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Andreev reflection at a normal-superconductor interface may be accompanied with an anomalous
spatial shift. The studies so far are limited to the top incidence configuration. Here, we investigate
this effect in the side incidence configuration, with the interface parallel to the principal axis of
superconductor. We find that the shift exhibits rich behaviors reflecting the character of pair
potential. It has two contributions: one from the k-dependent phase of pair potential, and the other
from the evanescent mode. For chiral p-wave pairing, the pairing phase contribution is proportional
to the chirality of pairing and is independent of excitation energy, whereas the evanescent mode
contribution is independent of chirality and is nonzero only for excitation energy below the gap.
The two contributions also have opposite parity with respect to the incident angle. For dx2−y2 -
wave pairing, only the evanescent mode contribution exists, and the shift exhibits suppressed zones
in incident angles, manifesting the superconducting nodes. The dependence of the shift on other
factors, such as the angle of incident plane and Fermi surface anisotropy, are discussed.

I. INTRODUCTION

Many interesting optical effects have found their analo-
gies in electronic systems. In geometric optics, a well-
known phenomenon is the anomalous spatial shift of a
light beam during reflection at an optical interface [1–3].
With reference to the beam’s incident plane, this shift
may be decomposed into two components: the longitu-
dinal component which is within the plane, known as
the Goos-Hänchen effect [4]; and the transverse compo-
nent which is normal to the plane, known as the Imbert-
Fedorov effect [5, 6]. These effects have been extensively
studied in both theory and experiment, and they have
found wide applications in interface characterization, bi-
ological sensing, nanophotonics, and etc [1–3, 7].

The analogous effects for electrons, namely, the shifts
for an electron beam when scattered at an interface, also
exist. The longitudinal (Goos-Hänchen-like) shift was
studied already in the 1970s [8–10]. With the techno-
logical advance which makes it possible to achieve pre-
cise control of electron beam trajectory (which leads to
the field of electron optics) [11–13], these electronic shifts
have attracted increasing interest in the past two decades.
Notably, it was found that the shifts often encode key
features of electronic band structures of materials that
form the interface. For example, the Goos-Hänchen-like
shift in graphene has strong dependence on the Dirac
electron’s pseudospin degree of freedom [14–17]; and the
Imbert-Fedorov-like shift first reported for interface with
Weyl semimetals is sensitive to the chirality of Weyl
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points [18–22]. More recently, it was shown that un-
der certain symmetry conditions, the shift could lead to
a quantized circulation pattern when plotted in momen-
tum space, and this may capture topological characters
of a bulk material [23].

In optic and electronic cases mentioned above, the shift
occurs in a reflection in which the incident and the re-
flected beams are of the same kind of particles. However,
at the interface between a normal metal and a super-
conductor, there is a unique reflection process, the An-
dreev reflection, where an incident electron is reflected
back as a hole and vice versa. Although the particle
identity is changed during Andreev reflection, in 2017,
Liu et al. [24] showed that a spatial shift still exists in
this process. Interestingly, the shift is sensitive to the
type of superconducting pairing [25]. For example, con-
sider the setup where an electron beam is incident from
a simple medium (e.g., vacuum) and hits the interface
with a superconductor. It was found that s-wave pairing
leads only to longitudinal shift [26]. Yu et al. [25] showed
that, in comparison, for unconventional pairings, such as
d-wave or chiral p-wave pairings, both longitudinal and
transverse shifts occur and they manifest intriguing fea-
tures unique for each pairing symmetry. Thus, the effect
of spatial shift in Andreev reflection provides a powerful
tool for characterizing superconductivity.

In previous studies, the normal-superconductor (NS)
interface is taken to be the one normal to the c-axis (in
other words, parallel to the ab-plane) of the supercon-
ductor, a setup which may be called the top incidence
configuration. It is noted that unconventional pairings,
like p-wave and d-wave pairings, are anisotropic [27–29].
This indicates that the physics could be very different for
the scattering happening on the side surface parallel to
the c-axis. We call this setup the side incidence configu-
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ration. Then, a natural question is: Does the shift exist
also in the side incidence configuration? If yes, what are
its special features, particularly in comparison with the
top incidence configuration?

