K, it remains non-magnetic at 8K20,33. This
is fully consistent with our thermodynamic data, shown
in Fig. 8 (a). At low compression, the magnitude of E
as a function of ϵxx shows the softening at the Lifshitz
transition, and the softening is more pronounced at low
temperatures, consistent with the earlier reports13. For
higher compression, the data taken at 2.5K reveal an
additional feature at ϵxx ≈ −0.61%, associated with the
transition into the magnetic state. In contrast, the data
set taken at 8K shows no features of additional phase
transitions besides the Lifshitz transition. The grey area
in Fig. 8 marks the region of magnetic order at 2.5K, as
determined by the simultaneous measurements of E and
the elastocaloric effect (see grey line, right axis).

In Fig. 8 (b), we show the behavior of the phase, δ, as
a function of ϵxx for the same temperatures and at the
same frequency. At 8K, no change of δ with strain is
observed within the signal-to-noise level over the entire
strain range. In contrast, at 2.5K, an increase of δ is
observed at the strain, where Sr2RuO4 undergoes the
transition into the magnetically-ordered state. Although
the changes of δ are very small, they exceed the signal to
noise by more than a factor of two.

The result of a finite phase between applied stress and
resulting strain in the magnetic phase of Sr2RuO4 is a
key new insight accessible by extending stress-strain mea-
surements to finite frequencies. It implies that there is
an energy dissipation during the (un-)loading stress cy-
cle. Since this phenomenon occurs at low frequencies,
compared to typical spin relaxation times, it is likely to
be related to interactions between the magnetic order and
the crystal lattice, such as domain walls or other collec-
tive effects. In elemental chromium (Cr), for example, it
was found that the pressure-dependent spin-density wave
vector shows a certain degree of irreversibility between
increasing and decreasing pressure34. This observation
was interpreted in terms of crystal-lattice domain-wall
distortions35, which lock the wave vector for small dis-
tortions. A similar mechanism may be at work here in
Sr2RuO4. Further knowledge of the ordering vector and
its strain dependence36 in Sr2RuO4 will be crucial for
understanding the low-frequency response of its elastic
constants.

IV. CONCLUSION AND OUTLOOK

In this work, we described a new experimental tech-
nique to determine the dynamic Young’s modulus as
a function of pressure, frequency and temperature in
piezoactuator-driven uniaxial pressure cells. Our setup
exploits the ability of piezoelectric actuators to generate
finite-frequency stresses and strains in the Hz-kHz range

through the application of an a.c. voltage. Using the
ruthenate Sr2RuO4 as a test-bed material for proof-of-
principle measurements, we have shown that the Young’s
modulus data from our low-frequency a.c. setup are in
very good agreement with data from static Young’s mod-
ulus measurements. Our a.c. setup is well suited for de-
tecting small anomalies in the strain dependence of the
modulus. Furthermore, our a.c. data contains informa-
tion on the phase between applied stress and resulting
strain, which we find to be finite in the magnetic phase
of Sr2RuO4 under high compression.
Our setup opens up the possibility to study the finite-

frequency elastic response function in quantum materials
which are subjected to time-varying external stress fields
and large, static tuning stresses. This approach is akin to
a.c. susceptibility studies37,38, where a time-dependent
magnetic field acts as the driving external force to probe
dynamics. Our method provides a new perspective on
the viscoelastic behavior and lattice dynamics of solids.
Following the fluctuation-dissipation theorem39, the vis-
coelastic response is related to the low-frequency lat-
tice dynamics of systems whenever they are amenable
to stress tuning. It can be expected that the dynamics
are governed by a range of intriguing phenomena, such as
the movement of domain walls under strain, slow order-
parameter dynamics and collective effects in general.
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V. APPENDIX: DETERMINATION OF THE
SPRING CONSTANT OF THE CELL

We follow the report of Barber et al.15 to determine
the spring constant of our cell, which is similar in design,
but not identical, to theirs. For the finite-element simu-
lations, we used the software COMSOL40. Since the cell
is made out of titanium, we use the room-temperature
Young’s modulus of 103GPa and a Poisson’s ratio of 0.33
for the simulations.
The spring constant of the cell contains various contri-

butions (see Fig. 2): (i) the spring constant of the piezo-
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electric actuators, kp,tot, (ii) the spring constant of the
moving block B (the force block), kB , and (iii) the spring
constant of the moving block A, kA.
According to the data sheet of the actuators32, the

spring constant of a single stack of type P-885.51 used
here is kp = 50N/µm at room temperature. Combining
the two compression actuators in parallel to each other
and in series with the tension actuator gives kp,tot =
33N/µm.

To simulate kB , we apply a force of 10N to moving
block B at the position of the carrier mounting holes and
measure its displacement. The resulting spring constant
in the simulations was kB = (7.6 ± 0.3)N/µm. We
also determined this spring constant experimentally, by
hanging various weights from block B and measuring the
resulting displacement. This procedure yielded an exper-
imental value of (7.7 ± 0.1)N/µm, which is, within the
error bars, consistent with the simulated value.

The moving block A is designed to have a small spring
constant in the direction of the applied force and a large
spring constant in the orthogonal directions, to avoid
torque on the sample. These rotational spring constants
dominate kA. For the simulations of kA, we consider
the application of force of 10N to an infinitely stiff sam-
ple. Since the sample is infinitely stiff, there is zero
displacement between the carrier mounting points on
block A and B (∆d = 0) upon the application of 10N.
Due to the finite rotational spring constant of block A,
the actuators must apply a slightly higher force than
10N. Our simulations showed that a force of 10.45N is
needed. We then evaluated the difference in actual dis-
placement between the carrier mounting holes on block
A and the actuator attachment area. Note that, even
though there is zero relative displacement across the gap,
block A is still displaced because block B moves under
applied force (see Ref. 15 for further details on this sim-
ulation). The present simulation gives an estimate of
kA = (7.7± 2)N/µm.
Taking kp,tot, kA and kB together in series yields

kcell = (3.4 ± 0.5)N/µm at room temperature.
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H. Schubert, T. Sasaki, and M. Lang, Crystals 8, 38
(2018).

13H. M. L. Noad, K. Ishida, Y.-S. Li, E. Gati, V. Stangier,
N. Kikugawa, D. A. Sokolov, M. Nicklas, B. Kim, I. I.
Mazin, M. Garst, J. Schmalian, A. P. Mackenzie, and
C. W. Hicks, Science 382, 447 (2023).

14V. Sunko, E. A. Morales, I. Markovic, M. E. Barber,
D. Milosavljevic, F. Mazzola, D. A. Sokolov, N. Kiku-
gawa, C. Cacho, P. Dudin, H. Rosner, C. W. Hicks,
P. D. C. King, and A. P. Mackenzie, npj Quantum
Mater. 4, 46 (2019).

15M. E. Barber, A. Steppke, A. P. Mackenzie, and C. W.
Hicks, Rev. Sci. Instrum. 90, 023904 (2019).

16Y. Agarmani, S. Hartmann, J. Zimmermann, E. Gati,
C. Delleske, U. Tutsch, B. Wolf, and M. Lang, Rev.
Sci. Instruments. 93, 113902 (2022).

17R. S. Manna, B. Wolf, M. de Souza, and M. Lang,
Rev. Sci. Instruments. 83, 085111 (2012).
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