In this work, we investigate the anomalous spatial shift
in Andreev reflection in the side incidence configuration
and answer the above questions. Specifically, we consider
two unconventional pairing models, with chiral p-wave
pairing and dx2−y2 -wave pairing, respectively. We show
that the shift generally exists, can be sizable, and ex-
hibits features distinct from top incidence. For the chiral
p-wave case, the behavior of the shift becomes partic-
ularly simple for excitation energy ε above the pairing
gap, where both longitudinal and transverse shifts be-
come independent of ε, and their signs are determined
by the chirality of pairing. Meanwhile, for ε below the
pairing gap, there is an additional contribution to each
shift component, which is not related to chirality. As a
result, while the shift is symmetric in the incident an-
gle for high excitation energy (above the gap), it is no
longer symmetric for low excitation energy (below the
gap). For the dx2−y2 -wave pairing, there exist zones of
incident angle for nonzero excitation energy ε where the
shift is completely suppressed, which correspond to the
nodes of the pairing gap. Both longitudinal and trans-
verse shifts are enhanced when ε is close but below the
pairing gap seen by the incident electron. Our work clar-
ifies the intriguing effect of spatial shift in Andreev re-
flection in an important setup. The result complements
the previous studies on top incidence to provide a com-
plete picture, which deepens our understanding of this
fundamental effect and can be useful for superconductor
characterization as well as device design.

II. BASIC SETUP AND MODELLING

Let us first describe the basic setup of side incidence
configuration. As illustrated in Fig. 1(a), we consider a
flat NS interface. The left side (x < 0) is occupied by the
normal (N) medium (e.g., simple metal or vacuum). The
right side (x > 0) is occupied by the superconducting
(S) medium. The system is extended in the y and z
directions, so momenta ky and kz are conserved during
scattering at the interface. Consider an electron beam
incident from the N side. The incident plane is defined
by the beam and the interface normal vector. We use the
angle

α = tan−1(kz/ky) ∈ (−π, π] (1)

to specify the incident plane. As shown in Fig. 1(b), α
is the angle of incident plane measured from the y axis.
Inside the incident plane, the incident angle of the beam
is denoted by γ ∈ (−π/2, π/2) [see Fig. 1(a)], and γ = 0
corresponds to the case of normal incidence.

The essential physics of scattering at the NS interface
can be described by the Bogoliubov-de Gennes (BdG)
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FIG. 1. (a) Schematic figure showing the basic setup for in-
vestigating the longitudinal and transverse shifts in interface
scattering. The green arrows denote the incident and the re-
flected particle beams. (b) The two shift components ℓL and
ℓT viewed in y-z plane.

equation [30, 31]:[
H0 + V (x)− EF ∆∗(k)Θ(x)

∆(k)Θ(x) EF −H0 − V (x)

]
ψ = εψ, (2)

where H0 = − 1
2m∇2 is the kinetic energy term (we set

ℏ = e = 1), EF is the Fermi energy, ∆(k) is the su-
perconducting pair potential, Θ(x) is the Heaviside step
function indicating that the pairing occurs on the S side,
and V (x) = UΘ(x) + hδ(x) with U denoting a potential
energy difference between the two sides and h denoting
a possible interface barrier potential. For side incidence
configuration, the principal axis of the S side is along
z. For unconventional pairings, the pair potential ∆
should have strong dependence on kx and ky, and we
will neglect its kz dependence. For example, for the chi-
ral p-wave pairing, we write ∆ = ∆0(kx + iχky), where
parameters ∆0 > 0 and χ = ±1. In this model, we take
isotropic Fermi surfaces. In practice, unconventional su-
perconductors often have anisotropic Fermi surfaces. We
will discuss effects of anisotropic Fermi surface later in
Sec. VII.

III. ANALYTIC RESULTS

Before performing calculations, we first analyze states
that are involved in a scattering. Since the momentum
k∥ = (ky, kz) parallel to the interface is conserved, in
our model, there will be five states involved (see Fig. 2):
incident electron state ψi

e, reflected electron state ψr
e , re-

flected hole state ψr
h, and two transmitted states ψ+

S and

ψ−
S . In Fig. 2, one can see that ψ+

S is an electron-like

quasiparticle state, whereas ψ−
S is a hole-like quasiparti-

cle state. It should be noted that the superconducting
gaps around the locations of ψ+

S and ψ−
S could be dif-

ferent, due to the k dependence of ∆ for unconventional
pair potential. We denote the two gaps as ∆+ and ∆−,
respectively (see Fig. 2). They generally depend on the
energy and momentum of the incident electron. We de-
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FIG. 2. Schematic figure showing the states involved in the
scattering process. The blue and (hollow) red dots denotes the
electron and hole states in N region. The black dots denote
the two quasiparticle states in S region. The superconducting
gaps ∆± around ψ±

S states may have different values in the
side incidence configuration.

fine their phase angles as

θ± = arg(∆±). (3)

For the case illustrated in Fig. 2, ψ+
S and ψ−

S are propa-
gating modes in S. When the excitation energy ε is below
∆+ (∆−), ψ

+
S (ψ−

S ) will become an evanescent mode.
Now, for a given incident electron state ψi

e, we can
write down the corresponding scattering state for the
BdG equation (2):

ψ =

{
ψi
e + reψ

r
e + rhψ

r
h, x < 0

t+ψ
+
S + t−ψ

−
S , x > 0

, (4)

where re(h) is the amplitude for normal (Andreev) re-
flection, and t± are the two amplitudes for transmissions
into ψ±

S states.
The three states in the N region can be written as

ψi
e = e+ikex

(
1
0

)
, (5)

ψr
e = e−ikex

(
1
0

)
, (6)

ψr
h = e+ikhx

(
0
1

)
, (7)

with ke, kh ≈
√
2mEF − k2∥ and k∥ = sgn(γ)

√
k2y + k2z .

Here, we assume EF ≫ ε, so corrections to ke/h of order
(ε/EF ) are neglected. From the configuration in Fig. 1,
we have the relation tan γ = k∥/ke.

In the S region, the basis states ψ±
S (not normalized)

can be written as

ψ±
S =

(
1

η±e
iθ±

)
eikS±x. (8)

Here, θ± have been defined in Eq. (3) which are phases
of pair potential, and

η± =
|∆±|

ε±
√
ε2 − |∆±|2

(9)

and the momentum kS± ≈ ±kS , with

kS =
√
2m(EF − U)− k2∥. (10)

In the treatment, we take the weak coupling limit, with
(EF −U) ≫ {|∆|, ε}. Meanwhile, the magnitudes of |∆|
and ε can be comparable. One notes that for ε > |∆±|,
η± is a positive (real) number, whereas for ε < |∆±|, η±
becomes complex.
The boundary conditions for the BdG equation at the

interface (x = 0) are derived from the quasiparticle cur-
rent conservation [30, 32]. They take the form of

ψ|x=0− = ψ|x=0+ ,

1

m
∂xψ

∣∣∣∣
x=0−

=
1

m
∂xψ

∣∣∣∣
x=0+

− 2hψ(0).
(11)

The scattering amplitudes (r’s and t’s) can be solved
from Eq. (11) by substituting Eq. (4). The information
of the spatial shift in Andreev reflection is encoded in the
scattering amplitude rh. After straightforward calcula-
tions, we obtain

rh = − 4λη+η−e
i(θ++θ−)

η+Λ−eiθ+ − η−Λ+eiθ−
, (12)

where we define dimensionless parameters λ = kS/ke and

Λ± = 4(mh/ke)
2 + (1± λ)2. (13)

Based on the results in Ref. [24, 33], the spatial shift
ℓ for the Andreev reflected hole beam can be calculated
from

ℓi = − ∂

∂ki
φ

∣∣∣∣
k∥

(i = y, z), (14)

with φ = arg(rh). The shift depends on the phase of rh,
not its magnitude. It is customary to decompose the shift
vector ℓ into the longitudinal component ℓL inside the
incident plane and the transverse component ℓT normal
to the plane (see Fig. 1). In the present setup, we have

ℓL = ℓy cosα+ ℓz sinα, (15)

and

ℓT = −ℓy sinα+ ℓz cosα. (16)

Now, to obtain the phase angle φ, by using the result
in Eq. (12), we find

tanφ =


Λ+ sin(ϕ++θ+)−Λ− sin(ϕ−+θ−)
Λ+ cos(ϕ++θ+)−Λ− cos(ϕ−+θ−) , ε < |∆±|

η−Λ+ sin θ+−η+Λ− sin θ−
η−Λ+ cos θ+−η+Λ− cos θ−

, ε > |∆±|
(17)

where

ϕ± = arg(η±). (18)
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Since ∆+ and ∆− may have different values, besides the
two cases in Eq. (17), we have another two cases: when
|∆−| < ε < |∆+|, we find

tanφ =
Λ− sin(θ−)− η−Λ+ sin(ϕ+ + θ+)

Λ− cos(θ−)− η−Λ+ cos(ϕ+ + θ+)
; (19)

and when |∆+| < ε < |∆−|,

tanφ =
Λ+ sin(θ+)− η+Λ− sin(ϕ− + θ−)

Λ+ cos(θ+)− η+Λ− cos(ϕ− + θ−)
. (20)

Before proceeding, let’s make a comparison with top
incidence configuration. In that case, one always has the
equality ∆+ = ∆−, so essentially the subscripts ± can
be dropped in quantities involved in the formulas above.
This will greatly simplify the result. One can deduce that

φ =

{
θ + tan−1(ζ tanϕ), ε < |∆+|,
θ, ε > |∆+|,

(21)

where we define ζ = [4(mh/ke)
2 + 1 + λ2]/(2λ), θ = θ±,

and ϕ = ϕ±. This recovers the previous result in
Ref. [25].

Back to side incidence configuration considered here,
generally, we have ∆+ ̸= ∆−. Then, the resulting ex-
pressions of φ, i.e., Eqs. (17-20), are more complicated.
Nevertheless, if we restrict to the regime where EF is the
largest energy scale, i.e., with EF ≫ {U, h}, and |γ| not
close to π/2, then we have ke ≈ kS , λ ≈ 1, Λ+ ≈ 4, and
Λ− ≈ 0, so that

rh ≈ η+e
iθ+ . (22)

In this regime, the expression for φ is simplified to

φ =

{
θ+ + ϕ+, ε < |∆+|,
θ+, ε > |∆+|.

(23)

This is a very nice result. We have the following ob-
servations. First, the result depends on the ψ+

S state

but not ψ−
S state. This can be intuitively understood,

because for large EF , ψ
−
S is largely separated in momen-

tum from ψi
e, ψ

+
S , and ψ

r
h states, so it has little influence

on Andreev reflection. Second, in Eq. (23), φ has two
contributions when ε is below the superconducting gap.
The first contribution θ+ originates from the phase of
pair potential. The second contribution ϕ+ originates
from the evanescent character of ψ+

S state in this case.
Indeed, previous studies showed that evanescent modes
play a critical role in generating the spatial shift. These
are the two sources of the phase change between the in-
cident electron and the Andreev reflected hole. Third,
when the excitation energy is above the gap, we only
have the θ+ contribution. This is because ψ+

S state now
becomes a propagating mode, which then does not con-
tribute a phase change.

In the following sections, we will apply the above for-
mulas to three different types of pair potentials on the S
side.

(a) (b)
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FIG. 3. Results for the shifts in Andreev reflection for the
s-wave case. (a) shows spatial shifts versus ε. (b) shows the
spatial shifts versus the incident angle γ. In the calculation,
we set EF = 0.2 eV, U = −0.2 eV, m = 0.1 me, h = 50 meV ·
nm and ∆0 = 2 meV; in (a), we take γ = 0.3π; in (b), we
take ε = 1 meV.

IV. S-WAVE PAIRING

Let’s first apply the results in Sec. III to the case of
conventional s-wave pair potential. Since this case is
isotropic, the result for side incidence should be the same
as that for top incidence. The purpose of the discussion
here is mainly for completeness and also to provide a
reference to which the results of unconventional pairing
cases can be compared.
For a s-wave pair potential, we model ∆ = ∆0 being a

real constant parameter. By using the result in Sec. III,
especially the analysis around Eq. (21), we find that the
two components of the shift are given by

ℓT = 0, (24)

ℓL = −
8m2 tanϕ(U2 + h2k2N )k∥

4k3ek
3
S + kekS(k2N + 4m2h2)2 tan2 ϕ

, (25)

for ε < ∆0; and

ℓT = ℓL = 0, (26)

for ε > ∆0. In the above expression, kN =
√
k2e + k2S

and ϕ = ϕ± = − arccos ε
∆0

.
In this case, the pair potential does not have a non-

trivial phase variation, so a nonzero shift has to come
from the evanescent mode contribution, which requires
ε < ∆0. Clearly, the result should not depend on angle
α, due to isotropy of the model. One observes that the
transverse component ℓT of the shift vanishes. This can
be readily understood by noting that the system always
has a mirror symmetry with respect to the incident plane.
Regarding the longitudinal shift ℓL, it is an odd function
of γ [see Fig. 3(b)], as k∥ is odd in γ. From Eq. (25), a
finite ℓL would require a finite U or h. We also note that
a large EF which dominates over U and ℓ would suppress
the value of ℓL. This is because for such case, according
to the discussion around Eq. (22), φ = ϕ+ = ϕ becomes
a k-independent number (θ+ = 0 for s-wave). Then the
shift from Eq. (14) should vanish. These results are con-
sistent with the previous studies for s-wave case in the
top incidence configuration [24, 25].
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FIG. 4. Calculated (a) longitudinal shift ℓL and (b) transverse
shift ℓT as functions of excitation energy ε. In these figures,
the solid (dashed) lines are results for chirality χ = +1 (−1).
(c) shows longitudinal shifts for the special configuration with
angle α = 0. (d) denotes spatial shifts as functions of angle α.
In the calculation, we set EF = 0.1 eV, U = 0, m = 0.05 me,
∆0 = 10 meV · nm, h = 0 and γ = 0.2π. In (a) and (b),
we take α = 0.2π; in (c), we take α = 0π; in (d), we take
ε = 2.5 meV;
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FIG. 5. Calculated (a,c) longitudinal shift ℓL and (b,d) trans-
verse shift ℓT as functions of incident angle γ. In these figures,
the solid (dashed) lines are results for chirality χ = +1 (−1).
In the calculation, we set EF = 0.1 eV, U = 0, m = 0.05 me,
∆0 = 10 meV · nm, h = 0 and α = 0.2π; In (a) and (b), we
take ε = 4 meV; in (c) and (d), we take ε = 2.5 meV;

V. CHIRAL P-WAVE PAIRING

Next, we consider the case with a chiral p -wave su-
perconductor. The pair potential on S side is modeled as
∆ = ∆0(kx + iχky), where χ = ±1 denotes the chirality.
For such a chiral pair potential, the two gaps |∆±| are
the same, regardless of the angles γ and α. Here, we fo-

cus on the regime with EF ≫ {U, h}. By using Eq. (23),
the expressions of the anomalous shift can be obtained
as

ℓL =


−χk2

∥+k2
S

kSk
′2
S

cosα− εk∥ sin2 α

k
′2
S

√
∆2

0k
′2
S −ε2

, ε < |∆+|

−χk2
∥+k2

S

kSk
′2
S

cosα, ε > |∆+|
(27)

for longitudinal shift, and

ℓT =

χ
kS

k
′2
S

sinα− εk∥ sin 2α

2k
′2
S

√
∆2

0k
′2
S −ε2

, ε < |∆+|

χ kS

k
′2
S

sinα, ε > |∆+|
(28)

for transverse shift. Here, ∆+ = ∆0(kS + iχk∥ cosα),

and we define k′S =
√
k2S + k2y =

√
2m(EF − U)− k2z .

We have the following observations on these results.
First, the basic structure of the expressions follow the
discussion at the end of Sec. III. Namely, for ε < |∆+|,
the shift has two contributions, the first is from the phase
of pair potential, and the second is from the evanescent
character of mode ψ+

S ; for ε > |∆+|, there is only one
contribution, from the pairing phase. This feature holds
for both longitudinal and transverse shifts.
Second, since the phase of pair potential depends on

the chirality χ, the pairing phase contribution in the shift
contains the χ factor. In comparison, the evanescent
mode contribution for ε < |∆+| does not depend on chi-
rality. For ε > |∆+|, both ℓL and ℓT are proportional to
χ, so the shift would flip sign if the chirality of the pair
potential is reversed.
Third, we note that at α = 0, i.e., when the incident

plane coincides with the x-y plane, ℓT vanishes because
the system has a mirror symmetry with respect to the
incident plane. Meanwhile, for ℓL, the evanescent mode
contribution vanishes due to its sin2 α dependence, and
we find a particularly simple result

ℓL = − χ

kS
, (29)

which is independent of the excitation energy ε. For α ̸=
0, ℓL is an even function of α, whereas ℓT is an odd
function. In Figs. 4(a,b), we plot the variation of the
shift components versus ε at α ̸= 0. One can see that the
evanescent mode contribution for ε < |∆+| gives a large
contribution close to the superconducting gap.
Finally, regarding the dependence on the incident angle

γ, we note that the pairing phase contribution is an even
function of γ, whereas the evanescent mode contribution
is an odd function. It follows that for ε > |∆+|, the
curves for ℓL and ℓT are symmetric about γ = 0 [see
Fig. 5(a,b)]. In comparison, for ε < |∆+|, the curves
are generally neither symmetric nor antisymmetric [see
Fig. 5(c,d)], due to the presence of both contributions.
Interestingly, for γ = 0, i.e., the normal incidence case,
we have a simple result: the shift should be along the y
direction, with

ℓ = − χ√
2m(EF − U)

ŷ, (30)
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which is proportional to the chirality of pairing and in-
dependent of the excitation energy.

VI. D-WAVE PAIRING

The third model we consider is that with a dx2−y2 -wave
pair potential, which we take as ∆ = ∆0[cos(2β)(k

2
x −

k2y) + 2 sin(2β)kxky]. Here, β is the angle between the
dx2−y2 wave and the normal direction of the interface (x-
axis). For example, the typical cases with β = 0 and
β = π/4 are illustrated in Figs. 6 and 7. In the following
analysis, we again focus on the regime with EF ≫ {U, h}.
Using Eq. (23), we obtain the following analytical ex-

pressions for the anomalous shift components:

ℓL =
2ε∆0 cosα sin(2β)(k2S − k2∥)

kS∆+

√
∆2

+ − ε2

−
2ε∆0(1 + cos2 α) cos(2β)k∥

∆+

√
∆2

+ − ε2
, (31)

ℓT =
2ε∆0 sinα

[
k∥ cosα cos(2β)− kS sin(2β)

]
∆+

√
∆2

+ − ε2
(32)

for ε < |∆+|, and

ℓL = ℓT = 0 (33)

for ε > |∆+|. Here, we have ∆+ = ∆(kx = kS , ky =
k∥ cosα). Typical behaviors of the two shift components

𝑑𝑥2−𝑦2 waveN

x

y

β

β=π/4

kx

k∥

0−π/2 π/2
𝛾ε (meV)

𝛾

S
h

if
t
(n
m
)

S
h

if
t
(n
m
)

ℓ
L

ℓ
T

ℓ
L

ℓ
T

(a) (b)

(c) (d)∆+

FIG. 7. (a) Illustration of the setup with angle β = π/4 for
the dx2−y2 -wave case. (b) illustrates the equi-energy surfaces
of N (black) and S (red) regions at a small excitation energy.
(c) Variation of the shifts versus excitation energy ε. (d)
Variation of the shifts versus incident angle γ. In the figures,
except for β, other parameters are the same as in Fig 6.

versus model parameters have been shown in Figs. 6 to
8. We have the following observations.
First, since the pair potential here is real, there is no

pairing phase contribution to the shift, and only evanes-
cent mode contribution exists. This explains why the
shift vanishes when ε > |∆+|, a behavior distinct from
the chiral p-wave case we discussed in the preceding sec-
tion. Note that dx2−y2-wave pair potential has nodes,
where the superconducting gap vanishes. This indicates
that for a finite excitation energy ε > 0 and large EF ,
there always exist some range of incident angle in which
ε > |∆+| is satisfied and therefore the shift is suppressed.
For example, for the case with β = 0 (see Fig. 6), |∆+|
vanishes at the two nodes located at ±π/4. This leads
to two suppressed zones [marked by the shaded region
in Fig. 6(d)] for the incident angle γ when it varies from
−π/2 to π/2. For β ̸= 0, the nodes are shifted, which also
shift the locations of the suppressed zones [see Fig. 8(d)].
In the case with β = π/4, there is only one suppressed
zone around γ = 0 [see Fig. 7(d)]. By detecting the sup-
pressed zones, one can in principle map out the locations
of the nodes.
Second, regarding the dependence on the angle α of

incident plane, from Eqs. (31-32), we see that ℓL is an
even function, whereas ℓT is an odd function. This is
similar to the chiral p-wave case in Sec. V. It follows that
the transverse shift vanishes when α = 0. Nevertheless,
it can be sizable for α ̸= 0 when the excitation energy is
just below the gap |∆+| [see e.g., Fig. 8(c)].
Third, when β = 0, the expressions for the two shift

components are simplified as

ℓL = −ε∆0(3 + 2 cos 2α)

∆+

√
∆2

+ − ε2
k∥, (34)
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𝑑𝑥2−𝑦2 waveN

x

y

β

β=π/8

kx

k||(a) (b)

(c) (d)

0−π/2 π/2

𝛾

𝛾ε (meV)

S
h

if
t
(n
m
)

S
h

if
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m
)

ℓ
L

ℓ
T

ℓ
L

ℓ
T

𝛾= -0.05 π 𝛾=0.05 π
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FIG. 8. (a) Illustration of the setup with angle β = π/8 for
the dx2−y2 -wave case. (b) illustrates the equi-energy surfaces
of N (black) and S (red) regions at a small excitation energy.
(c) Variation of the shifts versus excitation energy ε. (d)
Variation of the shifts versus incident angle γ. In the figures,
except for β, other parameters are the same as in Fig. 6.

ℓT =
ε∆0 sin 2α

∆+

√
∆2

+ − ε2
k∥, (35)

with ∆+ = ∆0(k
2
S−k2∥ cos

2 α). They have opposite signs,

and they are both odd functions of the incident angle γ,
as k∥ is odd in γ and ∆+ is even in γ. These behaviors
are illustrated in Fig. 6(d). For another special case with
β = π/4, we have the following simplified expressions:

ℓL =
2ε∆0 cosα(k

2
S − k2∥)

kS∆+

√
∆2

+ − ε2
, (36)

ℓT = − 2ε∆0 sinαkS

∆+

√
∆2

+ − ε2
, (37)

with ∆+ = 2∆0kSk∥ cosα. One notes that in this case,
again, the two components are odd functions of the in-
cident angle γ [see Fig. 7(d)], because ∆+ is odd in γ
(through k∥). For a general angle β, the shift does not
have a definite parity with respect to γ, as shown in
Fig. 8(d).

Finally, for normal incidence (with γ = 0), the formula
is reduced to

ℓ =
2ε∆0kS sin 2β

∆+

√
∆2

+ − ε2
Θ(|∆+| − ε)ŷ, (38)

where Θ is the Heaviside step function, and ∆+ =
2m(EF − U)∆0 cos 2β. This shift is along the y direc-
tion and can be nonzero for the general case when β is
not an integer multiple of π/4.

P
ro

b
.

ε (meV)ε (meV)

(a) (b)

P
ro

b
.

1

0
0 10 0 5

∆+ ∆+

FIG. 9. Variation of Andreev reflection probability |rh|2 ver-
sus excitation energy ε for (a) chiral p-wave case and (b)
dx2−y2 wave case. In (a), we set the same parameters as
Fig. 4 (a). And in (b), we set the same parameters as Fig. 8
(c) with γ = 0.05π.

VII. DISCUSSION AND CONCLUSION

The anomalous spatial shift in Andreev reflection is
connected with the phase of the reflection amplitude rh.
The magnitude of rh, on the other hand, determines the
probability of Andreev reflection. For large EF , this
probability is typically close to unity when ε is below the
gap ∆+ and decays with ε when ε is above the gap [30].
For example, the variation of probability |rh|2 versus ε
is plotted in Fig. 9. for the two cases with chiral p-wave
pairing and with dx2−y2 -wave pairing, which confirms the
above point.

In our model, we used an isotropic Fermi surface. To
investigate the effects of Fermi surface anisotropy, we
change the normal state Hamiltonian H0 for the S region
to be H0 = − 1

2m (∂2x + ∂2y), which is dispersionless along
the z direction. This gives a cylindrical Fermi surface
for the S side, representing a very strong anisotropy. For
this modified model, analytic results are too complicated
to analyze. Nevertheless, we may proceed numerically.
As shown in Fig. 10(a,b), we find that for small angle α
of the incident plane, the results for the modified model
with cylindrical Fermi surface agree very well with those
for spherical Fermi surface. This can be understood by
noting that when α≪ 1, the scattering involves only the
states around the Fermi circle with kz = 0 in S, which
makes little difference between cylindrical and spherical
Fermi surfaces. With increased α, the results for the
cylindrical Fermi surface model does show quantitative
difference from the spherical model, but the qualitative
features are maintained. For example, in Fig. 10(c,d), we
compare the results of the two models for α = π/4 in the
case of dx2−y2-wave pairing. We see that the two mod-
els share similar features, such as existence of suppressed
zones, parity with respect to incident angle, and trend of
variation against other parameters.

Regarding experimental detection, the most straight-
forward way is to prepare a collimated electron beam
and let it hit the surface of the superconductor (N side is
vacuum in this case), just like the setup of the electron
microscope. Then, we detect the Andreev reflected hole
beam. By comparing the trajectories of the incident and
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FIG. 10. Results for model with a cylindrical Fermi surface.
Here, we consider dx2−y2 -wave case. (a) and (b) are for lon-
gitudinal and transverse shift components, respectively, at a
small angle α = 0.01π. In each figure, the lines marked by
circles are calculated for the model with cylindrical Fermi sur-
face, and the solid curves are obtained from the formulas in
Eqs. (31) and (32). (c) and (d) are corresponding plots for
a larger angle α = π/4. In these plots, except for α, other
parameters are the same as in Fig. 6.

the reflected beams, one can extract the shift at the sur-
face during scattering. Our estimation here shows that
the shift can reach the magnitude of tens of nanometers,
which should be detectable with current technology. In a
NS junction formed by a conventional metal and a super-

conductor, the shift at the interface may lead to a voltage
signal in the transverse direction on the N side close to
the interface, when an electric current is driven through
the junction. For example, for the junction with a chiral
p-wave superconductor with interface coinciding with the
y-z plane, according to Eq. (30), the shift should lead to
a voltage drop in the y direction and its sign is deter-
mined by the chirality of the pair potential. In addition,
the shift may be accumulated by designing heterostruc-
tures in which an electron beam can undergo multiple
scattering [14, 26].
In conclusion, we have investigated the anomalous shift

in Andreev reflection at an NS interface in the side inci-
dence configuration. The results show rich and distinct
behaviors for different types of pairing. For chiral p wave
pairing, there are two contributions. The pairing phase
contribution which is proportional to chirality and the
evanescent mode contribution which is independent of
chirality. For excitation energy above the pairing gap,
the evanescent mode contribution vanishes, whereas the
pairing phase contribution persists, leading to a partic-
ularly simple result. For dx2−y2-wave pairing, only the
evanescent mode contribution exists, so the shift vanishes
for excitation energy above the gap. Around the nodes
of the superconducting gap, there are suppressed zones
where the shift vanishes. This offers a way to map out
the superconducting nodes. The dependence of the shift
on excitation energy, incident angle, and other system
parameters are analyzed. These findings deepen our un-
derstanding of the fundamental scattering process at the
NS interface, offer new methods to characterize super-
conductors, and may be useful for designing novel super-
conducting devices.
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